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Abstract

A stability analysis is performed for optical bistability in a Fabry-Pérot cavity
with mirrors of arbitrary transmission coefficient. The mixed absorptive and disper-
sive régime is covered. In order to describe the system we use the Maxwell-Bloch
equations formulated in terms of slowly varying envelopes. Standing-wave effects are
completely taken into account by refraining from a truncation of the harmonic ex-
pansions for the polarization and the inversion density. We represent the solutions
of the linearized Bloch hierarchy in terms of Chebyshev polynomials depending on
the stationary electric field envelopes. In this way, we reduce the stability problem
to a four-dimensional set of linear differential equations. Together with a couple of
boundary conditions these equations govern the spatial behaviour of the deviations of
the forward and the backward electric field envelopes. Our final stability problem be-
comes much simpler in the uniform-field limit and in the adiabatic limit. If we choose
the stationary backward electric field equal to zero we recover results that were derived
earlier for the case of a ring cavity.

1 Introduction

The Maxwell-Bloch theory is widely recognized as being an appropriate starting-point for
the investigation of cooperative phenomena in nonlinear optical systems. Indeed, over the
last decade a huge amount of articles has been published in which the dynamical behaviour
of both passive and active media is studied on the basis of the Maxwell-Bloch equations;
numerous reviews have appeared as well [1]-[5]. The reason for the frequent use of the
Maxwell-Bloch formalism is that on the one hand it does not exclude analytical treatment
from the outset, while on the other hand it is capable of providing reliable predictions on
the coherent interaction between a laser beam and a nonlinear medium.

One of the central topics in Maxwell-Bloch theory is the study of instabilities in a
passive medium which consists of two-level particles and which is enclosed in an optical



cavity with feedback. Besides bistability the laser output of such a system can exhibit a
spontaneous self-pulsing behaviour. This feature makes a passive medium with feedback
a most interesting object of theoretical study.

Up to now the majority of treatments on passive media has focused on the case of a
ring cavity [1]. In this arrangement the feedback of the laser beam is external so as to avoid
standing-wave effects in the nonlinear medium. The extensive work for the Maxwell-Bloch
equations describing a nonlinear ring cavity has furnished us with a good understanding
of instabilities in passive media. Especially in the single-mode area important progress
has been made: a satisfactory agreement with experimental data has been achieved [6].

In a common experimental setup the optical cavity is not of the ring but rather of
the Fabry-Pérot variety [7]. For such a cavity the feedback of the laser beam is inter-
nal. This means that theoretical results derived for the case of a ring cavity cannot be
applied because of the presence of standing-wave effects. Recently, we showed [8] that
these standing-wave effects must be taken into account systematically. If the mirrors of
the cavity are nonideal, it is not allowed to employ methods such as the uniform-field
approximation [9] or a single-mode type approximation [10].

If one wishes to cover experimental situations the incorporation of standing-wave effects
is not the only point of interest. Another prerequisite for making contact with experiments
is the inclusion of detuning. Both the atomic frequency and the frequency of the central
cavity mode should be chosen different from the frequency of the laser beam. Altogether,
we can say that there is a demand for an analysis of the Maxwell-Bloch theory that
describes the dynamics of a dispersive medium enclosed in a nonideal Fabry-Pérot cavity.
Up to now such an analysis has not been performed.

In the present treatment we adopt as a starting-point the plane-wave Maxwell-Bloch
equations for a passive medium in a Fabry-Pérot cavity. Both atomic detuning and cavity
detuning are present, so that the mixed absorptive and dispersive régime is described.
Standing-wave effects in the cavity will be taken into account completely. Furthermore,
we shall refrain from making any approximations on the spatial dependence of the fields.
After a discussion of the steady-state solutions of our equations a linear stability analysis
will be performed. Previous expertise acquired for the purely absorptive case [11] will be
to our advantage. Nevertheless, the derivation we give is self-contained.

In this work our aim is to reduce the stability problem of the Maxwell-Bloch equations
to a mathematical problem which may be solved numerically. We shall not only discuss
the general theory, but turn our attention to some special cases as well. In particular, we
shall consider the uniform-field limit and the adiabatic limit. These limits will be of help
in the numerical analysis the results of which will be presented in a companion paper [12].

