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Abstract: Using properties of shift- and rotation-invariance probability density distributions are derived for random straight 
lines in normal representation. It is found that in two-dimensional space the distribution of normal coordinates (r, ¢p) is uniform: 
p(r, ~o)=c, where c is a normalisation constant. In three dimensions the distribution is given by: p(r,~o, O, ()= cr sin 0. 
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1. Introduction 

The statistically sound design of image measure- 
ment procedures requires an explicit formulation 
for the probability distribution describing the 
relative occurrence of realisations of the originals. 
In the design process the following type of in- 
tegrals are evaluated: 

,i't ~ D F(g - g). p(O (t)) d t, 

where F is the error function expressing the dif- 
ference between the property g of the original in- 
stance O and g the property estimated from an 
observed instance of O. For MSE, F is given by 
F ( g - g )  = (g_~)2. The originals O are described 
by a set of parameters t, with p(O(t)) the prob- 
ability distribution of O. In the absence of further 
a priori knowledge, random distributions for 
p(O(t)) are commonly assumed. 

In this communication we will address the prob- 
lem of finding an expression for p(O (t)) in the case 

of random straight lines, i.e. in the general case 
when no a priori knowledge is available about a 
preferred direction or location of the lines. For t 
we will choose the standard normal representation 
of straight lines. Appropriate parameterization 
allows to efficiently study sets of lines. The results 
form a basis for the optimal estimation of length 
(Dorst & Smeulders, 1987), distance (Borgefors, 
1984) and orientation in digital images, and the 
development of line detectors (Duda & Hart, 
1972). These results have a further impact on 
image processing in that pseudo-Euclidean distance 
transformations (Borgefors, 1986; Vossepoel, 
1988; Beckers & Smeulders, 1989) can be based on 
them, which may lead to accurate and efficient 
morphological and topological analysis (Dorst, 
1986) and path-planning (Verbeek et al., 1986). In 
pattern recognition, applications may be found in 
cluster analysis and nearest neighbour classifica- 
tion in 2- and 3-D problems. 

To the extent of our knowledge in the literature 
no formal derivations of random probability den- 

0167-8655/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland) 233 



Volume 11, Number 4 PATTERN RECOGNITION LETTERS April 1990 

sity distributions are given for straight lines. Duda 
and Hart (1973) give an intuitive treatment on 
random straight lines, using principles of shift and 
rotation invariance. Let a line in normal represen- 
tation be given by the parameters (r, tp), where r is 
the length of the support vector of the line and (0 
the orientation. They propose randomness of 
straight lines to be described by a uniform distribu- 
tion in parameter representation: 

p(r ,  (o) = c, (1) 

where c is a normalisation constant. An expression 
for the probability distribution of randomness in 
three dimensions can, however, not easily be seen. 
Therefore we followed a more general approach to 
derive the probability distributions in both 2 and 3 
dimensions, based on invariance principles de- 
scribed in the following section. 

2. Principles 

Assume that a line with a certain reference point 
R is tossed into two- or three-dimensional space 
IR n (n ~ {2, 3}), then randomness for straight lines 
can be based on the following principles. 

Principle 1. Shift invariance is equivalent with R 
having no preference for position. 

Regardless of  dimension, from this principle it 
follows that R is uniformly distributed in a Carte- 
sian coordinate frame in R n. 

Principle 2. Rotation invariance implies a line 
having no preference for orientation with respect 
to R. 

The second principle implies an orientationally 
uniform distribution. The meaning of this will be 
explained later in detail. 

For straight line segments of finite length in ad- 
dition a principle for the length of  a segment must 
be introduced. 

Principle 3. There is no preference for a specific 
segment length. 

As a direct consequence, the segment length has a 
uniform distribution. 

And, finally: 

Principle 4. Position, orientation and length are 
statistically independent. 

This last principle initially allows the consideration 
of  the separate probability density distributions for 
position, orientation and length and multiply them 
later in order to obtain the joint probability dis- 
tribution of random straight lines. 

3. Random lines in R2 

To calculate the distribution of random lines the 
following approach is taken. As a direct conse- 
quence of  the principles of  Section 2, we obtain an 
expression for randomness in a Cartesian coor- 
dinate frame. From that expression, we find the 
distribution in normal representation by a coor- 
dinate transformation. 

