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Instabilities are predicted for absorptive optical bistability in a nonideal Fabry-Pérot cavity on
the basis of Maxwell-Bloch theory. We show that the stability problem of the Maxwell-Bloch equa-
tions can be formulated in terms of a Riccati differential equation with boundary conditions. We
have integrated this equation numerically. Our results crucially depend on the value of the
transmission coefficient of the mirrors. For finite values of this quantity we find that the nearest side
mode is responsible for two disconnected instability domains in the plane spanned by the output in-
tensity and the medium response time. One of these domains can generate instabilities in the upper
and the lower branch of the steady-state curve if the cooperation parameter is sufficiently large.
Higher side modes can give rise to positive-slope instabilities as well. From our findings it can be
understood why a recent experimental search for instabilities in absorptive optical bistability has led
to a negative result. We finally demonstrate that the instability spectra of a Fabry-Pérot cavity and
a so-called equivalent ring cavity differ considerably.

I. INTRODUCTION

The study of instabilities in optical bistability is of fun-
damental importance because it gives insight in the be-
havior of systems driven far from thermodynamic equi-
librium. Recognition of this fact has been a motive for
numerous investigations which have deepened our under-
standing of time-dependent phenomena in passive
media.! In most of these treatments an external feedback
of the laser beam has been chosen by adopting a ring
geometry; with this choice standing-wave complications
are avoided. For systems with internal feedback, such as
the Fabry-Pérot arrangement, instabilities have only been
examined with the help of simplified semiclassical
theories. For example, equations with a third-order non-
linearity>~* and delay-differential equations®~® have been
used. The treatments that employ the full Maxwell-
Bloch formalism generally adopt the uniform-field ap-
proximation.’~!2 This approximation is only reliable if
the cavity is equipped with almost ideal mirrors. It
remains to be seen whether uniform-field predictions on
instabilities also hold for a nonideal Fabry-Pérot cavity,
as used in recent experiments.!3~!°

In this paper we intend to analyze the instability spec-
trum of an optically bistable nonlinear medium contained
in a Fabry-Pérot cavity with mirrors of finite transmis-
sion coefficient. As a basis we shall use the analytical re-
sults that we have derived in an earlier paper.'® In this
way we are able to predict the complete multimode insta-
bility spectrum; it will not be necessary to invoke a
single-mode approximation.!” The medium is assumed to
consist of homogeneously broadened two-level particles
described by the Maxwell-Bloch equations. As in previ-
ous work®!? both the particles and the cavity are as-
sumed to be in perfect resonance with the incident laser
beam. Furthermore, we shall use the plane-wave approx-
imation so that transverse effects are not taken into ac-
count.'®

The stability of a stationary state of an optically bi-
stable system can be investigated by evaluating the effect
of a small time-dependent perturbation on the transmit-
ted light beam. In the plane-wave approximation this
light beam is described by the electric field
EVexpli(kz —wt)]+c.c., with @ the frequency of the
laser and k =w/c. The amplitude E" can be chosen to
be real and positive; its superscript (st) indicates that the
incident laser beam is kept stationary. If we add a small
perturbation 8E(z) to the transmitted amplitude E{",
the output electric field becomes

[ESV+8|E (1) ]expli{kz —wt +8arg[E(1)]}) +c.c.
(1.1

Both the amplitude deviation SIET(t)| and the phase de-
viation 8 arg[ E;(#)] can be determined from the linear-
ized Maxwell-Bloch equations. For the former deviation
we find

S|Ep(t)|=T3 c;AEr exp(At) . (1.2)
1

The complex eigenvalues A; are the solutions of a stabili-
ty problem that we have discussed lately.!® Since the ei-
genvalues occur in pairs of complex conjugates, the
right-hand side of (1.2) can be chosen to be real.