2 Stationary analysis

For a gas of homogeneously broadened two-level particles contained in a Fabry-Pérot cavity
the Maxwell-Bloch equations can be written in the following form
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with m=1,2,3,... . In the above hierarchy of equations only envelopes of fields figure,

namely {Pr m, P3m}oe—1 for the polarization, {Dy,}o_, for the inversion and Fy, E for
the electric fields. This has been achieved by carrying out a Fleck expansion [13] for the
polarization density, the inversion density and the electric fields. The expansion of the
electric fields has been truncated [14]. The advantage of formulating the Maxwell-Bloch
equations in terms of envelopes is that these fields are slowly varying in space (z) and time
(t).
In (2.1)—(2.2) the coupling constant g is given by %;mk, where p is the modulus of
the dipole moment of the constituent particles, & the modulus of the wave vector of the
coherent external field, and n the particle density. The transverse and the longitudinal
damping coefficients of the medium are denoted by v, and +), respectively. As usual,
the former coefficient is employed to measure the difference between the atomic frequency
w, and the laser frequency w=ck; hence, the dimensionless atomic detuning parameter is
equal t0 A=(wa—w) /71 .

The Fabry-Pérot configuration imposes a set of boundary conditions on the envelopes
of the electric fields. These conditions read

Er(0,t) = RY?ER(0,t) + T/?Ex(t) , (2.7)
Eg(L,t) = RY?Egp(L,t)e? | (2.8)
Er(t) = TY?Ep(L,t) . (2.9)

Here E7 and ET denote the envelopes of the incident electric field and the transmitted
electric field, respectively. The mirrors of the cavity have a reflection coefficient R and a
transmission coefficient T=1-R. In general, the frequency of the coherent field does not
fit to the cavity. In the boundary condition (2.8) this is reflected by the presence of the
cavity detuning parameter §=2L(w—wy,)/c. The symbol w, stands for a cavity frequency;
the difference between adjacent cavity frequencies is given by the free spectral range nc/L,
with L the length of the cavity. If we choose both the cavity detuning and the atomic
detuning equal to zero in (2.1)—(2.9) we find the set of equations which describes the purely
absorptive case and which we analyzed earlier [11].
If we introduce scaled quantities

f=pEp , b=pEp , (2.10)

y=2uT"'?E, |, z=2uT"'?Ey , (2.11)
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with m=1,23,... and g = ,Lt/[h(’)’J_’)’”)1/2], the coefficients in the equations (2.1)—(2.9)

get a simpler form. As a dimensionless spatial variable we introduce (=z/L. The cou-
pling coefficient in the Maxwell equations (2.1)-(2.2) then becomes proportional to the
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For the case of optical bistability, considered in this paper, this parameter is always posi-

tive. As a last preparatory step we truncate the Bloch hierarchy

PF,m,:PB,mI:DmZO ? m>N 9 (2.14)

where the truncation parameter N is a positive integer. For the following this step implies
that we shall not need to operate with infinite-dimensional matrices.

To investigate the steady-state behaviour of the Maxwell-Bloch hierarchy we choose
all time derivatives equal to zero. In this way the Bloch hierarchy (2.3)-(2.6) reduces to a
set of algebraic equations from which all polarization envelopes can readily be eliminated.
What then results is a set of equations for the inversion envelopes {D,,} in which the
electric fields f and b play the role of coefficients. This set can be solved along the same
lines as for the absorptive case [11]. We find
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with m=1,2,3,...,N and with the abbreviations u=(1+4|f'|2+4[b'|?) /(8| £'||V'|)

and f'=f(14+A%)"1/2 ¥'=b(1+A?)"1/2. For an arbitrary field v we have adopted the
notation v=|v| exp(iargv). The symbols T, and U,, stand for the Chebyshev polynomials
of the first and the second kind, respectively. With the help of a recursion relation for the
Chebyshev form [15], given by

Cm+2 = 2’U,Cm_|_1 - Cm (218)

for m=0,1,2,...,N—-2, it can easily be verified that the above expressions indeed satisfy
the hierarchy for the inversion envelopes.

