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absorption coefficient, which is contained in a Fabry—Pérot cavity with non-ideal mirrors. In
order to describe this system we use a hierarchical set of equations which is obtained from
Maxwell-Bloch theory by expanding the polarization and population inversion in slowly
varying harmonics. We reduce the stability problem to two pairs of coupled differential
equations for the amplitudes and the phases of the space-dependent deviations of the forward
and the backward electric field envelopes. The coefficients of these equations depend on the
stationary inversion fields for which a representation in terms of Chebyshev polynomials
depending on the electric field envelopes is given. The influence of a truncation of the Bloch
hierarchy on the instabilities is studied numerically in the uniform-field limit.

1. Introduction

Since the first experimental demonstration of the laser a wide variety of
time-dependent phenomena in nonlinear optical systems has been discovered.
During the last decade the theoretical understanding of these phenomena, in
particular of instabilities in both active and passive devices, has greatly
improved as a result of studies within the Maxwell-Bloch framework. The
basis for the analytical advance in this area has been laid by Bonifacio and
Lugiato, who introduced the uniform-field method [1] and furthermore ex-
cluded bidirectional light propagation [2]. The use of these simplifications in
the stability analysis of the Maxwell-Bloch equations has led to analytical
predictions about instabilities in both active and passive systems (for reviews
see e.g. refs. [3—-5]). At a later stage a closer connection with the experimental
conditions has been sought, by taking into account either spatial field
inhomogeneities along the longitudinal axis [6-10] or standing-wave effects
[11-18]. The relevance of spatial field variations in the transverse direction has
been assessed as well [19-22].
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Up to now the inclusion of standing-wave effects in the linear stability
analysis of the Maxwell-Bloch equations for a nonlinear medium in a Fabry-
Pérot cavity has been carried out mostly in the uniform-field limit. As this
approximation is valid only if the medium is weakly coupled to the elec-
tromagnetic field and the mirrors are perfectly reflecting, the ensuing stability
analysis is of limited scope. In a recent paper [23] an attempt has been made to
circumvent the uniform-field limit. However, the “improved single-mode ap-
proximation” introduced in that paper effectively amounts to assuming a
simple spatial dependence of the electric fields in the cavity. It is not clear
whether this compromise between the exact Maxwell-Bloch equations and
their uniform-field limit is sufficiently general to account for the stability
behaviour of a medium with non-negligible absorption coefficient in a cavity
with mirrors of finite transmission coefficient.

In the present article we shall treat the stability problem of the hierarchical
set of equations which we obtain from the Maxwell-Bloch equations by
expanding the polarization and the population inversion in slowly varying
harmonics. This set describes a medium with a finite absorption coefficient in a
Fabry—Pérot cavity with mirrors of arbitrary reflectivity. Spatial
inhomogeneities in the field envelopes along the longitudinal axis will be taken
into account completely. For simplicity we shall confine ourselves to the case of
purely absorptive optical bistability, which implies the cooperation parameter
to be non-negative and the incoming field, the cavity and the medium to be
perfectly in resonance with each other.

In preparation to the linear stability analysis we shall discuss in section 2 the
stationary behaviour of the Maxwell-Bloch hierarchy. It will be shown that the
steady-state solutions can be represented with the help of Chebyshev polyno-
mials of the first and the second kind. This will permit us to establish a simple
connection between the slowly varying harmonics of the electric fields, the
polarization and the population inversion.

The linear stability analysis is the subject of section 3. The linearized
Maxwell-Bloch hierarchy with zero atomic detuning implies that the amplitude
and the phase deviations of the fields evolve independently from each other.
Consequently the stability problem breaks up into two separate sets of
equations, which are similar in form. We shall discuss the relation of these sets
with the stationary Maxwell-Bloch system and employ the latter to trace
instabilities which are in resonance with the laser signal. To treat the off-
resonant case we shall reduce each of the above mentioned sets to a closed
system consisting of two linear differential equations for the deviations of the
electric fields. For the case of a ring configuration the integration of these
equations can be executed analytically; the outcome completely agrees with
results derived before. For the general case of a Fabry-Pérot cavity the
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solution of the differential equations is rather complicated. Recently it has
been shown how it can be computed numerically [24].

The general equations obtained in the following also permit us to study the
influence of truncation of the Bloch hierarchy on the stability problem. In
section 4 we shall discuss this issue, returning again for convenience to the
uniform-field case. In particular, we shall concentrate on the question whether
higher-order truncation of the harmonic expansions for the polarization and

inversion fields might lead to erroneous predictions of instabilities.

2. Stationary behaviour of the Maxwell-Bloch hierarchy

In order to describe the interaction between a classical electromagnetic field
and a collection of homogeneously broadened two-level particles in a Fabry-
Pérot cavity we adopt the following infinite-dimensional set of equations

1 0E;  9E;
¢ ot "oz = 8Pe. @1
1 0Ey 9Ey
¢ ot 9z 8Peas (2.2)
aPF.m [t
ot =-—y,Pg,, + 3 (EgD,,_, + EgD, ), (2.3)
P
==Y Pyt g (EeDL+ EgD] ), (24)
aD, 20 " *
a—to = “'Y||(D0 +1) - T (EFPI’:,I + EgPg, + E;PF,I + EBPB,l) , (2.5)
aD,, 2u
ryaias —'Y||Dm T (EFP;,m + EBP;,m+1 + E;PF,m-i-l + E;;PF,m) ’
ot f
(2.6)
with m =1,2,3,.... This hierarchy of equations is obtained from the Max-

well-Bloch equations by performing a Fleck expansion [25] for the polarization,
the inversion density and the electric fields, neglecting the higher harmonics of
the latter [26]. The envelope fields, {Pg,,, Py}, for the polarization,
{D,,}._, for the inversion and E, E; for the electric fields, are slowly varying
in space (z) and time (¢). The coupling constant g is equal to 3 unk, where u is
the modulus of the dipole moment of the constituent paticles, k the modulus of
the wave-vector of the cw laser-field, and n the particle density. The transverse
and the longitudinal damping coefficients of the medium are denoted by vy, and
¥,- The boundary conditions on the electric fields that are imposed by a
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Fig. 1. Fabry—Pérot cavity with decomposition of the laser field.

