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Abstract

Item response theory is one of the modern test theories with applications in edu-

cational and psychological testing. Recent developments made it possible to char-

acterize some desired properties in terms of a collection of manifest ones, so that

hypothesis tests on these traits can, in principle, be performed. But the existing test

methodology is based on asymptotic approximation, which is impractical in most ap-

plications since the required sample sizes are often unrealistically huge. To overcome

this problem, a class of tests is proposed for making exact statistical inference about

four manifest properties: covariances given the sum are non-positive (CSN), man-

ifest monotonicity (MM), conditional association (CA), and vanishing conditional

dependence (VCD). One major advantage is that these exact tests do not require

large sample sizes. As a result, tests for CSN and MM can be routinely performed

in empirical studies. For testing CA and VCD, the exact methods are still imprac-
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tical in most applications, due to the unusually large number of parameters to be

tested. However, exact methods are still derived for them as an exploration toward

practicality. Some numerical examples with applications of the exact tests for CSN

and MM are provided.

Keywords: Conditional distribution, Exact test, Monte Carlo, Markov chain

Monte Carlo

1. Introduction

Item response theory (IRT), as opposed to the classical test theory, is a modern

theory of standardized tests that are commonly used in educational and psychological

measurement settings. In psychometrics, it describes the application of mathemati-

cal models to data from questionnaires and tests as a basis for measuring abilities,

attitudes, or other variables. Items may be questions that have incorrect and correct

responses, statements to indicate level of agreement, or patient symptoms scores, etc.

IRT makes it possible in principle to analyse a collection of test items assigned to

many subjects or examinees. Using various (non)parametric methods, the goal is to

estimate a property (parameter) such as an examinee’s ability, attitude, intelligence

or strength of some traits. The properties are not directly observable. Once the

parameter estimates are obtained, statistical tests are usually conducted to assess

the extent to which the parameters predict item responses given the model used.

Such tests provide information about the psychometric properties of assessment and

the quality of estimates. The pioneering work of IRT occurred during the 1950s

and 1960s, including the studies of the Educational Testing Service psychometrician

Frederic Lord, the Danish mathematician George Rasch, and the Austrian sociolo-

gist Paul Lazarsfeld. Although the mathematical ground work was laid earlier, IRT
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gained popular application from the late 1970s and 1980s when the advent of comput-

ers provided the power for extensive evaluations. Compared to classical test theory,

IRT generally has greater flexibility and provides more sophisticated information. It

can perform many tasks that cannot be realized by using classical test theory. Some

basic references to the historical literature in this field include Birnbaum (1968),

Lord and Novick (1968), Fisher (1974), Cressie and Holland (1983), Joag-Dev and

Proschan (1983), Holland and Rosenbaum (1986), Rosenbaum (1987), Stout (1987),

Stout (1990), van der Linden and Hambleton (1997).

IRT models can be divided into two families: unidimensional and multidimen-

sional. The unidimensional model assumes that the response data are unidimensional

in the reference population, i.e. the item response probabilities are a function of a

single underlying property. However, because of the greatly increased complexity,

the majority of IRT research and applications utilize a unidimensional model. An-

other commonly used condition is monotonicity, i.e. the item response characteristic

curves are nondecreasing functions. In this context the works by Junker (1991),

Junker (1993), and Junker and Ellis (1997) are worth mentioning. Their main re-

sults include an asymptotic characterization of monotone unidimensional property for

dichotomously-scored items in terms of a collection of physically meaningful manifest

properties. This is useful because manifest properties are amenable to conventional

hypothesis testing. Recently, Yuan and Clarke (2001) developed asymptotic test

methods for four manifest properties: covariances given the sum are non-positive

(CSN), manifest monotonicity (MM), conditional association (CA), and vanishing

conditional dependence (VCD) (see Section 2 for a brief introduction). An IRT

model can have none or some of the manifest properties mentioned above. However,

since the desired properties are characterized by a (usually large) collection of statis-

tics, the asymptotic validity requires unrealistically huge sample sizes. As a rule of
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thumb, asymptotic methods will be valid if the data sample size n ≥ 30m2, where

m is the number of unknown parameters in the problem. In practice, data sample

sizes are often much smaller than that required by valid asymptotic methods. For

example, in investigating some of the manifest properties based on performances of

students of some grade in a given region, the data size is often in the low hundreds

or less. We will see latter (Sections 2 and 4) that the required sample sizes, using

asymptotic methods, are in the thousands, tens of thousands and more for the above

four manifest properties. So the asymptotic tests are apparently impractical. The

objective of the current paper is to construct exact tests of certain properties, for

datasets with relatively small sample sizes, so that many realistic studies can be

carried out in practice such as the above mentioned example.

The concept of exact test, originally proposed by Fisher (1935) for the inference

of contingency tables, has received much attention and been extended to various

settings since then. Under the null hypothesis the table usually has some kind of

row or column or in both way independence, so that one conditional on the sufficient

statistics of the parameters of interests, all the unknown parameters are left out,

and the P -value of some test statistic can be computed under the parameter-free

exact distribution. Usually, direct computation of the P -value under the conditional

distribution is difficult in practice. Instead, various Monte Carlo sampling methods

are used for accurate approximations. Although an enumeration method is possible in

some special cases, it is generally computationally infeasible. Based on permutations,

for large tables, a simple Monte Carlo method may become a problem in sampling.

In this case, Markov chain Monte Carlo (MCMC) sampling can be employed, which

only updates a sub-table at each iteration. Hence the computation won’t be limited

by the table size.