Having solved the Bloch hierarchy we now want to remove the restriction of the trunca-
tion parameter being finite and take the limit N— oco. To that end, the following repre-
sentation [15] for the Chebyshev form Cy, is most useful
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and m=0,1,2,... ,N. Clearly, for large values of m the first contribution at the right-hand
side of (2.19) exceeds the second one, implying that the limiting behaviour of the inversion

envelopes is
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with m=0,1,2,. ..

Upon substitution of the result (2.21) in the Maxwell equations (2.1)—(2.2) and sepa-
ration of these into equations for the moduli and for the arguments of the fields, we arrive
at
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with C'=C/(14+A?). These differential equations are subject to a set of boundary con-
ditions which can be obtained from (2.7)—(2.9). The equations (2.22)—(2.23) have been
discussed already for the absorptive case [11], so that we do not need to derive their solu-
tions here. The integration of (2.24)—(2.25) is straightforward and yields with the help of
the boundary conditions

Z

arg f(¢) = argz+ Alog 70| (2.26)
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From the boundary condition (2.7) we see that the steady-state curve follows from
T’y = [f(0) + R[p(0)?
—2RY2|£(0)]/b(0)| cos |0 + Alog %H (2.28)

The quantities |f'(¢)], |b'({)| can be found by performing the transformations f—|f’|,
b— ||, z—|z'| and C—C" in the results for the absorptive case, with the definition
z'=z(1+A2?)~1/2, Hence, they are determined by the identities

€= K[ +i- bR (229)
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where we abbreviated

E=FP+PE . =P, (2.31)



and where K follows from
4K = —|2'|2(1 + R) + [T%|'|* + 2|2'|>(1 + R) + 1]'/% . (2.32)

From the above treatment it turns out that for the stationary Maxwell-Bloch theory
the extension of results from the purely absorptive case to the mixed absorptive and
dispersive case is a simple exercise. Indeed, for the stationary case extensive analyses of
the dispersive Maxwell-Bloch theory have already been carried out [16]. As compared to
the purely absorptive case the steady-state equations (2.28)—(2.32) are richer because they
predict that several bistable ranges can exist for a given set of parameters C, T', A and 6.

3 Stability analysis

In the previous section we solved the stationary Maxwell-Bloch hierarchy. We now wish
to test the stability of our stationary solutions against small perturbations. Our tool will
be the usual linear stability analysis, that is to say, for every field v((,t) we substitute the
expression v°*(¢)+6 v({,t) in the original equations (2.1)—(2.6) and we only keep contribu-
tions which are linear in the deviations 6 v((,t). Next, we model the time behaviour of the
deviations by

dv(C,t) = du(C)eM (3.1)
Sv* (¢, 1) = Qe .

The eigenvalue A is complex and determines the stability of the stationary solution.

If we follow the above recipe for the Maxwell-Bloch hierarchy we find that the eigen-
value )\ is determined by a four-dimensional set of differential equations with boundary
conditions. The differential equations read

% = _X\f+CTéPs, (3.3)
i_‘scb = M\b-CTéPs, , (3.4)
d;sgc = —NfS+CToP " (3.5)
djé’c = M\0b° — CToPs,'c . (3.6)

We have introduced the scaled eigenvalue :\:)\L/c. The polarization deviations in the
Maxwell equations (3.3)-(3.6) are determined by the linearized Bloch hierarchy, which
reads

(AL +iA)0Pr ' = fODm1+ Dyp16f + bIDy, + Dy b (3.7)
(AL +iA)0Ps ' = f6DpC + Dpy*Sf + 06Dy 1 + Dy_1*6b (3.8)
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with m=1,2,3,. .. and with the definition \;=1+4~; '\ for i=_L,||. The coefficients in front of
the deviations at the right-hand sides of (3.7)—(3.10) are the stationary envelopes discussed
in the previous section. The deviations §f and db must satisfy the following boundary
conditions

5f(0) = R'Y26b(0) , (3.11)
6f(1 1 1
(50) = ol o ) o

The Bloch equations and the boundary conditions for the conjugate fields év°(¢) follow
from (3.7)-(3.12) if we interchange dv° and dv, change the sign of the detuning parameters
A and @ and take the complex conjugate of all stationary envelopes. Notice that we have
0Dy=06Dy°.

