
Excess Covariance and Dynamic Instability in
a Multi-Asset Model∗

Mikhail Anufriev†, Giulio Bottazzi‡, Matteo Marsili§ and Paolo Pin¶

December 15, 2011

Abstract

The presence of excess covariance in financial price returns is an
accepted empirical fact: the price dynamics of financial assets tend to
be more correlated than their fundamentals would justify. We propose
an intertemporal equilibrium multi–assets model of financial markets
with an explicit and endogenous price dynamics. The market is driven
by an exogenous stochastic process of dividend yields paid by the as-
sets that we identify as market fundamentals. The model is rather
flexible and allows for the coexistence of different trading strategies.
The evolution of assets price and traders’ wealth is described by a
high-dimensional stochastic dynamical system. We identify the equi-
libria of the model consistent with a baseline assumption of procedural
rationality. We show that these equilibria are characterized by excess
covariance in prices with respect to the dividend process. Moreover,
we show that in equilibrium there is a positive expected marginal profit
in choosing more risky portfolios. As a consequence, the evolution-
ary pressure generates a trend towards more remunerative strategies,
which, in turn, increase the variance of prices and the dynamic insta-
bility of the system.
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1 Introduction

A huge econometric literature, started in the first part of the ’80, suggests
that price returns in financial markets are characterized by volatility levels
too high to be explained by corresponding movements in the fundamental
value of assets or by macroeconomic variability in terms of aggregate con-
sumption or money supply (LeRoy, 2008). The high “unexplained” volatility
of prices of financial securities has been taken by many as suggestive of a in-
trinsic instability in the functioning of speculative markets. Along similar
lines, several recent studies investigate whether the observed high degree of
covariance in price returns can be explained by a similar degree of correla-
tion among the economic values of the traded assets (Bouchaud and Potters,
2003). As discussed in Marsili et al. (2011), a remarkable finding is that
this covariance exhibits different behaviors at different timescales. In prac-
tice, however, the phenomenon of excess covariance is difficult to measure,
because of the vagueness of what can be identified as fundamentals in the
real world: what is the original covariance above which we find an additional
excess covariance? There are attempts in the literature to identify proxies
of these fundamentals. Shiller (1989), Froot and Dabora (1999) and Brealey
et al. (2010), each for a different historical period, have shown that the same
asset traded in different markets tend to behave differently, following in each
location the trend of the whole market. The appropriate way of disentangling
this empirical fact from arbitrage opportunities and from differences due to
the spread of information is still an open question. Kallberg and Pasquar-
iello (2008) propose a purely empirical approach. They analyze the assets’
prices of 82 firms, from different sectors, traded on the NYSE: filtering the
1976–2001 data from aggregate shocks they obtain idiosyncratic data that,
they show, are much less correlated than the global financial ones. Regard-
less of any possible objection that could be made towards the choice of the
fundamentals, all these papers confirm the evidence of an excess of covariance
in the financial markets, compared to what is normally observed in the real
economy.

Several models have been proposed to explain the appearance of excess
covariance. Most of them focus on the behavior of agents: traders tend to
be correlated in their activity and consequently induce an analogous corre-
lation in assets’ prices. Kyle and Xiong (2001) propose a model in which
the different wealth effects of traders induce some homogeneity in portfolio
choices. Kodres and Pritsker (2002) assume that the correlation is instead
due to the re–balancing activity of risk averse agents. Yuan (2005) assumes
it is the effect of financial constraints, while Veldkamp (2006) imagines that
information is costly and introduces a herding behavior. Finally, Marsili
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and Raffaelli (2006) describe a stochastic behavioral model in which a single
type of agents adjusts dynamically a single portfolio with a mean–variance
strategy.

In this paper we show that it is possible to obtain the same result in a very
general setting as a direct effect of trading, independently on any collinearity
in the strategies of different traders. We do it by formalizing a stylized model
of financial markets with a multiplicity of coexisting trading strategies, and
a multiplicity of traded assets. We assume an exogenous underlying real
economy, that we simply identify with a stream of random dividends payed
by every asset. The dividend process is governed by a multivariate stationary
distribution which is described by a constant variance-covariance matrix.
This matrix represents the covariance structure of the fundamental value of
the traded assets. The model assumes a Walrasian endogenous asset pricing
for all risky assets through market clearing and an inelastic supply of a riskless
security which act as the numeraire of the economy.

The model we propose fits in the rich literature of Heterogeneous Agents
Model (HAM) (see Hommes (2006) for a fairly recent survey) but is much
less restrictive in terms of agents trading behavior and does not constraint
the analysis to a subset of boundedly rational trading strategies. There are
only a few attempts that deal with multiple-assets framework within the
HAM literature (see for instance Westerhoff (2004), Chiarella et al. (2005)
and Chiarella et al. (2010)) but none of them, to the best of our knowledge,
analyze the emergence of excess covariance.

The dynamics of our model is described by a high-dimensional stochastic
dynamical system. In the HAM literature these systems are typically ana-
lyzed by “switching the noise off”, i.e., by replacing the driving stochastic
process with its expected values and considering the corresponding deter-
ministic skeleton (see for instance the analysis in Anufriev et al. (2006) and
Anufriev and Bottazzi (2010)). The argument supporting the use of the de-
terministic skeleton for the analysis of the stochastic dynamics runs typically
as follows. If the deterministic skeleton converges to an asymptotically sta-
ble fixed point, the stochastic processes are also “close” to the corresponding
fixed values, provided that the noise is reasonably small (e.g., when the divi-
dend yields are i.i.d. and their support belong to the basins of attraction of
the fixed point). On the other hand, if the deterministic skeleton exhibits a
bifurcation in which the fixed point loses its stability, the associated random
system is analogously perturbed away from the fixed point. In a model with
multiple assets, however, the previous deterministic skeleton approach has
the important drawback of not allowing for the analysis of higher moments
of the fluctuation around equilibria. Indeed the correlations between the
price returns of different assets is always zero in the deterministic approxi-
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mation. Clearly, an alternative approach is needed. One possible solution
is to directly characterize the stochastic or deterministic fixed points of the
complete random dynamical system and study their stability using stochastic
version of the Hartman-Grobman theorem. This is the approach followed by
the evolutionary finance literature, recently surveyed in Blume and Easley
(2009) and Evstigneev et al. (2009). These methods becomes however very
complicated if one wants to adopt more realistic dividend processes and aban-
don the assumption of a finite number of states of the world. Indeed we are
not aware of any study of markets with long-lived multiple assets, continuous
support of the dividend structure, and investment strategies with a feedback
from the past returns. Bottazzi and Dindo (2010) partially fills the gap intro-
ducing direct price feedback in agents’ strategy, but only discuss the case of
short-lived assets. In this paper we try to follow and intermediate approach
between the full-fledged analysis of the stochastic system, which is unfeasible,
and the study of the deterministic skeleton, which is too crude. We exploit
the notion of Procedurally Consistent Equilibria (PCE) already introduced in
Anufriev et al. (2006) Anufriev and Bottazzi (2010) and Anufriev and Dindo
(2010) for single-asset markets. In PCE the unique requirement is that in
equilibrium the investment shares of agents are constant. The model is then
closed by the rationality assumption that realized prices are consistent with
the assumption on which the investment shares were chosen.

The structure of the paper is as follows. In Section 2 we present the model,
introducing the exogenous dividend process, the market clearing mechanism
and discussing the range of admissible strategies. We look at price dynamics
and growth wealth in the more general setting, without specializing to any
particular behavioral rule. In Section 3 we study the PCE of the model
and we derive a system describing the co-evolution of the agent’s wealth
and the assets’ returns. We show that the returns’ correlation matrix can
be decomposed in two terms: the first is the correlation matrix of dividend
process, while the second accounts for the excess correlation. This excess
correlation is endogenously created and depends, in general, on the agents’
investment strategies. Analogously, we show that there exists endogenous
excess return for different assets, which implies that the equity premium
can simply be the result of endogenous investment process. In Section 3.3 we
study the evolutionary stability of PCE equilibria with respect to an invasion
by a different strategy. We show that, under the most general conditions,
in this model the evolutionary pressure goes in the direction of increasing
the dynamic instability of the system. In Section 4 we investigate more in
depth the aggregate market dynamics generated by the adoption of a specific
investment rule, based on mean-variance expected utility and exponentially
weighted moving average estimators. Section 5 concludes.
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2 The model

Consider a market populated by N traders where the shares of I long-lived
financial assets paying risky dividends are traded. Moreover a riskless secu-
rity exists paying a constant and exogenous interest rate rf > 0 per period.
Traders have an opportunity to lend the wealth not invested in the risky as-
sets at that rate, or borrowing at the same rate if they want to invest more in
the assets. The riskless bond serves as the numéraire of the economy (prices
are fixed with respect to it) and is provided in total inelastic supply. For
every risky asset the amount of shares is fixed.

