University of AmsterdamUniversity of AmsterdamUvA

  • Terms of use
  • Contact

UvA-DARE (Digital Academic Repository)

  • Home
  • Advanced Search
  • Browse
  • My selection

Search UvA-DARE

Author
N. Hansen
R. Krishna
J.M. van Baten
A.T. Bell
F.J. Keil
Year
2009
Title
Analysis of diffusion limitation in the alkylation of benzene over H-ZSM-5 by combining quantum chemical calculations, molecular simulations, and a continuum approach
Journal
The Journal of Physical Chemistry. C
Volume | Issue number
113 | 1
Pages (from-to)
235-246
Document type
Article
Faculty
Faculty of Science (FNWI)
Institute
Van 't Hoff Institute for Molecular Sciences (HIMS)
Abstract
A continuum model based on the Maxwell−Stefan (M-S) equations in combination with the ideal adsorbed solution theory has been used to analyze the influence of adsorption thermodynamics and intraparticle diffusional transport on the overall kinetics of benzene alkylation with ethene over H-ZSM-5. The parameters appearing in the M-S equations were obtained from molecular dynamics simulations, and pure component adsorption isotherms were obtained from configurational-bias Monte Carlo simulations in the grand canonical ensemble. Rate coefficients for the elementary steps of the alkylation were taken from quantum chemical calculations. The intrinsic kinetics of two different reaction schemes were analyzed. The simulations show that all apparent rate parameters of the alkylation are strongly dependent on the reaction conditions. By taking diffusional limitation into account, experimentally determined reaction rates and the orders in the partial pressures of reactants can be reproduced. The results of this study show that empirical power law rate expressions become inappropriate when used to correlate kinetic data over a broad range of conditions. In addition, it is demonstrated that the usual approaches to determine effectiveness factors for reactions in porous media, which assume a constant effective diffusivity, may lead to substantial deviations from rigorous simulations, whereas the simulation model developed here can be used to predict the effectiveness factor for zeolite particles for any set of reaction conditions.
URL
go to publisher's site
Language
Undefined/Unknown
Permalink
http://hdl.handle.net/11245/1.309420

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library, or send a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

PrintPrint this pageShareShare via emailShare on facebookShare on linkedinShare on twitter
  • University library
  • About UvA-DARE
  • Disclaimer
Copyright UvA 2014