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Observation of Dipolar-Induced Spin Dephasing in Ionic Solids
Using Coherent Optical-Microwave Spectroscopy
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The observation of spin dephasing in an ensemble of dipolar coupled 4 and B spins is re-
ported. In CaO crystals, the A-spin species are photoexcited S=1, F22+ centers and the
group of B spins consists of S=3, F* centers. Measurements were made at different
temperatures and magnetic field strengths with use of coherent optical-microwave spec-
troscopy. For the first time, the results show that the A-spin dephasing is influenced by
exchange narrowing in the B-spin ensemble.

PACS numbers: 76.70.Hb, 76.30.Mi

Spin dephasing within a system of randomly dis-
tributed spins, when caused by magnetic dipolar
coupling with fluctuating neighboring spins, has
been of considerable theoretical'™® and experi-
mental? interest in the past. Basically, one con-
siders the spins under observation, called A
spins, as isolated from the lattice; secular di-
polar interaction with a second ensemble, com-
prising of fluctuating B spins, is the source for
the loss of the phase memory in the A-spin en-
semble. Up until now, only so-called T'; samples
have been considered in the literature, i.e., the
time dependence of the B-spin magnetic moments
is thought to arise from spin-lattice relaxation in
the B-spin ensemble. In the present paper we
demonstrate the use of coherent optical-micro-
wave spectroscopy to probe dephasing by a new,
other than 7',, mechanism. The results, obtained
for photoexcited ionic solids, indicate the direct
role of the phenomenon of exchange narrowing in
the B-spin ensemble which in turn reveals itself
by a slowing down of the A-spin dephasing rate
as the temperature is raised from 1.2 to 10 K.

In our experiments, the group of A spins is
formed by F,?* centers, in the phosphorescent
3B, state, in CaO crystals. The main spectros-
copic data of the center are summarized in Fig.
1; for more details, the reader is referred to
the work of Gravesteijn and Glasbeek.® In addi-
tion to these F,?* centers, the crystals contain
an abundant amount of F* centers (S=3%), i.e.,
single—oxygen-anion vacancies at which one elec-
tron is trapped. We consider these F* centers to
form the B-spin ensemble.

The A-B system discussed in this work offers

several advantages that we desire for probing
spin dephasing. Firstly, the A-spin dephasing as
a function of temperature is not determined by
the direct coupling of A spins with lattice vibra-
tional modes (up to 10 K), but instead is primari-
ly governed by the temperature effect on the B~
spin dephasing (see later discussions). The ex-
perimental procedure in this work is to detect
the A-spin echo decay at zero (or low) magnetic
fields. It follows that the experimental approach
makes the B-spin dynamics amenable to experi-
mental investigation in zero magnetic field, which
is an advantage in the sense that 7', relaxation of
the B spins may be suppressed considerably.
Secondly, as also shown later, exchange narrow-
ing in the B spin can be controlled not only by
varying the temperature but also by applying a
magnetic field. It should be emphasized that tech-
niques which directly measure the B-spin—echo
decay in the microwave region cannot yield sim-
ilar data due to the isotropy of the S=% ESR sig-
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FIG. 1. F22+ center in CaO crystal. (a) model in (100)
plane; (b) optical cycle for probing coherence between
7, and 7, sublevels.
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nal and also because T, processes might domi-
nate in the dephasing at high magnetic fields.

To probe the spin dephasing, we followed the
behavior of the optically detected A-spin-echo
decay® of one of the triplet-state transitions (zero-
field frequency of the latter: 1.870 GHz) as a func-
tion of temperature and magnetic field. In zero
field and at 1.2 K, the F,>* (A-) spin echo decays
almost exponentially with T ,(A) =140 usec (see
inset to Fig. 3). Compared with other known elec-
tron-spin dephasing times, T ,(A) is unusually
long. The phenomenon arises because for S=1
spins, in nonaxial local crystalline fields, the
magnetic moment is quenched in zero field.®
Therefore, the loss of A-spin coherence, which
results from magnetic dipolar coupling to fluctu-
ating B spins, is a higher-order process. When |
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a dc magnetic field is applied the situation is dif-
ferent: The A-spin magnetic moment becomes
unquenched and dephasing in the A-spin ensemble
is enhanced. Quantitatively this is seen as fol-
lows.

