Pressure and Compressibility of a Quantum Plasma
in a Magnetic Field

L.G. SUTTORP

Institute for Theoretical Physics, University of Amsterdam,
Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

Abstract

The equilibrium pressure tensor that occurs in the momentum balance equation for a quantum plasma,
in a magnetic field is shown to be anisotropic. Its relation to the pressure that follows from thermo-
dynamics is elucidated. A general proof of the compressibility rule for a magnetized quantum plasma,
is presented.

1. Introduction

The pressure of a fluid in equilibrium can be defined in several alternative ways. One
definition is based on the microscopic momentum balance equation in which the diver-
gence of the microscopic pressure tensor appears. Taking the ensemble average of this
pressure tensor one obtains the so-called mechanical pressure tensor. A different way to
define the equilibrium pressure is to employ its well-known thermodynamic expression
as a derivative of the free energy, which follows in the usual way from the canonical
partition function. For classical systems it can be shown easily that both definitions
lead to the same result. The virial theorem plays an essential role in establishing the
equivalence. For quantum systems the proof of equivalence of the two definitions is less
straightforward. Even for systems of neutral particles with short-range interactions the
details of the proof of equivalence have led to some debate in the past; a further ana-
lysis has settled the matter completely [1],[2]. For the electron gas the presence of the
uniform background needs to be taken into account [3]. If an external magnetic field is
present in the electron gas, the precise relation between the two pressures is not so clear
any more. A recent discussion of the two-dimensional case has shown that the standard
virial theorem might lose its validity for magnetized systems [4]. Furthermore, it has
been known for some time that the mechanical pressure tensor of a charged particle
system could become anisotropic in a magnetic field [5]. An anisotropic pressure tensor
implies an anisotropic compressibility. Hence, it is not obvious how the compressibility
rule, which gives information on the density fluctuations, should be generalized to a
magnetized electron gas.

The purpose of the present paper is to review some recent work [6] that has led to
a better understanding of the pressure and the compressibility in a magnetized one-
component plasma.



2. Mechanical pressure tensor

The Hamiltonian of a one-component quantum plasma in a uniform magnetic field is
given by
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Here r, and p, are the positions and momenta of the plasma particles, which carry
a charge e and a mass m. The particles move in an inert neutralizing background of
charge density —q, = —en = —eN/V, with N the number of particles and V' the volume
of the system. The vector potential A describes a uniform external magnetic field in
the Coulomb gauge. The prime at the summation sign indicates that the self-terms are
to be left out.

The charge density and the current density are given by

Q(r) = eZé(r—ra)—qv , (2)
) = -3 {madr—ra)} 3)

with 7, = po—(e/c)A(r,) the mechanical momentum and with curly brackets denoting
the anti-commutator.
The equation of motion has the form

HHIE) =~V TE) + SF@) + “ImAB (4)

Here T is the pressure tensor, which consists of a kinetic part Ty, and a potential part
Tpot- The components of the kinetic pressure tensor are defined as

T (r) = — Z[w T 6(r —1g) +0(r —ro)wlwl] . (5)

The divergence of the potential pressure tensor is given by

62

V- Toou (1) / & Ve D

r—r|

(r,x) (6)
with the abbreviation

= z; S(r—r1y)0(r' —15) —nd d(xr—1,) —nd 0(r' —15)+n° . (7)

Finally, the force density in (4) is defined as
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The implicit definition (6) of the potential pressure tensor makes sense only if the
right-hand side can be written as the divergence of a tensor. This is indeed the case
owing to the symmetry of the factor D(r,r') in its two arguments. (In fact, to achieve
this symmetry we had to split off the force density F(r) at the right-hand side of the
equation of motion.) Using the symmetry properties of the integrand in (6) we may
write [7]
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The limits of integration over x have been fixed by incorporating in the integrand
characteristic functions 6y, which are 1 for arguments inside V' and 0 elsewhere. We
assume that the region occupied by the system is convex, so that the potential pressure
tensor vanishes for r outside V.

The statistical average of the microscopic pressure tensor T, which is found above
from the equation of motion, will be called the ‘mechanical’ pressure tensor in the follo-
wing, to distinguish it from the ‘thermodynamic’ pressure that arises by differentiation
of the free energy.

