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Though screened at large distances, a pointlike electric charge can still participate in a long-
range electromagnetic interaction in the Higgs phase, namely, that with the Aharonov-Bohm field
produced by a localized magnetic flux. We show that this follows from the fact that the screening
charge, induced in the presence of a Higgs condensate, does not interact with the Aharonov-Bohm
field. The same phenomenon occurs if a Chern-Simons term is incorporated in the action. This
observation provides a physical basis for the recently proposed classification of the superselection
sectors of this model in terms of a quasi-Hopf algebra.

PACS numbers: 12.20.Ds

The question whether charges in the Higgs phase can
be measured through Aharonov-Bohm (AB) scattering
with magnetic fluxes [1] has received considerable atten-
tion in recent literature. In this context, it is impor-
tant to understand that there are essentially two differ-
ent definitions of the physical charge: (1) as a coupling
constant for Coulomb interactions and (2) as a coupling
constant for AB scattering [2]. In this Letter we explain
why “Coulomb charges” are screened in the Higgs phase,
while the “AB charges” are not [3].

In the Higgs medium, any charge ¢ (even irrational
fractions of e) is screened in the sense that there are no
Coulomb fields around it at distances > 1/Mj4 (with
M, the mass of the gauge fields obtained by the Higgs
mechanism). So the electric flux E through any (D —1)-
dimensional surface of radius > 1/M4 in the Higgs
medium disappears: @ = [V -EdPz = 0. This is noth-
ing more than the statement that electromagnetic fields
are massive in the Higgs phase, i.e., that the Higgs effect
does occur.

For the charge g to be measurable through AB scatter-
ing, it is necessary that the screening charge ginduced =
—q, induced by the Higgs mechanism, does not take part
in the AB interaction. We will argue that this is precisely
what happens. To proceed, it turns out that this effect is
specific for screening by a Higgs condensate. It is not a
common feature of any screening mechanism. For exam-
ple, Debye screening by a real plasma, or the (sometimes
partial) screening related to vacuum polarization as de-
scribed by the renormalization group (Gell-Mann-Low 3
function), is not of this type. We expect that they screen
both Coulomb and AB interactions [4]. Even more pe-
culiar is the screening related to the Chern-Simons (CS)
term [5]. It leads to complete screening of the Coulomb
interaction and partial screening (by a factor 1/2) of the
AB interaction (see for instance Ref. [6] and the text be-
low).

Our analysis extends to the Higgs phase of CS elec-
trodynamics. Here it gives rise to a new observation. In
the normal phase of CS electrodynamics [5] the Coulomb
fields of external charges ¢ will be screened by gener-
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ating a magnetic flux ¢ = —g/u (with p the topolog-
ical mass), and vice versa. So charges and fluxes are
identified. However, in the Higgs phase ¢ is quantized,
so this CS screening mechanism could not be effective
for arbitrary q. Here the Higgs condensate brings salva-
tion again; it screens the Coulomb fields of both ¢ and
po, thus removing the aforementioned identification of
charges and fluxes.

The model in which we discuss these phenomena is the
(2 + 1)-dimensional theory, governed by the Lagrangian

L= Leg(1) + LHiggs + Lmatter
1
— _ZFNVFK,V + %E'WAF,WA)‘
+ ' D.P |2 —V(I 0] 12) + Lmatter- (1)

The first two terms [Leq(t)] describe what is known as
CS electrodynamics [5]. In the next two terms (Lhiggs)
a complex scalar field ® with global U(1) charge Ne is
minimally coupled to this gauge theory. In our conven-
tions Dx® = (O, + iNeAs)®. To proceed, we assume
that the potential V(| ® |?) takes the form

V(@R =308 22, )

which spontaneously breaks the gauge symmetry U(1) —
Zn, and leads to a condensate of the charged Higgs field
®. In this so-called Higgs phase the length scale is set
by 1/Mpy, with Mg = V2X | (®) |= V2 v the mass of
the Higgs boson. We have introduced additional charged
matter fields (Lmatter) in order to be able to discuss all
conceivable charge sectors in the Higgs phase. We do not
further specify these matter fields. We only assume that
they are very massive, so that we can discuss the associ-
ated global U(1) charges, denoted by g, as external [7].
Let us first recall that pure CS electrodynamics Leq (1)
with u # 0 is known to possess only massive particles in
the spectrum: one-component massive photons [5] with
mass . On the other hand, the photons of pure Higgs
electrodynamics Leq(0) + Luiggs in the Higgs phase are
also massive. This time they are endowed with two com-
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ponents, and they carry the mass My = Nev2 | (®) |=
Nev/2v. These theories differ radically from massive elec-
trodynamics with explicitly broken gauge invariance,

1 2
Loned = =3 F™ Froy + TZ—A”AV. (3)

Despite having only massive particles, the former mod-
els allow for the long-range AB interaction [1], which is
absent for Lmeq [8]. One may think of the AB interac-
tion in pure CS electrodynamics Leq(p) with g # 0 as
being mediated by certain “discrete” degrees of freedom
[9], which are close analogs of the by now well known
discrete states of the ¢ = 1 string [10].