In IRT inference, with data typically in the form of a table with binary entries,
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the null hypotheses are often composite. But for some hypotheses, testing can be

performed on those specified on the boundary of the parameter set. As a result some

kind of conditional independence can be achieved which gives rise to parameter-free

exact tests. These simpler hypothesis tests are also tests for the original ones with

the same significance level. We elaborate on the form of the exact tests in subsequent

sections. In particular, exact tests for CSN and MM can be routinely performed in

empirical studies. For CA and VCD, the exact methods are still impractical in most

applications, due to the unusually large number of parameters to be tested. But we

still derive exact computational methods for them as an exploration toward practi-

cality. First, in Section 2, we provide key definitions, and notations. Next, in Section

3, we give four exact tests for four different manifest conditions. The finite-sample

performance of two exact test statistics is considered in Section 4 by simulation for

several unidimensional IRT models. This is followed by a small illustration of the

tests to an empirical item response dataset. Finally, we provide some concluding

remarks in Section 5.

2. Notation and preliminaries

Let X1, . . . ,Xn be i.i.d. with X = (X1, . . . , XJ), a random vector of length

J . Typically, in the educational testing context, it represents an examinee’s testing

scores on J items. Xi = (Xi1, . . . , XiJ) with Xij’s be the binary (zero for wrong and

one for correct) score of the i-th participant. The corresponding observations will be

denoted by lower case letters. Let X+ =
∑J

j=1Xj, and X+(−j) = X+ −Xj. For an

observed data table t = (xij), with the i-th row xi = (xi1, . . . , xiJ) be the scores of

the i-th participant over all J items. Denote T the corresponding random table of

t. Let x+
i =

∑J
j=1 xij be the i-th row total, x+

j =
∑n

i=1 xij be the j-th column total,
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x+ = (x+
1 , . . . , x

+
J ) be the vector of all column totals, and x++ =

∑n
i=1

∑J
j=1 xij be

the grand total.

In the exact test, conditional on the sufficient statistics S of the parameters of

interests, one computes the P -value of some reasonably chosen test statistic h(T)

under the parameter-free exact distribution, i.e.

P (h(T) ≥ h(t)|S). (1)

This test can also be derived from the Lehmann-Pearson framework as conditioning

on the nuisance parameter, and under some regularity conditions it is Uniformly

Most Powerful Unbiased, though not necessarily Uniformly Most Powerful (UMP)

(Lehmann, 1987). Usually direct computation of (1) is difficult, instead, various sam-

pling methods can be used. That is, sample t(n) (n = 1, . . . , N) from the conditional

distribution P (T|S), and (1) is approximated by

P̂N =
1

N

N∑
n=1

χ(h(t(n)) ≥ h(t)),

where χ(·) is the indicator function.

A general form for the joint probability of X is given by Cox (1972); Fitzmaurice

and Laird (1993); Zhao and Prentice (1990)

P (X) = exp{Ψ′X+ Ω′W − A(Ψ,Ω)}, (2)

where Ψ and Ω are parameters and exp{−A(Ψ,Ω)} is the normalizing constant, W

is all the cross-product terms of X, including all the second and higher order terms.

Computation of the P -value of the test statistic under the observed data is infeasible,

since there are too many unknown parameters in the above distribution. However,

under the properties (characterized by their corresponding hypotheses) of interest,

model (2) often has a much simpler form. Then, conditioning on a suitable statistic
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S, we can get the parameter-free exact distribution, based on which the tests will be

performed.

Now we state the properties we want to test, and in Section 3 we discuss the

corresponding test statistics h(·), the conditioning statistic S, the conditional distri-

butions, and the sampling.

Junker (1993) introduced the notion of covariances given the sum are nonpositive

(CSN) to characterize the general dependence nature between pairs of testing items.

For self-content, we restate its definition below.

Definition (CSN): The covariances given the sum are nonpositive, if and only if

for any i < j ≤ J the covariance between items i and j, given the mean, is negative.

That is,

Cov(Xi, Xj|X+) ≤ 0.

Note CSN is an intuitive property since for a fixed total, increasing some compo-

nent, the other components tend to decrease. But this property is not automatically

true for all IRT models, as it requires all the components vary in a coordinated way.

An IRT model should have some special dependence nature for this to be true. Thus

in practice we expect some of the commonly used IRT models or the corresponding

data tables possess this property.

Also from Junker (1993), we have the following.

Definition (MM): Manifest monotonicity holds if

E(Xi|X+(−i)) is nondecreasing as a function of X+(−i)

for all i ≤ J and all J .
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The following concept, conditional association (CA), is from Holland and Rosen-

baum (1986).

Definition (CA): The components in X are conditionally associated, if and only

if for every pair of disjoint, finite response vectors Y and Z in X, and for every pair

of coordinatewise nondecreasing functions f(Y) and g(Y), and for every function

h(Z), and for every c ∈ range(h) we have that

Cov(f(Y), g(Y)|h(Z) = c) ≥ 0.

Let XJ,k = (XJ+1, . . . , XJ+k) be a k-vector of future items after X. The following

definition of vanishing conditional dependence (VCD) is from Junker and Ellis (1997).

Definition (VCD): X has vanishing conditional dependence, if and only if for any

partition (Y,Z) of the response vector X, and any measurable functions f and g

(and any J) we have that

lim
k→∞

Cov(f(Y), g(Z)|XJ,k) = 0

almost surely.

An IRT model can have none, some, or even all of the four manifest properties

defined above, and generally having one or some of the properties do not necessarily

imply one or some of the other properties; see, e.g., Junker (1993), and Junker and

Ellis (1997) for a characterization of the relationships among CSN, CA, MM, VCD

and some other properties.

