
Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://dare.uva.nl/document/68577

File ID 68577
Filename CHAPTER 6. COMPONENTS OF INDUCTIVE LEARNING

SOURCE (OR PART OF THE FOLLOWING SOURCE):
Type Dissertation
Title Exploring the limited effect of inductive discovery learning : computational

models and model-based analyses
Author D.H. van Rijn
Faculty Faculty of Social and Behavioural Sciences
Year 2003
Pages 170

FULL BIBLIOGRAPHIC DETAILS:
  http://dare.uva.nl/record/220416

Copyright
 
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or
copyright holder(s), other than for strictly personal, individual use.
 
 
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

http://dare.uva.nl/document/68577
http://dare.uva.nl/record/220416
http://dare.uva.nl


CHAPTERR 6. 

COMPONENTSS OF INDUCTIV E LEARNIN G 

Abstract t 

Inn this chapter, four different dimensions are presented along which 

inductivee learning tasks can be compared. Also, we will discuss to 

wThatt extend the conclusions from previous chapters of this thesis 

aree applicable to inductive learning in general. Based on this dis-

cussion,, three factors are presented that explain both successful and 

lesss successful results on inductive learning tasks. This chapter con-

cludess with suggestions for further research and with a discussion 

off  the implications of this research for the application of inductive 

learningg in the curriculum of modern education. 

Inn the introduction of this thesis, inductive learning was compared to scientific dis-

covery,, as is common practice (e.g., Klahr & Dunbar, 1988; Klahr, 2000; Kuhn et ah, 

1995;; Schunn & Anderson, 1999). The assumed correspondence between scientific 

discoveryy and inductive learning implies a central role for hypothesis testing in induc-

tivee learning (c.£, SDDS, Klahr & Dunbar, 1988). Given this centrality of hypothesis 

testing,, conducting experiments is not so much a task in itself, but a necessity7 for 

constructing,, testing and refining hypotheses. The studies presented in this thesis, 

however,, shed a different light on inductive learning. 

Inn contrast to the notion of a central hypothesis, inductive learning in the tasks pre-

sentedd in this thesis appears to be mainly focused on the construction of experiments 
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too "test the effect of that variable", without initially having a carefully constructed 

hypothesis.. When learners construct hypotheses, these are often based on a simple 

evaluationn of their prior knowledge. Instead of criticizing this behavior as imper-

fectt or (too) shallow, this concluding chapter, in line with the reasoning in previous 

chapters,, presents a rationale for this behavior and explains it in terms of bounded 

rationalityy (Simon, 1957). 

Too generalize the conclusions of this thesis to the domain of inductive learning, it is 

necessaryy that the conclusions are based on a set of inductive learning tasks instead of 

beingg specific to one particular task. The set should reflect a range of inductive learn-

ingg tasks that is as broad as possible. In the next section of this chapter, we present 

fourr different dimensions along which inductive learning tasks can be compared and 

arguee that the tasks discussed in this thesis cover a broad range of the spectrum of 

inductivee learning tasks. Then, we will discuss the tasks presented in this thesis focus-

ingg on the conclusions from previous chapters that are suitable for generalization to 

inductivee learning in general. Based on these conclusions, three factors are presented 

thatt explain both successful and less successful results on inductive learning tasks. 

Finally,, we will conclude with suggestions for further research and with a discussion 

off  the implications of this research for the application of inductive learning in the 

curriculumm of modern education. 

F O URR D I M E N S I O NS OF LEARNIN G TASKS 

Chapterss 2 to 5 discussed inductive learning in different domains using different 

tasks.. Dimensions of inductive learning tasks that determine the difficulty of the 

taskk include the extent to which learners need to perform experimentation, variable 

identificationn and conceptualization, and complexity. The tasks are compared on 

thesee dimensions to ground the assertion that they form an appropriate subset of 

thee complete spectrum of inductive learning tasks. 

Experimentationn The tasks differ in the availability of the data on which conclu-

sionss have to be based. In the balance scale task, the problems presented to the 

learnerss are selected by the experimenter, the learners cannot construct experi-

mentss by themselves. This constrains how easily a learner can test constructed 

hypotheses,, as the presented experiments might not be the experiments the 

learnerr needs to test a current hypothesis. On the other hand, this could also be 
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ann advantage, as a carefully constructed sequence of experiments might guide 

thee learner in the right direction for deriving new knowledge (c.f., Chapter 2). 