Fabry—Pérot arrangement with an incident laser beam (see fig. 1) are

E-(0,1)=R'’E4(0,1) + T'?E,(1), (2.7)
Eg(L,t)=R'"EL(L, 1), (2.8)
E.()=T'"’E.(L,1). (2.9)

As usual, 7=1 — R stands for the transmission coefficient of the mirrors. As is
clear from (2.1)-(2.9) we confine ourselves to the case of purely absorptive
optical bistability, i.e. both the atoms and the cavity are assumed to be in
perfect resonance with the laser frequency w = ck.

If we introduce scaled quantities

f=RE:, b=pkEy, (2.10)
y=2aT '?E,, x=2aT '"E,, (2.11)
Pi =) "Prpn  Po=(v./%) Py, . (2.12)

with m=1,2,3,... and &= u/[A(y,)'’], the coefficients in egs. (2.1)-
(2.9) get a simpler form. As a dimensionless spatial variable we introduce
{ = z/L. The coupling coefficient in the Maxwell equations (2.1)—(2.2) then
becomes proportional to the cooperation parameter

_ wnoL
© 2kcy, T

(2.13)

For the case of optical bistability considered in this paper, this parameter is
always positive. At a last preparatory step we truncate the Bloch hierarchy

Ptw=Pow=D,=0, m>N, (2.14)
where the truncation parameter N is a positive integer. For the following this

step implies that we shall not need to operate with infinite-dimensional
matrices.
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In the case of a stationary incoming laser field all time derivatives may be set
equal to zero. This enables one to eliminate the polarization envelope fields
from the Bloch hierarchy. As a consequence the Maxwell equations can be
written in terms of the inversion envelope fields {D,} and the electric fields f
and b,

% = CT(fD,+ bD,), (2.15)
db
3z = ~CTUD +bDy), (2.16)

while the Bloch hierarchy reduces to a matrix equation for the (N +1)-
dimensional vector {D,},

N+1
]_=21 My, iDjy = =3y, (2.17)

withi=1,2,3,...,N+1. The (N+1) X (N +1) matrix M, is given by
My =1+4f7+4b°,  k=1,2,3,...,N, (2.18)
My 2 = 8fb, (2.19)
Myyese1 =46,  k=2,3,4,...,N, (2.20)
Mpyor =4,  k=1,2,3,...,N, (2.21)
Myinarner = 1427 +2b7, (2.22)

the remaining matrix elements being zero. Eq. (2.20) is to be ignored if N
equals unity. Owing to the reality of the coefficients in (2.1)—(2.9) and the free
choice of the phase of the input field y all stationary fields could be taken real.

The band structure of the matrix My, allows a straightforward evaluation of
the stationary inversion fields

— (_ m+1 m |ﬂ(N_m)|
D, =(=1"""(4/b) ——IM(N)I , (2.23)

with m=0,1,2,..., N. The symbol |[M| stands for the determinant of the
matrix M. Furthermore, My, is the N X N matrix that follows from M _,, by

replacing its (1,2) element by 4fb; we define [M,,| = 1 and [M,| = 1+2f* +
2b”>. To evaluate the right-hand side of (2.23) we consider the ratio C,=
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ll_ﬂ(m)l/ (4fb)™. 1t satisfies the recurrence relation

Criz=2uC, ,—C,, (2.24)

for m=0,1,2,..., N ~2, with the definition u = (1 +4f° + 4b°)/(8fb). The
solution of a recurrence relation of this type can be given in terms of continued
fractions [27, 28]. Alternatively, we can write the solution of (2.24) as a linear
combination of Chebyshev polynomiais of the first and the second kind [29],

Af% +4b°
=———7——T + —— U , 2.25
m 1+4f_+4b2 m(u) 1+4f‘,+4b2 m(u) ( )
with m=0,1,2,..., N. This result and the identity
Myl = (1+4f7 +4b%)[My, | = 32f°p% M|, (2.26)

valid for positive integer N, can be employed to express the right-hand side of
(2.23) in terms of the Chebyshev forms {C, .},

_ (_l)er]Cme
(1 + 4P+ 460 C, - 8fpC,

(2.27)

form=0,1,2,..., N. On substitution of the above formula in (2.3) we find
for the polarization fields { Pr. ,,}

—-D"(fC - bC
;:m - ( ) Z(f N~2m+1 N——m) , (228)
M (1+ 42+ 463 C,, — 8fbC,,

with m=1,2,3,..., N. Because of the fact that the stationary Bloch set
(2.3)-(2.6) is invariant for the interchange of forward (F) and backward (B)
fields, we obtain the backward polarization fields from (2.28) by interchanging
f and b.