Obviously the stability of the output beam depends on
the sign of ReA,;. If Rel,; is positive for a given / the am-
plitude of the transmitted electric field deviates from the
stationary amplitude after a time of the order of
[ReA;| " 1. A contribution of the form

Eexplikz —i(w—1ImA;)t] (1.3)

develops, with |E;| comparable to E;. If ImA; equals
zero this contribution is generated by the cavity mode
which is in resonance with the laser frequency . In the
case that ImA,; is of the order of the free spectral range
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ac /L, the cavity mode nearest to the resonant mode is
responsible for the instability. The output signal can then
display beats with frequency ImA;, as a consequence of
the interference of the side-mode contribution with the
resonant light wave.

In Sec. II we derive a differential equation with bound-
ary conditions from which the eigenvalue A that governs
amplitude instabilities can be computed numerically.!®
Predictions on instabilities are then made in Sec. III.
Particular attention is paid to the question whether a part
of the steady-state curve with a positive slope can become
unstable. Finally, we compare our predictions with ex-
perimental findings that have been reported lately. '3~

II. FORMULATION OF THE AMPLITUDE
STABILITY PROBLEM

A linear stability analysis of the Maxwell-Bloch equa-
tions for the case of a Fabry-Pérot cavity leads to the fol-
lowing set of differential equations' ¢

daf _ AL zficTAP;,, 2.1)
d§ c ’

dAb _ AL

e = o AbHCTARs, 2.2)

where Af and Ab denote deviations of the amplitudes of
the forward and the backward electric field. These devia-
tions depend on the scaled spatial variable {=z /L, with
L the length of the cavity. The right-hand sides of (2.1)
and (2.2) consist of a term proportional to the eigenvalue
A of the stability problem and a contribution originating
from the presence of a nonlinear medium. The influence
of the medium is determined by the product of the
cooperation parameter C=al /T, with a the medium
absorption coefficient, and the transmission coefficient of
the mirrors T=1—R.

The quantities APr; and APy are the amplitude devi-
ations of the slowly varying first harmonic of the forward
and the backward polarization fields, respectively. They
can be obtained in terms of the deviations Af and Ab by
solving the linearized Bloch equations for amplitude devi-
ations. These algebraic equations can be written down
formally as

A)-Ax(E)=F(5)Af +B()Ab . (2.3)
The infinite-dimensional vector Ax is made up of the am-
plitude deviations of all polarization envelopes
{Pgms>Pp m)m=1 and all inversion envelopes {D,, | —o.
The matrix A4 and the vectors F and B depend on the sta-
tionary fields and the eigenvalue A. It may be noted here
that for the case of unidirectional propagation the dimen-
sionality of the set (2.3) reduces to 2.

In order to find the deviations APg, and APp, from
(2.3) we perform as a first step a truncation of the har-
monic expansion for the polarization and the inversion

Pp (&, 8)=Py . (£,1)=D,,(£,1)=0, 2.4)

for m >N, N a positive integer. On eliminating subse-
quently all polarization envelopes the system (2.3) be-
comes a (N +1)-dimensional matrix equation for the de-
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viations {AD,,}¥ _,. Owing to the band structure of the
matrix the elements of its inverse can be found directly in
terms of Chebyshev polynomials; the argument of these
polynomials is a certain combination of the stationary
forward and backward electric fields f and b, the medium
damping coefficients ¥, and y|, and the eigenvalue A6
Once the appropriate elements of the inverse matrix have
been computed one can derive the desired expressions for
APg, and APp,. However, these expressions still depend
on the truncation parameter N: in order to take the
standing-wave effects fully into account they must be
considered in the limiting case N — o. This can be done
in a systematic way by employing the properties and the
representations of Chebyshev polynomials.?®

We remark that the program described above can be
applied to the dispersive case as well. We shall demon-
strate this in a future publication. For the purely absorp-
tive case, which is studied in this paper, one ends up with
the following two-dimensional set of linear differential
equations:

Af
Ab |

Hll H12
H21 H22

Af
Ab

a4

dg
The matrix elements H;; are given by the following ex-
pressions:!®

. (2.5)

_ A 1+Al_1 (1_4f2+4b2)2
Hn==" o | e, —ow
(1—4f%+4b})?
40, ' —DW,
J__l
Ty 2.6)
1+}‘1_1 l_(4f2_4b2)2
H,=CT 1675 [1 W0, DW
1—(4f2 —4b2)?
4, =W,
_11+41%4+4b%2—4W
+CTA;] 267 ,
2.7
and by the symmetry relations
H, (f,b)=—H(b,f),
(2.8)

sz(f,b)'—:_H“(b,f) .