Locate at the position of an observer a Cartesian 
coordinate frame in ~2-space. Figure la shows the 
situation: an infinitely long straight line l ( x , y ,  a )  

h a s a  reference point R(x ,  y )  and orientation a. For 
random lines, the first principle states that R (x, y) 
is uniformly distributed on ~2: 

p ( x ,  y )  = c I . (2a) 

The second principle implies that the orientation of 
a line has a uniform distribution: 

p (a )  = c2. (2b) 

From the independence of  position an orientation, 
as stated in principle 4, it follows that: 

p(x ,  y ,  a)  = p (x ,  y )  . p ( a )  = c 3. (2c) 

In the normal representation the line is specified 
by l ( r , ~ , u ) ,  for which the situation is given in 
Figure lb. Here, u is the position of the reference 
point on the line, relative to the normal point. 
Rewriting p ( x , y ,  g)  as a function of the normal 
coordinates (r, tp, u), we get: 

p(r ,  ~o, u) = I gl" p(x ,  y ,  a), (3a) 

(9(x, y, ct) 
J = O(r, ~o, u) ' (3b) 
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Figure 1. (a) A straight line segment in cartesian representation. (b) A straight line segment in normal representation. (c) A straight 
line segment in polar representation. (d) The relation between the polar and normal representations. 

where Jacobian J accounts for the coordinate 
transformation.  To express the probability distri- 
bution in normal coordinates, equation (3b) can 
best be evaluated in two steps: 

J = Jl" J2- (4a) 

The first step is a transformation of  (x,y, ct) into 
polar coordinates (s,O,t~) (see Figure lc), with 
Jacobian J l :  

o x  

Os 

Oy 
J1 = - -  

as 

aa 

as 

a x  a x  

ao oa 

Oy Oy 

O0 Oa 

Oc~ c3c~ 

00 0a  

(4b) 

And the second step is a transformation from 
polar coordinates into normal ones with Jacobian 

J2" 

Os Os 

Or Oq~ 

O0 O0 
Jz= 

Or 0~o 

Oa Oa 

Or 0(o 

Os 

Ou 

O0 

Ou 

Oa 

Ou 

(4c) 

We will first evaluate Jl- From Figures la and 
lc it follows that: x = s  cos 0 and y =s  sin 0. Calcu- 
lating J1 from (4b) then gives: 

cos0 - s s i n 0  0 

J l =  sin0 s c o s 0  0 =s .  (5) 

0 0 1 
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For the computation of J2 the following expres- 
sions are obtained from Figure ld: 

S = V ~ +  u 2, 

8 = ~o + a r c t a n ( r / u )  - zr/2, (6) 

a = a r c t a n ( r / u ) .  

Evaluating (4c), using (6) gives: 

r / s  

"]2 = U/S2 

u / s 2 

0 u / s  

1 - r / s  2 = - 1 / s .  

0 - r / s  2 

Combining the results (5) and (7) gives: 

jsf=1. 

(7) 

(8) 

With eqs. (2c) and (3a), we have: 

p ( r ,  ~o, u)  = c. (9) 

For an arbitrarily positionned reference point 
R ( x , y )  we finally arrive at the expression of the 
distribution of infinitely long random straight lines 
by integrating p(r ,  ~o, u)  over u: 

p ( r ,  tp) = c. (10) 

This equation is consistent with eq. (1) in (Duda & 
Hart, 1973). 

In the case of straight lines of finite length, the 
description of a line is extended with a variable L 
describing the length of a segment. According to 
principle 3, L has a uniform distribution. Since L 
is independent of all other variables, the transfor- 

0 x 0 

(b)] 

(c) (d) 

o o 

Figure 2. (a) Representation of  a straight line in three dimensions in cartesian coordinates. For line segments an additional coordinate 
for the length has to be introduced as in Figure 1. Note that a and B describe the line in spherical coordinates in a frame with origin 
R. (b) Representation of  a straight line with reference point R in normal coordinates. (c) Representation of  a straight line in spherical 

coordinates. (d) The relation between the representations in (b) and (c). 
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mations do not affect L. Random straight line 
segments are therefore described by a uniform 

distribution: 

p(r, ~p, L)  = c. 
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p(~,l~) 

(11) 

5 /  
4. Random lines in [~3 

For the three-dimensional problem of  expressing 
the probability distribution of  a random straight 
line, the same approach was followed as in R 2. 
First, using the principles of  Section 2 it is possible 
to specify the distribution of  random lines in a 
Cartesian reference frame. Then again a transfor- 
mation is performed to the normal representation. 
After calculating the Jacobian an expression is 
found for the distribution of random straight lines 
in normal form. 

As in the previous section a Cartesian coordinate 
frame is situated at the position of  an observer, 
now in IRa-space. As shown in Figure 2a, in the 
observation field a straight line is situated with 
reference point R (x, y, z). The orientation (a,/3) is 
given in spherical coordinates in a tilted reference 
frame with centre R. 