Time is discrete. The economy is evolving through a sequence of “tem-
porary equilibria” (Grandmont, 1985), where prices of the risky assets are
fixed through Walrasian mechanism of market clearing equating demand and
supply. In the rest of this section we present all the features of the model
and derive general results for its solvability. The assumptions about traders’
demand at each time step are presented first. Then in Section 2.2 the price
and wealth dynamics are derived. Section 2.3 completes our formalization
of the traders’ behavior by showing how the individual demands are chang-
ing in time. In Section 2.4 the model is summarized as a high-dimensional
stochastic dynamical system. Finally, in Section 2.5 we introduce a simple
example which will be used for illustrative purposes throughout Section 3.

2.1 Traders’ demand

At each time step each trader decides the fraction of individual wealth to
be invested in each risky asset and in the riskless bond. The fraction of
wealth invested by agent n at time t in the risky asset i is denoted by xi

t,n.

The residual fraction x0
t,n = 1−

∑I
i=1 x

i
t,n is invested in the riskless security.

Throughout the paper the vector notation is used. The (column) vector of
individual wealth fractions invested in the risky assets is denoted by xt,n.

In a dynamical context the individual investment fractions are, in gen-
eral, changing as a new information becomes available. In this sense, we
think of agent’s behavior as about a mapping from available past data to the
present wealth fractions xt,n. We will postpone a formalization of this idea
to Section 2.3.

Notice that at time t the investment decision of agent n is completely
described by the vector of investment fractions, xt,n. It is assumed that this
vector is independent of the agents’ contemporary wealth and prices. The
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individual demand function for the risky asset i is given by

Zi
t,n

(
pit
)
=

xi
t,nwt,n

pit
, (2.1)

where pit denote the price of asset i at time t and wt,n denote the wealth
of agent n at time t. A demand function like the one in (2.1) with xi

t,n

independent of wt,n and pit implies a specific dependence of agent’s demand on
wealth and prices and is equivalent to assuming constant relative risk aversion
(CRRA) preferences over final wealth.1 It has been often used in models with
heterogeneous agents and in the evolutionary finance literature2. Moreover,
it mimics the financial decisions taken in real world, where portfolio are often
designed as fractions of wealth to be split across different category of assets.

Notice that the model is laid down without including consumption in
agent’s behavior. In this way we have a pure exchange economy, where
traders decision are plausibly driven by expectations about their future wealth.
While the inclusion of consumption in the model is rather straightforward,3

we believe that the simpler “pure-exchange” framework we present is more
suitable to study the issues we are interested here. Our next step is to de-
rive the prices and individual wealth at time t using intertemporal budget
constraints and market clearing conditions.

2.2 Pricing of risky assets

Every asset i pays non-negative random dividend dit at the beginning of
period t. The dividend yield of asset i, eit = dit/p

i
t−1, is defined as the ratio of

the dividend payed by the asset over the last price before the payment. With
usual vector notation, the column vectors of dividends, prices, and yields are
written as dt, pt and et respectively. Table 1 summarizes the notation used
in this paper.

1Alternatively, it characterizes an investor who maximizes mean-variance utility of
return, see Section 4.

2See the models in Levy et al. (2000), Chiarella and He (2001), Anufriev et al. (2006),
Evstigneev et al. (2009) and Subbotin and Chauveau (2011), among others. It is worth
to notice that many HAMs are built in an alternative framework, where demand does not
depend on current wealth, see, e.g., Brock and Hommes (1998)

3One can think about the trading activity on the market as a notionally infinite repeated
game, where at every time step there is a positive probability 1− σ that the market ends
and all agents consume their wealth, so enjoying the associated utility. In this case we
would introduce a homogeneous discount factor σ for the individual wealth of each agent,
as in Gale (1987), which after appropriate rescaling of prices would leave the dynamics of
the economy invariant.
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The inter–temporal relationship of the wealth of agent n reads

wt,n = wt−1,n

(
I∑

i=1

xi
t−1,n

pit−1

(dit + pit) + x0
t−1,n (1 + rf )

)
. (2.2)

This simple accounting relation shows two sources of change in individual
wealth given the investment decision at time t−1. First, investment in risky
assets returns random dividend yield and capital gain. Second, investment
in the riskless security pays a constant exogenous rate.

The price of asset i at time t is determined via an equilibrium relation
between the endogenous demand of traders and a fixed supply, normalized
to 1. Using (2.1), market-clearing condition

∑
n Z

i
t,n = 1 allows us to derive

the price as

pit =
N∑

n=1

wt,nx
i
t,n . (2.3)

The system of equations given by (2.2) and (2.3) provides only an implicit
definition of the assets prices pt in terms of the past and present portfolio
decisions xt,n. Indeed present prevailing prices appear both on the left and
right hand sides of these equations. Our next step is to derive price evolution
explicitly by solving the system (2.2) and (2.3). Theorem 2.1 shows that this
is possible under reasonable restriction on traders’ portfolio choices.

To present this result, some more notation is useful. Let wt =
∑

nwt,n

denote the total wealth at time t and ϕt,n = wt,n/wt the wealth share of
trader n. We also define the market portfolio as the wealth-weighted sum of
individual portfolios of the risky assets

xt =
N∑

n=1

xt,n ϕt,n . (2.4)

The components of this vector are denoted as xi
t. The market portfolio can

be considered as the portfolio of the “representative investor” describing the
overall impact on the market of the collective decision of all traders.4 In terms
of the market portfolio the pricing equation (2.3) can be written simply as
pt = wtxt. Introducing a similar definition for the market investment in the
riskless asset,

x0
t =

N∑
n=1

x0
t,n ϕt,n ,

4In particular, when the agents’ investment decisions are homogeneous, the market
portfolio coincides with the portfolio of each investor.
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the evolution of total wealth is given by

wt = wt−1x
0
t−1 (1 + rf ) +

I∑
i=1

(dit + pit) . (2.5)

Now we are ready to present the main result of this Section, the en-
dogenous price dynamics in a multi-asset market with arbitrary number of
agents.

Theorem 2.1. Consider the matrix

Ht = II −
N∑

n=1

wt−1,n xt,n ⊗ zt−1,n , (2.6)

where II is the identity matrix of size I, zt−1,n stands for the vector of size I
with components xi

t−1,n/p
i
t−1 and ⊗ denotes the tensor product.5

If the investment shares of every agent in every asset are strictly positive,
i.e., xi

t,n > 0 and xi
t−1,n > 0 for i ∈ {0, . . . , I}, then the matrix Ht is invertible

and the prevailing prices are given by

pt = H−1
t

N∑
n=1

wt−1,n xt,n

(
xt−1,n · et + x0

t−1,n(1 + rf )
)
. (2.7)

With these prices, the contemporary market portfolio is given by

xt =

(
wt−1x

0
t−1(1 + rf ) +

I∑
i=1

dit +
I∑

i=1

pit

)−1

pt

and

x0
t =

(
wt−1x

0
t−1(1 + rf ) +

I∑
i=1

dit +
I∑

i=1

pit

)−1(
wt−1x

0
t−1(1 + rf ) +

I∑
i=1

dit

)
.

(2.8)
The total wealth evolves as

wt

wt−1

=
(
xt−1 · et + x0

t−1(1 + rf )
) 1

x0
t

, (2.9)

and the evolution of the individual wealth fractions reads

ϕt,n

ϕt−1,n

= x0
t

xt−1,n · et + x0
t−1,n(1 + rf )

xt−1 · et + x0
t−1(1 + rf )

+
I∑

i=1

xi
t−1,n

xi
t

xi
t−1

. (2.10)

5Tensor product of two vectors a and b of size I is the I × I matrix defined as a⊗b =
abT .
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Proof. See Appendix A.

This Theorem shows that when the investment fractions are positive in
every asset, the economy will be maintained in a regime of positive total
wealth and strictly positive prices.6

Further, if the investment fractions described by vector xt,n do not de-
pend on contemporaneous prices and wealth, as we assume in this paper (see
Section 2.1 for a discussion), this Theorem provides an explicit law of evolu-
tion of the economy. From price dynamics (2.7), we can obtain the dynamics
of price returns and total returns of asset i, defined, respectively, as follows

rit =
pit
pit−1

− 1 , and Ri
t = rit + eit .

The interrelation of returns between different assets will be our main focus
in Sections 3 and 4.

The evolution of wealth shares in (2.10) shows that the individual wealth
share is driven by relative return with respect to the average return earned in
the market. This feature is common for many models in evolutionary game
theory. In fact, the structure of (2.10) is similar to a discrete replicator dy-
namics (Weibull, 1997), with wealth shares playing the role of sub-population
size. The relative fitness of a trader is made up of two terms. The first term
on the right hand side of (2.10) represents the relative “fundamental” earn-
ing of the trader with respect to market average, coming from the dividend
payments and riskless return. This term is proportional to the investment
in the riskless asset. The second term represents a “speculative” earning
and is proportional to the correlation of trader’s risky investment decisions
with the dynamics of market portfolio. This term is higher when the trader’s
risky portfolio is better aligned with the average re-balancing decisions of the
population of traders.

