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Localization of Waves in Fractals: Spatial Behavior
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Localization of a quantum particle on two-dimensional percolating networks is investigated numerical-
ly. Solving the time-dependent Schrodinger equation for particular initial wave packets we study the
spatial behavior of eigenstates for two tight-binding models: the quantum percolation model and the
fracton model. At the lower band edge of the fracton model localization lengths agree with theoretical
scaling predictions. We address the question concerning the existence of superlocalization. Our results
show no indication for superlocalized behavior of eigenstates.

PACS numbers: 71.50.+t, 63.50.+x

The characterization of the spatial behavior of excita-
tions on random fractal structures has recently received
much theoretical and experimental interest.!™ Because
of geometric disorder in such systems the concept of lo-
calization can be applied.® The question arises, however,
whether fractal geometry changes the usual exponential
behavior associated with Anderson localization. The
precise form of the spatial decay of states is still un-
known. Assuming the asymptotic decay of localized
wave functions (or vibrational amplitudes with frequency
w=+/E) to behave like

| w(rE) | < I(E) ~Pexpl— L [r/I(E)]1, (1)

where / is the localization length and D is the fractal di-
mension,’ several different theoretical values have been
given for the exponent d,. Lévy and Souillard predict'
dy,=d,/2>1, where d, describes the anomalous
diffusion of a (classical) random walker:® r2ecs?.
Their result implies that states on a fractal are superlo-
calized. Other arguments’® relate d, to the static ex-
ponent (. characterizing the (chemical) distance mea-
sured along the fractal.® Values of the localization ex-
ponent for a realization should lie in the interval
1=d,=<¢{. Averaging over all configurations would
then result in regular exponential behavior dy=172 Tt
has also been argued® that d,=¢, where {=d, — D de-
scribes the scaling with distance of the resistivity be-
tween two points.® The resistivity exponent is always
smaller than the chemical-length exponent.

In the present Letter we present a numerical study of
the localization properties of a quantum particle moving
on two-dimensional percolating networks. Predicted
values for the exponent d, on these structures resulting
from the diffusion and chemical-length exponent are
1.43 and 1.13, respectively.'>® The resistivity exponent
in two dimensions is smaller than unity: £=0.975.%
Two tight-binding models defined on these networks are
investigated. For both models we compute the energy

dependence of the localization length and show that lo-
calized states decay asymptotically with d,=1. For the
fracton model the power-law behavior for the localiza-
tion length at the lower band edge is found to be in
agreement with theoretical scaling arguments. Natural-
ly, the above results also hold for classical waves.

We consider “infinite” site-percolating clusters at the
percolation threshold p. =0.593 on L XL square lattices.
It is well known that such a structure exhibits fractal
characteristics on all length scales with a fractal dimen-
sion D =91/48.7 The two tight-binding Hamiltonians we
study are

H1=—V<Z)t,~j(c,-*cj+c;c,-), (2)
ij
N
H,=H\+V X z.cil¢i, (3)
i=1

where in H, the summation is over nearest neighbors, c,—*
(c;) creates (annihilates) a particle at site i, V is the in-
teraction constant (set equal to unity in the following),
t;;=0 or 1 depending on the absence or presence of a
nearest neighbor, and z; is the coordination number of
site i. The first Hamiltonian (2) corresponds to the
quantum percolation problem, which has been studied
extensively.”'? It describes the motion of a particle on
an AB alloy where the B sites are energetically forbidden
and can be regarded as an Anderson Hamiltonian in
which the site energies are chosen randomly to be 0 with
probability p, and oo with probability 1 —p. Therefore,
behavior similar to the Anderson model could be expect-
ed. At the classical threshold p. all quantum states
should be localized with a finite localization length de-
pending weakly on energy. This model can also be con-
sidered to possess correlated off-diagonal disorder (un-
correlated disorder corresponds to bond percolation).