Insertion of (2.27) for m =0, 1 into the Maxwell equations (2.15)-(2.16)
yields a closed set of differential equations for the electric fields f and b,

Cy— bC
EJ—C:—CT zf e , (2.29)
d¢ (1+4f>+4b*)C, —8fbC,_,
bC, — fC
b _ T 5 Csz e ) (2.30)
d¢ (1+4f+4b*)C, —8fbC,,_,

In view of the complicated structure of the forms {C,} the solution of this set
for arbitrary truncation parameter is troublesome; only the cases N =1 and
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N = have been treated analytically [30, 31]. However, in the uniform-field

fixed cooperation parameter C, the electric fields become uniform in space and
we arrive at

(mf) (mf)
CN - CN—- 1

X 2
=gt Cr 1-0)+0(TY, (231
() 2 X 2(1+2x2)cj\:;1f)_4xzcgn‘f)l ( ) (T7) ( )
¢ I o - 2
b =5-%~ 1-¢)+6(T?),
(D=2~ ~ I i) e —acgn 1O+ 0T)

(2.32)

where we assumed analyticity of f and b for small T. The Chebyshev forms
{C™9} are generated by the substitution of f= b = x/2 in the relation (2.25).
From the boundary condition at { =0 one can explicitly evaluate now the
incident amplitude y as a function of the transmitted amplitude x

(- DUy~ Ty)

=x+
y=x Ao O, =T,

(2.33)

with u =1+ 1/2x” in the uniform-field limit. If we set the truncation parameter
equal to infinity in the above result, we obtain the uniform-field bistability
curve which arises from a complete inclusion of standing-wave effects. For
increasing values of N the convergence of the function (2.33) towards this
curve is slow: at C =20 the coordinates x,,,y and y,, of the upper turning-
point are given by (2.33) with a relative error smaller than one percent only if
N =17, while at C =210 we must even take N = 11 in order to achieve this. The
cases N =1 and N = have been compared in [31] and [32].

For the general case of a finite mirror reflectivity we shall only consider the
limit N— . In order to study the behaviour of the Chebyshev forms {C_} in
this limit we use the following representation [29]:

c AWl (1+4f2+4b2+4W>’"

m o 8W 8fb
AW —1 (1+4f> +4b° —4W\"
W b , (2.34)

with m=0,1,2,... and the definition

4W=[1+8(f>+ b*) +16(f> — b*)*]"'%. (2.35)
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Because of the identity

LHAf7+4b° +4W 1 +4f7+4b* —4W _
8fb 8fb B

1, (2.36)

the first term in the right-hand side of (2.34) dominates over the second term,
if m becomes large. Therefore, in the case of infinite truncation parameter the
result (2.27) reads

. 1 < _8fb )m
) _ _
Dm 4W 1+4f2 +4h2 + AW ’ (237)

with m=0,1,2,.... Upon introducing the variables &= f"+b> and ¢ =
f*— b* we can now write the Maxwell equations (2.15)—(2.16) as

de__ CTu

d¢ 2w (2.38)
dy _ (1 1
o CT<8W 2) , (2.39)

a result which can also be obtained by directly taking the limit N— = in
(2.29)-(2.30). In ref. [31] this set of equations has been solved. One can verify
easily that the expression W — ¢ = K does not depend on {. With the boundary
condition at ¢ =1 this gives rise to a constraint on ¢ and ¢,

o

E=i- K+ + - 3K, (2.40)
where K follows from

4K =—x’(1+ R)+ [T +2x°(1 + R) +1]'°. (2.41)
In (2.40) the sign in front of the root is determined by the inequality
&— 1+ K=W- | =0. The existence of the conserved quantity W — ¢ opens
the possibility to reduce the two-dimensional set (2.38)—(2.39) to the one-
dimensional differential equation

—~CTd¢=2dy +2(16¢4> +2-8K) ' dy, (2.42)

and so to obtain after integration and fitting of the boundary condition at { = 1

[+ "+ % —3K)' Jexp(4y) = (K — § + 3x*) exp[2CT(1 — {) + Tx].
(2.43)
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The left-hand side is a monotonously increasing function of . Hence for fixed
x this relation determines ¢ uniguely for each /. The soluti gaticfies the
10 ACAL, AL W WAL LLLALAW D \’I ulll\luvl AL wavii . A LW OWVIWLIVIL UAWJLLIWY  LRiw
inequalities
2
ITsy<iT*+iCcT1-0). (2.44)

We now can calculate from (2.40) and (2.43), at least numerically, the fields f
and b as a function of { for arbitrary values of C, T and x. Therefore the
steady-state behaviour of the set (2.1)-(2.6) with the boundary conditions
(2.7)-(2.9) is completely known.

3. Linear stability analysis of the Maxwell-Bloch hierarchy

The stability of the steady-state solutions discussed in the previous section is
investigated in the usual way, namely by substituting for all envelope fields in
the Maxwell-Bloch hierarchy the stationary expressions augmented by a small
time-dependent deviation. After linearization the equations decouple into two
separate sets: one set for the amplitude deviations

Au(¢, 1) = 8lv(¢, )| = §[Bv(L, 1) + 8u(¢, 1)*], (3.1
and another for the phase deviations
ATu(¢, 1) =w*({)dlarg v(¢, D] = 5[8u(, 1) — 8u(L, "], (32)

for any envelope field v. These sets have the form
2 ADFL 0 =L (0) A9RL ). (3.3)

Here L") and L7 are linear operators which map a real orginal onto a real
image. The real deviation vector A"x(¢, 1) is a (3N + 3)-dimensional column
vector made up of the amplitude deviations of all the envelope fields. On the
other hand the imaginary column vector A%(¢, t), which determines the
phase deviations, has only 3N +2 components, since the inversion field
envelope D, is real. The solution of the above sets of equations can be written
down formally as

AR 1) =2, A x (L) exp(AD) (3.4)
!

with A™x, and A{* an eigenvector of the operator L*’ and its corresponding
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eigenvalue, so that one has
(=) () — () A=)
L (-4 x()=x"47""x({). (3.5)

Because of the fact that this equation is equally true if we replace 4‘*'x, and
A{*! by their complex conjugates, the linear combination at the right-hand side
of (3.4) can be chosen such that the sum is real or imaginary, in accordance
with the definitions (3.1) and (3.2).