2.3 Intertemporal traders’ behavior

To close the model we need only to describe how the agents choose their
portfolio, i.e., their investment fractions xt,n and x0

t,n, and to specify a divi-
dend process. In a speculative framework, this decision is essentially based
on the traders’ forecasts of future returns. We do not assume that our agents

6If one allows for zero prices, that is, zero aggregate net demand for a given asset,
this constraint can be relaxed but at a cost of a more cumbersome notation and with
little advantage in terms of model flexibility. That is why we require, in the assumptions
of Theorem 2.1, that the fractions xi

t,n and xi
t−1,n are bounded away from zero. This

assumption is standard in this kind of models, see for instance Evstigneev et al. (2009).
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i ∈ {1, . . . , I} risky assets
dt I × 1 vector of dividends, dt = (d1t d2t . . . dIt )

T

pt I × 1 vector of prices, pt = (p1t p2t . . . pIt )
T

rt I×1 vector of ex–dividend returns, rt =
(

p1t
p1t−1

p2t
p2t−1

. . .
pIt

pIt−1

)T
et I × 1 vector of dividend yields, et = (e1t e2t . . . eIt )

T

ē I × 1 vector of means of the yields, ē = (e1 e2 . . . eI)T

Rt I × 1 vector of total returns, Rt = rt + et
D I × I variance-covariance matrix of the yield process et

n ∈ {1, . . . , N} agents
wt,n wealth of agent n
xi
t,n fraction of wealth of agent n invested in asset i

xt,n I×1 vector of investment fractions, xt,n = (x1
t,n x2

t,n . . . xI
t,n)

T

x0
t,n fraction of wealth of agent n invested in the riskless asset
wt total wealth at time t
ϕt,n agent n fraction of the total wealth
xt market portfolio xt = (x1

t x2
t . . . xI

t )
T

x0
t market investment in the riskless asset

Table 1: Notation.

are able to predict future dividend realizations, or are endowed with some a
priori knowledge of the stochastic process driving market dynamics. Con-
versely, we consider procedurally rational agents which dynamically build
their expectations from the observed past prices.

The behavior of a procedurally rational trader can be modeled as a map-
ping from past available information to the current investment fractions.7

Because of differences in preferences, beliefs or ways to process information,
different agents can have different investment functions. Formally, we have
the following

Assumption 1. The investment behavior (or, investment strategy) of agent
n is a vector-function fn, called investment function, that maps determinis-
tically the information set available prior to time t into portfolio choices

xt,n = fn ({pτ , eτ} : τ < t) . (2.11)

The components of investment function fn are denoted by f i
n.

7The investment function is a useful tool as previous general results can be easily applied
once its functional form is specified, see Anufriev and Bottazzi (2010) for discussion and
references.
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In compliance with CRRA framework, neither the present prices pt nor
wealth levels wt,n appear among the arguments of xt,n in (2.11). In this way
one can use the result of Theorem 2.1 to study the dynamics of returns. For
the same purpose we will forbid short positions, both in the risky assets and
in the riskless security, by adopting the following

Assumption 2. The investment function fn are such that, for any market
history {pτ , eτ}τ<t, it is

f i
n > 0 and

I∑
i=1

f i
n < 1 .

For a given stochastic dividend process, the market dynamics can now be
fully described. 8 The dividend process would represent a link between the
financial market modeled in the paper and the real economy, which is sup-
posed to act in the background of it. In this paper we consider a particularly
simple dividend structure, under which the yield process is exogenous and
stationary.

Assumption 3. Dividend yields are randomly drawn at each time steps
from a joint I-dimensional distribution with mean e = (e1 e2 . . . eI)T

and variance-covariance matrix D.

The lack of time correlation and the constant expected dividend-price
ratio will simplify the law of motion of the system. Similar assumption
was used in several previous one-asset models (e.g., Chiarella and He (2001)
and Anufriev et al. (2006)), and it is in line with empirical observation of
stationarity of time series of yield.

Assuming that dividend payments follow the past asset prices has two
major advantages. First, considered as a binding mechanism between the
fundamentals of economy and the financial market, this assumption is plau-
sible especially when the time scale is relatively large (of the order of several
months). Under the assumption of competitive final and capital markets and
constant return to scale in production techniques, the availability of internal
and external financial resources for the firm is proportional to its current

8Notice that past prices, which aggregate the previous investment decisions of all
traders, generally will affect the current investment fractions. We model interaction among
traders through prices, which link past traders decisions to current individual choices.
There are many models based on direct interactions of traders, see for instance Lux (1995)
or Follmer et al. (2005), among others. On the other hand, Michael Lewis in Liar’s Poker
reminds us of the ancient Chinese proverb: “Those who know don’t tell and those who
tell don’t know.”
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capitalization. Indeed, when a firm ask a loan from a bank to expand its
physical capital, it is reasonable to assume that the loan is granted in pro-
portion to the financial capitalization of the borrower, and banks rely on
assets’ prices as a measure of solvency of the firm or, simply, as collateral.
At the same time, the cash flow generated by the activities inside the firm
are a fraction of its scale of operation, measured by the firm equity. This
would imply that the expected profit of firms at time t + 1 and their ex-
pected dividends are proportional to the capitalization of the firms at time t.
In this simple scenario, the expected dividend yields are constant in accor-
dance with Assumption 3. Second, by imposing a very strong link between
real and financial economic dynamics, we make our argument about their
possible divergence at equilibrium even stronger.

2.4 The law of motion of the economy

Under the above assumptions and given exogenous process for dividend yield
{et}, the evolution of the economy can be formally described as the following
dynamical system

xt,n = fn ({pτ , eτ}τ<t) , n ∈ {1, . . . , N}

pt = H−1
t

N∑
n=1

wt−1,nxt,n

(
xt−1,n · et + x0t−1,n(1 + rf )

)
x0t =

(
wt−1x

0
t−1(1 + rf ) + pt−1 · et +

I∑
i=1

pit

)−1 (
wt−1x

0
t−1(1 + rf ) + pt−1 · et

)
wt = wt−1

1

x0t

(
xt−1 · et + x0t−1(1 + rf )

)
ϕt,n = ϕt−1,n

(
x0t

xt−1,n · et + x0t−1,n(1 + rf )

xt−1 · et + x0t−1(1 + rf )
+
∑
i

xit−1,n

xit
xit−1

)
, n ∈ {1, . . . , N − 1}

(2.12)

The order of equations corresponds to the timing of our model. The first
N × I equations, one for each fraction xi

t,n of wealth invested by each agent
n in each asset i, fully represent the investment decisions of N agents. As
we model an economy without consumption, the residual fraction of wealth,
x0
t,n, is invested into the riskless security. Then the trading session takes

place, in which agent n demands xi
t,nwt,n/p

i
t of shares of asset i. Of course,

wt,n and pit enter the demand functions as parameters, whose actual values
should be determined during the trading session, as in a standard Walrasian
equilibrium framework. Theorem 2.1 guarantees that unique positive prices
exists. They are defined in the next I equations for pt with matrix Ht defined
in (2.6) depending on the contemporaneous investment decisions of agents,
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xt,n. When the prices are found, the next equation (which is (2.8) rewritten
in terms of dividend yields) provides the wealth-weighted investment x0

t into
the riskless asset. Finally, the last N equations express the present value of
total wealth and individual wealth shares as given in (2.9) and (2.10).

The market position of each agent at time t is given by demand (2.1)
evaluated at equilibrium prices. The trading volume of each asset depends
on how these demanded quantities vary in time. The number of shares of
asset i traded at time t is

Vi,t =
1

2

N∑
n=1

∣∣∣∣wt+1,nx
i
t+1,n

pit+1

−
wt,nx

i
t,n

pit

∣∣∣∣ , (2.13)

where the factor 1/2 reflects the double counting of shares in each transaction.
Because of the randomness of the dividend yield, in general the traders would
have to adjust their portfolios along the trajectories of (2.12), generating
positive volumes.

System (2.12) is a random dynamical system whose properties will be
investigated in Section 3. In order to facilitate a discussion and illustrate
different concepts, it will be useful to have a simple example, which we start
to develop now and to which we will return several times later.

2.5 Example with two risky assets

For an illustrative purposes we consider a simple economy with one agent
and two risky assets.9 In the single agent case the dynamical system (2.12)
simplifies. In fact, it is even simpler to derive the return dynamics directly
from (2.3) than to use Theorem 2.1. When N = 1 we have pit = wtx

i
t,

where components of market portfolio, xi
t, are simply the agent’s wealth

share invested into asset i and do not depend on wealth. Recall that the
price returns are defined as rit = pit/p

i
t−1 − 1. Then from (2.9) one obtains

rit =
xi
t

xi
t−1

wt

wt−1

− 1 =
xi
t

xi
t−1

x1
t−1e

1
t + x2

t−1e
2
t + x0

t−1(1 + rf )

x0
t

− 1 , i = 1, 2 .

(2.14)
Various agent’s behaviors can now be modeled by specifying an appropriate
investment function.