From principle 1 it was concluded that random 
lines have a uniformly distributed reference posi- 
tion R(x ,y , z ) :  

p ( x , y , z )  = Cl. (12a) 

The second principle implies a homogeneous dis- 
tribution for the orientation of  the line in ~ 3  
space. So, f rom Figure 3 it follows that for a given 
orientation (tz,/3) the number of  lines in that direc- 
tion is p(a,/3) dct d/3. For a unit sphere, the size of 
the solid angle for that orientation is sin a da  d/3. 
Since the distribution of  lines in R 3 is homo- 
geneous, the number of  lines in any direction 
should be proportional to the size of  the solid 
angle: 

p(a,/3) = c2 sin a. (12b) 

Position and orientation of  a line are independent, 
as was stated in principle 4, so random lines have 
the distribution: 

Figure 3. The number of lines in direction (a, fl) is proportional 
to the size of the solid angle for that direction. 

p(x, y, Z, a, fl) = p(x, y, z). p(a, fl) = c 3 sin a. 

(12c) 

The normal representation of  the line, shown in 
Figure 2b, is given by (r, ~0, 0, (, u). In this represen- 
tation the parameters (r, ~0, 0) describe the normal 
vector of  the line, where r is the length of  the vec- 
tor and ~0 and 0 determine the orientation. Given 
r, ~o and O, the orientation of  the line within the 
plane orthogonal to (r, ~0, 0) is still free to choose as 
well as the position of  the reference point R. So, 
define the orientation of  the line by the angle ( in 
the normal plane and define the position of R 
relative to P by parameter u. 

Similar to the two-dimensional case, the distri- 
bution p(x, y, z, a,/3) is transformed into normal 
coordinates: 

p(r, tp, O,(,u) = jJI . p (x ,y , z ,a , /3 ) ,  (13a) 

with 

O(x,y,z,a,/3) 
J = (13b) 

O(r,~o,O,(,u) 

where the transformation is incorporated in the 
Jacobian J. Here we also perform the coordinate 
transformation in two steps: 

J = Jl " J2. (14a) 

In the first step the Cartesian coordinates (x,y, z) 
are transformed into spherical coordinates (s, y, e) 
(see Figure 2c), with Jacobian Jl: 
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J l  = 

Ox Ox Ox Ox Ox 

as oy Oe 04 Off 

Oy Oy Oy Oy Oy 

as 09, Oe 3a Off 

Oz Oz Oz 3z Oz 

as O), Oe Oa 08 

04 04 04 04 04 

as Oy Oe 04 Off 

of a8 08 a8 08 
as a7 ae 04 a8 

(14b) 

In the second step spherical coordinates are trans- 
formed into normal coordinates, with Jacobian 

J2: 

Os 

Or 

Oy 

Or 0(o 

ae ae 
J2= 

Or O~o 

Oa Ou 

Or atp 

o8 08 
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aO O( Ou 

OS 
Ou 

Oy 

Ou 

Oe 
(14c) 

We first evaluate J1. From Figures 2a and 2c, it 
can easily be seen that the coordinates of  reference 
point R (x, y, z) are given by: x = s sin e cos y, 
y = s sin e sin y and z-- s cos e. According to eq. 
(14b), Jl is as given in equation (15) below. 

The second step, the transformation to normal 
coordinates, appears to be a complex one. Ab- 
breviate 

r 2 s i n  2 19+ u 2 - u 2 c o s  2 ( s i n  2 0 

+ 2ru cos ( sin 0 cos 0 

as T. From Figure 2d, it can be derived that the 
coordinate transformation from (s, y, e, a, fl) to 
(r ,¢,  0, (, u) is determined by the following ex- 
pressions: 

S = V ~ +  U 2, 

y =  ~0- arcsin ( u  s ~ i T n  ( )  , 

( r c O s O - u c O s ( s i n O )  (16) 
e = arccos ~ U 2 

t~ = arctan(r/u), 

f l = a r c c o s ( U C ° S 0 + r c ° s T  ( s i n 0 ) .  

After evaluation of  eq. (14c), Jacobian J2 is given 
as in equation (17), see next page. Some elements 
of  the determinant are marked by a ' .  ', as their 
value is irrelevant for the value of  the determinant. 

Substituting the definitions of  s and T and inser- 
ting eqs. (15) and (17) in (14a) gives: 

]JI = ~ u2 sin O. (18) 

From eqs. (12c) and (16), it follows that 

p(x,  y, z, 4, 8)  = cr/  r21/V-U~. 