To solve the Bloch hierarchy we impose the truncation condition (2.14) both for the
stationary fields and the deviations. Subsequently, we eliminate all polarization envelopes,
as we did in the stationary case. Then (3.9) gets the form

(L D21+ 417" + 4162)6D0 + A7 By6Dy + AF4H% 6D,] =
—2(1 4 A)(1 —iA) (1 —iA) L (f*Do + b*D1*)5f + (f*Dy1 + b*Dy)db]
—2(14+ X)) (1 +iAy) (1 +iA)H(fDg + bD1)dfC + (fD1* + bDg)db°] (3.13)
with A,=A1 A, Ax=A/A . Furthermore we introduced the notations
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and v = |v|) exp(iargv), vi* = |v'|) exp(—iargv) with v = f,b.

Elimination of the polarizations from equation (3.10) and its conjugate gives rise to
two decoupled sets of dimension N, one for the deviations {6D,,}~_, and another for the
deviations {0D,,°}Y_;. In these sets the deviations §f, 6b, 6f¢, 6b¢ and 6Dy figure at
the right-hand sides of the equality signs. Both sets can be transformed into each other
via the recipe mentioned above, so that we only need to solve the deviation §D; from
the first set in terms of §f, &b, §f¢, §b° and § Dy, and subsequently apply the recipe in
order to obtain 6D;°. With the help of the relation (3.13) the deviation §Dy is found
then as a function of the deviations §f, éb, 6 f¢ and db°. Once the zeroth-order and the
two first-order deviations of the inversion are known we can eliminate the polarization
deviations in the Maxwell equations (3.3)—(3.6).

The execution of the above program involves rather technical manipulations which we
transfer to the Appendix. Here we give the final result, i.e. the linearized Maxwell equa-
tions written in terms of the deviations of the electric field. For the sake of a systematic
presentation we transform the original deviations (3.1)-(3.2) into amplitude and phase
deviations, which we shall denote by A®v(¢) and Av((), respectively. The transfor-
mation in question is

A®y(¢) = i (S kT (9] (3.15)



with 74 =1 and n_=i. If the truncation parameter N becomes infinitely large the stability
problem attains the form
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Here the quantity W), is obtained from the root W by performing the substitution |f'|—
|f'x, |b'|—|b'|x. Hence, the root W), is complex; the prescription

%
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L+4[f'[3 +4|V[3

(3.23)



determines its sign.

In (3.17)—(3.20) we have only given four matrix elements H;;. The matrix elements
Hss, Hsy are obtained from the expressions for Hy1, Hi2 by changing the sign of G and
making the substitution A;—A;-1. Likewise, we get Hs;, Hso from —Hy3, —H14 upon
changing the sign of G and making the replacement Ags—As—1. The remaining eight
matrix elements follow from the symmetry relations

with m, n following from %, 7 by the interchanges 1<+2 and 3<»4. The matrix elements
H;; satisfy the identities

AHy + Hiz3+ Hz —AHzz = 0,

AHi9+ Hiy +Hsy— AH3yy = 0 . (325)

Two other identities of this type are found by using the symmetry relations (3.24).
In terms of amplitude and phase deviations the boundary conditions (3.11)—(3.12) read

( i(:)i((ll)) ) = %A(i)w< R}/Q ) : (3.26)
AP F0) ) cosa  sina A®pH(0)
( A f(0) ) = R/ ( —sina  cosa ) ( A)b(0) ) ’ (3:27)

with a=argf(0)-argb(0) determined by (2.26)(2.27).

The expressions for the matrix elements H;; can be verified by performing an analysis of
the linearized Maxwell-Bloch equations for the complete polarization and inversion fields,
without using the Fleck expansion. For the absorptive uniform-field case this method has
been employed in ref. [9].

Other checks can be carried out by considering special cases. If we set the detuning
parameters A and 6 equal to zero the set (3.16) decouples into two sets of dimension two,
which have been derived in an earlier paper [11]. Since the boundary condition (3.27) then
decouples as well, it follows that the complete stability problem for the purely absorptive
case consists of separate amplitude and phase problems.

