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The Feynman path-integral formalism is used to calculate the thermodynamic properties
of a one-dimensional (1D) spinless fermion model with nearest- and next-nearest-neighbor
interaction. The mapping of this 1D quantum model on a two-dimensional classical model
allows the use of a Monte Carlo method to calculate the properties of long chains. We
present results for typical values of the interaction parameters, density, and temperature.
We find that a finite bandwidth smears out the details of the classical ground-state configu-
rations discussed by Hubbard. If the density p;é%, we find that the static structure factor

and the static susceptibility display a maximum at 2k only when the next-nearest-neighbor

interaction is nonzero.

I. INTRODUCTION

Recently, Hubbard! derived the ground state of
the one-dimensional (1D) spinless fermion lattice
model
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in the zero-bandwidth limit  =0. He showed that
under certain restrictions on the interaction
V(l)=V), the ground state is periodic. The period
as well as the arrangement of the particles within
each period depend on the particle density
p=N/M. These ground-state configurations may
be regarded as generalized one-dimensional classical
Wigner lattices.! According to Hubbard, this clas-
sical model might offer a possible explanation for
the optical spectra of tetracyanoquinodimethane
(TCNQ) salts and the satellites in x-ray diffraction.
As pointed out by Hubbard, it is not clear whether
his conclusions remain valid if the finite bandwidth
is taken into account.

The purpose of this paper is to investigate the ef-
fect of a finite bandwidth in more detail. To
demonstrate that it is possible to calculate the prop-
erties of (1.1, we will assume that

V(3)=V(4)=--- =0. We will use the Monte Car-
lo method used previously by us? for the case
V(2)=V(3)= -+ =0 as a computational tool. In

contrast to Monte Carlo methods based on a local

27

decomposition of the Hamiltonian (1.1),>* it is very
simple to include these more-distant interactions in
our approach.

Detailed information about the arrangement of
the particles can be extracted from the static struc-
ture factor and the static susceptibility

S(q)=<pqp-—q)_8q,0(pq)2 ’ (1-2)
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where p, is the Fourier transformed density and 8
denotes the inverse temperature. The static struc-
ture factor measures the density fluctuations, and
the static susceptibility is the linear response of the
density to an external field. We will calculate S(q)
and X(q) for several sets of parameters f3, p, V (1),
and V(2). To get an idea of the behavior of S(q)
and X(q), it is instructive to consider special cases
for which analytic results are known. Because these
special cases are very useful for the interpretation of
the simulation data, we summarize those features
which are relevant to our discussion.
The most simple case is the free-fermion limit
t=£0, V(1)=V(2)=0. The zero-temperature results
for S(g) and X(q) are

S(q@)=p—(p—q/2m)0O2kr— |q |), (1.4)
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921 ©1983 The American Physical Society



922 HANS De RAEDT AND AD LAGENDIJK 27

where kp=mp denotes the Fermi wave vector.
Note that S(q)=p if 2kp <q <2(7m —kp), and that
the susceptibility (1.5) has a logarithmic divergency
at |q | =2kp. Treating the interacting system in
the Hartree-Fock approximation yields expressions
for S(q) and X(g) which have the same functional
dependence on kr and g as the free-fermion model
has. Except at low densities, the mean-field result
(1.4) is in qualitative disagreement with previous
simulation data.

The case V(1)50 and V(2)=0 has been studied
in great detail. The Jordan-Wigner transformation
is used to write the Hamiltonian (1.1) as a spin—%
Ising-Heisenberg chain. The Bethe ansatz and the
correspondence with this X-X-Z Hamiltonian can
then be exploited to analyze the ground state, the
low-lying excitations, and the thermodynamic func-
tions.>~7 At T =0, ps£5 the system is always
metallic,’ but for T =0, p=% there is a metal-
insulator transition at ¥ (1)=2¢ and there are long-
range density correlations unless V(1) <2¢.

The classical limit is obtained by putting ¢ =0.
The ground-state configurations for V(1)>2V(2)
and arbitrary p are given by Hubbard’s algorithm.!