In order to analyze the stability of the solutions of (3.3) we replace
AR, 1) by A x(¢) exp(At), solve for the eigenvalue and check the sign of
its real part. The two sets of equations that are generated from the Maxwell-
Bloch set (2.1)-(2.6) with (2.10)-(2.12) by this procedure are

da“™f - -

az =-2APF + CcTA P |, (3.6)
da™p . e ey
BT =-xA"b + CTAMP, |, (3.7)

AADPL =D+ D, ATf+bAD, + D, A, (3.8)

m-—1 m—1

AATPL =2fAPD, + D, AT xbAYD,  + D, ATb,  (3.9)

m—1 m—1

=M ATD, =2fAPL  + 2P ATF 42647 P,  + 2P ATD
(3.10)

- %)‘”A(I)Dm :fA(i)Pl;,nH—l * Pl’:.m+1A(i)f+ bA(t)P}l-‘,m * Pfl-“mA(:)b
ifA(t)I);SJﬂ + PE;,mA(i)ft bA(i)P’B,nH»l + Pl;,n1+lA(:)b b
(3.11)

with m=1,2,3,..., N and with the definitions A=ALc ' and A, =1+ 1y, 'A
for i = L, ||. The coefficients in front of the deviations at the right-hand sides of
(3.8)-(3.11) are the stationary envelopes discussed in the previous section.
Truncation has been introduced again by stipulating (2.14) both for the
deviations and for the stationary fields. The deviations of the electric fields
obey a pair of boundary conditions,

Af0) = R'PAp(0) , (3.12)
AS1)=R™'APb). (3.13)

The input field y has been kept at its stationary value, since we wish to describe
intrinsic instabilities only.
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The set of equations (3.6)-(3.11), together with the boundary condition
(3.13) and the equality A“f(1) = A%/ 2, uniquely determines the deviations
AL and A™)b(¢) for any value of X. The condition (3.12) serves as an
additional constraint which is needed to solve the stability problem. In general,
the result for the eigenvalue X will be complex. However, if we take Im A =0
the coefficients of egs. (3.6)—(3.11) become real and, as a consequence, the
solutions for the deviations A“’f(0) and A“’b(0) are real as well. Then the
freedom in the choice of Re A can be used to try and meet the requirement
(3.12); it should be noted that the existence of a solution for Re A is not a
priori obvious, since the eigenvalue problem is nonlinear. Instabilities which
are found upon assuming Im A=0 are generated by the cavity mode that
oscillates at the same frequency as the laser signal. As we shall demonstrate
now, information on these resonant instabilities can be acquired by employing
the stationary theory, discussed in the previous section.

If we add small increments to the amplitudes and the phases of the stationary
fields and derive equations for these increments with the help of the stationary
Maxwell-Bloch theory, the equations (3.6)—(3.11) are recovered, with A set
equal to zero; the condition (3.13) is found as well. This means that for A = 0
the deviations Af(¢) and A“™b({) of the electric fields are completely
determined by stationary theory. As a consequence we may derive a constraint
on these deviations for { = 0. From a comparison with the condition (3.12) one
learns then whether circumstances exist under which A = 0 is the solution of the
stability problem or, said differently, under which the character of the resonant
mode changes from stable to unstable. Firstly focusing on the amplitude
instabilities, we can find a constraint on the deviations A’f(0) and A "b(0)
from the boundary condition (2.7). If we write down this condition for small
increments of the electric fields and use A"y = (dy/dx)A‘x, the result reads

ADf0)— R'PATB0)=T % A1) (3.14)

Thus we may conclude that for A = 0 the condition (3.12), with the plus sign, is
matched only if the output amplitude x is chosen such that a turning point of
the steady-state curve y(x) is attained. Hence, solely at these points of the
bistability curve the resonant mode becomes unstable against amplitude pertur-
bations.

As to the resonant phase instabilities, one can prove easily that the phases of
the stationary electric fields equal the phase of the stationary input field, which
implies

A7) _ f0)

AOb0) ~ b(0)° (3.15)
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it A equals zero. From the inequality f(0)> b(0) it is manifest that the
condition (3.12) can never be satisfied. We have shown now in a formal way
that resonant amplitude instabilities are present only in the negative-slope part
of the steady-state curve, whereas resonant phase instabilities do not occur. Of
course, in order to study the instabilities which generate off-resonant oscilla-
tions one has to solve the linearized Maxwell-Bloch hierarchy explicitly.

In solving the off-resonant stability problem the first step is the calculation of
A(t)P,;v1 and A(i)Pl',1 from the Bloch-type equations (3.8)—(3.11) in terms of
the stationary fields and the variations of the electric fields, so that the
differential equations (3.6)—(3.7) become a closed system. Concentrating first
on the set for the amplitude deviations we eliminate all polarization fields from
(3.8)-(3.11) and obtain in this way a matrix equation for the (N +1)-
dimensional vector {A”'D,_}

N+1
A, 2} My, AD, = —F DA~ B AW (3.16)
withi=1,2,3,...,N+1and A, = A, A;. The (N +1) x (N + 1) matrix M, ,

is generated from the matrix M,,, defined by (2.18)~(2.22), by the substitu-
tions

f=f=1""f, (3.17)
b—b,=A""b. (3.18)

The N + 1 elements of the column vector F'"’ are defined by the following
combinations of stationary fields:

F\V =41+ 2,)(fD, + bD,), (3.19)
F{7'=2(1+A,)2fD,_, +bD,_, + bD,), (3.20)
F() =200+ A )(fDy + bDy_,), (3.21)

with i=2,3,4,..., N. The interchange of f and b transforms the column
vectors F**) and B'* into each other.