From the definitions of these properties, asymptotic methods will be valid for

CSN provided the sample size n ≥ 30[J(J − 1)/2]2; for MM if n > 30[J(J − 1)]2.
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Sample sizes for CA and VCD are much larger. In practice, tests are often made-up

of J > 3 items. If J = 6, the valid sample size using asymptotic methods for CSN

is n ≥ 6, 750; for MM we have n > 27, 000; let alone sample sizes for the properties

CA and VCD. We see that the sample size required for valid asymptotic methods

are unrealistic in many applications. To perform exact tests of the above properties,

the key is to derive the conditional distributions for each of the properties and the

corresponding sampling methods. We will see that we only require the conditional

models at the boundary of each assumption. This makes the corresponding models

very simple, otherwise exact methods will be infeasible. In Section 3, we consider

these issues one by one.

3. Construction of the tests

The exact tests derived below are based on the condition that the level α test

is determined by the boundary condition under which all J items are independent.

Without this condition, the conditional distributions and related samplings will be

difficult to handle. Testing for CSN, MM, CA and VCD, denoted by the null hy-

pothesis H, will be non-standard, and often the number of parameters involved will

be huge. To overcome this problem, we first simplify the conditions to be tested on

the boundary of the parameter set, giving rise to a simpler null hypothesis H0. This

will be done such that any level α test for H0 is also a level α test for H, although

these two hypotheses are not equivalent.

3.1. Test for CSN

Since the data are binary, X+ can only take the values 0, 1, . . . , J (values 0 and

J are trivial, implying all the scores are 0 or 1), we can reformulate CSN as follows

r(i, j|k) := Cov(Xi, Xj|X+ = k) ≤ 0, 0 ≤ i < j ≤ J ; 0 ≤ k ≤ J.
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Given X+ = k, the joint probability of X can be specified by (2) for each k.

Let t(k) be the nk × J sub-table of all xi’s in t with x+
i = k. A natural estimate

of r(i, j|k) is (only for those with nk > 0)

r̂(i, j|k) = 1

nk

∑
xs∈t(k)

(xsi − xi)(xsj − xj), (k = 1, . . . , J − 1), (3)

where xi and xj are the means of the i-th and j-th item across all subjects in t(k).

Then a reasonable choice as a test statistic for CSN is given by

h(t) = r :=
J−1∑
k=1

nk

n
max
i,j

r̂(i, j|k). (4)

Note that (4) tends to have small values under H0 and big values under the alter-

native. This makes h(·) to be a valid test statistic. Clearly, r̂(i, j|0) = r̂(i, j|J) ≡

0, ∀i, j. Let

Θ = {r(i, j|k) : 0 ≤ i < j ≤ J ; 1 ≤ k ≤ J − 1}

be the collection of all r(i, j|k)’s. Then the null hypothesis for testing CSN can be

written as H : Θ ≤ 0 (here “≤” in the sense of componentwise). The rejection rule

of a level α test of CSN has the form h(t) ≥ h0 for some h0 satisfying

sup
Θ

P (h(t) ≥ h0|Θ) ≤ α.

Apparently, the above supΘ is attained at Θ = 0. Thus, to get a level α test for

CSN, we only need to construct a level α test for H0 : Θ = 0 vs. K : supθ∈Θ > 0.

Now we describe the exact test for H0 vs. K. For this we first need the dis-

tribution of the data t under H0, and then we condition on a sufficient statistic of

the parameters in the distribution to get a parameter-free conditional distribution.

Based on the conditional distribution, i.i.d. samples are drawn to evaluate the ob-

served statistic given in (4), and to compute the Monte Carlo P -value under H0.
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Conditional on x+ we have the following.

Proposition 1. Under H0,

P (t|x+) =

∏J
j=1 x

+
j !

x++!
. (5)

Proof: Under H0, for i ̸= j we have

Cov(Xi, Xj) =
J∑

j=k

Cov(Xi, Xj|
J∑

l=1

Xl = k)P (
J∑

l=1

Xl = k) = 0.

Since the Xi’s are binary, we have

0 = Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

= P (Xi = 1, Xj = 1)− P (Xi = 1)P (Xj = 1). (6)

By (6) we get

P (Xi = 1, Xj = 0) = P (Xi = 1)− P (Xi = 1, Xj = 1)

= P (Xi = 1)− P (Xi = 1)P (Xj = 1) = P (Xi = 1)P (Xj = 0).

Similarly

P (Xi = 0, Xj = 1) = P (Xi = 0)P (Xj = 1), P (Xi = 0, Xj = 0) = P (Xi = 0)P (Xj = 0).

Thus, under H0, Xi and Xj are independent for all i ̸= j.

Let pj = P (Xj = 1) (j = 1, . . . , J) and p = (p1, . . . , pJ). Under H0 the mass

function of t is

P (T = t) =
n∏

i=1

J∏
j=1

p
xij

j =
J∏

j=1

p
x+
j

j .

Now we show that x+ is a sufficient statistic for p. For this we only need to show

that the conditional distribution of t given x+ is free of parameters, and is given by
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(5). In fact, let X+ be the corresponding random variable for observation x+. Then,

under H0, X
+ is distributed as the multinomial M(x++,p), so

P (T = t|X+ = x+) =
P (T = t,X+ = x+)

P (X+ = x+)
=

P (T = t)

P (X+ = x+)

=

∏J
j=1 p

x+
j

j

x++!∏J
j=1 x

+
j !

