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We report that for absorptive optical bistability in a Fabry-Pérot cavity fluctuations in the phases of the fields can generate side-
mode instabilities. These phase instabilities can occur in the one-atom branch of the bistability curve. Our results are based on
the linearized Maxwell-Bloch equations for a Fabry-Pérot cavity with non-ideal mirrors. They strongly depend on the value of the
mirror transmission coefficient and the ratio of the medium damping coefficients.

The Maxwell-Bloch theory of absorptive optical
bistability in a one-directional ring cavity predicts
that fluctuations in the phases of the fields cannot be
responsible for instabilities in the output signal [1,2].
Only for the two-photon case so-called phase insta-
bilities have been found [3]. In the present paper we
shall demonstrate that if the cavity is of the Fabry-
Pérot type the picture alters completely: then phase
instabilities exist in a large part of parameter space.

Our discussion is based on an earlier article {2] in
which we performed a linear stability analysis for ab-
sorptive optical bistability in a non-ideal Fabry-Pérot
cavity filled with a medium of homogeneously
broadened two-level particles. It was shown that the
linearized Maxwell-Bloch equations give rise to two
separate eigenvalue problems, one for the ampli-
tudes and another for the phases of the fields. Each
of these can be formulated as follows [2]

A
dZ\Ab)  \H, H,,/\Ab)’

Af(0)=R'2Ab(0), Af(1)=R-'2Ab(1). (2)

The quantities Af and Ab are deviations of the am-
plitudes or the phases of the forward and the back-
ward electric field. The matrix elements H; depend

the transverse direction have not been taken into ac-
count. The boundary conditions (2) on the devia-
tions Af and Ab are imposed by the cavity mirrors
with reflectivity R=1—T. Only for specific values of
A the conditions (2) can be satisfied. We have dem-
onstrated lately [2] that A=0 cannot be a solution
for the phase eigenvalue problem; hence, the cavity
mode which is in resonance with the laser signal does
not exhibit phase instabilities.

To prove that side modes do generate phase in-
stabilities we write the stability problem (1)-(2) in
a closed form by introducing the ration Q= Af/Ab
and choosing as a new independent variable
x=2f2+2b2+2K -1 instead of {. The constant K is
defined as

4K=—x?(1+R)+[Tx*+2x*(1+R)+1]'/2,
(3)

with x the amplitude of the stationary transmitted
field. The result of these steps reads

dQ/dx=H,(Q*+1)+H,Q, (4)
Q(x1)=R"'"?, Q(x)=R"2. (5

In the literature [4] the differential equation (4) is
called a Riccati equation. It must be integrated along

on the eigenvalue A and the stationary forward and the_ 1;‘;‘(’:{‘&) Pf;’z arf:)l], which is given by
backward electric fields, which we shall denote by f '~ 2

and b, respectively. These fields themselves are a [(x3—A42) "2+ x,] exp[2(x3—A42)'/?]

function of the longitudinal spatial variable {=z/L, 2 42 2

with L the length of the cavity. Spatial variations in =(x"=A%) exp(2CT+Tx7) . (6)
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Here A stands for the square root (3 —2K)!'/2and C
is the cooperation parameter. For the phase eigen-
value problem the quantities H, are determined by

(2]
C(1+ATH Q@+ HG—447' 47

M= G —A) P A1) ™
H2=ij'j~/f(2x+})
(x?—A%)17
(A+ATH R+ D) (x+4ADG ()
A4 (P —A) P2+ A%+ 1)
with
2x+1
G=—1+
14,
—1 2 14201 _3-1y11/2
L LA A DT A=A )T )

1-4;"

We used the notation A,=4 4, with A, =1+p;'4
fori= L, ||. Furthermore, y, and y, are the damping
coefficients of the medium. Their ratio y,/y, will be
called 4 in the following. The symbol £ was em-
ployed to denote the scaled eigenvalue AL/ (¢CT). In
general 4 will be complex so that the sign of the root
figuring in eq. (9) is to be specified yet. It must be
chosen according to the prescription

[2A5'x+ 1)’ +4A7' 42 (141"
Re 25 x+24, 4% +1 >0

(10)

In the so-called adiabatic limit, defined by 7,=¢/
(y.L)-0 for i= 1L, ||, the right-had side of eq. (7)
becomes zero. The differential equation (4) can be
solved analytically in that case; with the help of the
boundary conditions (5) it can then be proven that
the real part of the eigenvalue A satisfies

R'b(0)/£(0)
=exp{Re/f|:4f(0)2—4b(O)2—sz
+lo (M)]} (11
B\ap(0)y =17/ ]f" )
Inref. [2] we have given the implicit relations which

determine the stationary fields f{0) and 5(0) as a
function of the parameters 7, C and x. From these
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relations one can see immediately that eq. (11) im-
plies Re{<0. Thus phase instabilities only occur if
the response times 7, of the medium take finite val-
ues. This statement confirms earlier work [5], car-
ried out for the case of ideal mirrors.