In general, the echo amplitude is related to the
in-phase component of the magnetic polarization,
i.e., the r, component of the Feynman-Vernon-
Hellwarth representation. To determine the de-
cay characteristics we need the time evolution of
7. Starting with the Liouville-von Neumann
equation for the density operator, one can de-
rive™® the equation of motion for the observable
S,, where S, is defined by (S) =#,. In the lowest
Born approximation of the A-B dipolar interac-
tion we obtain for S;*, i.e., S, in the A-spin in-
teraction representation,

1

where 3¢* = U3, ,*2U" 1 +3¢8, U =exp(i3¢*t), 3¢ and 3% denote the spin Hamiltonians, including Zeeman

interactions, for the ensembles of A and B spins respectively, and 3,

4B represents the dipolar inter-

actions between all A and B spins. The projection operator, P, is here defined as P =|5,)(S,|S,)™* (S,
in Liouville space. We note that the dipolar interaction, 3,,*2, is between unlike A and B spins for

which the resonance frequencies differ by orders of magnitude. Then, the expression for the secular
part of 3¢,,4® (this being the only part in 3C* not containing an explicit time dependence for the A spins)
is readily derived in a manner given previously for the case of nuclear spin coupling.® Substitution of

this 3¢,,2 (secular) in Eq. (1) eventually leads to the following integrodifferential equation

a(S,*(t)) jt (1—=32,.%)% 22
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in which z =g JH,’|E|™*, H, = H. 2 +H,*)"?, Hy,
being the effective local field at A-spin sites, n,
is the number of A triplet spins and, finally,
Cg(t’,t) is the B-spin time autocorrelation func-
tion. It is noted that Eq. (2) relates (5,*()) to val-
ues at all earlier times and may reflect non-
Markoffian behavior in the A-spin dynamics. We
now make the following crucial assumptions:

(i) c5’,t) decays exponentially with time, i.e.,
Cp~expl-R|t' —t|], where R denotes the B- spin
dephasing rate, and (ii) the characteristic B-spin
decay time, R™', is small compared with T ,(A).
Having in mind these assertions and the statisti-
cal averaging procedure of Ref. 3, Eq. (2) can be
integrated to give for the echo amplitude’

(3,*(27)) cc expi=kdplz /(1 +2%)2]B ()2}, (3)

in which & =% (37°)"%z , g sup”, dp is the density of
B spins and B(7) =4R™2{R7 - [1-exp(-RT)] - 3[1
—exp(- R7)]?}. Equation (3) allows us to quantita-
tively test the model by verifying the z dependence
of (5,%).

icBaxtxsl*(t'», @)

In practice, the observed spin-echo decay
curves were computer fitted to a function of the
form exp[-C (z)B(1)*?] yielding the two param-
eters C(z) and R. As an example, the results for
C(z) and R obtained at 1.2 K are plotted in Fig. 2
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FIG. 2. Magnetic field dependence of C () (circles)
and R (squares) when the F22+—center spin-echo decay
is fitted to the form expl—C (2) B(7) 1/2], where B(7) is
defined in the text. Drawn curves represent best fits,
namely C(2) <z/(1+2%)!? and R < H,°.
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as a function of H,. Clearly, the complete linear
proportionality between C(z) and z/(1+2%)"? is
strong evidence that the dipolar coupling between
A and B spins determines the A-spin dephasing.
Also, the R «<H,? dependence is a significant re-
sult. If Cz(t’,t) was determined solely by T,
processes in the B system, one would expect at
low temperatures direct one-phonon processes to
yield R cH *.*° Apparently, the observed Rvs H,
behavior excludes the classification of the system
as a T, sample. The latter is confirmed in the
analysis of the interesting effect of temperature
on R at zero-magnetic field.

Raising the temperature from 1.2 K up to 10 K
we find that the A-spin-echo decay attains a pro-
nounced nonexponential shape approaching the
form exp[- (27/T,,)*] with x = 1.5 and T ,(4) = 200
usec at 10 K. The result is typical for the limit
in which RT« 1, i.e., as the temperature is in-
creased, the B spin dephasing rate, R, is de-
creased. The phenomenon can be explained by
invoking an exchange coupling among the spin
transitions of the B-system. In other words, in
addition to the usual dephasing of B-spin transi-
tions (due to direct spin-bath coupling) there ex-
ists a dipolar coupling which motionally narrows
transitions of the B-spin ensemble. An alterna-
tive mechanism for the retarded A-spin dephas-
ing would be exchange narrowing involving only
A spins. This possibility, however, could be re-
jected from a study of the A-spin ensemble pre-
pared in an ordered state.'!* Using optical-mi-
crowave techniques similar to those of Ref. 12,
we could determine how long the local fields,
which cause the inhomogeneous broadening of the
A-spin signal, persist. The characteristic decay
time for the A-spin ordered state turned out to be
3 msec (up to 10 K). This result shows that the
spin ordering is limited by the lifetime of the °B;
state and that rapid A-spin flips do not occur.
Consequently, the A-spin ensemble itself does
not exhibit exchange narrowing and the lengthen-
ing of the A-spin phase memory must be domi-
nated by B-spin exchange narrowing.