In the Higgs phase of the model L¢g(0)+ Luiggs the AB
interaction survives, because the field, which is acquiring
mass due to the spontaneous breakdown, is actually the
gauge invariant combination

1
Ac = Au + 30 ImIn(@), (4)

rather than A, itself. Instead of (3), we find in the Higgs
phase

M3

A AR A (5)

— %F’“’Fmﬁ- | D@ |2— —%F"”’F,w +
Thus A indeed has a finite (~ 1/M,) correlation length.
This does not immediately imply that A should also fall
off exponentially. It can instead remain pure gauge. Such
AB fields, which are locally pure gauge, can be globally
nontrivial, however. This is the case around topological
defects of the Higgs condensate of the characteristic size
~ 1/My4, corresponding to magnetic vortices [11] labeled
by m1(U(1)) ~ Z. These vortices carry a magnetic flux
¢ which is quantized by the requirement that the Higgs
condensate is single valued outside the core of the vortex;
thus [12]

2
¢ = NFE X integer. (6)

It is well known that the purely quantum mechanical AB
interaction [1,3] leads to nontrivial elastic scattering of
charges ¢’ and vortices ¢; i.e., it gives rise to a diffraction-
like effect, which is of course observable [13]. The crucial
ingredient in the corresponding cross sections is the phase
expiq'¢. If there were no magnetic vortices (with their
AB fields) in the Higgs phase, electric charges ¢ would
be unobservable at large distances (of course they can
always be seen in scattering processes with high energies
> Ma, i.e., at short distances). But even at low energies
any two states with U(1) charges q1 and g¢o, such that
q1 — q2 = Ne X integer, are in fact indistinguishable, be-
cause the fluxes which can be used to distinguish them
are constrained by Eq. (6). This observation gives rise to
the low-energy classification of the superselection sectors
of this model by means of (g, ¢), with
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g = e x ( integer mod N), (7
¢ = 1%7—; x ( integer mod N). (8)

Together with its less trivial generalization to the pat-
terns of symmetry breaking G — H with non-Abelian
discrete groups H [14], this classification has been further
investigated in Refs. [3] and [15], while in Refs. [16] and
[17] the underlying symmetry algebra was subsequently
identified as the Hopf algebra D(H).

What remains to be discussed is why all the states
(g,¢), as listed in Egs. (7) and (8), can indeed be dis-
tinguished by the AB interaction. Let us recall that
the generic AB field is a pure gauge A, = g~18,g with
g € U(1). In a non-simply-connected domain, one may
have that § A, dz" # 0 along a noncontractable loop, and
in fact § A dz* = ¢ if the contour goes around a vor-
tex once. The interaction of a pointlike charge ¢’ (moving
along the world line ) with the electromagnetic field can
be written as ¢’ [ A,dz*. In the first-quantization for-
malism the phase gactor arising when the charge is carried
around the vortex therefore equals e{¢,q'} = expiq’'¢.
However, in the Higgs phase the charge ¢’ is completely
screened at distances > 1/M 4. This means that it is sur-
rounded by a “cloud” with a total electric charge exactly
equal to —q’. This cloud serves to cancel the contribu-
tion of ¢’ to the Coulomb field. From a physical point of
view, this leads to a potential embarassment, the problem
being that the cloud will also be carried around the vor-
tex, and consequently, it seems, that the factor e{¢,q’'}
will be unobservable, because it should be multiplied by
€induced{®, —¢'} = €{¢,q'}~!. By this line of reasoning,
we are led to conclude that for a physical (i.e., dressed)
charge, the AB effect would be absent in the Higgs phase.

Remarkably enough, the reasoning just given turns out
to be incorrect. While the Coulomb interaction is expo-
nentially damped by the Higgs mechanism, the AB in-
teraction is not. In fact €jnduced = 1, and the reason for
this is that the (induced) screening charge density is not
an ordinary electric charge density, but rather the field
—M%AO. This is clear from Gauss’s law, implied by Egs.
(1), (4), and (5),

V-E(x) = ¢6(x) — M%AO(X) = ¢6(x) + Ginduced (X),
(9)
with E¢ = F°. The associated induced current is [18]

ji':lduced = _Mli‘zin (10)

In order for this current to interact with the AB field
(produced by some remote vortex), there should be
a term in the Lagrangian of the form —jff . .cqdr =
MZAxA,. Instead we only encounter the term
%M%A"An in Eq. (5). In other words, ginduced COuples
to A rather than to A, and thus does not feel AB fields
related to remote vortices, which have nonvanishing A
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component but strictly vanishing A at large distances.
Thus our conclusion is that for a physical particle in the
Higgs phase the AB interaction is sensitive to the un-
screened charge only, while ordinary interactions, like the
Coulomb one, are completely screened. The phase factor
associated with the AB interaction of two localized states
(g, ), and (¢’, ¢’) is therefore given by

e{(9,8), (¢, ¢")} = e{¢, q'}e{d', g} = expi(d'¢ + g¢').
(11)