A second special case is obtained by putting the stationary backward field b equal to
zero. Then eight matrix elements H;; vanish, namely those with i=2,4, j=1,3 and their
counterparts (3.24), so that the deviations of the forward electric field and of the backward
electric field decouple. The set for the former deviations reads

- C'TEf'3 — N\t
Hu = A+ El|‘fjj||2)5(1 +”4|‘},|2)) : (3.28)

A

C'TA(1 -\ 7?)
M = G a0+ AP+ AR (5:29)
< C'TATHAF'2 + dpAa™h)
Hos = A"qarm+arg (330
C'TAQL+ X HUAQ+ AR +1-X1 1
14+ A2 (1 + 4721 +4]f3)

(3.31)




The right-hand sides are in accordance with results that have been derived before for the
case of a unidirectional ring cavity [17].

In this section we have reduced the stability problem for the plane-wave Maxwell-Bloch
equations describing dispersive optical bistability in a nonideal Fabry-Pérot cavity to a
boundary-value problem for a four-dimensional set of linear differential equations. The
latter problem can be solved numerically along similar lines as for the purely absorptive
case [8]. We shall present our numerical results in an accompanying paper [12]. In the
following we will turn our attention to two special limits, namely the adiabatic limit and
the uniform-field limit. The investigation of these limits will help us in analyzing the
general stability problem.

4 Limiting cases

If the medium response times 7' and fyH_l in the Bloch equations (2.3)—(2.6) are small with
respect to the cavity round-trip time, we may adiabatically eliminate the time derivatives of
the polarization and the inversion envelopes. For the linear stability analysis, as presented
in the previous section, the so-called adiabatic limit implies that the quantities A;, A and
Mg tend to unity, at least if one assumes that the eigenvalue A remains finite. So one may
expand the root W), as

e P
NaWx = WL+ Tz (L4102 + 4l ) 00 = 1) (1)

where the modulus of A\3—1 is small. On insertion of this result in the expressions for the
matrix elements H;; we find that in the adiabatic régime these become

iy o= AT apparp —aw SR g capp) | w2)
2 32/ PW w2 o
_ OT|f|b
o = CUIWL (4.3)
C'TA If?
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” muﬁw[ 17+ 4 = AW + s (L+ 4 + 451 (4.4)
Hys = —3+—CL [ g fP 4 42 — 4] (4.5)
& 32 PW ’ '

with Hy3o=—AH19 and Hi3=H14=H34=0. The other matrix elements can be obtained from
the symmetry relations (3.24).

The vanishing of several matrix elements enables us, upon using the identities (3.25),
to reduce the four-dimensional set of differential equations (3.16) to two sets of dimension
two. This is achieved by introducing new phase deviations Ay via

. 1 . .
N%@:?m+me%m@—u4mwmwﬂ. (4.6)
i

The transformed matrix H now possesses a block structure such that the transformed phase
deviations do not couple with the amplitude deviations. Consequently, the integration
of (3.16) can be done for the amplitude and the phase deviations (4.6) separately. In
particular, the integration of the phase differential equations can be carried out along the
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same lines as for the absorptive case. The boundary condition (3.27) does not decouple
after the transformation (4.6), so that the stability problem as a whole does not factorize
in the adiabatic limit.

The adiabatic limit is not the only interesting special case. The uniform-field limit
is worth a study as well. It consists [1] in putting the transmission coefficient 7' equal
to zero for a fixed finite value of the cooperation parameter C and of the ratio §=60/T.
The actual computation of the eigenvalue A in the uniform-field limit does not differ much
from that carried out for the absorptive case [11]. As usual, we put A=A+ TAM 4. ...
In lowest order of T' we find a twofold degenerate solution A% =nni, with n an integer.
This solution just gives the frequencies of the cavity modes. To calculate the first-order
eigenvalue \(!) one must distinguish between the cases n=0 and n£0. The result of the
tedious but straightforward calculation is

MW =latl(a?-4p)42 . (4.7)

The quantities a and 8 are certain functions of the parameters of our model. For the
off-resonant case n#0 their explicit form is fixed by the relations

a = C'AW L o'BOH 1 (4.8)
IB _ (CIA(uf) o %)(CIB(uf) - %)
—(Cc'cD — 15— 2AR)(C'DMY + L5 4 2AR) . (4.9)

Here A0 follows from (Hy1+\)/(C'T) by inserting |f [=|b|=|2'|/2; as a result we find

A(uf) (L+AH(+4% 14 vt N vy ) Al +ayut
4|z|? M—1 XMt-1 1+ A3
L+ ATH(A — 1
- H;d)_( - ot -uy) (4.10)

where we introduced U = (1+4|2'|?)1/? and Uy = (1+4Xg~|z'|?)"/? with Re Uy > 0.. For
A we must substitute its zeroth-order value imnc/L. In a similar way we get B from
(H33+\)/(C'T), CM) from Hy3/(C'T) and DM from Hzy /(C'T). Finally, we abbreviated
h=C" [{1+4/a' P+ [1-+4]a'[?]1/2).