Inn both the Peter-task and the Optics tasks, learners have to construct exper-

iments.. Although this enables learners to actively test their hypotheses, it also 

burdenss them with the task to construct correct experiments and the decision 

aboutt when to stop creating experiments. 

Variablee Identification The variables that underly the simulation behavior in the 

taskss can be either relatively easy identified from the task or need to be ac-

tivelyy induced by the learner. With respect to the identification of the variables, 

itt is not only important that the learner identifies a particular representation 

inn a simulation as an important variable, but also identifies its structure, i.e., 

itss quantity space (see Chapter 5). In the Peter-task, both the variables and 

theirr quantity spaces are easily identified. Both the five variables and the quan-

tityy spaces of these variables are given by the interface. In the balance scale 

task,, only two aspects of the balance scale are modified over different repre-

sentations,, indicating that these are useful variables for the inductive learning 

process.. However, these variables are not identified as significant variables in 

eitherr the instruction or the task-setup. Therefore, part of the difficulty of this 

taskk is to identify that these variables play a role in determining the behavior of 

thee system. If these two variables are selected as interesting, the interface pre-

scribess their quantity-spaces (i.e., the maximum number of weights that can be 

placedd on a single peg, and the number of pegs for the maximum distance). As 

discussedd in Chapter 2, the identification of variables is an important aspect in 

thee explanation of children's behavior on the balance scale task. However, for 

thee third task, Optics, both aspects are not straightforwardly derived. Although 

alll  potential variables are visible in the interface, the learner has to select the 

correctt variables for his or her experiments and derivations and has to induce 

thee quantity space to derive correct conclusions. 

Conceptualizationn Although the identification of the relevant variables is an impor-

tant,, independent part of the inductive learning process, it is also a prerequisite 

forr a correct conceptualization of the task. Conceptualization refers to find-

ingg the relevant set of concepts to describe the behavior of the domain under 

study,, for example, the type of relations between the identified variables, but 
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alsoo more generally how the learners think about the task. 

Inn the Peter-task (and especially in the Peter-goes-shopping variant), the task-

formatt and the associated instruction direct the learner toward an adequate 

conceptualization.. Learners have no problem identifying that they have to dis-

coverr the effect of the different levels of the shown variables on a pre-specified 

outcome.. Even if the existence of an interaction effect is not known to the 

learners,, the task-setup or domain appears to guide the learner toward a correct 

conceptualizationn of interactions (i.e., a conditional-effect). 

However,, in both the balance scale task and in Optics, the learner has not only 

too identify which variables are important, but also has to identify the type of 

relationn that links different values of an independent variable to an outcome 

onn a dependent variable. In the balance scale task, the learner has to come 

upp with the idea to multiply the values for weights and distances (even if the 

oftenn earlier thought of addition of weights and distances also proves relatively 

successful).. In Optics, the learner has to induce that most of the effects are, 

qualitativelyy speaking, discontinuous. (That is, both the virtual focal point and 

thee heart of the lens are points in quantity spaces in which the behavior in the 

domainn shows a discontinuity.) 

Complexityy As in all domains, different inductive learning tasks have different levels 

off  complexity. However, it is difficult to judge what defines complexity of a task 

ass there are multiple, not necessary related, aspects that define it. Here we will 

nott focus on task aspects in itself, but on how these task aspects are perceived 

byy the learners. 

Inn all three tasks presented here, a learner might come up with a set of relations 

thatt appears to give a correct or at least an adequate description of the domain, 

whereass in fact this description is only valid for a particular subset of the do-

main.. Although a description that covers the complete domain is obviously the 

bestt description, the partial description might be correct for the subset of data 

thee learner has seen. Take, for example, the balance scale task. If a learner 

usess the Addition Rule and does not encounter any items for which the Addi-

tionn Rule renders the incorrect answrer (e.g., the item with two weights on peg 

twoo on the one side, and four weights on peg one on the other side), the used 

Rulee fits the data perfectly. Similar examples can be found in the two other 
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tasks,, for example, the main effects without interactions in the Peter-task and 

experimentingg without moving the lamp over the virtual focal point in Optics. 

Obviously,, one can find such a subset in almost all relatively complex tasks. 