For p:l, this model is equivalent to a 1D Ising

2
model in an external field. The ground state is
| 10101010 - - ) if V(1)>2V(2) or
| 11001100 - - ) if V(1)<2V(2). In the former
case S(g) and X(q) diverge at g =, while in the
latter divergencies are at ¢ =7 /2 and ¢ =37 /2. At
nonzero temperatures, the classical Monte Carlo

method can be used to study the model properties.®

II. COMPUTATION

As already mentioned in the Introduction, we will
apply a Monte Carlo method for fermion systems to
study the thermodynamics of the quantum model
(1.1). Here we will only discuss some aspects of our
method which are relevant to the interpretation of
the data. A more detailed description can be found
in Ref. 2.

The starting point in the formulation of a Monte
Carlo approach to quantum statistical mechanics is
the Trotter formula®

Z=Tre PH= lim Z, , (2.1a)
m— oo
Z,, =Tr(e ™oe ~™Miym (2.1b)

Here H, represents the free-fermion Hamiltonian,
H,=H —H,, and 7=/m. If we insert resolutions
of the identity between the exponential operators in

(2.1b), we obtain a discrete version of the Feynman
path integral of a fermion system.>!® For m fixed,
we may interpret Z,, in terms of a 2D classical
model, m playing the role of an extra dimension.
The actual value of m depends on 3, p, and the lat-
tice size M. The basic idea of the method is to cal-
culate the properties of the quasiclassical model de-
fined by (2.1b) and to study the convergence of the
results as a function of m.?

In this paper we present data for a ring of 32 sites
and temperatures down to 7 =0.5 (we put t =1).
The choice of a 32-site lattice is a compromise be-
tween computation time and possible values of p.
We now argue that for the interacting system
T =0.5 corresponds to low temperature. We
present our arguments for p=% because in this case
quantum fluctuations are the most important. As
pointed out in Ref. 2, the fermion properties are
calculated by simulating the boson model
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where the ellipsis stands for a hard-core potential.
This potential prevents two particles from occupy-
ing the same site. This Hamiltonian can be shown
to be equivalent to the X-X-Z spin-% model and is
also related to the large-U limit of the extended
Hubbard model.!! Thus we can compare the
ground-state energy of the spin model'? with the
thermal energy obtained from (2.2). In the Heisen-
berg limit, ¥ (1)=2¢ and V' (2)=0, we have
EP" —EP" 41— _0.38629, (2.3a)
whereas the simulation result for 3=2, m =32 is
E™"—= _0,398+0.009 . (2.3b)

Thus it is reasonable to assume that =2 corre-
sponds to low temperature.

We close this section by summarizing some
technical details of the simulation. To check our
program we first reproduced the exact results for
one, two, three, and four particles on eight sites for
several values of B, m, V(1), and V(2). In our
opinion this should always be done first. Any
Monte Carlo method that fails to pass this simple
but essential test cannot be relied upon. Because the
computation time increases as m increases, the op-
timum value of m is the minimum value of m for
which the difference between the exact results, and
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the calculated results are less than the statistical er-
rors.. In our final simulations, 1000mN single-
particle steps (1000 lattice sweeps) were discarded
before taking samples. Most of the data presented
here have been obtained by averaging three runs of
20000 samples each. The number of single-particle
steps between two successive samples is mM. Oc-
casionally, runs of 300000 samples have been made
to assure that there were no systematic errors. We
also checked that the choice of the start configura-
tion had a negligible effect on the results. The sta-
tistical errors are less than 5%. Comparing the
data with results of several runs for a ring of 64
sites, we conclude that finite-size effects are smaller
than the statistical errors. In general, the statistical
errors on the boson data are much smaller than that
on the fermion data. We observe that the main
source of statistical fluctuations comes from quanti-
ties related to the kinetic energy H,. This could be
expected because we are simulating a quantum-
mechanical model in real space instead of in
momentum space. The computation time strongly
depends on the number of different quantities one
wants to calculate. For instance, we were forced to
estimate X(gq) with less statistical precision than
S(q) (see the Appendix). The longest run (B=2,
M =32, m=32, p=7) took 3 h of CPU (central
processing unit) time on a Digital Equipment Cor-
poration VAX-11/780 computer.