Let us now turn to the situation where the CS term
is present. The masses of the electromagnetic fields are
modified, and become [19]

1 1
My = \/Mi+ SH?E [ ME+ 242,

where + and — stand for two different components of
the photon [20]. The AB field carries no energy, and is
still present at large distances. Gauss’s law is affected
though; it now reads

(12)

V-E(X) = ¢5(x) + uB() - M3Ao(x).  (13)
The new term, uB = pFl,, implies that the magnetic
field of a vortex generates an additional electric charge
density pB(x), the total extra charge being [ uBd?z =
uo. This extra charge is added to g, and will there-
fore be completely screened at distances > 1/M_ by the
screening charge, corresponding to —M:ﬁfio. Note that
in this CS Higgs phase, the Coulomb fields of an external
charge are still screened by the Higgs condensate, and
not by assigning a flux ¢ = —q/u to it as in the nor-
mal phase of CS electrodynamics [5]. In the latter case,
the fractional “screening” fluxes would render the Higgs
condensate multivalued. Thus in the Higgs phase of CS
electrodynamics, the identification ¢ = —u¢ of charges
and fluxes is lost, and they become independent quan-
tum numbers.

The most significant effect of the CS term occurs in
the phase factor €{(q, ¢), (¢’, ¢')}. In fact, we may think
of every physical state (g, ¢) as being composed of three
parts: the pointlike global U(1) charge g, the vortex ¢,
and the screening charge ginduced = —¢q — ¢ (all concen-
trated in the domain of radius ~ 1/M_). In the AB field,
produced by some remote vortex ¢’, (a) ¢ is coupled to
the total flux ¢’, (b) ginduced does not couple at all, and
(c) ¢ is coupled to 5£¢’. This can be seen from the form

of the Lagrangian density (1), rewritten in terms of A,
1 1 oy
__ZF»WF'W + ZNENVAFNVA)\ + (N€)2X2A>‘A,\
_V(X2) + (0"X)(OxX) + Lmatters (14)

where we substituted ®(x) = x(z)e?’® for the Higgs
field, with real valued o(z) and gauge invariant x(z) =

| ®(z) |, so Ax = Ax + :0x0. The fluctuations of x
around (x) = v describe neutral Higgs bosons with mass
M. Now let us assume that we are in the Higgs phase,
i.e., x takes the vacuum expectation value v everywhere,
except for a finite number of points where the vortices
are located. We first note that exp(io/N) is not single
valued in the presence of a vortex; it is therefore not a
well defined gauge transformation. For this reason we
cannot simply replace A by A in the matter term. This
implies statement (a). The fact that A, rather than A,
appears in the interaction term with the Higgs sector
leads to the statement (b) above. Finally, we observe
that the coefficient in front of the CS term differs by a
factor of 2 in the Lagrangian (14) and in Gauss’s law
(13). This difference is the origin of the factor % in (c)
(see for instance Refs. [6,17]).

From (a)—(c) it follows that the total effect of the AB
interaction of the two states (g, ¢) and (¢’, ¢’) when o # 0
is the phase factor [17]

expi{ (q + %qﬁ) ¢+ (q' + %d")fﬁ}
=expi(gd’ + q'¢ + upg'). (15)

This nontrivial factor arises in the amplitudes, although
the total electric charge @ of every localized state (g, ¢),
if measured by the Coulomb field at distances > 1/M_,
vanishes:

Q = q + po + ginduced = 0. (16)

In Ref. [17], Eq. (15) formed the starting point for
the study of the interchange and fusion properties of the
states (g, ¢) in the case where u = pe?/4r withp € Z. It
was shown that the underlying symmetry algebra in the
absence of a Chern-Simons term, which is the Hopf alge-
bra D(Zy) [16], is deformed by a nontrivial 3-cocycle on
the unbroken discrete group Zy for nonvanishing values
of u. The generalization to non-Abelian unbroken gauge
groups turns out to be straightforward in this algebraic
approach.

To conclude, we have described a mechanism, which
makes the fact that electric and magnetic fields are mas-
sive in the Higgs phase consistent with the observability
of unscreened charges at large distances through long-
range Aharonov-Bohm interactions. The key observation
here is that the charge that screens the Coulomb fields in
the Higgs phase does not couple to the Aharonov-Bohm
fields. This mechanism allows for smoothly switching
on the Chern-Simons term in the Higgs phase in (2+1)-
dimensional space-time, and therefore provides a solid
basis for the discussion of the statistical properties of the
states presented in Ref. [17].
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