3. Thermodynamic pressure

In the canonical ensemble the thermodynamic equilibrium pressure pinerm follows by
considering the free energy of the system for varying volume. For a system in a fluid
phase, to which we shall confine the discussion, the thermodynamic pressure is isotropic.
To determine it one may use a scaling argument as is well-known for systems of neutral
particles [1],[2]. In fact, for neutral-particle systems in equilibrium this argument has
been used to prove the equivalence of the thermodynamic pressure and the mechanical
pressure tensor. As it turns out, this argument can not be taken over trivially to
establish the equivalence of the two pressures in a magnetized quantum plasma, owing
to the presence of the magnetic field.

Let us consider a variation of the volume of the system by deforming the boundary
such that an arbitrary position r,, goes over to r,,+dr,, = r,, + J€-r,, with a (uniform)
deformation tensor de. At fixed temperature 7" and fixed magnetic field B the canonical
partition function Z changes then as

dlog Z = —g Z(SEne’ﬂE" , (10)

with 8 = 1/kgT and 0 E, the change of the energy eigenvalue F,. To determine 0FE,
as a function of de one has to solve the Schrédinger equation for the Hamiltonian (1),
with deformed boundary conditions. It is then useful to introduce deformed particle
positions r, = (U—J€)-r, as well. Regarding the energy eigenfunction 1), as a function
of r, one finds immediately:

OE, =<tn|0H > (11)

with 6 H the variation of H at fixed r,. Choosing for convenience the gauge A = 1BAr
we get from the kinetic part of the Hamiltonian:

1
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with J€ the transpose of de. The right-hand side can be written in terms of the kinetic
pressure tensor (5) and of the magnetization density

M(r 4mc Z{I‘a/\ﬂ'a, —ry)} - (13)

In fact, we get:
1% 1%
§Hin = —0€ - / dr Tia(r) + B - 6¢ / dr M(r) — (trd€) B / dr M(r) . (14)

Furthermore, we find for the variation of the potential part of the Hamiltonian

1%
OHpor = —0€ : / dr Tpoe(r) . (15)

From (10), (11), (14) and (15) we obtain for the variation of the free energy f per
particle at fixed temperature and magnetic field:

5f = —vde : [%/Vdr (T(r))—B%/Vdr (M(r))+B-%/Vdr (M(r)) u] ,

(16)
with v the volume per particle and U the unit tensor. For fluid systems the free energy
per particle should depend only on the volume of the system and not on its shape.
In fact, the ‘thermodynamic’ pressure piperm is defined by writing 0 f = —pipermdv at
constant 7" and B. Since one has dv = v tr d€, the variation § f in (16) can depend only
on the trace of the deformation tensor, so that the expression between square brackets
should be isotropic:

%/Vdr(T v/ dr (M(r)) + B - v/ dr (M(r)) U = perml . (17)

Since the terms with the magnetization are anisotropic the integral over the mechanical
pressure is anisotropic as well. Writing

%/V dr (T(r)) = psU — 36p5 (U — BB) | (18)

with B a unit vector in the direction of the magnetic field, we get:
PB = Ptherm (19)
92 v
opp = 53 B- / dr (M(r)) . (20)

For a diamagnetic response the anisotropic part dpp of the pressure tensor is negative,
so that the pressure in a direction transverse to the magnetic field is larger than that
in a direction parallel to the field. It should be noted that it is essential to retain in
the above the integral of the magnetization over the volume. In fact, in the bulk the
average current density vanishes, and hence the local magnetization density is zero as



well. The total magnetization is non-vanishing, however, owing to electrical currents
flowing at the surface of the system.

4. Pressure of a confined magnetized free-particle system

It is instructive to study the pressure tensor of a simple model system, for which both
the mechanical and the thermodynamic pressure can be evaluated explicitly. As we have
seen in (14), the difference of the two pressures can be traced back to the behaviour of
the kinetic pressure under a change of the boundary conditions; the potential pressure
does not contribute to the pressure difference. Hence, to analyze this difference in
more detail it is sufficient to consider a system of charged particles in a magnetic field
without taking into account the Coulomb interactions. In other words, already in a
magnetized free-particle system the effect would arise. As a further simplification we
shall assume the system to be non-degenerate. Since the boundaries play an essential
role we have to include these carefully. Let us consider therefore a system of charged
particles in a slab-like geometry, with the z-coordinates of the particles confined to a
finite region. The magnetic field is taken in the direction of the positive z-axis. We
shall calculate the pressure tensor of the system by using perturbation theory with
respect to the magnetic interactions. A similar method has been used before to study
the surface currents in magnetized plasmas [8],[9]. Using the Landau gauge we write
the Hamiltonian for a single particle as H = Hy + H,, with Hy = (1/2m)p*+V (z) and
Hy = —w.zp¥ + imw?z?. Here V() is the infinitely steep potential which confines the
system to the slab. Furthermore, w. = eB/mc is the cyclotron frequency. Up to second
order in the field strength one finds for the one-particle partition function Z:

Z=tr (#7) = Zy(1 - ;—4,325%3) , (21)

with Z, the one-particle partition function for the field-free system confined to the slab.
The thermodynamic pressure up to second order is thus independent of the field:

Ptherm = % . (22)

The components of the volume-averaged mechanical pressure tensor can likewise be
evaluated with the help of perturbation theory. For the zz-component of the pressure
tensor one immediately gets for any field strength:

v | " (T (x)) = pp = % , (23)

so that (19) is recovered.
On the other hand, the yy-component of the pressure tensor

1%
vl / dr (TY(r)) = pp — 20pp = %tr e P (p — mw,z)?] (24)

does depend on the field strength. Employing perturbation theory up to second order
one gets

tr [e PH (p¥ — mw.z)?] = %Zg(l + 21—4ﬁ2h2w3) . (25)



Combining this result with (21) we obtain
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and hence 1
opp = —Enﬁh%}f : (27)

Finally, the average magnetization in first order of the field strength follows by diffe-
rentiation of Z:

vl / " dr (M(x)) = —11—2nﬁh2% , (28)

so that (20) is confirmed as well. The volume-averaged mechanical pressure tensor is
indeed found to be anisotropic.

More insight in the behaviour of the pressure tensor of this model system is obtained
by evaluating the profiles of the components of the mechanical pressure tensor near the
boundary of the slab. In second-order perturbation theory one arrives at the following
results .

(T"(r)) = EFz(E) + nBRWIG(E) (29)
Here ¢ stands for the reduced coordinate (2m/Bh*)'/2z. The functions F* have the

simple form:
2

FP@) =1, FU&=F()=1-¢" (30)
For vanishing field the tangential components of the mechanical pressure tensor vanish
at the wall; only the component perpendicular to the wall retains its bulk value. In
second order of the field strength the profiles change. The functions G*(§) are combi-
nations of exponential functions and error functions:

G™(€) = 1-(1+&)e® +aerfe() |
GY(E) = 1-(1-4€—3ehe® —6y/mE (1 + 1) exfe(€)
G (€) = 38t —y/rerfe(€) (31)

They have been plotted in Figure 1. As the figure shows, the second-order terms of all
components of the pressure tensor vanish at the wall. Away from the wall the various
cartesian components have a different behaviour, however: whereas the second-order
component in the direction of the field vanishes in the bulk as well, the second-order
components in the directions transverse to the field acquire a finite value in the bulk. It
now becomes clear why the mechanical and thermodynamic pressures can differ. The
thermodynamic pressure measures the change of the free energy when the position of
the boundary changes. Hence, it is determined by the pressure tensor at the wall. On
the other hand, the mechanical pressure averaged over the sample is determined by the
bulk value. The bulk and wall values of the pressure can be different, if a steep change
of the pressure tensor near the wall occurs. This can happen, if the divergence of the
pressure tensor is compensated by a force which takes large values near the wall. This
is indeed the case for a magnetized charged particle system, since the electric current
density and hence the Lorentz force density is concentrated in a thin layer near the
wall.
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Fig. 1. The profile functions for the z, y and z components of the field-dependent part
of the pressure tensor near the wall.

The above expressions have been obtained on assuming that the free-particle system
is non-degenerate. For a completely degenerate system one can derive similar results.
The general relation (20) between the anisotropic part of the mechanical pressure tensor
and the total magnetization is corroborated in that case as well.

5. Compressibility relation

For a classical one-component plasma the structure factor in fourth-order of the wave-
number is determined by the isothermal compressibility. In quantum theory one expects
that the charge fluctuation expression KV ~HQ(k)Q(—k))r with K denoting the Kubo
transform, and T truncation (i.e. subtraction of the product of averages), is likewise
given by the compressibility in fourth-order of k. General statements to that effect
can be found in the literature [10]. However, in particular for magnetized plasmas,
where mechanical and thermodynamic pressures are different, no proof of the so-called
compressibility rule appears to be available. Even if the compressibility rule is taken
for granted for magnetized plasmas as well, it is not clear which pressure is meant in
the definition of the compressibility. Of course, a formal proof of the rule would be
helpful in deciding this question.