It is instructive to set the detuning parameters A and § equal to zero in (4.7). In that
case the argument of the root at the right-hand side can be written as a square and the
two solutions for A reduce to those we discussed earlier [11], [18] for the absorptive case.

In order to make a further comparison with results obtained in the literature we also
studied the single-mode limit. It is found by taking the uniform-field limit for fixed ratios
ai=L~;/cT, with i=1, ||, and putting A=AX(DT. If we start from (3.28)-(3.31) for the
ring cavity and use the well-known boundary conditions for this arrangement we end up
with a fifth-order polynomial equation for A1), which is consistent with results derived
elsewhere [6]. For the Fabry-Pérot cavity we can do single-mode theory as well, but here
the resulting equation for the eigenvalue is not of a polynomial form. It still contains the
single-mode counterpart of the root W.

11



Appendix. Solution of the linearized Bloch hierarchy

In section 3 we remarked that if all polarization envelopes are eliminated from the line-
arized Bloch hierarchy two N-dimensional sets of equations are generated, a first for the
deviations {6D,, }Y_, and a second for the deviations {6D,,°}Y_,. The first set contains
the deviation § Dy at the right-hand side and the second one the deviation § Dy€. There-
fore, both sets are coupled to each other by the relation (3.13). They transform into each
other via a well-defined prescription given in section 3. Because of this property we limit
our attention to the first set only.

If we write the N equations for the deviations {6D;,}Y_; in a matrix form it appears
that the matrix follows from that occurring in the set of equations for the static inversion
envelopes D, with m=1,2,3,...,N by making the replacements

=y 0 =by = 1=V A Ay (A1)

We can exploit this convenient property in a similar manner as for the absorptive case
[11]. In this way we find that the deviation §D; is equal to

™1 O\ Nem

F7b
b= 4|be| Z (Ifllbl) O oo Im (A.2)

with C) ;;,=Cy,(uy) and uy to be obtained from u via the prescription (A.1). The quan-
tities F},, make up the N-dimensional vector figuring at the right-hand side of the matrix
equation that leads to (A.2). They are defined as
Fn = 4fb"0Dyopm 1
12(1+ A1 )A[(f* D + b Dyn1)8f + (f* Dy + b* D) 88)
+2(1 + )‘J_)A+[(fDm + me—H)‘SfC + (fDm—l + me)(Sbc] ) (A-3)
with m=1,2,3,... ,N-1,
Fy = 2A P\J_(l + iA,\)f*DN + (1 + AJ_)b*DN_]_] of
+2(1 — iA\)b*Dndb+2(1 +iAy) fDnOf€
+2AT [(14+ A1) fDn_1+ AL(1 —iAx)bDy] 6B . (A.4)
Here we abbreviated AT=(14iA,)/(1£iA).

If we substitute the expressions (A.3) for Fy,, with the result (2.15) for the stationary
inversion fields inserted, into (A.2) we arrive at

D= ‘|§ﬁb|03fv§1w° e (s s o
oa i (fppso s ) v G (o5 or
_1\N N-1
ety (gs-se) ot () a0 49
where we defined N o
So mz_l CZZCA:ZIL ) (A.6)



Crmz1Chrm
Sy =Y TmEAm (A7)

We now focus on the evaluation of the sums S.

Let us start by deriving two closely analogous relations for the sum and the difference
of Sy and S_. These follow from (A.7) upon performing a shift of indices such that the
summand becomes either symmetric or antisymmetric under the interchange of u and ).