As can be seen from (3.8)—(3.9) only the deviations A‘*’D, and A"’ D, have
to be determined. The elements of the inverse matrix that are needed are
found along the same lines as in section 2; they read

[M{AI,N)]II ==D,, [M(“AI.N)]I]' = _ZD,\‘/: 1 (3.22)

- i 1+4f7 +4b;
[M(AI‘N)JZI =-D, [M(AI.N)]% = 4fAb * Dy, (3.23)
AYA
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with j=2,3,4,..., N+ 1. The subscript A indicates that the substitutions
(3.17)~(3.18) must be performed throughout. We now can carry out the task
of eliminating the polarization deviations from (3.6)—(3.7). After some techni-
cal manipulations, discussed in the Appendix, we find the following set of
coupled linear differential equations for the amplitude deviations of the electric
field envelopes:

d (A(+)f> B (H(J) H(I;)><A(+)f) .

< =("n (3.24)
d¢ HSY HS/\A™b

A%
The matrix elements in the first line are given by

(1—4f* +4p°y’

D
1- A, 0

“ 1+2a7
H{{’=-A+CT ——w; [1 +

—4 2+4 252
+ (A —4f, +4by) D, o +4(1—4f2 +4b2)(f* - bz)DNDA,N]

1=,
+ CTA'D,, (3.25)
1+/\_1[ 1 - (4f* ~4b°)’ 1—(4f; —4b3)’
(+) _ 4 A A
H,' =CT 167 1+ 1=, D0+———————1_/\;1 D,,
—4(1—4fF +4b3)(f* - bZ)DNDA_N] + CTA]'D, . (3.26)
The other two elements follow from the symmetry relations
HS(f, b)=-H3 (@, f), (3.27)
HY(f,6)==H\D (b, f). (3.28)

In the appendix it is demonstrated that the set governing the phase devia-
tions can be transformed to the form (3.24) as well. The matrix elements H 5,.‘)
satisfy symmetry relations analogous to (3.27)-(3.28). Hence, they are com-
pletely determined by the formulas

_ ~ 1+a7 1 - -
H =-X+CT *—"42 G+ CT(1-A")D\D, D3,
16f 2
+ CTAL'D,, (3-29)
_ 1+A7H 1 1, b -
H = =CT g G5 CTU=AL) £ DuDyuD3

+ CTA'D,, (3.30)
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with the quantity G defined by

16W°D, . D,y

G=-1+ =
A, -1 a1

. 41+ A)(fP+ %) +16(f° - b)Y
1-2,

DyD, D - (3.31)

So far we have dealt with the linear stability analysis for the truncated
Maxwell-Bloch hierarchy. Thus the matrix elements H,(.jt), as given by (3.25)-
(3.31), depend on the truncation parameter N. If we want to include standing-
wave effects completely, we have to take the limit N— = of these matrix
elements. We then need the limiting expressions of the inversion fields {D,,}
and {D, ,,} for m =0, 1. Furthermore, we have to consider D, and D, , for
N—x,

The inversion fields D, and D, for large truncation parameter follow directly
from (2.37). From these the expressions for D, , and D, | are obtained by the
replacements f— f, and b— b,. The square root W, defined in (2.35), then
transforms into the complex square root W,. The prescription for the sign of
this square root can be determined by returning to (2.34), with f, and b,
inserted. For large m the first term is dominant, if the sign of W, is chosen in
accordance with

R A >0 (3.32)
e —F 5 . .
1+4f; +4b2

If the value of A is such that the ratio of the forms at the left-hand side is purely
imaginary or that one of these forms vanishes, both terms in (2.34) contribute
for large m, so that in that case the limiting expressions for {D, , } become
more complicated. However, this situation does not occur if the real part of the
eigenvalue A is non-negative.

The inversion fields D, and D, , can be neglected in the limit N— . This
follows from (2.27), since according to (2.34) the moduli of the Chebyshev
forms C, and C, , increase beyond bounds if N tends to . The evaluation of
the matrix elements H f.l.:)(x) is thus only a matter of substituting the expressions
for the inversion fields D), D and D{” in (3.25)—(3.31). The results can be
verified by calculating the matrices H*)® from the linearized Maxwell-Bloch
equations for the complete polarization and inversion fields, without using the
Fleck expansion. For the uniform-field case this method has been employed in
ref. [15].

Incidentally, it may be remarked that one can derive the stability properties
for a ring cavity as well in the present context. To this end we let the stationary
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backward electric field approach zero. Then we may write

AW =1+ 4f% + 4b* 1-4f7 +0(b%). (3.33)
1+4f°

Insertion of this relation into the formulas (3.26) and (3.30) for N— = gives
immediately that the matrix elements H (=) vanish if b becomes small. This
implies that the deviations of the forward and the backward electric field are no
longer coupled to each other; the sets which describe the amplitude and phase
deviations both split up into a pair of linear differential equations. These can
be obtained explicitly by entering the result (3.33) into the expressions (3.25)
and (3.29), with N =, for the matrix elements HV™ . As a result of the
above steps the system (3.24) reduces to a set of equations which has been
found previously [2, 13]. The amplitude deviation of the forward electric field
satisfies

d%, A= XA+ CT

afy =)
(1+4f*)(1+4f))

Af. (3.34)
Integration of this equation can be performed with the help of the stationary
relation (2.38), which reads now

df __ CTf
d¢ 1+4f%

(3.35)

To fix the constant of integration we impose the well-known boundary condi-
tion for a ring cavity (2, 3]

A™f0) = RA™f(1) exp[Ac (L — £)], (3.36)

with & the cavity round-trip length, and accordingly find the eigenvalue A as

AP . 1 o (1 + 4fi(1)) o <f(1)>
_27Tn1+10gR—§(1+)tl)10giT§(0) + A logm .
(3.37)
Here we must substitute
f0)=3Rx+ 3Ty, f(1)=3x. (3.38)

The spectrum of instabilities, generated by (3.37), has been the subject of
many studies during the last decade [2, 6, 8, 9, 33]. Integration of the
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differential equation for the phase deviation of the forward electric field yields
with the help of (3.36)

A
C

=2mni+log R+ )\Illog(%>. (3.39)

The real part of the right-hand side is always negative. The remaining
differential equations for the deviations of the backward electric field are quite
analngmm Inteoration can be perfnrme.d in a similar way as shown above.