Here the quantity A, stands for the product A A, with
A;=14+y A for i=1,||. Furthermore we have intro-
duced the scaled amplitudes f;=A,'’f and
b, =A, '”?b. The symbol W is defined as

AW =[1+8(f2+b2)+16(f2—b**]'"2. 2.9)

Likewise W, is given by a square-root containing f, and
b, instead of f and b. Hence W, is complex; the
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prescription
Wi

Re | ————
1+4f3 +4b;

(2.10)

determines its sign.

Both f and b depend on { in a way determined by the
stationary Maxwell-Bloch equations.?! To be specific,
they are given by the relation'®

(f2=b2+[(f?—b?)+ L —L1K]'*]exp(4f?—4b?)

=(K —1+4+1x)exp[2CT(1—-{)+Tx?] (2.11)
and the constraint
[RHR2=1—K+[(f?=b)’+1—1K]'*, (.12
where K is defined as
4K =—x¥1+R)+[T*x*+2xX(1+R)+1]'2, (2.13)

with x the amplitude of the stationary transmitted field.

The Fabry-Pérot arrangement imposes two boundary
conditions on the set of differential equations (2.5). These
conditions read

Af(0)=R!'2Ab(0), Af(1)=R2Ab(1). (2.14)

They can only be met for a particular value of the eigen-
value A, which is thus determined as a function of x, C,
T,vy,,and Y

Although the system (2.5) is linear, it cannot be solved
easily: the spatial dependence of the matrix H presents
us with an ordering problem. We avoid this difficulty by
defining Q =Af /Ab. From (2.5) we infer that Q satisfies
the differential equation

Qzle(Q2+1)+(H”—H22)Q . (2.15)

This nonlinear equation is of the Riccati type.?? It has to
be solved with the boundary conditions

2y+1)+

Q(0)=R'?, Q(1)=R™'2, (2.16)

The coefficients of the Riccati equation (2.15) depend
on the stationary fields f and b, which themselves are
functions of £. In order to write the Riccati equation in a
closed form we exploit our knowledge of the spatial
dependence of the stationary fields. Instead of { we intro-
duce as a new independent variable

X=2f*+2b2+2K—1, (2.17)
with the constant K as given by (2.13). From (2.9) and
(2.12) we directly obtain the identities needed to write the
right-hand side of (2.15) in terms of x

fZ_blz%(XZ_AZ)l/Z , (2.18)
4fb=A2x+ A*+ 1'%, (2.19)
w=1lx+1), (2.20)

W, =1QA, 'x+172+42,142(1—-4, D]V, (221

with 4 =(1—2K)!”%. To eliminate ¢ from the left-hand
side of (2.15) we use the differential equation

2__ 23172
Z—’é= —CT% , (2.22)
2

which follows from (2.11) and (2.18).

The price to be paid for the above change of variable
manifests itself in the awkwardness of the boundary con-
ditions. For y=1x%(1+R)— A% we have Q=R !/}
while for the value of y that is a solution of
[(XZ_ A 2)1/2+X]exp[2(x2_ A 2)1/2]

=(x2— AY)exp(2CT+Tx?) , (2.23)

one must impose the constraint Q =R /2. After elimina-
tion of the spatial variable { the coefficients of the Riccati
equation become rather lengthy. To be specific, the Ric-
cati equation (2.15) then gets the form

4 —442—1
1-2,

(2x+1)(4A, 2> —4r, 2 47— 1)
4(1—A, Hw,

+4ar;'4?

dQ _ Q% +1 -

—==— +

dx ~ 8AP— AN Ay r a2 | TR
N AT'Q+Ry+1)Q B (1+A7hHQ

(XZ_ AZ)X/Z

4422 — AHV22x+ A2 +1)

x+ A2+ — A +4x+ 4P — 4Y)

X |2x+1)(xy+ 44—

1-2,

_ x+DIx+ 42 +40, (= A +40 U+ A2 — 42)]

a1—a; 0w, ’ @29
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with the definition A=AL /(cCT). All results presented
in the next section have been obtained by performing a
numerical integration of this differential equation.