Consider an investor who uses the following rule of thumb. A fixed share
of wealth, 0 < x0 < 1, is invested in the riskless security, and the remaining

9In order to exclude a possibility of strategic behavior, one can think of a large but
homogeneous population. Because wealth evolution does not affect prices, it is sufficient
to assume homogeneity only with respect to the investment behavior, i.e., identical invest-
ment functions.
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wealth is divided between the two risky assets depending on their past return
differences. Specifically, let yt = Et−1[r

1
t − r2t ] denote the expectation about

the return differential between the two assets at time t formed at the end
of period t − 1, and let assume that these expectations are formed in an
adaptive10 way

yt = µ(r1t−1 − r2t−1) + (1− µ)yt−1 , (2.15)

with parameter µ ∈ [0, 1] describing the relative weight of past observation,
and impose the following investment behavior:

x1
t = a(1− x0) + yt

x2
t = (1− a)(1− x0)− yt ,

(2.16)

where a ∈ [0, 1] is an exogenous preference parameter showing a predisposed
division of wealth between the two risky assets in absence of the expected
return differential.11 Notice that (2.16) is nothing else than the investment
function.12 The stochastic system governing the dynamics becomes

r1t =
1

x0
a(1− x0) + yt
a(1− x0) + yt−1

(
(1− x0)(ae1t + (1− a)e2t ) + yt−1(e

1
t − e2t ) + x0(1 + rf )

)
− 1

r2t =
1

x0
(1− a)(1− x0)− yt
(1− a)(1− x0)− yt−1

(
(1− x0)(ae1t + (1− a)e2t ) + yt−1(e

1
t − e2t ) + x0(1 + rf )

)
− 1

yt = µ(r1t−1 − r2t−1) + (1− µ)yt−1 ,
(2.17)

where the first two equations are obtained by plugging the investment func-
tion (2.16) inside Eq. (2.14), whereas the last equation is simply (2.15). This
dynamics will be simulated and further studies in the next section.

3 Economic equilibria

The dynamics of multi-asset model is formally given by stochastic dynamical
system (2.12) driven by the exogenous process on yields, et. It is well-known

10Adaptive expectations are known in the economic literature at least from Irving Fisher
(see Fisher, 1930). Under adaptive expectations all past observations are averaged but the
weights are geometrically declining into the past.

11For instance if x0 = 0.2 and a = 0.6, this investor always keeps 20% of wealth on
the riskless account, then divide the remaining wealth in the proportion 6 : 4 between the
two risky assets, increasing (resp. decreasing) this proportion with expectation of higher
(resp. lower) return of the first risky asset with respect to the second risky asset.

12In order to comply with Assumption 2, we should impose upper and lower bounds
on given investment fractions, or, equivalently consider “cut-off” versions of yt. For small
ε > 0 the following should hold ε < x1

t < 1− x0 − ε, from where the bounds on yt can be
found. We simplify our notation in the text and do not provide bounds explicitly, but we
do use these bounds in the simulations.
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that analytical study of such systems is a challenging task. In particular,
several proposed bifurcations theories (Zeeman (1988), Arnold (1998)) have
many limitations, see a discussion in Diks and Wagener (2008). For this
reason, a popular approach in the literature of HAMs consists in analysis of
the deterministic skeleton of the system. To obtain the skeleton in our model,
one should replace the yield realizations by their expected values making the
dynamics deterministic. The fixed points of the system are characterized
then by constant returns of different assets and constant investment shares of
different agents. Even if this approach often delivers important insights about
the determinants of stability in the system, it has an important drawback.
Since the returns of the risky assets are constant in any fixed point of the
deterministic skeleton, the skeleton cannot capture possible time- and cross-
correlations in the returns.

This drawback is the main motivation to explore an alternative approach.
We focus on specific stochastic processes which are relatively easy to study
and which often approximate the dynamics of system (2.12) quite well. We
call these processes Procedurally Consistent Equilibria (PCE).

The idea leading to the PCE is simple. The high dimensional, non-linear
random dynamical system (2.12) can in general display complex dynamics,
along, e.g., some (noisy) chaotic or quasi-periodic attractor. Given a set of
N investment functions reflecting both the preferences and the forecasting
rules of agents, the circular causation behind these dynamics is clear. Agents
make portfolio decisions according to the investment functions. Given these
decisions, prevailing prices and returns are determined. Because of the up-
dating of returns, the investment functions will in general dictate to revise
the portfolios. This revision leads in turn to new market prices and returns.
If the dynamics ultimately settle on a cyclical, i.e. periodic, quasi-periodic
or chaotic attractor, the need of such revisions will never disappear. Since
one can safely assume that no traders are happy to be persistently wrong
in their predictions, the appearance of cycles in a trading model of such
kind should lead, in the long run, to the adoption, by the part of agents,
of new investment functions. This could be the result of a revision of indi-
vidual preferences or beliefs, which are somehow adapted to the perceived
dynamics of the market. In general, thus, cyclical attractors of (2.12) can
represent an equilibrium from the purely mathematical point of view, but
do not correspond to economic equilibria in the common sense. Conversely,
we consider the states of the system associated with economic equilibria are
those in which agents do not have incentives to change their preferences
or/and expectation rules, i.e., their investment functions. For this condi-
tions to be realized we require that: first, the realized dynamics should be
consistent with agents’ investment behavior and, second, given the dynam-

15



ics, traders should be satisfied with their market positions and the implied
realized wealth levels. These requirements lead to the notion of Procedural
Consistent Equilibria (PCE)

Definition 3.1. Procedurally Consistent Equilibria (PCE) are the trajecto-

ries of the system defined in (2.12) with fixed investment shares xi
t,n =

∗
x
i

n

and stationary wealth distribution ϕt,n =
∗
ϕn for all n, i and t.

Equilibria of this kind have been analyzed in Anufriev and Bottazzi (2010)
and Anufriev and Dindo (2010), but only within the single asset framework.13

In PCE the portfolio choices of every agent are constant. When the invest-
ment fractions are assumed a priori to be constant over time,14 the PCE
coincides with the dynamics of the original system. When the investment
fractions depend on past behavior of prices and dividends, PCE provide a
stochastic approximation to (2.12). This approximation is expected to be
good when this dynamics is stationary, i.e., when the expected behavior of
each variable is fixed.15

From (2.4) it follows that in the PCE the market portfolio is constant

over time. Let us denote the PCE market portfolio as
∗
x. This notation

should not be confused with
∗
xn, which is, of course, the vector of investment

fractions in the risky assets by agent n in PCE. It turns out, however, that,
in some sense these are the same quantities, as we will show below.

We define agent n with strictly positive wealth share at equilibrium,
∗
ϕn >

0, as surviving in the PCE. In this terminology, the market portfolio does
depend only on the investment fractions of surviving agents. The existence
of multiple survivors is not ruled out in the PCE. However, all survivors must
have the same investment portfolio. Indeed, from the last equation of (2.12)
setting ϕt,n = ϕt−1,n and assuming constant investment shares for each agent
xt−1,n = xn, with a little algebra one obtains that

xn · et
x0
n

=

∗
x · et

∗
x
0

for each surviving agent n. If the PCE investment shares of some survivors
would be different, one could find a realization of random shocks, et, such

13Bottazzi and Dindo (2010) extend the analysis of PCE to a multi-asset general equi-
librium framework quite different from the present model.

14This case of constant investment functions is often analyzed in the evolutionary finance
literature, see, e.g., Blume and Easley (1992).

15Considering an auto-correlation structure in the yields process would not change the
definition nor the nature of the PCE as long as the generating process remains stationary.
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that the quantities in the left-hand side of this equality are different. But this
contradicts to the fact that the right-hand side does not depend on agent.
Since only surviving agents affect the market portfolio and all these agents

must have the same investment shares in the PCE, we conclude that
∗
xn ≡ ∗

x
for every survivor. This equivalence does not mean that all survivors have
the same investment function, indeed the investment behavior of agents out
of equilibrium is not restricted,16 nor that their demand functions are the
same, as these investors may have different wealth levels.

Finally, notice that whereas under the actual dynamics of (2.12) the vol-
ume as given by (2.13) is in general strictly positive, it is always zero along
the PCE trajectories. Indeed, setting constant the values for investment and
wealth shares of different agents in (2.13), we obtain that at every period
and for every survivor, the demanded amount of assets is the same as the
initial endowment kept after the previous period.

Example with two risky assets (continued). Before proceeding further
it will be useful to illustrate the notion of PCE within the example introduced
in Section 2.5. Recall that in case of a single investor described by investment
function (2.16), the dynamics of the returns of two risky assets is given by
(2.17).

First of all, notice that the deterministic skeleton approach leads us to
study the fixed point of (2.17). It is easy to see that the returns in this fixed
point17 are given by

r1 = r2 =
1− x0

x0

(
aē1 + (1− a)ē2

)
+ rf . (3.1)

However, as argued above, an absence of fluctuations in the fixed point pre-
vents us from studying an impact of investment functions on correlation
structure.