However,, complex tasks can differ in the ease with which learners are able to 

inferr whether their current description fits the complete domain. An important 

conceptt in this respect is whether or not a task is ill-defined All three tasks pre-

sentedd in this thesis are ill-defined in that it is not clear what the outcomes of 

thee discovery process should be, nor which variables should be incorporated 

inn the discovery process. Therefore, learners need to use heuristics. For exam-

ple,, because of the ill-definedness of the variables, learners do not know what 

thee complete experiment-space is. During experimenting, they need to assess 

whetherr they have covered a suffient area of this unknown experiment-space 

too warrant generalizing their conclusions. But not only does this influence the 

experiment-space,, the ill-definedness also influences the hypothesis-space as 

learnerss do not know what type of relations need to be searched for. 

Becausee of the differences in ill-definedness per task, the tasks also differs with 

respectt to how salient the incompleteness (compared to a complete description) 

off  a certain set of observed regularities is. For example, although the Peter-task 

hass a more complex set of underlying regularities, these regularities have a sim-

plerr structure than the multiplication rule in the balance scale task. Related to 

thiss is the relative gain of constructing experiments; in some tasks it is easier to 

constructt experiments that refute the current set of regularities than in others. 

Forr example, it is relatively easy to reject hypotheses in BigTrak (Klahr & Dun-

bar,, 1988), as almost all incorrect hypotheses have a limited scope of accurate 

predictions.. On the other hand, if a learner does not know about the virtual 

focuss point, a lot of experiments can be constructed that support an incorrect 

hypothesis. . 

Ass the balance scale task is relatively well defined; it is known to the learners 

whatt to predict and the variables of interest are easily identified (by adult learn-

ers),, the main difficult} ' is finding the right method for combining the weights 

andd distances. The Peter-tasks are one step more complex, in that in these tasks 

thee learners have to detect which variables are actually influencing the outcome. 

Moreover,, the right description can only be found when a learner constructs 
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thee right set of experiments; there is nothing in the task that alerts the learner 

too this set. The most complex of the three tasks discussed is the the Optics 

task.. In this task, the variables are identified, but not the type of knowledge 

thatt learners are expected to gain nor the quantity spaces (see Chapter 5) of the 

variables.. And, similar to the Peter-task, learners can come up with a partial de-

scriptionn that accurately fits a large set of observed experiments while not being 

hintedd by the conducted experiments that the current description is inaccurate. 

Tablee 7.1: Categorization of the inductive learning tasks presented in this thesis. 

Experiments s 

Self-directed d 

Externallyy generated 

Variabless (QS) 

Self-induced d 

Visiblee in interface 

Conceptualization n 

Self-induced d 

Providedd by task setup 

Complexity y 

Balancee scale task 

/ / 

/ / 

/ / 

/ / 

low w 

Peterr task 

/ / 

/ / 

/ / 

intermediate e 

Optics s 

/ / 

/ / 

/ / 

high h 

Tablee 7.1 gives an overview of the position of the tasks on the four dimensions. 

THREEE TASKS 

Evenn though the three tasks discussed in this thesis cover the complete spectrum of 

thee above presented dimensions, the inductive learning behavior in these tasks shows 

aa relatively large overlap. 

B A L A N C EE SCALE T A SK 

Inn the chapter on the balance scale task, a computational model is presented that 

explainss how children's behavior on this task develops from using a simple guessing 

rulee to using the correct rule which involves calculating the torque. A central feature 

off  the explanation of development is prior knowledge about solving forced choice 

tasks.. If the model is presented with a forced choice task, it has access to knowledge 
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thatt states to search for a difference between the alternatives of the forced choice. 

Inn the context of this task: Search for differences between the right and left arm of 

thee balance scale. If the model finds a difference, this difference is used in solving 

thee problems and new knowledge is constructed that relates those problems to that 

difference.. Initially the model uses only one type of difference (i.e., the difference 

inn the number weights between the left and right side of the balance scale). This 

causess a relatively large number of erroneous predictions about the movement of 

thee balance scale. However, as searching for differences is resource intensive, the 

modell  does not immediately search for a new difference if an erroneous prediction 

iss made. Only if the number of erroneous predictions becomes too large compared 

too the effort that it takes to find a new type of difference, the model will invest in a 

searchh for these new differences. This architecturally implemented mechanism leads 

too a model that performs according to satisficing principles: Do not search for new 

explanationss as long as the current knowledge is not too often falsified. 