In the regime of vanishing ratios ¢ /(y,L),c /(y L) of
the medium response times and the cavity round-trip
time, usually referred to as the adiabatic case, the stabili-
ty problem becomes a lot simpler. In this limit the Ricca-
ti equation (2.24) read

d0 _ _ 240x+4°+1'”?
dX (2X+1)2(X2_A2)1/2
AQ2x+1)

(XZ_AZ)I/ZQ

. 4X3—x(12A2+3)-(4A“+6A2+1)Q

x+ A2+ DY+ 12— 472 =7
(2.25)
with boundary conditions as mentioned above. This

equation gets a simpler form if we transform Q according
to

(Q%*+1)

~ AQx+ A%+1)172
Q= 2 23\1/2 ZQ ’
— 4 —x— A
=497 x (2.26)
1 0—1

S= =
(*— 42 0+1
In this way we get rid of the square-roots and end up
with the following differential equation

202+ 1)Ax2— A2)3—§—= —SAx*— AH[2+R2x+1)]

—25(4x* +8y*+x—44?%)
+[8y+842+2+A(2x+1)] .
2.27)

A Riccati equation can completely be solved if a par-
ticular solution is available.”> To investigate whether
such a solution in terms of well-known functions exists
for (2.27) we transform the latter in a standard way to a
second-order linear differential equation. This equation
turns out to possess seven singularities of which one is ir-
regular and six are regular. The irregular singularity can-
not be transformed away unless A equals zero. It may
thus be doubted whether the solution of (2.27) can be
written in terms of well-known functions. This statement
holds a fortiori for the nonadiabatic Riccati equation.

The special case A=0 has already been investigated in
Ref. 16. There we showed that for A=0 the linearized
Maxwell-Bloch equations can be solved with the help of
the stationary solutions. Hence, it is not surprising that
(2.27), with A=0, has got a simple particular solution,
which is given by S=yx " !. If we calculate the complete
solution of the Riccati equation for this special case, we
indeed find agreement with results obtained from station-
ary theory.

III. SIDE-MODE INSTABILITIES

In a previous article!® we have demonstrated that the
resonant mode is unstable in the negative-slope part of
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the bistability curve. In this section we shall locate insta-
bilities which are generated by the side modes. In partic-
ular, we wish to determine whether a positive-slope por-
tion of the stationary transmission curve can become un-
stable.

The conclusions in this section are based on numerical
work, since it was observed above that for ImA+0 analyt-
ical treatment of the stability problem is beyond our
reach. The Riccati equation (2.24) has been integrated
with the help of a Merson routine?® and the result has
been matched to the condition mentioned below (2.23) by
means of a root-finding program. We largely confined
ourselves to the first side mode and to the case d =1,
with d standing for the ratio y,/y,. Furthermore, we
chose values of the cooperation parameter that are less
than 500.

The transmission coefficient T of the mirrors is a pa-
rameter of major importance for the occurrence of side-
mode instabilities in a Fabry-Pérot cavity. The first proof
of this statement is provided by Fig. 1. It shows the
nearest-side-mode instability regions in the (x,7,) plane
for a bistable system with C=140, d =1 and mirror
transmittivity 7 =0 and 7 =0.05, respectively. The
quantity x is the output amplitude, while 7, denotes the
ratio ¢ /(Ly,). The large island in Fig. 1 is the instability
domain for T =0. Its boundary curve has been computed
from the uniform-field theory, discussed in Ref. 16. For
T =0.05 two disconnected domains are present, one in-
side the uniform-field domain, which we shall name ac-
cordingly, and another in the neighborhood of the x axis.
Since 7,=0 corresponds to the adiabatic limit, we shall
refer to the latter instability region as the ‘‘adiabatic”
domain from now on. It thus appears that for increasing
transmission coefficient the uniform-field instability
domain shrinks, whereas a new instability domain starts
growing elsewhere in the (x,7,) plane. As a consequence
the system may become unstable even in the adiabatic
limit. Such adiabatic instabilities do not exist in the
uniform-field approximation, as has been proven analyti-
cally.!' It should be noted that the simultaneous pres-
ence of several disconnected instability domains as found
here is not a new feature; it has also been reported for