The second Hamiltonian (3) has an additional random
diagonal part. The site energies are proportional the lo-
cal coordination number which obviously is a random
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quantity. This model can be mapped exactly onto a mas-
ter equation describing a classical random walker on per-
colating networks or onto the vibrational problem of such
structures: the fracton model.>'®!! It is for these classi-
cal problems that most work concerning fractal dynam-
ics has been done so far. The on- and off-diagonal disor-
der are highly correlated, so behavior different from (2)
can be expected for this model. The density of states at

the lower band edge is proportional to E@=22 \yhere
according to the Alexander-Orbach conjecture''™!® the

spectral or fracton dimensionality d is equal to 3. The
localized excitations in Eq. (3) are termed fractons.'!
The scaling model®>'! predicts that fractons are de-
scribed by one single length. The localization length
[(E) is then proportional to the wavelength A(E) and
scales accordingly, >!!

I(E)x E ~P, (4)

In contrast to the Anderson model the localization length
increases with decreasing energy. In fact, the ground
state with £ =0 is a uniform extended state. We have,
for the first time, verified the scaling prediction (4).

The localization behavior of both models is obtained
by solving the time-dependent Schrédinger equation us-
ing a numerical algorithm based on Trotter-Suzuki prod-
uct formulas, developed previously by one of us.'® The
numerical scheme is explicit and unconditionally stable,
guaranteeing that all errors remain bounded independent
of the time step. The global root-mean-square error on
the wave function is fourth order in the time step. This
algorithm permits an efficient and accurate computation
of the time development of wave packets on large lattices
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FIG. 1. Participation numbers (n =2) as a function of ener-

gy. Bars on the energy are determined by the parameter m. @,
averaged data from six runs on 100x 100 lattices with mean
size N =3400. m, single run on a 200x200 lattice with size
N =12064. Error bars not shown have size of symbols. Lines
are guides to the eye.
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(> 10* sites) and for times 7 sufficiently long to
discriminate localized behavior.'¢ Different types of ini-
tial wave packets were constructed in order to compute
either localization lengths or probability distributions.
Let us mention in passing that we have also computed '’
the density of states for both models and found agree-
ment with theory and previous calculations.

Our approach to study the energy dependence of
the localization length is to calculate inverse participa-
tion ratios'® (IPR) P, ' defined by 2, '(E)
=Y/ |¢(r;;E)| ", which are a measure of the effective
number of sites covered by a normalized eigenstate ¢.
For localized states the participation number 2,(E) goes
like /(E)?; the proportionality constant depends on the
precise shape of the wave function. We employ a tech-
nique developed by Weaire and Williams'® to compute
weighted band averages (P, ') in terms of time-averaged
quantities of a state ¥(z) chosen suitably random at
t =0. The energy interval contributing to IPR can be
varied by applying the projection operator'® [1— (H
—E0)%/E2.x]™ (Emax is an upper bound to the spec-
trum) to the initial wave function and adjusting E¢ and
m.

In Fig. | participation numbers (n=2) as a function
of energy are shown for the two models. If follows that
the participation numbers are much smaller than the lat-
tices sizes (100x 100 and 200x200) used; hence finite-
size effects are unimportant. For the quantum percola-
tion model we find a smooth behavior as a function of
energy. The results are an even function of energy. All
states are localized with a finite localization length
I=1-5. Calculations of the density of states have
shown that at the center of the band two inner tails are
present,”!” which explains why / decreases for | E | — 0.

The fracton model exhibits a power-law behavior at
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FIG. 2. (P, " for n=2 and n=3 as a function of the pro-
jection parameter m with Eo=0. Averaged data from three
runs on 200x% 200 lattices with mean size NV =12000. Lines are
fits to the data.
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the lower band edge in accordance with theory.>'! Us-
ing Eq. (4) we find for the fracton dimensionality

d=1.12%0.11. To improve on this result we have cal-
culated inverse participation ratios for n =2 and n =3 as
a function of the projection parameter m with E¢=0
which are presented in Fig. 2. Now only states with
E «<0.1 contribute to the IPR. Computations for
70%x70, 100x100, and 200x200 lattices show that con-
vergence as a function of lattice size has been achieved
for the m values covered. It can be shown analytically,'’
assuming Eq. (4) to be valid, that (P, ) em —dn—1)/4
for m>1. From the data we compute, respectively,

d=1.23%0.12 and d=1.38£0.12 for n=2 and n=3.
We conclude that indeed the localization length scales as
E —5/20'