P E T E R - T A SK K 

Inn Chapter 3, the first chapter on the Peter-task, computational models are pre-

sentedd that focus on conducting experiments instead of focusing on constructing 

complexx hypotheses as is put forward by theories like SDDS (e.g., Klahr & Dunbar, 

1988).. Nevertheless, without the emphasis on hypothesis construction or testing, 

thesee models do capture the main behavioral patterns. This illustrates that instead 

off  a complex search for the correct type of hypothesis, inductive learning perfor-

mancee in a simpler task like the Peter-task is constrained by the learner's ability of 

constructingg correct experiments and deriving knowledge from these experiments. 

Butt what guides the construction of the experiments? In the Peter-task, the main 

determinantt is the computer-interface. Most learners proceed by starting with the 

top-mostt variable working their way downward. However, another determinant is 

priorr knowledge. Learners also construct experiments based on an evaluation of 

theirr prior knowledge. If they assume a particular effect to be associated with a level 

off  a variable, they will explicitly test this level. Moreover, if an effect is discovered 

thatt is not in line with their prior knowledge, this is often reason for a more thor-

oughh investigation of the effects underlying that particular level or variable. In the 

strongestt form, this leads to behavior that limits inductive learning to what is covered 

byy the experiments that are "dictated" by the interface, supplemented with experi-
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mentss constructed on the basis of prior knowledge. If the behavior satisfied these 

twoo constraints, learners often see no reason to continue learning although aware of 

thee not conducted experiments. This can be seen as an illustration of the satisficing 

principle:: Although there is mavbe more to be known about the task, if there are no 

moree loose ends, the inductive learning process is considered finished. 

Chapterr 4 takes this one step further and proposes a measure of consistency as an 

alternativee measure for the qualitv of the inductive learning process. Based on a com-

parisonn of two Peter-experiments, it was shown that the score on the new consistency 

measuree is more stable over domains than the previously used measures. These more 

stablee scores are a consequence of the focusing on the process of knowledge derivation in-

steadd of (implicitly) on the completeness of the experiment-space coverage. This way, 

thee varying amounts of prior knowledge for different domains does not influence the 

consistencyy score as readily as it does the completeness and comprehension scores. 

O P T I CS S 

Apartt from the methodological issues discussed in Chapter 5 on the Optics task, the 

conclusionss from Chapter 5 resemble those from Chapter 3 and 4. Learners, even 

inn the more complex Optics environment, are not focused on creating and testing 

hypotheses,, but are mainly focused on constructing experiments. An analysis of 

learners'' think aloud protocols showed that they do learn, however, that the learned 

knowledgee does not necessarily overlap with knowledge tested in the post-test. 

Thiss is mainly caused by learners not knowing what they are looking for, both in 

termss of the final theory they are supposed to find (e.g., how the dependent variable 

iss structured), nor in terms of which (independent) variables to use in explaining the 

behaviorr of the system. Again, learner's performance depend on their background 

knowledgee (e.g., levels and variables to test) and a satisficing principle as testing all 

thee combinations of levels and variables is pragmatically impossible. 

T A SKK G E N E R AL O B S E R V A T I O NS 

Regardlesss the differences in the tasks described above, a number of observations 

cann be made in each of these tasks, indicating that these observations are relatively 

task-independent: : 
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1.. Discovery skills used by learners in inductive learning tasks are often less complex 

thann envisioned. That is, instead of extensive hypothesis-driven behavior, the 

behaviorr shown by learners in the studies in this thesis can to a large extent be 

describedd by a more simple algorithm: (1) think about something that can have 

ann effect, (2) construct an experiment for the different situations in which that 

effectt occurs, and (3) induce the existence of that effect based on the outcomes 

off  these experiments. (See Chapter 3, and the rationale of the model presented 

inn Chapter 2.) 

2.. Which variables are tested, and what levels are chosen by the learner for that 

variabless depends on the task properties and prior knowledge, often taking the 

formm of assumptions about the effect of variables. Moreover, the outcomes of 

experimentss are interpreted by the learners in terms of this prior knowledge. If 

thee newly discovered effects are unexpected, the learner is likely to engage in 

furtherr examination of that variable. (See Chapter 2, 3 & 4.) 