From the numerical analysis of the echo decay
curves the B-spin density could be determined
[cf. Fig. 2 and Eq. (3)]. We find dz~ 10'"/cm?,
which means that the B spins, because of their
dipolar coupling, effectively experience a local
field of ~1 mG. At high field (H =3300 G) the in-
homogeneous linewidth of the F* center electron
paramagnetic resonance signal is 0.2 G. It fol-
lows that at zevo field the residual strain broad-
ening would be ~ 10"% mG, i.e., negligible com-~
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FIG. 3. Spin dephasing rate R) of F* centers vs T"!
between 1.2 and 10 K. Drawn line is best fit for R =2.6
X104 T"1~1,1x10° kHz. Inset shows optically detected
spin-echo decays of F22+ center (microwave frequency
is 1.870 GHz) at 1.2 and 10 K, respectively.

pared to the dipolar broadening. It is therefore
not surprising that at zero field exchange nar-
rowing in the B ensemble is observed owing to
the extremely small inhomogeneous broadening!

Figure 3 shows that R is almost proportional to
T~!. This T™' dependence can now be considered
by application of the recently developed theory of
dephasing'® to the aforementioned exchange mech-
anism. For practical purposes, we simply re-
gard exchange within the group of B spins be-
tween just two subgroups which have slightly dif-
ferent resonance frequencies. In this approach,
in the limit of fast exchange, the line shape is
Lorentzian with a width given by

R =A%/(T+y). 4)

In Eq. (4), A is the resonance frequency differ-
ence between the two subgroups, whereas I" and

y denote the homogeneous width of each B-spin
packet and the exchange rate, respectively. In
the rapid exchange limit T'=7)}, ,.p,|T;,.|%5(A

+w, —wp,), where p labels the phonon states of
density p, and T';,, denotes the transition opera-
tor.'®"15 By a series expansion of the magnetic
dipolar interaction between the subgroups in the
phonon coordinates, it is shown straightforward-
ly that, at least in first order, both I" and y be-
come linearly proportional to temperature. There-
fore, from Eq. (4) two important conclusions can
be drawn. First, for dipolar interactions between
B spins we expect R o 6% «H,? which is the behav-
ior found experimentally (cf. Fig. 2). Second,
one-phonon assisted dipolar interactions are re-
sponsible for the observed R ««T"~! dependence.
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In summary, we find that dephasing in an en-
semble of dipolar coupled electron spins can be
studied successfully in wide temperature and
magnetic field ranges by using as a probe excit-
ed triplet spins of which the coherence decay is
monitored optically. Furthermore, our results
demonstrate that the dephasing mechanism in the
B-spin system is consistent with a phonon-assist-
ed random modulation of dipolar interactions in
the fast exchange limit.
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It is shown that the dielectric response of a thin layer of a-Sn—

e semiconductor is

radically different than that of the bulk material. Thegq ™! and w™!/? gingularities of the
bulk polarizability are absent in the layer. Instead, the dielectric response and optical
absorption of the layer are highly anisotropic, and the static dielectric constant is linear-
ly dependent on layer thickness. In the random-phase approximation, the thin-layer en-
ergy-band structure is unconditionally stable against exciton formation.

PACS numbers: 72.55.+f, 42.10.Qj, 77.30.+d, 78.65.Jd

Materials of the a-Sn type («-Sn, HgTe, HgSe,
Cd,As,) are of considerable interest because of
their anomalous dielectric response. Their band
structures are characterized by a symmetry-in-
duced degeneracy of the extrema of the highest-
lying valence band and lowest-lying conduction
band.! At absolute zero, the zero-energy excita-
tion at the point of contact produces a w2 singu-
larity®? in the frequency dependence and a ¢!
singularity? in the momentum-transfer depen-
dence of the dielectric function. This unusual
behavior® prevents an excitonic instability,3:®
and its effects have been seen in the transport’ !

and optical’? '3 properties of the materials.
However, the situation in a very thin layer of
zero-band-gap semiconductor will be quite dif-
ferent. Consider an infinite layer of zero-band-
gap semiconductor, of thickness small in com-
parison with the electron mean free path and
de Broglie wavelength, imbedded in a high-band-
gap material, The electrons in the thin zero-
band-gap layer will appear to be in a one-dimen-
sional potential well in the direction normal to
the layer,' and the conduction and valence bands
will split into two-dimensional subbands., In par-
ticular, an energy gap will appear between the
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