We now turn to the problem of spatial decay of eigen-
states. In order to reduce information we study one-
dimensionally integrated probability distributions 7(x)
=3, |¥(x,p)|*and I(p) =%, | ¥(x,p) |? of wave pack-
ets ¥ from which the behavior of eigenstates is inferred.
At t =0 wave packets are constructed in the center of the
lattice either by putting the particle on one site (calcula-
tion of the Green’s function) or by diagonalizing a
19% 19 subsystem. In the former case eigenstates with
energies from the whole spectrum can contribute to the
wave packet. In the latter case the energy uncertainty as
measured by o =(H?) —(H)? can be reduced greatly,
so that participating eigenstates lie substantially in a
small energy interval. The time development is such that
initially wave packets expand rapidly. For time (in units
of 1/V) varying between 300 and 1000, diffusionlike be-
havior, /(¢)?cct, can be found.'” Eventually, the wave
packets localize and the measured localization lengths
(slowly) saturate to values well below system sizes (also
see Fig. 1). Below we present results from wave packets

1 —T T T T

e — t lati :
X 100 EN quantum percolation
X oF N, T fracton 3
=10 "¢ E
ST _E N :
1077k E
1074 N E
107 T 4
_6fF ]
0 E E
10—8 C L L 1 I
0 20 40 60 80 100

R

FIG. 3. Autocorrelation functions of probability distribu-
tions on 200x200 percolating clusters. Cy is normalized at
R =0.

calculated up to ¢t =10000.

In general the envelope of wave packets need not cor-
respond to the envelope of the contributing eigenstate.
This is certainly true for wave packets formed from ex-
tended states. For a spectrum with finite localization
lengths, as is the case of the quantum percolation model,
we argue that the asymptotic decay of wave packets is
similar to that of its constituents and is determined by
some typical large /. For the fracton model this argu-
ment only strictly holds for packets with components
that do not lie at the lower band edge. However, for the
times covered we have observed similar decay properties
for wave packets that have started on one site, and thus
also consist of eigenstates with E = 0.

For the two models and for both kinds of initial states
the probability distributions 7(x) and I(y) show two
basic structures. It follows that the majority of the prob-
ability is localized in “microclusters” which are attached
to the macroscopic cluster by a few bonds and which
contain the initial starting point(s). This feature has
also been demonstrated by recent calculations on the
fracton model.!>'® This structure can be regarded as
some kind of “random cavity” and essentially determines
the localization length as calculated above with IPR.
The second basic structure is the asymptotic behavior
showing exponential-like tails. For a particular
geometry these two structures do not change into anoth-
er continuously: The borders of the microscluster are
reflected in a pronounced decrease in the I values as a
function of x or y. Evidently, the tails are anisotropic
and may also show steps and small “plateaus” depending
on the local geometry.

To compute d, we first calculate the autocorrelation
function C;(R) of ¥ [I(x)+I(y)] to average out fluc-
tuations. If 7 behaves exponentially with localization
length I, Cj; goes like Rexp(— R/I) for large R. In Fig.
3 autocorrelation functions C;(R)/R are shown. The
solid and dashed curves correspond to the case that the
particle is put on one site at =0 for the quantum per-
colation and fracton model, respectively. The solid
(dashed) curve is computed from an average of ten (five)
runs. For the dotted curve one initial wave packet was
constructed by diagonalization with energy (H)=0.19
and energy uncertainty g =0.05 using the fracton mod-
el. The sharp decrease in probability is clearly seen in
this case. All curves show exponential-like behavior. A
best fit on the data for quantum percolation gives
d;=0.991+0.05. For the fracton model we find
dy,=1.00%0.04. Our results are not in agreement with
the predictions d,=d,,/2=1.43 and d,=¢. =1.13, and,
in fact, do not support the idea of superlocalization on
fractal lattices.
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