Consider now the PCE. Requirement of constant investment shares im-
plies that yt = yt−1, see (2.16). Plugging this relationship to the dynamics
equations (2.17) we find that r1t = r2t for every t, and conclude that yt ≡ 0.

16Thus, the investment functions should not be functionally identical on their entire
domain of definition. If the investment functions are different, then their identity at equi-
librium implies a non-generic restriction on traders’ behavior. The situation is similar to
the requirement that several curves intersect in one specific point. Clearly any infinitesimal
perturbation of one curve breaks the requirement.

17A local stability of this unique fixed point will depend on the behavioral parameter
µ. A typical and intuitive result is that the smaller the value µ is, the larger the stability
region of parameter space is, see Anufriev et al. (2006) for instance.
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It implies that in the PCE the returns follow the process

r1t = r2t = rf +
1− x0

x0

(
ae1t + (1− a)e2t

)
. (3.2)

An important difference with (3.1) is that now the returns are random pro-
cesses, and, in particular, the correlations between the returns of different
assets can be computed.

Now let us contrast the PCE dynamics (3.2) with the actual dynamics
given by (2.17). Obviously, the PCE is a stochastic approximation of the
actual dynamics. The quality of this approximation depends on whether
assumptions underlying the PCE are satisfied, i.e., whether the PCE return
dynamics is consistent with the assumption of constant investment share.
In our example the investment shares are given by (2.16), where yt is time-
varying. Hence, the PCE would be a good approximation only if variation
of yt would be negligible along the PCE dynamics. Intuitively, it might be
the case when µ is sufficiently small, because then the effect of new returns
on the expectations disappears with time. To test this intuition we turn to
the simulations.

We compare the actual dynamics generated by model (2.17) and the PCE
dynamics of (3.2) in Fig. 1 for two values of µ, relatively low in the left panel
and relatively large in the right panel. The PCE, which is shown by line for
better visibility, depends only on the two exogenous yield processes e1t and
e2t and does not depend on µ. The realizations of the yield processes are the
same in these two pictures. These are drawn independently (also from each
other) from two normal distributions with means e1 = 0.01 and e2 = 0.02
and standard deviation σe = 0.01. The returns of the two assets are shown
by dots and squares. We can see that for both values of µ the dynamics
of PCE approximates the actual return dynamics quite nicely already after
50 periods. However, it takes much longer to reach the same goodness of
approximation when µ is relatively large. In fact, for larger values of µ
the dynamics of returns become non-stationary and then the PCE does not
approximate it at all. Finally, notice that the deterministic skeleton approach
would predict both returns to be constant in time and given by the right-hand
side of (3.1), which is 0.11 for the considered values of the parameters.

The rest of this section is devoted to the analysis of the equilibria defined
in Definition 3.1. We will characterize their locus in the high-dimensional
space of system variables and investigate some interesting emerging proper-
ties.
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Figure 1: Return dynamics and its approximation by the PCE dynamics in
the example of a single agent - two assets example. When µ = 0.1 (left
panel) the PCE approximates the return dynamics reasonably well already
after 20 periods. When µ = 0.15 (right panel) the PCE also approximates
the dynamics but after longer transitory period. Simulations performed with
rf = 0.05, x0 = 0.2, a = 0.6, e1 = 0.01, e2 = 0.02 and σe = 0.01.

3.1 Equilibria Market Surface

We are now back to the general case with N agents and I assets. The
notion of PCE from Definition 3.1 requires us to look at the trajectories of
(2.12) with constant investment and wealth shares. We start by deriving
the implications of this assumption concerning the structure of price returns.
Using (2.9) the asset price return rit = pit/p

i
t−1 − 1 reads

rit =
xi
t

xi
t−1 x

0
t

(
xt−1 · et + x0

t−1(1 + rf )
)
− 1 . (3.3)

Substituting for fixed investment shares one obtains the expression of price

return
∗
r
i
in PCE

∗
r
i
= rf +

∑
i

∗
x
i
eit

∗
x
0 = rf +

∗
x · et

∗
x
0 , (3.4)

where
∗
x is the market portfolio at the PCE.

First notice that at equilibrium all prices grow with the same growth rate.
This fact is not derived from some peculiar structure in agents’ preferences,
but is simply a direct consequence of Definition 3.1. The growth rate of
assets, however, is not constant but depends on the actual realization of
the dividend yield process. Because of Assumption 3 the market growth
rates follow a stationary process and are uncorrelated in time. Applying
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expectation operator to both sides of (3.4) one obtains

∗
rE = rf +

∗
x · ē
∗
x
0 , (3.5)

where the subscript E stands for “expected”. This last equation is an alge-

braic relation between the expected market return at equilibrium,
∗
rE, and the

equilibrium market portfolio,
∗
x. Notice however that the return is not really

a function of all the I coordinates of the market portfolio. Indeed, it only de-
pends on the projection of the market portfolio along the vector of expected

yield
∗
x · ē and on the total investment in riskless security

∗
x
0
= 1−

∑
i

∗
x
i
at

equilibrium. Let ē = ||ē|| be the norm of the vector of expected dividends

and
∗
x =

∑
i

∗
x
i
be the total fraction of wealth invested in the risky market.

Let us define

Cx =

∗
x · ē
ē

∗
x

,

as a coefficient proportional to the inner product of the equilibrium market
portfolio and the vector of expected dividends. Then (3.5) can be rewritten
as follows

∗
rE = rf + ē Cx

∗
x

1− ∗
x
. (3.6)

For exogenously given parameters rf and ē, the right-hand side of this equa-

tion defines a surface in coordinates Cx and
∗
x. This surface is shown in the

left panel of Fig. 2. Since two parameters are sufficient to identify the ex-
pected return in every possible PCE, we will call the locus of these points
the “equilibrium market surface”.

Equation (3.6) shows that the effect of aggregate investment decision on
the resulting market returns depends on two factors: how much is invested in

the risky market (as given by
∗
x) and to what extent the invested portfolio is

aligned with the endogenously given expected yields (as given by coefficient
Cx). Under Assumptions 1-3 the factor Cx is positive. If ēH and ēL denote
the highest and the lowest expected yields, respectively, it is immediate to
see that Cx ∈ (ēL/ē, ēH/ē). Notice that Cx is defined in such a way as to be
insensitive to a rescaling of the overall risky investment. The latter, on the
other hand, can have a dramatic effect of the return of the assets. Indeed

when
∗
x → 1 the price return diverges and the market displays extremely

high return rates. The behavior of the equilibrium return in the PCE,
∗
rE,

as a function of
∗
x is shown in the right panel of Fig. 2.
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Figure 2: Left panel: The equilibrium market surface as a function of x and Cx.

Right panel: The equilibrium market return
∗
r as a function of the aggregate total

investment in risky markets
∗
x for different values of the correlation–like coefficient

between expected dividends and shares of risky portfolio Cx.

Example with two risky assets (continued). We return to the example
with two risky assets introduced in Section 2.5. Above we have derived the
PCE for that example, which is a stochastic process for equilibrium returns
of the two assets given by (3.2). We observe that this process is a special case
of the general formula (3.4), for the specific investment behavior considered
in the example.

The expected return in the PCE,
∗
rE, coincides with the return in the

fixed point of the deterministic skeleton given by (3.1). The equilibrium
market surface gives this return as a function of two quantities, which for the
investment behavior in (2.16) are given by

∗
x = 1− x0 and Cx =

aē1 + (1− a)ē2

||ē||
.

The equilibrium market surface allows us to see how the expected return
in the PCE changes with parameters of the investment behavior and the
dividend yield process. For instance, the mean of the yield process and
behavioral parameter a are enough to fix one of the curves shown in the
right panel of Fig. 2. For this curve we can now immediately see the effect of
the wealth fraction invested to the riskless security for the expected return

in the PCE. In particular, when this fraction x0 → 0, i.e., when
∗
x → 1, the

equilibrium return diverges.
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3.2 Properties of PCE

Using Definition 3.1, in the previous section we identified a locus of feasible
equilibria and derived the implied relations between traders’ collective in-
vestment choices and price dynamics. This section present some interesting
properties of PCE’s. These are, so to speak, generic properties, which do not
require any further assumption about the actual form of the agents’ invest-
ment functions f . The aggregate effect of specific behavioral assumptions
will be explored in the next section.

We have specified the total return of asset i, defined as the sum of price
return and dividend yield, in equation (2.2). Using the algebraic relation in
(3.4) and the parametrization in (3.6) it is immediate to compute its expected
value at equilibrium

E[
∗
R

i

t] = rf + ē Cx

∗
x

1− ∗
x
+ ēi . (3.7)

As long as aggregate short positions are avoided (0 <
∗
x < 1), the total

return of any risky asset is always greater than the riskless interest rate rf .
Moreover, the “equity premium” is proportional to the amount of wealth
invested in the risky market. Consider now the variance-covariance matrix

C = E [(Rt − E[Rt])⊗ (Rt − E[Rt])] (3.8)

where Rt is the vector with components Ri
t and ⊗ the tensor product. Sub-

stituting the expression above, at equilibrium one has

∗
C = E

[( ∗
x · (et − ē)

∗
x
0 + e− ē

)
⊗

( ∗
x · (et − ē)

∗
x
0 + e− ē

)]
.