3.. If no distinct stop criterion is given and the learner has no way to know whether 

thee discovered effects are the ones searched for, a satisfying principle deter-

miness when to stop. That is, when new experiments are unlikely to uncover 

neww results, the costs of conducting these experiments becomes higher than 

thee profit associated with knowing these new results. In those situations, it 

becomess a rational decision to stop experimenting. (See Chapter 4 & 5.) 

Basedd on the above, inductive learning in the tasks described in this thesis can be 

describedd as a process utilizing a relative straightforward experiment-construction 

strategy,, which shows a pronounced influence of prior knowledge, and constrained 

byy a stop-criterion based on bounded rationality. 

THREEE FACTORED EXPLANATION FOR INDUCTIV E 

LEARNINGG BEHAVIOR 

Thee above discussion focused on the overlap between the three tasks discussed in 

thiss thesis along four dimensions. These dimension can also be generalized into 

threee more general factors that are related to the learners' behavior. These factors 
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explainn learners' inductive learning behavior at a global level, and also explain why 

learners'' performance is often below the expected levels. 

Simplicityy Inductive learners appear to strive for an as simple as possible explana-

tionn for the observed behavior. Their behavior is probably best described by the 

principless of bounded rationality (Simon, 1957). Instead of performing an ex-

haustivee search of the task's experiment-space, learners weigh the possible gain 

off  conducting more experiments against the associated costs. Even in relative 

simplee and well-structured tasks, the amount of effort associated with conduct-

ingg all experiments prevents learners from conducting all experiments, making 

thee learners resort to satisficing. Presumably, the perceived possible increase 

inn knowledge does not countervail the costs of conducting more experiments. 

Anotherr explanation for this effect is related to the law of diminishing returns. 

Initiall yy each correctly constructed experiment enables a learner in the Peter-

taskk to derive a new main effect simply by comparing the previous experiment 

withh the just constructed experiment. However, after conducting all the exper-

imentss associated with the main effects, a learner has to compare three already 

conductedd experiments with a newly created experiment to derive a first order 

interaction.. Moreover, if a learner assumes that simpler effects occur more of-

tenn than more complex effects, searching for complex effects is more expensive 

becausee on average more experiments have to be constructed and compared 

perr discovered effect. Therefore, the more a learner discovered, the smaller the 

chancess are of discovering new information given the same investment. 

Anotherr aspect related to simplicity is that learners have a preference for simple 

hypotheses.. If a simple hypothesis appears to predict the behavior of the task 

relativelyy well, learners are likely to stick to that hypothesis. Although this can 

bee seen as an example of confirmation bias (Klayman & Ha, 1987) or as a pref-

erencee for parsimony, this can also be accounted for on the basis of bounded 

rationality.. As complex hypotheses tend to be both more complex to construct 

andand to test, keeping an hypothesis as simple as possible decreases the chance to 

gett entangled in complex hypothesis testing. 

Guidingg knowledge Apart from the aim for simplicity, learners' behavior is also 

influencedd by the application of prior knowledge. The most straightforward 

examplee of this notion is the importance of the availability of the weight and 
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distancee concepts in the balance scale model presented in Chapter 2. A similar 

effectt is present in models of Peter-task behavior, presented in Chapter 3. Be-

sidess testing the five variables presented in the interface, the learners only test 

forr effects that seem probable or plausible on the basis of their prior knowledge 

aboutt the domain. Given the overall complexity of the Optics task it is harder 

too pinpoint the exact contribution of prior knowledge. However, even in the 

relativee short protocols presented in Chapter 5, both positive and negative ef-

fectss of prior knowledge are clearly visible. 

Thus,, in all of these tasks, learners' behavior is actively guided by their 

knowledgee about a domain. Not only in terms of their procedural knowledge 

thatt describes how to conduct correct experiments, but also in terms of declar-

ativee knowledge associated with the domain of the task. 

Ann example of this is the difference in performance in the two tasks presented 

inn Chapter 3. In the Peter-bikes-to-school task, learners are not told about the 

possibilityy of interactions between variables. Only two of the fifteen learners 

correctlyy discover and report the interaction during the post-test. In the Peter-

goes-shoppingg task, the instruction contains information about the existence 

off  an interaction, without making explicit how this interaction should be tested. 