∏J
j=1 p

x+
j

j

=

∏J
j=1 x

+
j !

x++!
. �

Proposition 1 tells us how to sample from (5). However, our purpose is to compute

the test statistic from (3) or/and (4) for each new sample. Specifically, the Monte

Carlo samples are drawn as follows.

Get the sub-tables t(k), (k = 1, . . . , J − 1) from the observation t, and com-

pute the r̂(i, j)|k)’s by (3). Then compute r0 = h(t) by (4). To draw the Monte

Carlo samples, we first compute the column totals x+ = (x+
1 , . . . , x

+
J ). Now the

Monte Carlo sampling is performed below. Specify an integer M , and let a sequence

z1, . . . , zM to be assigned in the sampling process. For m = 1, . . . ,M do the following

steps:

(i) Draw a sample t(m) from (5), which is realized by a random permutation of the

j-th column tj of t, for each j = 1, . . . , J independent of each other.

(ii) For k = 1, . . . , J−1, compute t(m)(k), which is composed of all the row vectors

in t(m) with row total k. The size n
(m)
k is the number of rows in t(m)(k).

(iii) Compute the r(m)(i, j|k)’s by (3) based on t(m)(k), for each k. Then compute

r(m) = h(t(m)) using the r(m)(i, j|k)’s and n
(m)
k ’s by (4). If r(m) ≤ r0, let zm = 1

otherwise zm = 0.

The Monte Carlo P -value is α̂ = 1
M

∑M
m=1 zm. Its estimated variance sd2 is given
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by

sd2 =
1

M(M − 1)

M∑
m=1

(zm − z)2 =
1

M − 1
z(1− z),

and z = 1
M

∑M
m=1 zm. The corresponding 100(1 − α)% confidence interval is es-

timated by [z ± Φ−1(1 − α/2)sd/
√
M ] (Mehta et al., 1988), where Φ−1(1 − α/2)

is the upper 100(1 − α/2)% quantile of the standard normal distribution. Since

sd2 ≈ 1
M−1

α̂(1 − α̂) ≤ 1/4, to estimate α̂ within accuracy β, one should choose

M ≥ Φ−2(1− α/2)/(4β2). For α = 0.05, β = 0.01, we have M ≥ ( 2.576
2×0.01

)2 ≈ 17, 000.

If α̂ is smaller than some prespecified level α, H0 and hence CSN is rejected.

Remark: The sampling scheme above is based on permutation of data with size n.

It is known that the amount of computation for permutation increases rapidly with

n, and may result in computational overflow. In this case, instead of a full updating

of the original data table in the sampling process, we only update a sub-table of it

at each sampling step. Let nℓ be the number of examinees with ℓ (ℓ = 0, 1, . . . , J)

scores. Then, replace step (i) above by

(i’) For each j = 1, . . . , J draw an index vector ij = (ij1, . . . , ijnℓ
) of length nℓ from

{1, . . . , n}, uniformly without replacement (so that all ijnℓ
’s are different). This

can be done as follows: divide [0, 1] into non-overlapping sub-intervals I1, . . . , In

with equal lengths. Draw u1 ∼ U [0, 1], if u1 ∈ Is1 , assign ij1 = s1. Then draw

u2 ∼ U [0, 1], if u2 ∈ Is2 and s2 ̸= s1, assign ij2 = s2; if s2 = s1 (the possibility

is zero), redraw u2 ∼ U [0, 1], if u2 ∈ Is2 and s2 ̸= s1, assign ij2 = s2. Continue

until all the ijnℓ
’s are assigned. Given this ij, let tj(ij) be the sub-vector of

length nℓ of tj with indices in ij, do a permutation within tj(ij) for j = 1, . . . , J .

Merge the results in a new table t(m).
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In this case the number M for the samples should be much larger to ensure ergodicity

of the Monte Carlo samples, and the convergence of the corresponding P -value. Note

that P -values for other properties, expressed in terms of covariances ≤ (≥)0, can be

computed in the same way as above.

3.2. Test for MM

Using the notation of Yuan and Clarke (2001), consider the total score of the

i-th examinee over the J items, but subtract the term for the j-th item. Denote

this by x+
i (−j) =

∑J
r=1,r ̸=j xir. As a generic random variable this is X+(−j) =∑J

i=1,i ̸=j Xi, in which j indexes the item. Now, the quantity we use to test MM is

∆k(−j) := E(Xj|X+(−j) = k + 1) − E(Xj|X+(−j) = k), where k = 0, . . . , J − 1

and j = 1, . . . , J . Let Θ = {∆k(−j) : k = 0, . . . , J − 1; j = 1, . . . , J}. So, the

null hypothesis H: MM is equivalent to H0 : Θ ≥ 0 vs. K : Θ < 0. We first

get natural estimators of ∆k(−j)’s, and so a test statistic for MM. To this end we

partition the collection of examinees’ binary response vectors based on the values of

x+
i (−j). Let t(k,−j) = {xi : x+

i (−j) = k} (k = 0, 1, . . . , J − 1; j = 1, . . . , J), and

t(k,−j) = |t(k,−j)| is its cardinality. Now, a natural estimate of ∆k(−j) is

∆̂k(−j) =
1

t(k + 1,−j)

∑
xi∈t(k+1,−j)

xi,j −
1

t(k,−j)

∑
xi∈t(k,−j)

xi,j. (7)

In the above we use the convention
∑

xi∈t(k,−j) xi,j/t(k,−j) = 0 if t(k,−j) = 0. A

reasonable choice for h(·) is

h(t) = ∆̂ :=
∑

0≤k<J−1;1≤j≤J

t(k,−j) + t(k + 1,−j)

2Jn
∆̂k(−j). (8)

When MM is not true h(·) will tend to be small. By the same argument as for CSN,

to get a level α test for H, we only need to construct a level α test for H0 : Θ = 0

vs. K : Θ < 0. For two random variables X and Y , X ⊥ Y denote X and Y
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are independent. Let x(k,−j) = (x+1(k,−j), . . . , x+J(k,−j)) be the vector of the

observed column totals in t(k,−j). We have the following.