ArVPURRS. AL EIAVEL L J V2] 4 AARial oV

After application of the boundary conditions

Ab(0)= R 'Ab(1) exp[ac (£ - L)], (3.40)

the outcome is

Ay
c

L+4fi()y o (f(1)
1+ 4f§(0)> T log<f(0)) '
(3.41)

1 _
=2mni+log R~ 7 (1+A,})1og(

For a ring configuration amplitude and phase instabilities in the backward
propagating ficlds are governed by the same equation.

Returning to the Fabry—Pérot case, we state as a conclusion of the present
treatment that the linear stability analysis of the Maxwell-Bloch hierarchy
(2.1)-(2.6) can be formulated in terms of two sets of linear differential
equations, one describing the amplitude deviations and the other the phase
deviations. The coefficients figuring in these sets have been expressed in the
stationary electric fields f and b. Altogether, we have paved the way to
investigate side-mode instabilities for absorptive optical bistability in a non-
ideal standing-wave cavity [24,34]. It should be mentioned here that the
application of our results is not exclusively restricted to this area. The stability
properties of an active medium can be investigated along the same lines, since
this case differs from that of a passive medium only by the sign of the
cooperation parameter C.

As a final topic of this paper we will discuss the dependence of the amplitude
instabilities on the value of the truncation parameter N. This discussion will be
limited to the uniform-field case only. As a starting point we shall adopt the set
of equations (3.24) with (3.25)-(3.26), supplemented by the boundary condi-
tions (3.12)—(3.13). The results will be compared with those found previously
[11,14-16]. In a future publication [34] a similar discussion will be presented
for phase instabilities.
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4. Influence of truncation on amplitude instabilities in the uniform-field case

From now on we confine ourselves to the uniform-field limit, since in that
case a further analytical treatment of the instability problem for the Fabry—
Pérot cavity can be given. Moreover, a direct comparison with previous work
will be possible in this way. Upon expansion of X in powers of T and insertion
of the form x/2 + O(T) for f and b, in accordance with (2.31)-(2.32), the
differential equations (3.24) become

d <A(+)f> _ (X(O) N T)T(l))(_l 0)( A(+)f>

dz \ A 0 1/\a™p
A BN (AYRY
+CT(_B(+) o) ) 0T (4.1)

The boundary conditions read up to first order in T
ACfO)=(1-3T)ATB0), A=A+ IT)ATB(1).  (42)

The matrix element A in (4.1) is equal to

1+ A71 D@D Db
AT = 4le (1 +1 ”OAP + 1_‘;’;1) +A'DS (4.3)
Here D™ is obtained from D, by the substitution f= b = x/2. The matrix
element B") differs from A‘*) only in the last term of (4.3) which is to be
replaced by A['D{™”.
In lowest order of T the eigenvalue A© equals mni, with integer n. The
first-order contribution to the resonant mode, for which n is zero, can be
determined from

A = -1+ A (A—0)+ CBM(A—0). (4.4)

Evaluation of the right-hand side of this equation leads to

1 D™ 1 d
- — D"“") : (4.5)

~ 1
W=~ 4 <—- +
Ao 2 ¢ 2x? 2x? 2x dx 7 °

If we solve (2.15)-(2.16) with the boundary conditions (2.7)-(2.9) in the
uniform-field limit and use (A.2) we arrive at

C
y=x+- 1+ DDy, (4.6)
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an equality which can also be obtained directly from (2.33) with (2.27).
Differentiation of the right-hand side yields with (4.5)

so__1ldy

0 2 dX ) (47)

For N =1 and N = = this result corroborates earlier work [11, 15, 16].
Turning to the side modes, with A 510) = qrni, we note that the first-order
eigenvalue Xf,') does not contain the term with B‘") and consequently (4.3)
implies
NP D o 5 (s pg DY
g 2 4x° 1=4, 1-2a!

) + CAT'DM (4.8)

where for A; we should insert 1+i7'r1']., with T = nc/L'yj, for non-vanishing
integer n and j= L, ||. The physical case, corresponding to N =, can be
derived from (4.8), if we employ the formula (2.37) for m = 0, from which the
equality D™ = —(1 + 4x*)"""* may be inferred. After entering this result in
(4.8) we find [15, 16]

~ 1 L+ U Ut
qoe - 1 - L <1+ A
n 2 )\

4x? *

_ “lypr-1
— Apl—l) CAU'U™'. (4.9)

p

Here we defined U =(1+4x’)""? and U, =(1+4A,'x*)""? with Re U, >0.
Furthermore, if N is set equal to unity in (4.8), the result of ref. [11] is
recovered.