Fivee of the fifteen learners in this task correctly report the interaction. More-

over,, when these learners are given the Peter-bikes-to-school task directly after 

beingg tested in the Peter-goes-shopping task, thus after their concept of interac-

tionn has been "primed", 9 out of 15 discover the interaction in this task whereas 

withoutt being primed only 2 learners discover the interaction (Schoutsen, 1999). 

Moree formally, given the aim for simplicity, the knowledge a learner has about 

thee task is used in a process that adheres to the satisficing principle and limits 

thee effective hypothesis and experiment search space to the regions of the total 

spacee in which the learner expects an effect (cf. the learner search space, Van 

Joolingenn & De Jong, 1997). 

Salientt Discrepancies The "guiding knowledge" not only has a direct effect on the 

inductivee learning task in that it determines which effects are researched, but 

alsoo plays a role in the evaluation of discovered effects. In both the Peter-tasks 

andd in Optics, two types of reactions have been observed after encountering 

aa discrepancy between prior knowledge or hypotheses and data. In most of 
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thee situations, learners just acknowledged the newfound effect, and revised 

theirr earlier beliefs. However, in some situations, learners wTere struck by the 

discrepancyy and engaged in further research, trying to figure out what caused 

thiss discrepancy. This elaboration caused by the salient discrepancy often led 

too improved knowledge about the domain (e.g., in the Peter-task, discovering 

thee interaction or in the Optics-task discovering the effect of the virtual focus 

point).. This way, prior knowledge about possible effects does not only guide 

inductivee learning by guiding the focus on what is tested, but the saliency of the 

discrepancyy also determines whether the learner discovers less shallow effects 

inn the domain under study. 

Notee that the notion of saliencv also plays an important role in the simulations 

inn Chapter 2. By means of increasing the saliency of a yet unused feature, the 

learnerr becomes aware of this feature and incorporates it into the discovery 

process.. Although saliency plays a somewhat different role in this task com-

paredd to the Peter and Optics tasks, in all three tasks the saliencv of features or 

conceptss is an important predictor of whether or not that feature or concept is 

includedd in the final knowledge of the task. 

CONCLUSIONS S 

Thee analyses presented in this thesis show that the claimed generality of the SDDS 

theoryy (Klahr & Dunbar, 1988) is probably overstated (see for a similar argument 

Johnsonn & Krems, 2001). In simple inductive learning tasks, as often encountered in 

normall  life, hypothesis construction does not play the all-important role as sketched 

inn the SDDS theory. Instead, learners seem to "simply" test for the effect of variables. 

Thiss tendency toward simplicity also plays a more general role in inductive learning. 

Learnerss tend to keep their representations of the task as simple as possible. The 

levell  of this simplicity is determined by what is deemed necessary to test by the 

interfacee combined with guiding knowledge that states which variables and what type of 

relationss are tested. If during the initiated tests salient discrepancies are found between 

thee experimental outcomes and the assumed effect, elaborate on the found results. 

Becausee of this, these discrepancies can guide the learner toward a more complex 

sett of hypothesis than initially constructed on the basis of the simplicity and guiding 

knowledgee factors. 
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I M P L I C A T I O N S S 

Ass was shown in all three tasks, learners have a difficult time discovering complex 

relationss if thev do not have guiding knowledge. That is, without explicit help, learn-

erss do not discover the multiplication rule in the balance scale task, seldom discover 

thee interactions in the Peter-task, and do not easily discover the important landmarks 

inn the Optics task. This clearly illustrates that the emphasis on "self-discovery" in 

modernn curricula of secondary schools can only lead to satisfying results if the stu-

dentss are actively guided in their discovery process and if the tasks and domains to 

whichh discovery learning is applied are carefully chosen. First, students need to have 

relevantt prior knowledge, so that they know what to look for. Second, they have to 

bee aware that it is not necessary to cover the complete experiment-space. However, 

theyy also have be aware that this only holds if they select their experiments from all 

partss of the experiment space (e.g., using heuristics like "test the extreme values" or 

"whenn you think that you're ready, do some more random experiments to see if your 

predictionss hold"). And third, given the important role of discrepancies in discov-

eringg the more complex relations in all three tasks, students need to be aware of the 

importancee of discrepancies between their own hypotheses and assumptions and the 

discoveredd effects. Only if these three conditions are met, discovery learning might 

bee a useful addition to more traditional educational methods. 




