The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Search results

Record: oai:ARNO:417492

AuthorsB.B. Ochsendorf, L.E. Ellerbroek, R. Chini, O.E. Hartoog, V. Hoffmeister, L.B.F.M. Waters, L. Kaper
TitleFirst firm spectral classification of an early-B pre-main-sequence star: B275 in M 17
JournalAstronomy & Astrophysics
Volume536
Year2011
Pages4
ISSN00046361
FacultyFaculty of Science
Institute/dept.FNWI: Astronomical Institute Anton Pannekoek (IAP)
AbstractThe optical to near-infrared (300 − 2500 nm) spectrum of the candidate massive young stellar object (YSO) B275, embedded in the star-forming region M 17, has been observed with X-shooter on the ESO Very Large Telescope. The spectrum includes both photospheric absorption lines and emission features (H and Ca ii triplet emission lines, 1st and 2nd overtone CO bandhead emission), as well as an infrared excess indicating the presence of a (flaring) circumstellar disk. The strongest emission lines are double-peaked with a peak separation ranging between 70 and 105 km s-1, and they provide information on the physical structure of the disk. The underlying photospheric spectrum is classified as B6−B7, which is significantly cooler than a previous estimate based on modeling of the spectral energy distribution. This discrepancy is solved by allowing for a larger stellar radius (i.e. a bloated star) and thus positioning the star above the main sequence. This constitutes the first firm spectral classification of an early-B pre-main-sequence (PMS) star. We discuss the position of B275 in the Hertzsprung-Russell diagram in terms of PMS evolution. Although the position is consistent with PMS tracks of heavily accreting protostars (Ṁacc ≳ 10-5 M⊙ yr-1), the fact that the photosphere of the object is detectable suggests that the current mass-accretion rate is not very high.
Document typeArticle
Download
Document finderUvA-Linker