Recall from Assumption 3 that D denotes the variance-covariance matrix
of the dividend yields and let a generic element of this matrix be Dij. Using

Assumption 3, we have that a generic element
∗
Cij reduces to

∗
Cij =

1(
∗
x
0)2

(
I∑

k,l=1

∗
x
k ∗
x
l
Dkl

)
+

1
∗
x
0

(
I∑

k=1

∗
x
k
(Dki +Dkj)

)
+Dij ,

and in matrix notation

∗
C =

1

(1− ∗
x)2

∗
x
′
D

∗
x1⊗ 1+

1

1− ∗
x

(
D

∗
x⊗ 1+ 1⊗D

∗
x
)
+D , (3.9)
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where 1 is a vector of ones, so that (D
∗
x ⊗ 1)i,j =

∑
h Di,h

∗
x
h
. In (3.9)

the original variance–covariance matrix of yields, D, is augmented by two
new elements. These elements are the result of the traders’ activity when
re–balancing their portfolios, and reflect their preferences and expectations

through the representative portfolio
∗
x. The more the market is exposed

toward risky security, that is the nearer
∗
x is to 1, the larger the generated

extra terms.

Example with two risky assets (continued). Let us again illustrate the
previous result by means of the special example of investment behavior in-
troduced in Section 2.5. Let us assume that the dividend yield are generated
from the process with the var–covar matrix given by

D =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

For this general yield structure we can use (3.9) and write the excess covari-
ance as follows

∗
C −D =

(
1− x0

x0

)2 (
a 1− a

)
D

(
a

1− a

)
1⊗ 1+

+
1− x0

x0

(
D

(
a

1− a

)
⊗ 1+ 1⊗D

(
a

1− a

))
=

=

(
1− x0

x0

)2 (
a2σ2

1 + 2a(1− a)ρσ1σ2 + (1− a)2σ2
2

)(1 1
1 1

)
+

1− x0

x0

(
2aσ2

1 + 2(1− a)ρσ1σ2 aσ2
1 + ρσ1σ2 + (1− a)σ2

2

aσ2
1 + ρσ1σ2 + (1− a)σ2

2 2(1− a)σ2
2 + 2aρσ1σ2

)
.

In this example the excess variance-covariance becomes especially high when
the investment to the riskfree security, x0, is low.

We are now back to the general case. In order to understand better the
effect of the representative portfolio at equilibrium, consider the case in which
dividend yields are independent and equal, that is Di,j = σ2

i δi,j. Notice that
this situation can be always obtained through an orthogonal transformation
of the dividend distribution.18 The diagonal element in (3.9) becomes

Ci,i = σ2
i

(
| ∗x|2

(1− ∗
x)2

+ 2

∗
x
i

1− ∗
x
+ 1

)
(3.10)

18This transformation amounts to a change of basis and defining a new set of assets.
Since the var-covar matrix is symmetric and positive definite, the budget constraint im-
posed on the original portfolios is preserved when expressed in terms of the new assets.
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where the presence of excess variance is apparent. The fluctuation of return
at equilibrium is amplified and is larger (possibly much larger) than the
fluctuations associated to fundamentals. Consider now the off-diagonal term
with i 6= j

Ci,j = σiσj

(
| ∗x|2

(1− ∗
x)2

+

∗
x
i
+

∗
x
j

1− ∗
x

)
. (3.11)

This expression clearly shows another properties of PCE’s: even if the original
fundamental process where independent and uncorrelated, the price returns
at equilibrium display a strong auto–correlation, that becomes stronger the
larger the share of wealth invested in risky assets. The cross correlation,
introduced by the fluctuation of prices at equilibrium, is strong enough to
generate a “market mode” in the variance-covariance matrix. To see it,
consider the special case in which the dividends have all the same variance.
In this case the following applies

Theorem 3.1. If D = σ2 I then the matrix C has eigenvalues σ2, λ+, λ−,
where

λ± =
σ2

1− x
+

I σ2 | ∗x|2

2 (1− x)2

(
1±

√
1 + 4

1− x

I | ∗x|2

)
(3.12)

Proof. See Section B.

The eigenvalue λ+ is associated with the principal component of the ma-
trix and is proportional to I, the number of risky assets traded in the market.
Also in the case of a generic matrix of D, the structure 1⊗1 in the first term
of C in (3.9) is responsible for a large eigenvalue, proportional to I.

According to (3.7) and (3.9), a greater exposition to risky markets implies
increased capital gains but also increased volatility. To see how these things
combine, it is instructive to look at the average behavior of the aggregate
portfolio. Consider the excess return of market portfolio

ρt =
∑
i,t

xi
(
Ri

t − rf
)
. (3.13)

Its expected return at equilibrium becomes

E[
∗
ρ] = ē Cx

∗
x

1− ∗
x

and its variance can be immediately obtained from (3.9)

σρ =
∗
x
′
C

∗
x
′
=

1

(1− ∗
x)2

∗
x
′
D

∗
x ,
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so that, combining the two, the Sharpe ratio of the aggregate investment
finally reads

S =
E[

∗
ρ]

σρ

=
ēCx

∗
x√

∗
x
′
D

∗
x

=

∑
i

∗
xi√∑

i,j

∗
xi

∗
xjDi,j

. (3.14)

The expression of S is equivalent to the Sharpe ratio computed using exclu-
sively the component of portfolio return associated with dividend yields. In
other terms, changing the fraction of total wealth invested in the risky assets
does not modify the Sharpe ratio of aggregate portfolio at equilibrium. As
long as the way in which the wealth is distributed across the different assets
is constant, the increase in market expected return and variance neutralize
each other, leaving the value of S unvaried.

3.3 Evolutionary stability

Assume that the market lays in a PCE characterized by a constant aggregate

investment function
∗
x and price returns given by (3.4). As discussed above,

the aggregate investment function can describe a single strategy, possibly
adopted by a population of traders, or the convex combination of different
surviving strategies. In the latter case, however, these strategies present, at
equilibrium, analogous reactions to price fluctuations. Suppose that a new
type of investor, with a new strategy, enters the market with initially negligi-
ble wealth or that, equivalently, a small fraction of traders decide to deviate
from the original equilibrium strategy and invest according to a modified rule.

We want to asses the stability of the equilibrium strategy
∗
x under this exter-

nal “invasion”. Let z represents the investment function of the new agents
(or of the deviating sub-population). Since we are interested to study the
local dynamics around the PCE we can assume the new investment function
to be constant too. If the new strategy enters the market with an infinites-
imally small wealth share, does it progressively disappear or does it instead
gain a finite amount of wealth and, consequently, modify the dynamics of
the market? The answer is provided by the following

Theorem 3.2. The PCE associated with the investment function
∗
x cannot

be invaded by a strategy z provided that

∗
x · ē
∗
x
0 >

z · ē
z0

. (3.15)

Proof. See Section C.
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If the condition (3.15) is violated, the new strategy gains, on average,
a finite amount of wealth and, consequently, the long term dynamics and
equilibria of the system are perturbed away from the PCE. The previous
theorem establishes a dominance relation between strategies. Consider two
strategies x1 and x2. If

x1 · ē
x0
1

>
x2 · ē
x0
2

,

then the first strategy is resilient to the second, while the second can be ef-
fectively invaded by the first. If one considers an open economy in which new
strategies can develop and start to trade in the market, the previous condi-
tion generates an evolutionary pressure toward strategies x that maximize
the ratio x · ē/x0. Using the notation of Section 3.1, if x =

∑
i x

i, the fitness
measure of the constant strategy x is proportional to Cxx/(1− x). In Fig 3
fitness isolines are reported in the (Cx, x) plane. The introduction of new
strategies, irrespectively of the fact that they are developed toward a given
goal or tried at random, naturally drives the system toward higher fitness lev-
els. Notice, however, that the fitness of a constant strategy is proportional to

the expected price return
∗
rE in the associated PCE equilibrium, that is the

equilibrium in which the said strategy is the only survivor. One one hand,
this can be understood as an efficient behavior, because the market seems
to reward the strategy that produces higher returns, and, consequently, the
higher nominal increase in the global wealth. On the other hand, however,
the evolutionary pressure pushes the population of agents toward riskier be-
havior and the system toward the point x → 1 where a larger share of wealth
is invested in the risky portfolio. In this limit the system becomes unstable:
it moves toward PCE in which the prices’ fluctuations generated by the re-
alized dividends are progressively increased to infinity, as the multiplicative

factor 1/(1 − ∗
x), in equations (3.10) and (3.11) for the variance–covariance

matrix
∗
C, grows unbounded.