3.0+
T

20

1.0

O | 1 [l 1 | 1

0 2 4 6 x

FIG. 1. Instability domains for the first side mode at C =140
and d =1. The large island corresponds to T =0, the small is-
land and the domain at the x axis to 7=0.05.
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dispersive optical bistability in a ring cavity.?*

As a check on our numerical results we have also
determined the nearest-side-mode instability domain in
the (x,7,)-plane for T=0.01, and for the same values of
C and d as in Fig. 1. In this case the adiabatic region is
not yet present; the curve bounding the uniform-field re-
gion lies close to the curve for T'=0, as expected. Addi-
tional numerical insight in the convergence of the results
for small T is acquired by calculating the minimum x
value of the uniform-field domain. At 7' =0.05 this value
differs by 50% from that found for T'=0; at T =0.01 the
deviation is only 5.3%.

The difference between the predictions of uniform-field
theory and our numerical results at 77=0.05 is visualized
in Fig. 2, where the real and imaginary parts of the eigen-
value AL /c are plotted as a function of x for fixed values
of 7, C, and d =1. For T =0 the real part of AL /c in-
creases monotonously and never exceeds zero. However,
for T=0.05 a positive-valued maximum is attained, in
accordance with the presence of the adiabatic domain in
Fig. 1. The behavior of Im(AL /c) at T=0.05 is also
quite different from the uniform-field prediction, which is
Im(AL /c)=m. For x equal to zero AL /c is determined

O —
Re;\
-2 —
(a)
/\/l 1 | 1 | 1
0 1 2 X
6 .
lm;\
L L
‘n’ —
(b)
2 1 | ] ]
J\/ 4 X 8

FIG. 2. Real and imaginary parts of the eigenvalue AL /c as a
function of x, for T=0.05, 7,=0.3, C=140, and d =1. The
lower curve in the plot of Re(AL /c) is the uniform-field result
that is valid for 7 =0.
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TABLE 1. Threshold values of the cooperation parameter C
at which nearest-side-mode instabilities appear for d =1.

T Uniform-field domain Adiabatic domain
0 96.9 ©

0.05 132 112

0.1 274 57.7

0.2 > 500 31.0

by the formula
AL o1 —1 -+-[(07'l—|—1)2—-4CT7'1]1/2

c 27,

, (3.1

with 0 =JInR +7ni and n an integer. If we take n =1,
T=0.05, 7,=0.3, and C =140, we find
AL /¢ =—1.14+6.40i. This is in agreement with the nu-
merical results for AL /c at small x. The fact that 6.40 is
much higher than 7 can be explained by taking into con-
sideration that for n=0 Eq. (3.1) yields
Im(AL /c)=4.54; thus as x approaches zero the imagi-
nary part of the first-side-mode eigenvalue is pushed up-
wards by the resonant mode.

The findings shown in Fig. 1 give rise to the question
for which values of the cooperation parameter C the adia-
batic and the uniform-field instability domains come into
being. The answer is given by Table I. The threshold
values for C critically depend on the choice of the
transmission coefficient 7. If this quantity increases, the
threshold for the appearance of the uniform-field region
rises rapidly towards experimentally inaccessible high
values, whereas the threshold for the presence of the adi-
abatic region drops down to rather low values.