To evaluate the fourth-order terms of the charge fluctuation expression we start
from an identity that can be derived [11] from the continuity equation and the equation
of motion:

1 4) (& 1 - ~ (2)
KFQRUQK)T = ~ o gk (k- Tl - B . (32

Here a superscript (n) indicates the order with respect to the wavenumber. Further-
more, w, is the plasma frequency, k a unit vector in the direction of the wavevector, and



cos = k- B. The right-hand side of (32) can be reduced to even lower-order quantities
by using once more the continuity equation and the equation of motion, since one has
for local operators € [11]:

1

KQ)Q(-k) =
= iz eos (209 T BYO - ROk T B (39

The commutator at the right-hand side can be evaluated easily for any operator Q(k) of
the type of the kinetic or the potential pressure, i.e. for sums of one-particle local ope-
rators depending on 7, and for sums of purely configurational two-particle operators.
One finds for such operators

1 S (1)
([20), 3(-K) - B) =

hecosf 1 te 1
= —(Q(k = -
m V< ( 0) mV<l

Zwa-Bra-f{,Q(kzo)]> : (34)
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The right-hand side of (33), with (34), is related to the variation of the average of
Q(k = 0) at varying volume. To prove this we proceed as in section 3 and write for a
change of the boundary determined by de:

5[0t =0)] = —sog2) (@ =0)

P Y BB <0k = 0) >
5V 1
-7z (Qk =0)) + 77 znje—ﬂEn § <t |k = 0)[h,> . (35)

The variations of Z and §E,, have been derived already in section 3. In the last term the
variation of the eigenstates in the matrix element follows from the Schrodinger equation
at constant r,:

<¢m‘5’¢]n>: <¢m|6H|¢n> ) (36)

En - Em
for n # m, if we assume the spectrum to be non-degenerate. Inserting these variations
in (35) one recognizes the Kubo transform of the fluctuation formula for §H and Q. In
fact, we get

5 [%(Q(k _ o))] — -3 K%(Q(k — 0) 6H)y — ‘SV_Z QK = 0)) + %(59(1{ ~0)). (37)

The last term at the right-hand side is the average value of the variation of Q(k = 0)
at constant T,. It can easily be found for the operators of the type specified below (33).
For instance, for a sum of one-particle operators of the form

Qr) = 4> {f(m),0(r—1a)} (38)



with f(z) a polynomial of z, one finds

Uk =0)=) dmy- a%f(ﬂ') : (39)

with .
Oy = —0€- T + 2—[((56 -B)Ar, — (trde)(BAr,)| . (40)
c

The left-hand side of (37) can depend on the deformation tensor only through its
trace. IjIence, we may choose de€ in a way that best suits our purposes. Let us take
o€ = Bkoe, with a scalar de. Then one has 6V = Vde cos . Furthermore, 6H gets the
form —dek - T(k = 0) - B, as follows from (14) and (15). Finally, (39) becomes quite
simple, since the terms between square brackets in (40) cancel. The final result for an
operator of the form (38) is

5 [%(Q(k _ o))] _ B K%(Q(k —0) k- T(k=0)-B)y de — cos %(Q(k)) 5e
11

+ﬁV<[§7ra-]§ra-f<,9(k:0)]>5s . (41)

The same result is found for operators that are sums of purely configurational two-
particle operators, like the potential pressure tensor.

Upon comparing (33)-(34) to (41) one arrives at a relation for § [V~1(Q(k = 0))],
which can be rewritten as
Vol [fi00c= 0] = —ga kg @0K) Q)P (42)
ay [y T T TPy o

Combination with (32) gives

1 @ 10 [l .
- 9 | k-T(k=0)-B)| . 4
Bmw? cos O On V< ( 0)-B) (43)

Employing (18) we may write the right-hand side as —(1/8mw})dpp/0n. Thus we have
found . .
KHQIQ-K)Y = -y (44)

B pmnw; Kkt

where the isothermal compressibility has been defined as k7' = n(dpg/dn) at constant
T and B.

The relation (44) is the compressibility rule we have been after. It contains the
derivative of the component of the mechanical pressure in the direction of the field.
The latter is equal to the thermodynamic pressure, as we have seen in section 3. Hence,
the right-hand side of (44) can be written in terms of a second derivative of the free
energy per particle, as is the case for the unmagnetized plasma.
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