Proposition 2. Under H0, (5) is still true in this case.

Proof: Under H0, we have

P (Xj = 1|X+(−j) = 0) = E(Xj|X+(−j) = 0) = E(Xj|X+(−j) = 1)

= · · · = E(Xj|X+(−j) = J − 1),

or

P (Xj = 1|X+(−j) = 0) = P (Xj = 1|X+(−j) = 1) = · · · = P (Xj = 1|X+(−j) = J − 1),

so

P (Xj = 1) =
J−1∑
k=0

P (Xj = 1|X+(−j) = k)P (X+(−j) = k)

= P (Xj = 1|X+(−j) = r)
J−1∑
k=0

P (X+(−j) = k) = P (Xj = 1|X+(−j) = r),

for any 0 ≤ r ≤ J−1. SinceXj is binary, this implies thatXj ⊥ X+(−j) (1 ≤ j ≤ J)

for all J . In particular, take j = 1 and J = 2, we have X1 ⊥ X2; take J = 3 we

have X1 ⊥ (X2 + X3) which, given the independence between X1 and X2, implies

that X1 ⊥ X3, . . . , X1 ⊥ Xj (j ̸= 1). Similarly, take j = 2 and J = 2, 3, . . ., we have

X2 ⊥ Xj (j ̸= 2), and finally, X1, . . . , XJ are independent of each other. The rest of

the proof is the same as in Proposition 1. �

To perform the exact test for H0 vs. H1, the Monte Carlo procedure is similar to the

one used for testing CSN. In particular, get the tables t(k,−j)’s (k = 0, . . . , J−1; j =
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1, . . . , J) from the observed table t. Then compute ∆(0) by (7) and (8). Next, draw

Monte Carlo samples t(m)(k,−j)’s according to (5) as in the sampling setup for test-

ing CSN. Then compute the ∆̂(m)’s by (7) or/and (8). Further, the Monte Carlo

sampling to compute P -values is similar as before. Specify an integer M and a se-

quence z1, . . . , zM similar as that for CSN. For m = 1, . . . ,M do the following: a)

Steps (i) and (ii) are similar as before; b) If ∆(m) ≥ ∆(0), let zm = 1 otherwise

zm = 0. The Monte Carlo P -value for H0 vs. K is z, its estimated standard error

and confidence interval are the counter parts of these quantities corresponding to

testing for CSN. Clearly, the Remark given in Section 3.1 applies also to this case.

3.3. Test for CA

In principle, testing CA will be the same as testing for CSN. In the following we

refer to the notations and Proposition 4.4 in Yuan and Clarke (2001). Under these

notations, CA is equivalent to H:

Θ = {Cov(χA(X(ω(j))), χB(X(ω(j)))|X(ω′(j′)) ∈ D) : (j, j′, ω, ω′,≺,≺′, A,B,D)} ≥ 0

vs. K : θ < 0, where the range of (j, j′, ω, ω′,≺,≺′, A,B,D) is

j + j′ ≤ J ; ω(j), ω′(j′) ∈ Ω; ω(j) ∩ ω′(j′) = ϕ;

≺∈ Λ(ω(j)); ≺′∈ Λ(ω′(j′)); A,B ∈ S(≺ω); D ⊂ S(≺′
ω′).

The cardinality of Θ will usually be enormous even for J ≥ 3.

Let Θ0 be the subset of Θ consisting of all the components of Θ for which ω(j) be

the (1, . . . , J)-complement of ω′(j′) and ω(j) = ω1(j1)⊕ ω2(j2) for some ω1(·), ω2(·)

and j1 + j2 = j. As before, for a level α test of H vs. K, we need only to construct

a level α test for H0 : Θ0 = 0 vs. K0 : Θ0 > 0. By similar reasoning as before,

this corresponds to independence of χA(X(ω1(j1))) and χB(X(ω2(j2))) pairs, for any
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A ∈ S(≺ω1) and B ∈ S(≺ω2), conditional on the event X(ω′(j′)) ∈ D. Now, for each

fixed j′ and ω′(j′), let ΓD = ΓD(ω
′(j′)) be all the vectors X’s with X(ω′(j′)) ∈ D.

For fixed j1, j2, A ∈ S(≺ω1) and B ∈ S(≺ω2), let yAB|D, yABc|D, yAcB|D and yAcBc|D

be the cell counts of the events AB, ABc, AcB and AcBc in the set ΓD. Define

yA|D = yAB|D + yABc|D, yB|D = yAB|D + yAcB|D and y++|D = yA|D + yB|D. Then

under H0, the two-by-two contingency table yD := (yAB|D, yABc|D, yAcB|D, yAcBc|D)

are columnwise independent, and its conditional distribution given (yA|D, yB|D) is

standard (Agresti, 1990)

P (yD|yA|D, yB|D) =

 yA|D

yAB|D

 yB|D

yA|D − yAB|D


 y++|D

yA|D

 . (9)

For given A ∈ S(≺ω1(j1)), B ∈ S(≺ω2(j2)) and D ⊂ S(≺′
ω′ (j′)), let nABD be the

sample size for all the observations satisfying X(ω1(j1)) ∈ A, X(ω2(j2)) ∈ B and

X(ω′(j′)) ∈ D. If nABD > 2, an estimate r̂ABD of rABD = Cov(χA(X(ω(j))), χB(X(ω(j)))|X(ω′(j′)) ∈

D) can be constructed by its empirical version.