One finds

N—1
CinCrm-1 £Cpm1Ch; . CnCy n—1 — C1Chp
S :|: S_ — 3 3 + 3 3

* Z CnCy N CnCy N

m=1

(A.8)

Two other independent identities for S;+S_ are obtained from (A.6) and (A.7) by em-
ploying the recurrence relation (2.18). In fact, using this relation for C,,, one immediately

gets
ut(Sy+8-) =28, . (A.9)

The right-hand side is symmetric under the interchange u<>uy. On the other hand, starting
again from (A.7), using the recurrence relation for C),, and shifting the indices in a
suitable way one arrives at an identity for the difference S —-S_

= Cm—f—lC/\ m—1 — Cm—lc)\ m+1

2ur(St —8-) = Y o0 ’
el NOAN
CnCA\N +Cn_1Crxnv—1 — C1Cy1 — CoChp
+ )
CnCi N

(A.10)

where the summand at the right-hand side is antisymmetric under the interchange of u
and u). We have now obtained a set of four relations, two for S;+S_ and two for S, —
S_. The sums occurring in these relations have a definite symmetry character under the
interchange of u and u). We can use that symmetry to eliminate these sums altogether.
In this way we arrive at four linear equations for four unknowns, namely S;+S_ and the
analogous expressions with u and u) interchanged. Solution of these equations yields
1 + 4 12 + 4 bl 2

Sy +85- = Eil 1] (CN_;[C,\,N — CNC)\,N_l + 010,\,0 — C()C)\,l) , (A.11)

(Ad — l)CNC)\’N
81./11']

(/\d — 1)CNC)\’N
1+4[f')? + 4[p'?
(A —1)CNnCyn

Sy —S_ (CNCaN + Cn—1Cy\ n—1 — C1Cx1 — CoChrp)

(Cn-1Cx\ N + CnCyn—1 — CoCy1 — C1Chrp) -(A.12)

From these expressions and (A.9) one can derive simple expressions for S, S_ and Sy.
For large values of the truncation parameter N the limiting behaviour of the Chebyshev

forms C), was already discussed in section 2. Using the same representation (2.19) for the

transformed Chebyshev forms C) ,, and the fact that |C) y|—oo for N tending to infinity,

we see that "ot
. Can-1 81 f A1V |
1m = 2 12 ’
N—oo C)\’N 1+4‘f’|)\+4‘b|)\+4W)\

(A.13)
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under the condition that (3.23) is satisfied. Employing (A.13) and the limiting behaviour
for the stationary inversion envelopes, given in section 2, we can evaluate the right-hand
side of (A.5) for N—oo. In this limit the contribution that contains the quantity Fy
vanishes. The corresponding result for the deviation §D:€ is found if we interchange ac-
cording to dv°<>dv, use the fact that § Dy=3Dy°, change the sign of the detuning parameter
A and take the complex conjugate of all stationary envelopes.

We now return to equation (3.13) and insert the results for the first-order deviations
of the inversion. After some algebra the deviation §Dg attains the final form

(L+X)  [1+4y 1+49\,, _, .
IR AE 7 ) (AT L (a0

where we used the definitions (2.31). If we return to the expressions for the first-order
deviations of the inversion and use the above results we end up with

14+ A))A Db [1+4 1+4
0Dy = §6(1 —L)?d)|b|2 [ Ww - W:m] of

(L+AD)AF6*2 [1—Xg  1+4E+4f"12(1 + 49)
16(1 — Xq)|f][6[? [If’llb’l - Alf'b W
1+46 +4|£/R0 +4¢A)] 5

NN
(LHEXDATF2 [1—Ng 1446 +4012(1 — 49)
16(1 — Aa)|f P30 llf’llb’l - A0 [W
1446, + 41301 - 4%)] 5 ¢

NG

14+ X )AT 1—-14 1—-4

i are ww) (419

The deviation 6D follows from this result by using the recipe mentioned above.

We have now calculated the zeroth-order and first-order inversion deviations from the
linearized Bloch hierarchy. With the help of the identities (A.14) and (A.15) we can
eliminate the polarization deviations in the linearized Maxwell equations (3.3)—(3.6). This
yields a set of differential equations of the type (3.16) for the deviations of the electrical
field 6f, b, §f¢, 6b°. Finally, if we transform according to (3.15) and use the results
(2.24)-(2.25) from stationary theory the matrix elements of the four-dimensional set of
equations indeed turn out to be given by the expressions of section 3.
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