Evaluating eq. (13a), using (18) yields: 

p(r, ~o, O, (, u) = cr sin 0. (19) 

After integration over the relative position u of  the 
reference point, we finally arrive at the desired 
result: 

p(r, ~o, O, ()  = cr sin 0. (20) 

J~ = 

sin e cos y - s  sin e sin y s cos e cos y 

sin e sin y s sin e cos y s cos e sin y 

cos e 0 - s  sin e 

0 0 0 

0 0 0 

0 0 

0 0 

0 0 

1 0 

0 1 

= - - S  2 sin e (15) 
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0 

0 

us sin 

T 

This formula gives an expression in normal form 

for the probability density distribution of  a line of 
infinite length, tossed randomly on a grid in ~3. 

For straight lines of  finite length, in complete 

analogy of  the two-dimensional case in Section 3, 

it can be derived that 

- u  sin ( sin 0 

0 

s sin 0 (r sin 0 + u cos ( cos O) 

T 

u / s  

- r / s  2 

April 1990 

= sin 0/1/-T 

(17) 

p(r,  ~o, O, (,  L )  = cr sin O. (21) 

(a) P 

i- 5. Discussion 

The result of  eq. (20) is not immediately clear. It 

can be explained as follows. The factor of  sin 0 
originates from orientation invariancy, as was 

likewise arrived at in eq. (12c). The linearity of  r in 
eq. (20) is less obvious. An explanation can be 

found when these results are compared with the 
uniform result in the two-dimensional case. Con- 
sider two concentric circles as in Figure 4a, one 

with radius r and one with radius R (R > r). If  dp '  

is part of the distribution of lines passing through 

a single point P on the outer circle for a specific 

orientation, then P contributes 2 dp '  to the distri- 
bution p(r)  on the inner circle. For the complete 
outer circle the contribution is." 

dp(r) = 2~rR. 2 dp' .  

Then, the problem of finding an expression for 
p(r)  is reduced to a one-dimensional one. It is ob- 
vious that integration over all outer circles yields a 
uniform result. In a similar way the three-dimen- 

sional case can be analyzed, where we have two 
concentric spheres, with radii r and R (R>r ) ,  see 

Figure 4b. Here again dp '  is part of  the distribu- 
tion of  lines passing through a point P on the outer 

sphere for a given direction. The contribution of  P 

to the distribution p(r)  is 

2~zr. dp ' l / (R 2 - r2 ) /R .  

Volume 11, Number 4 

r / s  

J2= 

U/S 2 

r . . . . . . . . . . . . . . . .  

R 

Figure 4. (a) In two dimensions the point P contributes at two 
points to the distribution p(r). (b) In three dimensions the con- 
tribution of point P to the distribution p(r) is proportional to 

the circumference of circle C. 
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To incorporate all points on the outer sphere a fac- 
tor of 4rcR 2 has to be added to make the problem 
one-dimensional: 

dp(r) = 8~2Rr~/(R 2 - r2) • dp'. 

Compared to the two-dimensional case a linear 
dependence on r arises approximately, because 
here a circle C contributes to p(r) ,  instead of just 
2 points in the 2-D case. 

6. Condufion 

Principles of invariance for position, rotation 
and length were introduced to formally define ran- 
domness of lines. It was shown that infinitely long 
straight random lines in two dimensions yield a uni- 
form distribution in parameter space: p ( r , ¢ ) = c ,  

consistent with the intuitive formula by Duda and 
Hart (1973). Random straight line segments of 
finite length also are described by a distribution 
uniform in the normal parameters: p(r ,  ~ , L ) = c .  

In three dimensions random infinitely long 
straight lines have a distribution: 

p(r ,  ~o, O, 0 = cr sin 0. 

For line segments the distribution is: 

p(r,  ~o, O, (,  L )  = cr sin 0. 

These are significant results in that they demon- 
strate for 3-D, that the distribution deviates from 
a first intuition equating randomness with a uni- 
form distribution in the normal representation. 
The sinusoidal dependence on 0 makes the result 
orientation invariant, while the linear dependence 
on r originates from the fact that p(r)  is calculated 
on a sphere with radius r. 

The expressions for the distributions of random 
lines and line segments are applicable in the op- 
timization of length (Dorst & Smeulders, 1987) and 
distance estimators (Borgefors, 1984) in the 

absence of a priori knowledge. These estimators 
themselves have various applications in the mor- 
phological and topological analysis of objects in 
images and possibly for the design of line 
detectors. 
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