Since the cardinality of Θ is huge, it seems impractical to construct a closed form

testing statistic even for H0. Instead, we use a random scan sampling method as

follows.

Let S0(≺′
ω′ (j′)) be the collection of all ≺′

ω′ (j′)s for some 1 ≤ j′ ≤ J to which

observation xi(ω
′(j′)) belongs to at least two i’s. Define S0(≺ω1(j1)) and S0(≺ω2(j2))

similarly. Define N0 be all the integer triples (j
′, j1, j2) with j′+ j1+ j2 = J and that

there are D ∈ S0(≺′
ω′ (j′)), A ∈ S0(≺ω1(j1)) and B ∈ S0(≺ω2(j2)). Let W1, W2 and

W ′ be the vectors of proportions of the observed A, B and D’s. For a collection C of

sets, denote U(C) as the uniform distribution over C, and D(W, C) be the weighted
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distribution over C with weights W .

Set a prespecified sample size M , and a sequence z1, . . . , zM to be specified. For

m = 1, . . . ,M , go over the following steps:

(i) Draw (j′, j1, j2) from U(N0), A fromD(W1,S0(≺ω1(j1))), B fromD(W2,S0(≺ω2(j2)

)) and D from D(W3,S0(≺′
ω′ (j′))).

(ii) Given the above A,B,D, compute nABD, yAB|D, yA|D, yB|D, y++|D and r̂ABD

from the observed data table.

(iii) Sample nABD of yDs from (9), and compute the estimate r̃ABD, using the

sampled data, of rABD by the same formula for r̂ABD.

(iv) If r̃ABD > r̂ABD, set zm = 1, else zm = 0.

The estimated P -value and its estimated standard error are computed in the same

way as before.

3.4. Test for VCD

Using the same notation as in the previous subsection. Proposition 5.1 in Yuan

and Clarke (2001) says that VCD is equivalent to the condition that for each k there

is an ϵ = ϵ(k), with ϵ(k) going to zero, so that

max
j,ω(j),A,B,D

|Cov(χA(X(ω(j)), χB(X(ωc(j))|XJ,k ∈ D)| ≤ ϵ(k), (10)

in which the operation maxj,ω(j),A,B,D denotes the maximum over

1 ≤ j < J ; ω(j) ∈ Ω; A ∈ S(ω(j)); B ∈ S(ωc(j)); and D ∈ SJ,k.

Let θ = |Cov(χA(X(ω(j)), χB(X(ωc(j))|XJ,k ∈ D)|, Θ = {θ : j, ω(j), J, k, A,B,D},

θ = max θ ∈ Θ. Then CVD can be formulated as H : θ < ϵ vs. K : θ ≥ ϵ, for some ϵ.

As before, for a level α test for H vs. K, if we use the testing statistic θ̂ with rejection
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rule of the form: θ̂ > θ0, where θ0 is θ evaluated at the observation (xij), then we

only need to get a level α test for H0 : θ = 0 vs. K. For fixed ω(j), J , k and D,

let G = GD = {i : xJ,k = D}, nG = |G| be the cardinality of G, Yi,1 = χA(Xi(ω(j)),

Yi,2 = χB(Xi(ω
c(j)), Yi,3 = χAc∩Bc(Xi(ω(j)), the Yij’s are binary and under H0, they

are independent conditional on XJ,k, and conditional on the Y ’s total will eliminate

the nuisance parameters. Thus, we have

P (Y |Y+1, Y+2, Y+3) =
3∏

j=1

Y+j!(nG − Y+j)!

nG!
. (11)

So the test will be similar to that for CA. Also, sampling from (11) parallels sampling

of CA given in Section 3.3.

Denote xi = (xi,1, . . . , xi,J , xi,J+1, . . . , xi,J+k) where i = 1, . . . , n. The averages of

examinees’ scores over G are

χA(D) = (1/nG)
∑
i∈G

χA(xi(ω(j))) and χB(D) = (1/nG)
∑
i∈G

χB(xi(ω
c(j))).

So,

θ̂ =
1

nG

∣∣∣∣∣∑
i∈G

(χA(xi(ω(j)))− χA(D))(χB(xi(ω
c(j)))− χB(D))

∣∣∣∣∣ (12)

is an estimator of θ.

In principle, to test H0 vs. K, we still need to go through all the combinations

{j, ω(j), J, k,

A,B,D} to find the maximum, which is impractical. Instead, we use random scan

as in the previous section, in which, at each Monte Carlo iteration m, we randomly

select a θ ∈ Θ, draw a sample (x
(m)
ij ), and compute θ̂(x(m)) and θ̂(x). Any occurrence

of θ̂(x(m)) ≥ θ̂(x) is evidence against H0. Specifically, the sampling is as follows.

Specify a sample size M , a sequence z1, . . . , zM to be specified, and set m = 0.

Then do the following:
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(i) Draw J0 from {2, . . . , J − 1}, j from {1, . . . , J0 − 1}, k from {J0 + 1, . . . , J},

ω(j) from {1, . . . , J0}, A from S(ω(j)), B from S(ω(j)c), and D from SJ,k.