A suitable way to determine the location of the side-mode amplitude
instabilities, described by (4.8), as a function of the physical parameters
consists in scanning the boundaries of the instability domain in the (x, 7 )-
plane. This can be achieved by solving numerically the equation

Re A"[x,7,.C. N, d]=0, (4.10)

with d = y;/y,. As an example we show the result for C =210, d=1 and
N=1,2,5,in fig. 2. Clearly the shape of the instability domain sensitively
depends on the value of the truncation parameter N. For N = 2 the instability
domain even breaks up into two regions. The presence of disconnected
instability regions has been reported also for optical bistability in a ring cavity
[35]. A quantitative estimate of the errors introduced by truncation is obtained
by tabulating for various N and several values of d the minimum values of C
for which side-mode instabilities emerge in the (x, 7, )-plane (see table I). The
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Fig. 2. Side-mode instability regions in the uniform-field limit as a function of the truncation
parameter N.

convergence towards the physical case N =« is found to be slow and oscilla-
tory. Furthermore, the minimum values of C depend strongly on d. If we
would redefine C and replace in (2.13) y, by the geometric mean (v, y”)”z,
this dependence would be even more pronounced, so that it is not a trivial
consequence of the scaling properties of C.

The values given in table I suggest that for fixed N and C the side-mode
instability regions will enlarge, if d is augmented. Indeed, this conclusion is

corroborated by numerical work; however, for increasing d the side-mode
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Table 1

Values for the cooperation parameter C, which correspond to the
onset of side-mode instabilities in the (x, 7, )-plane, for various N
and d. To calculate these values uniform-field theory has been

employed.

N 1 2 3 5 10 o
d=05 1169  206.8 188.7 2241 2438 2336
d=1 57.01 1289 85.89  100.6 97.54  96.93
d=2 36.00 6429 5224 52,09 49.17  49.12

instability domain grows mainly in the direction of the 7 -axis. As it was
already found [16] that for d = 1 and N = = side-mode instabilities can only be
present in the negative-slope part of the steady-state curve y(x), the occurrence
of so-called positive-slope instabilities for d # 1 and infinite N is thus not likely.
We verify this conjecture for the upper transmission branch of the bistability
curve first. Here stability is guaranteed if we have

Re AV <Re AV (4.11)

along the upper transmission branch. According to (4.9) the left-hand side of
this equation can be written as

~ 1 C
R A(l)(“:):__________
© An 2 (1+a)U

C [2+a2_d2ReUA+d3ImUA_ d, ]

4’ L1+a*  d|U)  da|U] d@0+e’)Uul’

(4.12)

with the definitions a =77, d,=(d+1) ' +a’, d,=d’+d+a’°+2, d,=
2d° +2d + a” and d,=d’ + da’ + 3d. Insertion of (4.7) and (4.12) in the
above inequality gives

UNU’-35)+a’UNU~-4)+2(1+a”) d,ReU,
(1+a)U’ " d,|U,)?
2d.d(d + 1)x° d, ~0
ddJU,’ReU, d,(1+a>U "’

(4.13)

with d, = (d° + @®)(1 + a?). It is clear that this statement is true for U =4 or
x = 115, since Re U, >0. Hence, as long as the x-coordinate of the upper
turning-point of the stationary curve exceeds 3V 15, the upper transmission
branch of this curve remains stable. However, from the uniform-field steady-
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Table 11

The maximum x-values for side-mode instabilities at C =210 for
d=10.5, 1 and 2 as a function of the truncation parameter N. For
d=0.5 and N = 4, 8, « side-mode instabilities are not present. The
bottom line displays the x-coordinates of the upper turning-point
(utp) of the steady-state curve.

N 1 2 3 4 8 w©

d=05 2431 11.18 9.890 - - -
d=1 28.61 16.78 13.74 11.43 9.023 8.290
d=2 27.90 16.54 14.13 11.72 9.691 8.966
11.78 12.90 13.33 13.57 13.90 13.97

X (utp)

state curve, namely y = x + 4Cx/[U(U + 1)], we infer that this requirement is
fulfilled for C = . This amount is well below the threshold C =49.12 for
side-mode instabilities (see table I). The lower transmission branch corre-
sponds to values of x less than 0.653, for C above 49.12. So instabilities are not
present in this branch either, if the inequality Re ):f,“(“) <0 is satisfied for
0 =< x =<0.653. We have checked this requirement to be fulfilled.

The above results imply that the positive-slope instabilities for N =1, found
in ref. [11], are entirely accounted for by the truncation of the Bloch hierarchy.
This can be illustrated by calculating, as a function of the truncation parameter
N, the maximum x-values for side-mode instabilities and the x-coordinates of
the upper turning-point for the bistability curve. From table II we see that the
convergence of the former values is by far the slowest. Furthermore, it appears
that for N >3 positive-slope instabilities do not exist. This observation and the
other findings of this section lead us to the conclusion that a study of the
side-mode instabilities for the general set (3.24) is reliable only if one refrains
from a truncation of the Bloch hierarchy.

Appendix
Evaluation of the matrix elements H Ef)

In this appendix we firstly derive the expressions (3.25) and (3.26) for the
matrix elements occurring in the differential equations (3.24) for the amplitude
deviations of the electric field envelopes. Subsequently, we shall prove the
relations (3.29) and (3.30) for the matrix elements that determine the phase
deviations of the field envelopes.