In fig. | instability domains in the (x, 7, )-plane
are shown for phase instabilities of the first side-
mode. The boundaries, which correspond to ReA=0,
have been computed from a numerical integration of
the Riccati equation at d=1 and C=2300. The first
picture shows the case 7=0.05. For this value of the
transmission coefficient phase instabilities only oc-
cur in a small part of parameter space. This is not
surprising since it has been proven analytically [6]
that for vanishing 7" phase instabilities do not exist
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Fig. 1. Nearest-side-mode instability domains for d=1 and

C=300. The first picture (a) shows the case 7=0.05, the second
(b) T=0.1 and the third (c¢) 7=0.3.
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if d< 1. The other pictures of fig. 1 show the insta-
bility regions at 7=0.1 and T=0.3, respectively. One
can observe that as the transmission coefficient in-
creases the phase of the output field becomes un-
stable at higher values of the dimensionless medium
response time 7,. In the x-direction the instability
domain behaves differently as 7 increases: up to
T=0.1 the domain grows in that direction as well,
whereas for higher values of T it shrinks again.

All domains of fig. 1 give rise to phase instabilities
in a substantial part of the upper branch of the bi-
stability curve. For T equal to 0.05 the upper branch
starts at x=16.5 while at 7=0.1 and 0.3 the bound-
ary values for x are 15.9 and 13.1, respectively. The
response time for the positive-slope instabilities, as
given by the real part of the eigenvalue 4, is typically
of the order of 10? cavity round-trip times. At 7=0.3
it is twice as long as that for the case 7=0.1. The
frequency difference between the first side-mode and
the resonant mode is close to the free spectral range
nL/c throughout.

In the full (nonlinear) Maxweli-Bloch equations
the phases and the amplitudes of the fields are cou-
pled to each other. Therefore, not only amplitude in-
stabilities but also instabilities in the phase of the
output field can initiate a self-pulsing behaviour in
the transmitted intensity. In a recent experiment [7]
such behaviour has not been observed for absorptive
optical bistability in a Fabry-Pérot cavity. This ex-
perimental fact is in accordance with the present for-
malism: from the stability problem (4)-(5) it fol-
lows that the phase eigenvalue has a negative real part
at experimental values of the parameters, viz. 7=0.3,
C=300, 7, =10 and d=1. Furthermore, we have
shown in a recent article [8] that the same holds for
the amplitude eigenvalue. From these facts one may
infer that the output field is perfectly stable under
the experimental conditions.

The predictions of the present theory coincide with
those of uniform-field theory if the transmission
coefficient approaches zero. To verify this point we
have drawn in fig. 2 the nearest-side-mode instabil-
ity domains for T=0, 7=0.02 and T=0.1 at d=2
and C=300. The smallest domain correspond to
T=0; its bounding curve has been determined with
the help of uniform-field theory [6]. If the instabil-
ity domain for 7=0.001 is calculated on the basis of
the present theory, this curve is recovered with a rel-
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Fig. 2. Nearest-side-mode instability domains for d=2 and
C=300. The smallest domain corresponds to =0, the largest to
T=0.1, while the domain in between belongs to the case T=0.02.

Table |
Values of the cooperation parameter C at which nearest-side-mode
instabilities appear.

T d=0.5 d=1 d=2
0 [’} ) 231
0.05 486 247 121
0.1 260 138 80.4
0.2 162 95.0 62.5
0.3 172 105 73.4

ative error of less than one percent. Thus our nu-
merical work is in agreement with uniform-field the-
ory for T}0, as expected. However, already at 7=0.02
there are important deviations: the domain for
T=0.02 is considerably larger than its uniform-field
counterpart. As a result the length of the interval of
unstable x-values differs by 50 percent from the uni-
form-field prediction.

A comparison between figs. 1 and 2 brings out that
at 7=0.1 the instability domain grows in all direc-
tions if d is augmented from 1 to 2. In fact, the sta-
bility of the phase of the output field critically de-
pends on the value for the ratio d=y,/y,. This
statement is evidenced by table 1, where values for
the cooperation parameter are listed at which phase
nstabilities start developing. Besides the depen-
dence of our results on the parameter d the influence
of the transmission coefficient can be assessed as well
from table 1. The threshold value for C lowers sharply
if T increases from zero to 0.2; if 7 grows on further
it starts rising again.

167



Volume 73, number 2

In this report we have seen that for absorptive op-
tical bistability in a Fabry-Pérot cavity the Maxwell-
Bloch theory predicts the existence of side-mode
phase instabilities. These phase instabilities come into
being in the negative-slope part of the bistability
curve and attain the upper branch as the cooperation
parameter increases. A comparison with resuits on
amplitude instabilities [8] learns that for transmis-
sion coefficients less than 0.1 the positive-slope in-
stabilities for the phase extend towards higher x-val-
ues than those for the amplitude. For strongly non-
ideal mirrors, with 7 in the range 0.2 to 0.3, the re-
verse 1is true.
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