(ii) For the above D, get the set GD for the observation x. If GD is empty, go back

to (i), else increase m by 1. Compute yi,1 = χA(Xi(ω(j)), yi,2 = χB(Xi(ω
c(j)),

yi,3 = χAc∩Bc(Xi(ω(j)), (i = 1, . . . , nG), y+1, y+2, y+3 and θ̂(y) by (12).

(ii) Sample Y (m) from (11). Compute θ̂(Y (m)). If θ̂(Y (m)) ≥ θ̂(y), set zm = 1, else

zm = 0. If m < M , go to (i); else, stop.

The Monte Carlo P -value and its estimated standard error are computed in the same

way as before.

4. Finite-sample performance

The tests for CA and VCD above, although feasible here as compared to their

theoretical versions, are still not convenient to use. They need unrealistic huge

sample sizes to perform the formal tests. This section presents three sets of Monte

Carlo experiments illustrating the finite-sample performance of the exact tests for

CSN and MM. In all experiments the number of replicates is set at 1,000, with

M = 30, 000. Although this setup allows for meaningful power results, the actual

number of replicates may be considered low. But the costs in computing the tests

statistics for CSN and MM with M = 30, 000 was a limitation for considering a larger

number of replicates.

4.1. First experiment

Two known unidimensional parametric IRT models for binary response are used:

the one-parameter logistic model (1PLM, also called the Rasch model), and the two-

parameter logistic model (2PLM). The 2PLM, defined via the conditional probability
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of an item response, is given by

P (Xj = 1|θi) =
1

1 + exp(−aj(θi − bj))
, (i = 1, . . . , n; j = 1, . . . , J), (13)

where θi represents the ability of examinee i, aj, and bj are item parameters. aj is

the item discrimination parameter, and bj represents the item difficulty parameter.

The 1PLM is a special case of (13) when aj = 1 (j = 1, . . . , J); see, e.g., Patz and

Junker (1999) and van der Linden and Hambleton (1997) for more details on these

models.

Using the computer program WinGen2 (Han and Hambleton, 2007) we simulate

item and person parameters, item responses for a set of J = 10, 20 items, and

n = 25 and 50 examinees. For the 1PLM, bj is sampled randomly from a U [0.6, 1.9]

distribution. This range is selected because estimated discrimination parameters

for real data often fall within these values. θi is sampled randomly from a N(0, 1)

distribution. For the 2PLM the item discrimination parameters aj are drawn from a

log-normal distribution with mean 0 and standard deviation 0.25. The item difficulty

parameters bj are sampled from aN(0, 1) distribution. These parameter distributions

can be considered realistic in practice.

Table 1 shows empirical quartiles Q1, Q2 (median), and Q3 of the 1,000 computed

P -values. It is quite obvious from the values of Q2 that in a large number of cases

there is no indication to reject the null hypotheses, i.e. there is no violation of the

CSN and MM properties. Moreover, the variability in the P -values as measured by

the sample interquartile range (Q3−Q1) is low. The last two columns of Table 1 show

the number of P -values less than 0.05 out of 1,000 replications. Recall from Section

3.1 that the nominal level α is established on the boundary of the null parameter

space of Θ = 0. When the actual case is Θ < 0, the observed nominal levels can be

significantly smaller than α. So when we observe 0 rejections out of 1,000 replications
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Table 1: Empirical quartiles Q1, Q2, and Q3 of 1,000 computed P -values for testing CSN and MM,

and number of P -values < 0.05; Experiment 1.

Model n J CSN MM No. P -values < 0.05

Q2 (Q1, Q3) Q2 (Q1, Q3) CSN MM

1PLM 25 10 0.466 (0.233, 0.683) 0.234 (0.157, 0.342) 59 14

20 0.237 (0.060, 0.512) 0.332 (0.225, 0.471) 76 13

50 10 0.640 (0.385, 0.830) 0.192 (0.148, 0.249) 23 2

20 0.327 (0.165, 0.530) 0.323 (0.192, 0.403) 76 0

2PLM 25 10 0.437 (0.191, 0.728) 0.358 (0.290, 0.448) 72 2

20 0.360 (0.110, 0.678) 0.391 (0.263, 0.528) 20 17

50 10 0.300 (0.131, 0.558) 0.259 (0.216, 0.308) 106 0

20 0.789 (0.569, 0.917) 0.366 (0.317, 0.432) 6 1
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in Table 1, this does not mean the test for MM is of level α = 0. Rather it means that

the actual case is more likely Θ < 0. It should be noted here that for any specified

α, a size-α critical value h(α) can only be obtained via Monte-Carlo sampling under

H0, as the (1 − α)-th sample quantile. For instance, for CSN this implies following

steps (i)–(iii) in Section 3.1. Then a size-α test for CSN is given by the rejection

rule: reject the null, if h(observed) > h(t(α)), where t(α) corresponds to the α-th

quantile of the null distribution. Hence, the size of the tests is not related to the

number of P -values less than 0.05.

Given the above results, it seems that CSN and MM are rather general properties

of multivariate binary data. In fact, by reviewing the theory underlying monotonicity,

Junker and Sijtsma (2000) showed that MM holds for the 1PLM. For the 2PLM

these authors construct three theoretical counterexamples in which MM fails. Two

counterexamples give rise to a nearly perfect (deterministic) Guttman scale, i.e. the

items constitute a unidimensional ordered series such that an answer to a given item

predicts the answers to all previous items in the series. Indeed, by constructing such

a scale, we are able to reject MM using the sampling process discussed in Section 3.2.