The results (3.16) with (3.22) and (3.23) can be employed to obtain the
inversion deviations A’D, and A‘"’D, in terms of the stationary envelope
fields and the deviations of the electric fields. With the use of (3.8) form =1
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we then arrive at

+ ’ 1+/\7[ -
APy = S (=25 ([eDy+ &1+ (1 =472+ 460D,

+[1- 4f)% + 4bi]5ﬁ+) +[1- 4f§ + 4b/2\][eiDN +eDy_(|D, v}

(A.1)

i

+Aj‘D,.,1>A<“e.

where we employed the short-hand notations f=e¢, =¢e,, b = ¢, = ¢, and used
the identity

_ (1+4f7+4b*)D, + 1

= 87t , (A.2)
which follows from (2.27). Furthermore, we introduce the sum
N—1
SO =3 (2¢,D,+¢D, , +&D,,)D, . (A.3)

j=1

for i =1, 2. This sum can be evaluated by transforming it in several alternative
ways and using the symmetry properties of the resulting equalities. The
expression between the brackets at the right-hand side of (A.3) is proportional
to D, since one has

4fb

j:_m(Df~'+D/H)’ (A.4)
withj=1,2,3,..., N — 1. This can be established with the help of the explicit
formulas (2.27) with (2.24). As a consequence the sum (A.3) for i =1 turns
out to be equal to

_ 3+4 2 N—1I
1—4f" +4b° z DD, ;. (A.5)
4f i=1 ’

() _
S =

On the other hand, a simple rearrangement of terms in (A.3) yields

N-1

N—1
S0 =of /Zl DD, ,+b Zl (D, \D, ;+DD, ;)
- P
- b(D]D/\,(J - DNDA,N~|) . (A.6)

The sums at the right-hand sides of (A.5) and (A.6) are symmetric under the
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simultaneous interchanges f< f, and b< b,. Hence, upon equating these

dant frn x1la 3l oh
right-hand sides we may deduce two independent equalities, from which each

of the sums may be solved. Substituting the results in (A.5) or (A.6) we find an
expression for §{*,

g b1 - 4f% +4b%)
() =

(DID/\‘U - DOD/\,I + DN«lDA,N - DNDA,N~1) .

A, —1
(A7)
An analogous expression for S{*’ follows from the symmetry relation
SEO(f, b)=S7(b, f). (A.8)
Substitution of these formulas in (A.1) provides us with the result
1+ 27! 1—4f% + 4p2)? 1—4f2 + 4p2)?
A(+)Pl’?1={ 2* [1+(_f—b)_D0+_(_41—)‘) o
’ 16f 1-A 1-2A :
+4(1—4f; +4b3)(f* - bz)DNDA,N] + /\IIDO}A“)f
1+A7" [ 1 - (4f° - 4b°) 1— (4f; - 4172)2
+{ o L't 1o Do+ —773% Dio

—4(1—4f; +4b3)(f* - bZ)DNDA'N] + A;‘Dl}A“’b . (A9)
Here we made use of the identities (A.2) and

2 + 2
DN_1=—%——ZL Dy, (A.10)
which can be derived from (2.27). In view of (3.6) and (3.7) the proof of
(3.25) and (3.26) is complete now.

From inspection of the system (3.6)~(3.11) it is obvious that the same
method of solving these equations can be adopted for both the plus and the
minus set. In order to verify the relations (3.29) and (3.30) for the matrix
elements H fj‘) we eliminate as before the polarization envelope deviations from
the set (3.8)-(3.11). In this way we find a matrix equation for the N-
dimensional vector {A(_)Dj},

N
Ao 2 M, 5y, A7D, = FOAOF + B AS (A.11)

j=1
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withi=1,2,3,...,N. The vectors F ) and B only depend on the station-
ary fields, as is shown by the formulas

Fz\' ’:2(1+/\L)b(Di+]vDi»1)* (A~12)
F0=2(1—-A)fDy—2(1+A,)bDy . (A.13)

fori=1,2,3,...,N—1, and the symmetry relation
Bi'(f.b)=—F,'(b.f). (A.14)

valid for i=1,...,N. Inversion of the matrix M, ,, defined in section 2,
shows that

M, ]y = N (A.15)
(M 4f)\b)\D)\_() ' )
fori=1,2,3...., N. As a consequence the polarization deviation APl s

found to equal

Ly - (D' +A e
Al Pra = z {)‘x,lDi~x“ (S + Dy D, )

i=1.2 sz/\.()
(“1)1(1_)\:1)‘31 } -
2D, DD, y(4 e . (A.16)
The sum S'7 is given by
N-1
§T = E (D/'Al - Dj+l)DA.j : (A.17)

This sum can be reduced to a simpler expression in a similar fashion as
demonstrated above for the sum S{"’. If we write down (A.4) for the fields f,
and b, and substitute the result in (A.17) we get

) 4f, R
s' )_m{z /HDAJ l~D/'—1D)\»J'+‘)_D(’D)‘ﬁ_D'DA‘[
2 -
Dy Dy 4 DD, ] (A.18)

On the other hand a shift of indices in (A.17) leads to

N—-1

s = 2 (D, _\D, ,— DD, ; D+ DD, = DDy oy (A.19)

j=1
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The sums in the right-hand sides of (A.18) and (A.19) are both antisymmetric
under the simultaneous interchanges f < f, and b < b,. Hence, equating these
right-hand sides we may derive two equalities, as before. Solving these we get
from (A.18) or (A.19)

- 8fb
) = A (DOD/\,O +D/D,, - DN—1D)\,N—1 - DNDA,N)
P

+(1+4f2+4b2)
1-2

(DIDA,O + DODA,I - DND/\,N—I - DN—IDA,N) .
P (A.20)

With the use of this result and the relations (A.2), (A.10) the expression
(A.16) can be recast in terms of the stationary fields D, D, 4, Dy and D, ,,

1+A7!
16f*

1+a7" 1 S b S1y - _
{— -1—6ﬁ;— G-5(1- ATh 7 DD, yDy o+ A;Dl}A‘ b,

1 - S - -
AP = { G+ 5 (1=A7)DyD, yD;o + )‘llDO}A( f

(A.21)

with G defined in (3.31). Insertion of this expression into (3.6) and comparison
with (3.24) then yields the matrix elements H,’ and H{} in the form given in
(3.29) and (3.30). The other two matrix elements of (3.24) are trivially
obtained from the symmetry relations (3.27) and (3.28).
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