Table I has been computed for the case that the ratio d
of the medium damping coefficients equals unity. In the
uniform-field approximation we have found!® that the
choice of d influences the instability spectrum, albeit
rather weakly. In Table II evidence is given to the fact
that the same is true for a finite transmission coefficient.
The threshold values of C for the appearance of the adia-
batic domain decrease by some 20% if d grows from 0.5
towards 2.

If d is varied, not only the threshold values for C
change but the points in the (x,7,) plane where instabili-
ties start developing move as well. For d =0.5 the adia-
batic domain contracts towards a point on the x axis as C
approaches its threshold value. For higher values of d
the adiabatic domain shrinks towards a point above the x
axis. The pictures in Fig. 3 confirm these statements for
T =0.1; at other values of T the behavior of the adiabatic

TABLE II. Threshold values of the cooperation parameter C
at which the adiabatic domain for the nearest side mode ap-
pears.

T d =0.5 d=2
0.05 115 90.3
0.1 59.6 47.0
0.2 324 25.6
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FIG. 3. Adiabatic instability domains for 7=0.1. The first
picture shows the cases d =0.5, C=65, 75, 90 and the second
d=1, C=58, 60, 65. The outer curves correspond to the
highest C value.

domain is qualitatively the same. In studying Fig. 3 one
must bear in mind that for 7,=0 the stability problem
does not depend anymore on d.

As it is clear by now where the nearest-side-mode in-
stability domains are located in the (x,7,) plane for vari-
ous T, C, and d, we turn our attention to the issue of
positive-slope instabilities. These are instabilities in the
cooperative or the one-atom branch of the stationary
transmission curve, which are experimentally accessible.
For the Fabry-Pérot cavity positive-slope instabilities
have solely been predicted on the basis of simplified semi-
classical models.>*%° The full Maxwell-Bloch theory
predicts that positive-slope instabilities are not present in
an optically bistable system that is enclosed in a Fabry-
Pérot cavity with ideal mirrors.!>'® We can now check
whether this prediction of Maxwell-Bloch theory still
holds if the transmission coefficient 7 takes finite values.

In the adiabatic limit, which corresponds to 7, =0, one
may argue that positive-slope instabilities will be absent

6
T

0 20

FIG. 4. Nearest-side-mode instability regions for 77=0.1,
C=450,and d =1.
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FIG. 5. Stationary transmission curve for 7=0.1 and
C=450. The dashed part is unstable.

for a cavity with nonideal mirrors as well. In fact, if we
set ReA equal to zero in (2.27), let C tend to infinity and
assume that ImA remains finite as C approaches infinity,
the stability problem becomes the same for the resonant
mode and all side modes. This suggests that for finite C
the side modes cannot generate positive-slope instabili-
ties, a conclusion which is indeed supported by our nu-
merical results.

In order to determine whether positive-slope instabili-
ties are present for finite 7 in the nonadiabatic case we
have followed the adiabatic and the uniform-field
domains of Fig. 1 in parameter space and computed these
domains for various C <500, with T=0.1 and d =1.
The result at C =450 is shown in Fig. 4. The island is the
uniform-field domain. It is located well inside the strip
containing the points with x values that correspond to
the negative-slope part of the bistability curve. Hence,
the uniform-field domain does not give rise to positive-
slope instabilities. This fact is not surprising, since we
have seen above that such instabilities are absent for
T =0 and that the uniform-field domain shrinks with in-
creasing values of 7. In contrast, the adiabatic domain in
Fig. 4 extends from x =0.0649 towards x =50.9, while
the positive-slope branches of the bistability curve are
bounded by x=0.254 and x=19.5 for T=0.1 and
C=450. Hence, this domain causes instabilities in both
the cooperative and the one-atom branch. In Fig. 5 the
unstable part of the steady-state curve has been indicated
for the chosen values of T and C; the figure shows that a

20+
T B
1.0
) 1 1 1 1 1
0 4 8 12 x 16

FIG. 6. Instability domains associated to the first and the
second side mode, for T=0.2, C=150, and d =1. The larger
domain refers to the first side mode.