But, since the ideal of a Guttman scale is difficult to achieve in real testing, we do

not explore this issue here further. Experiment 2 below presents a counterexample

in which the CSN property is rejected.

4.2. Second experiment

Let X1, . . . ,Xn be an i.i.d. sample from X = (X1, . . . , XJ). Further, let Y ∼

N(0,Ω), where all the off-diagonal elements of the J × J covariance matrix Ω

are positive and equal to r. If Yi < Φ−1(pi), set xij = 1 otherwise xij = 0

(i = 1, . . . , n; j = 1, . . . , J). Given this general set-up we consider testing for CSN

with n = 25, 50, J = 10, r = 0.5, 0.6, 0.7, and pi = 0.5. Table 2 shows empirical
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Table 2: Empirical quantiles of 1,000 P -values for testing the CSN property (J = 10); Experiment

2.

Empirical quantiles

n r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

25 0.5 0.002 0.015 0.033 0.063 0.109 0.165 0.260 0.377 0.565

0.6 0.000 0.000 0.005 0.011 0.025 0.051 0.091 0.174 0.344

0.7 0.000 0.000 0.000 0.000 0.004 0.011 0.026 0.058 0.146

50 0.5 0.014 0.038 0.082 0.130 0.182 0.256 0.343 0.451 0.597

0.6 0.002 0.009 0.018 0.037 0.059 0.091 0.158 0.233 0.383

0.7 0.000 0.001 0.002 0.006 0.013 0.024 0.041 0.077 0.144

quantiles of 1,000 computed P -values. We see that, when n = 25 and r = 0.5, the

CSN property is rejected in quite a few cases, with 38% of the P -values lying between

0 and 0.05. When n = 25 and r = 0.6, 0.7 these percentages are 61.3% and 78.6%

respectively. Thus, as the correlation increases the null hypothesis of CSN is more

strongly rejected. This result is typical for other sample sizes and values of J .

4.3. Third experiment

For the last experiment, we compute the exact tests for CSN and MM using data

taken from the 1992 Trial State Assessment Program in Reading at Grade 4 of the

US National Assessment of Educational Progress (NAEP). In fact, the dataset under

study concerns a random sub-sample of size n = 3, 000 drawn from the population of

fourth-grade students in the US; see Patz and Junker (1999), Table 1. The responses

concern J = 6 items from each student, for each item a response of 1 represents

a correct answer and 0 for incorrect. The questions themselves and the associated

reading passage have not been publicly released by NAEP. Patz and Junker (1999)
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Table 3: Empirical quartiles Q1, Q2, and Q3 of 1,000 P -values for testing the CSN and MM

properties; Experiment 3.

n CSN MM

Q2 (Q1, Q3) Q2 (Q1, Q3)

25 0.3236 (0.1419, 0.5852) 0.2571 (0.1742, 0.3863)

50 0.2796 (0.1111, 0.5191) 0.1760 (0.1012, 0.2815)

100 0.3966 (0.2242, 0.5925) 0.0855 (0.0474, 0.1836)

200 0.5742 (0.4037, 0.7458) 0.0288 (0.0173, 0.0499)

analysed the complete dataset (3,000 examinees) using MCMC sampling methods

for 2PLM item calibration. Here we assume that the dataset has the nature of a

population, and 1,000 random samples of sizes n = 25, 50, 100 and 200 are drawn

without replacement from the full dataset. Recall that these sample sizes are far less

than the minimal sample sizes required for using asymptotic methods for CSN (No.

of parameters =15, n ≥ 6, 750) and MM (No. of parameters =30, n > 27, 000).

Table 3 shows empirical quartiles Q1, Q2, and Q3 computed on the basis of 1,000

P -values. Clearly, for all values of n the empirical quartiles do not show evidence to

reject the CSN property, with less evidence against violation of the null hypothesis as

n increases from 25 to 200. Interestingly, the opposite occurs when testing for MM.

That is, evidence to reject the MM property increases as n increases. The next step

would be to fit 2PLMs to the 1,000 data subsets for each n. Then, following Junker

and Sijtsma (2000), estimates of P (Xj = 1|X+(−j)) may well reveal violations of

monotonicity at certain locations of its empirical distribution.
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5. Some concluding remarks

We propose exact hypothesis tests for CSN, MM, CA, and VCD. In particular,

tests for CSN and MM are now computationally feasible and practical, with Monte

Carlo P -values computed under H0. For CA and VCD to be practical, it is still

open to further research. Moreover, the Monte Carlo method may extend to some

more properties. Nevertheless, the tests considered here may not be best ones in

some sense and admit rooms for improvements. However, based on permutation,

the amount of computation grows factorially (faster than exponential growth) along

with the datatable size. So for collections with large table sizes, the simple Monte

Carlo method may again becomes computationally impractical. For this, the MCMC

method is to update a sub-table per iteration, so it can be used in practice without

actual size limitation. Yuan and Yang (2001) proposed a Markov chain method

for contingency table exact inference, in which a sub-table of user specified size

is sampled at each iteration. This chain has high sampling efficiency and can be

modified to the present case. For data with really large table size, this method can

be considered to refine our method.

Finally, it is worth mentioning that the null hypotheses of CSN, MM, CA, and

VCD considered here are not of the simple Pearson type. Hence tests with some

optimality such as UMP tests, generally do not exist. Thus, we have only dealt with

level α tests for these hypothesis. We find level α tests on the corresponding H0,

which are also level α tests on the corresponding H. On each H0, all the proper-

ties CSN, MM, CA and VCD have a common feature: columnwise independence,

although on the corresponding H, these properties are not the same.
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