4 The case of mean-variance investor

The analysis performed in the previous section is related to the notion of
Procedurally Consistent Equilibria, and hence to the statics of a very general
class of models. There we studied equilibria where the strategies adopted by
agents result in the investment of constant fraction of individual wealth in
the different securities. This notion of equilibrium is valid for a wide class
of investment rules. However, to study the dynamics of the system we need
more specific assumptions about the strategies of agents. In this section
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Figure 3: Isolines of equivalent fitness in the (Cx, x) plane. The evolutionary
pressure pushes the market toward lighter colored areas.

we will focus on the case of a single representative agent who revise her
expectations with a learning process and chooses her portfolio consequently
with a simple mean-variance investment strategy. We will first analyze the
PCE of this economy, and then discuss its dynamic stability under a specific
learning framework.

4.1 PCE in the mean-variance case

Consider an agent adopting a myopic mean-variance investment strategy: if
ρt+1 = wt+1/wt − rf is the portfolio excess return between time t and t + 1,
the shares of wealth xt invested at time t are chosen so as to maximize the
utility

U(xt) = E[ρt+1]− γ V[ρt+1] ,

where γ is the risk aversion parameter and V[ρt+1] is the expected variance
of the portfolio. Here the dependence of the utility on xt is due to the fact
that ρt+1 depends on wt+1, which in turn depends on xt through the law
derived in equation (2.2). Under this strategy, assuming perfect knowledge
about the riskless interest rate rf , the agent computes at each time step the
total expected return and the variance covariance matrix

R̂i = E
t−1

[Ri
t] ,

Ĉt = E
t−1

[
(Rt − R̂t)⊗ (Rt − R̂t)

]
.

(4.1)
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The difference from equation (3.8) lies in the fact that now expectations are
updated at every time step. The notation Et−1 stands for an expectation
based on the information revealed until time t− 1 included. For the present
discussion it is not relevant to specify which estimator the agent uses to
compute the statistics above. In any case, by direct substitution of (2.2),
we obtain that the maximization of the mean-variance utility dictates her
investment function to be of the form

xt =
1

γ
Ĉ−1

t (R̂t − rf1) . (4.2)

If this strategy represents the aggregate behavior of the market, (4.2) implies
that at each time step the following relation

γ Ĉtxt = R̂t − rf 1 (4.3)

between expectations and prevailing prices should be satisfied. If the divi-
dend stochastic process is stationary and the estimators adopted to compute
the expected values of returns and their variance are consistent, one can as-
sume that after sufficient statistics, they converge to an equilibrium condition
so that the investment shares converge to constants, xt → x. We are in a
PCE. From (3.7) in Section 3 we know that in this case the right hand side
of equation (4.3) becomes

∗
x · ē
∗
x
0 1+ e

while the left hand side, by direct substitution of (3.9), reduces to

γ

∗
x
′
D

∗
x

(
∗
x
0
)2
1+ γ

D
∗
x

∗
x
0 .

Equating the product of the two previous expressions with
∗
x one gets

∗
x
′
D

∗
x =

∗
x
0

γ

∗
x · ē

which substituted back in the equation gives

∗
x =

∗
x
0

γ
D−1 ē .

The investment shares of the mean variance investor at equilibrium are pro-
portional to the variance-corrected expected dividend D−1 ē. In order to
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determine the investment share in the riskless asset, one can exploit the fact

that
∗
x
0
= 1− 1 · ∗

x, finally obtaining

∗
x =

1

γ + 1′D−1 ē
D−1 ē .

∗
x
0
=

γ

γ + 1′D−1 ē
.

(4.4)

The previous expressions provide the PCE version of the two-found separa-
tion theorem. They prove that in the case of a mean-variance investor, the
optimal investment is split between a market portfolio, proportional toD−1 ē,
and the risk-less security. The risk aversion parameter γ only affects the total
share of wealth invested in the risky portfolio, but not the composition of
the portfolio itself.19

In the case of mean variance investor, the expressions of price return and
variance covariance matrix, obtained by direct substitution of (4.4) in (3.4),
(3.5) and (3.9), read

∗
rE = rf +

1

γ
e′tD

−1 ē , (4.5)

∗
rE = rf +

1

γ
ē′D−1 ē (4.6)

and
∗
C =

1

γ2
ē′D−1 ē1⊗ 1+

1

γ

(
∗
x⊗ 1+ 1⊗ ∗

x
)
+D . (4.7)

4.2 Dynamic stability of mean-variance investor

In this Section we analyze the market dynamics generated by the presence
of a representative mean-variance investor. In particular, we are interested
to establish some results about the local stability of the equilibria derived in
the previous Section. Analogously to what done in Section 2.5 we assume
that the agent forecasts future price movements using EWMA estimators.
The investor updates her expectations about the returns of the risky assets
and the variance covariance matrix with a learning process governed by an
updating parameter µ ∈ (0, 1). In this way the predicted returns and their

19Since the original investigation by Harry Markowitz in the ’50, this kind of result has
been repeatedly obtained in several frameworks. For a recent extension to the case of
dynamically complete markets and perfect foresight see Schmedders (2007). Notice that
in our model this property is the consequence of specific assumptions about the trader
investment function and does not possess a general character.
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variance-covariance matrix is computed as a weighted average of past real-
izations. Specifically, we have

R̂t = µ

+∞∑
τ=0

(1− µ)τ (rt−1−τ + et−1−τ ) (4.8)

and20

Ĉt = µ
+∞∑
τ=0

(1− µ)τ (Rt−1−τ − R̂t−1−τ )⊗ (Rt−1−τ − R̂t−1−τ ) (4.9)

By using these estimators we assume that the agent does not know that
the process is stationary and implements a strategy which can adapt to
cross-sectional variation of the underlying process.21 Using their recursive
expression and the investment rule of the mean-variance investor in (4.2)
the evolution of the market is described by the following system of vector
equations

R̂t = (1− µ)R̂t−1 + µ (rt−1 + et−1)

Ĉt = (1− µ)Ĉt−1 + µ
(
rt−1 + et−1 − R̂t−1

)
⊗
(
rt−1 + et−1 − R̂t−1

)
xt =

1

γ
Ĉ−1

t−1(R̂t−1 − rf1)

rit =
xi
t

xi
t−1

xt−1 · et−1 + (1 + rf )(1− xt−1 · 1)
(1− xt · 1)

− 1

.

(4.10)
First of all, we want to assess in which sense the PCE discussed in the

previous section represents an equilibrium of the stochastic dynamics. For
this purpose we need a preliminary result about the exponential weighted
moving average estimator EWMA.

Theorem 4.1. Let zt be an i.i.d. stochastic process with mean z̄ and variance
σ2
z . Then the finite sample EWMA estimator

ẑT = µ

T∑
τ=0

(1− µ)τzT−τ

is a stationary random variable with unconditional mean z̄
(
1− (1− µ)T+1

)
and unconditional variance σ2

z

(
1− (1− µ)T+1

)
.

20Note that Ĉt is computed as the covariance matrix of the prediction error Rt′ − R̂t′ .
21The expressions in (4.8) and (4.9) are good estimators for quasi-stationary, i.e. slowly

moving, vector processes. They are widely adopted among practitioners, see for instance
the RiskMetrics (MSCI group) methodology.
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Proof. The proof simply follows from the sum of the geometric series, given
that all the zt come from the same i.i.d. process.

Now assume that the agent invests according to (4.4) at each time step
so that the price return at each time step t becomes

rit =
etD

−1 ē

γ
+ rf .

It follows that after T time steps the agent’s estimate of future return is

R̂T = µ

T∑
τ=0

(1− µ)τ
(
etD

−1 ē

γ
+ rf + eτ

)
+ (1− µ)T R̂0

where R̂0 is agent’s initial estimate. So, irrespectively of the initial agent’s
estimate of the total return, the convergence property of the EWMA esti-
mator guarantees that with the passing of time her estimates tend toward a
value of R̂ which is, on average, the value implied by the PCE market return
(4.6). The same thing happens for the estimate of the covariance matrix Ĉ.
Notice however that because of Theorem 4.1 the agent’s estimates remain
asymptotically noisy. Because the realized dividend yields are in general not
equal to their expected values, the system is persistently perturbed away
from the PCE. The question arises if these perturbations are sufficient to
drive the system away from the PCE or if, conversely, the PCE equilibrium
is stable and the dynamics fluctuate around it.

These equations can be analyzed by direct numerical simulation, which
shows that for long times and small µ the system hovers around the PCE
fixed point discussed above. In Fig. 4 we report the price returns obtained
by simulating (4.10) in the case of a single asset. In this case the PCE
investment share in the risk asset is

∗
x =

ē

γ + ē

which, substituted in (4.5), gives the equilibrium price return

∗
rE = rf +

∗
x

1− ∗
x
et . (4.11)

As shown in Fig. 4, for sufficiently small values of µ the expression in (4.11)
provides a good approximation to the observed dynamics. Similar patterns
are observed in the case of multiple assets.
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Figure 4: Return dynamics (small circles) and its approximation by the PCE
dynamics (continuous line) in the case of a single mean variance investor.
When µ = 0.05 (left panel) the PCE approximates the return dynamics
reasonably well. When µ = 0.15 (right panel) the dynamics of price returns
is more noisy and the PCE provides a poor approximation. Simulations
performed with γ = 2000, rf = 0.003, ē = 0.05 and σe = 0.005.

An alternative approach is that of studying the limit of the dynamics
as µ → 0. In this limits, updates to dynamical variables from t to t + 1
are very small and of order µ. This implies that one can look at solutions
of the dynamical equations in terms of variables expressed in a continuum
time variable τ = µt. It is possible to show that the resulting dynamical
equations for D̂ = DÎ admit the equilibrium as a stationary state and that
the equilibrium is stable under the dynamics. The proof, which is rather
lengthy is omitted as it merely supports the results which one can already
derive from numerical simulations. The interested reader may refer to the
on-line appendix of this paper.

5 Conclusion

We discuss a dynamic multi–asset model in an endogenous Walrasian price
formation setting. The model rests on two main assumptions: that the
demand of traders is consistent with CRRA, i.e., that their invested wealth
shares do not depend on their wealth level, and that the process of dividend
yields is governed by a stationary distribution.

In this system we analyze a set of equilibria defined by the consistency
of agents’ expectations and market realizations, named Procedurally Con-
sistent Equilibria. We show that in the PCE the actions of investors leads
to two interesting results. Firstly, the market develops price volatility which
is much higher than the volatility of dividends and increases the degree of
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covariance across assets. As such, the model explains the phenomenon of
excess covariance, that is the tendency of price fluctuations of different fi-
nancial assets to be more correlated than their fundamentals, here identified
with the exogenous dividend process. The excess covariance occurs for a
wide range of trading strategies adopted by the investors. The example with
mean-variance investors suggests that this result can be extended to allow
for short positions, even if further research is needed to generalize this claim
for other behaviors. Secondly, we show that the evolutionary pressure due
to the introduction of new strategies pushes the system toward an instability
that is due to the explosion of the return variance–covariance matrix in the
stochastic equilibrium. In order to study the convergence to PCE equilibria
we restrict the analysis to a specify trading behavior. We analyze the case
of a single representative agent whose investment decisions are based on the
maximization of an expected mean-variance CRRA utility. The agent fore-
casts future assets movements based on past market realizations and using a
specific recursive estimator.

Using simple and natural assumptions we show that there exists a strong
trading-induced dependence in assets returns. This endogenously generated
dependence is a key ingredient of the so called systemic risk (see the dis-
cussion about asset price contagion in Battiston et al. (2010) and references
therein). We show that its roots are simple and rest in the selection mecha-
nism induced by speculative trading.
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Appendix

A Proof of Theorem 2.1

First, we substitute the intertemporal constraint (2.2) into the pricing equa-
tion (2.3) to obtain

pt =
N∑

n=1

wt−1,n xt,n

(
xt−1,n · et + x0

t−1,n(1 + rf )
)
+

N∑
n=1

wt−1,n xt,n ⊗ zt−1,n pt .

This leads to (2.7) as long as matrix Ht in (2.6) is invertible.
In order to show thatHt is invertible we will, first, prove thatHt is column

strictly diagonally dominant, i.e.,

|H i,i
t | >

∑
j 6=i

|Hj,i
t | for all i, (A.1)
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where H i,j
t denotes the entry in the ith row and jth column of the matrix

Ht. Under the assumption of the theorem, the off-diagonal terms of H given
by

H i,j
t = −

N∑
n=1

wt−1,nx
i
t,n

xj
t−1,n

pjt−1

, where i 6= j ,

are strictly negative. In contrast, the diagonal elements are positive as the
following inequality shows

H i,i
t = 1−

N∑
n=1

wt−1,nx
i
t,n

xi
t−1,n

pit−1

> 1−max
n

xi
t,n

∑
nwt−1,nx

i
t−1,n

pit−1

= 1−max
n

xi
t,n > 0 .

Given these signs of the elements of Ht, the following inequality immediately
implies (A.1):

H i,i
t +

∑
j 6=i

Hj,i
t = 1−

I∑
j=1

N∑
n=1

wt−1,n x
j
t,n

xi
t−1,n

pit−1

=

= 1−
N∑

n=1

wt−1,n(1− x0
t,n)

xi
t−1,n

pit−1

> 1−max
n

(1− x0
t,n) > 0 .

Since Ht is strictly diagonally dominant, the Levy-Desplanques theorem
(Taussky, 1949) implies that Ht is invertible.

From the definition of the market portfolio, Eq. (2.4), and the pricing
equation given by (2.3), it follows that the investment share in the market
portfolio satisfies to xi

t = pit/wt. Plugging here the evolution of the aggregate
wealth (2.5), the expressions for the investment shares in the market portfolio
are obtained. Using this result, analogous expressions for the investment
shares in the riskless asset are obvious, since

x0
t = 1−

I∑
i=1

xi
t = 1−

I∑
i=1

pit
wt−1x0

t−1(1 + rf ) +
∑

j d
j
t +
∑

j p
j
t

=

=
wt−1x

0
t−1(1 + rf ) +

∑
i d

i
t

wt−1x0
t−1(1 + rf ) +

∑
i d

i
t +
∑

i p
i
t

.

In order to derive (2.9) we, firstly, notice that the previous result implies

x0
t

(
wt−1x

0
t−1(1 + rf ) +

∑
i

dit +
∑
i

pit

)
= wt−1x

0
t−1(1 + rf ) +

∑
i

dit
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which gives

I∑
i=1

pit =
1− x0

t

x0
t

(
wt−1x

0
t−1(1 + rf ) +

∑
i

dit

)
.

Secondly,
I∑

i=1

dit =
I∑

i=1

pit−1

dit
pit−1

= pt−1 · et−1 .

Summing it up, we obtain from (2.5) that

wt = wt−1x
0
t−1(1 + rf ) + pt−1 · et−1 +

1− x0
t

x0
t

(
wt−1x

0
t−1(1 + rf ) + pt−1 · et−1

)
which leads to (2.9) after simplifications.

Finally, dividing both sides of (2.2) by wt one has

ϕt,n =
wt−1

wt

· ϕt−1,n

(
xt−1 · et +

I∑
i=1

xi
t−1,n

pit
pit−1

+ x0
t−1,n(1 + rf )

)
=

=
wt−1

wt

· ϕt−1,n

(
xt−1 · et + x0

t−1,n(1 + rf )
)
+ ϕt−1,n

I∑
i=1

xi
t−1,n

xi
t

xi
t−1

,

where we used the following equality

I∑
i=1

xi
t−1,n

pit
pit−1

=
I∑

i=1

xi
t−1,n

xi
t

xi
t−1

wt

wt−1

.

Applying the total wealth dynamics (2.9), we derive (2.10).

B Proof of Theorem 3.1

Under the hypothesis of the Theorem, the expression in (3.9) reduces to

∗
C =

σ2| ∗x|2

(1− ∗
x)2

1⊗ 1+
σ2

1− ∗
x

(
∗
x⊗ 1+ 1⊗ ∗

x
)
+ σ2 I .

Assume that 1 and
∗
x are not collinear. For any vector v consider the de-

composition v = α1 + β
∗
x + v⊥, where v⊥ is the component orthogonal to

Span{1, ∗
x}. First notice that all vectors with α = β = 0 are eigenvectors
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of
∗
C with eigenvalue σ2. There are I − 2 orthogonal vectors of this type.

The other two eigenvectors belong to Span{1, ∗
x}. The representation of the

matrix
∗
C on this sub-space is

σ2

 |∗x|2I
(1−∗

x)2
+ 1

1−∗
x

N

1−∗
x

|∗x|2

(1−∗
x)2

1

1−∗
x


and the computation of eigenvalues immediately follows.

C Proof of Theorem 3.2

Let ϕ denote the initial wealth share associated to the new strategy. The
last equation in (2.12) can be used to determine the growth rate of ϕ which
reads

∆ϕ

ϕ
= y0

z · et + z0(1 + rf )

y · et + y0(1 + rf )
+
∑
i

zi
yi

yi
,

where y = (1−ϕ)
∗
x+ϕz and, with usual notation, y0 = 1−

∑
i y

i. Assuming
a small initial wealth share for the new strategy, ϕ � 1, one can approximate
the previous expression keeping only the leading term to obtain

∆ϕ

ϕ
=

(
1− ϕ

z · et + z0(1 + rf )
∗
x · et +

∗
x
0
(1 + rf )

)
z · et + z0(1 + rf )
∗
x · et +

∗
x
0
(1 + rf )

+ o(ϕ) . (C.1)

Imagine to iterate the previous equations several time. If for small values
of ϕ it holds that E [∆ϕ/ϕ] < 0, then the new strategy will progressively
disappear from the market, and its impact will vanish. Conversely, if for
small value of ϕ it holds that E[[∆ϕ/ϕ] > 0, the strategy will grow to a finite
size. From (C.1) we derive that

lim
ϕ→0

E

[
∆ϕ

ϕ

]
=

z · ē+ z0(1 + rf )
∗
x · ē+ ∗

x
0
(1 + rf )

,

which proves the proposition.
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