III. RESULTS

We first demonstrate that our simulation data is
in agreement with the behavior expected in the spe-
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FIG. 1. Static structure factor at intermediate tem-
perature for several values of V(1). The crosses
represent the exact result of the free-fermion model.
Solid lines are guides for the eyes only.
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FIG. 2. Comparison between f3S(g) and X(q) in the
Heisenberg limit [V (1)=2, V(2)=0, p=%]. Solid lines
are guides for the eyes only.

cial case V(2)=0.>%!" In Fig. 1 we depict S(q) at
intermediate temperature in the case of a half-filled
band and V(2)=0. The maximum of S(g) grows
rapidly as V(1) becomes larger than 2, as can be in-
ferred from the equivalence with the X-X-Z
model.>® A comparison between S (q) and X(q) in
the “Heisenberg limit” [V (1)=2, V(2)=0, p=+]
is given in Fig. 2. It demonstrates that the Bogo-
liubov inequality X(q)<BS(q) is satisfied by our
approximate expression of X(g) derived in the Ap-
pendix. Because the total density p,.o is a con-
served quantity, we expect that lim,_(X(q)
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FIG. 3. Effect of the next-nearest-neighbor interaction
on S(q). The arrows indicate the peak position obtained
in the classical limit (z =0) for 2V (2)> V(1). Solid lines
are guides for the eyes only.
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FIG. 4. X(q) and S(q) for p=% for several values of

V(1). Note that the maxima in X(q) are more pro-
nounced. Solid lines are guides for the eyes only.

=plim,_,(S(q), and this is indeed the case in our
simulations. The effect of a nonzero next-nearest-
neighbor interaction ¥ (2) on the system in the
Heisenberg limit is shown in Fig. 3. First note that
we have set S=2, corresponding to low tempera-
ture. We see that the maximum of S(gq) decreases
rapidly as V(2) approaches the critical value of the
classical model [V(2)—>1], the shape of S(q)
remaining the same. If V(2)>V(1)/2, S(q)
broadens and it is difficult to determine the position
of the maximum. In the classical limit (¢ =0) and
at T=0, S(q) diverges at g =7 /2,37 /2 but the
hopping term H, strongly mixes all possible states,
leading to the broad structure observed in our simu-
lations.

Let us now see what happens if we change the
dens‘iaty p. In Fig. 4 we present BS(q) and X(q) for
p=;, V(2)=1, and several values of V(1). Again,
we see immediately that the Bogoliubov inequality
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FIG. 5. X(q) at low temperature for p=%. The

nonzero bandwidth suppresses the maximum at 2kp.
Solid lines are guides for the eyes only.
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FIG. 6. X(q) at low temperature and low density
(p= % ). Solid lines are guides for the eyes only.

is satisfied. The arrows indicate the position of the
wave vectors 2kp(=137/16) and 2(m —kp). It is
clear that the BS(q) and X(g) have a maximum at
these wave vectors and that the peaks are larger if
V(1) is greater than its Heisenberg model value
[V(1)=2]. It is also striking that the peak struc-
ture in X(gq) is more pronounced than in [3S(q).
Again, the hopping term H, wipes out most of the
details of the classical Wigner lattice. For
V(2) <V (1)/2, Hubbards algorithm for the ground
state! gives the configuration

| 10100101001010010100101001010100) .

For this configuration S(g) also peaks at
q =137 /32 and 197 /32.

If we go down in temperature, put ¥ (1)=3, and
vary V(2), we obtain the results presented in Fig. 5.
As before the arrows indicate the position of the
maxima expected on the basis of a free-fermion or
classical model. For p:% and V(2)=0 there is
some freedom for the particles to move without
feeling each other through the nearest-neighbor in-
teraction. This freedom seems to be enough to
move the maximum to ¢ =7. As soon as the next-
nearest-neighbor interaction is turned on, this free-
dom is lost and X(g) peaks in the neighborhood of
the expected g values. If V'(2) approaches the criti-
cal value V(2)=V(1)/2, the relative maxima de-
crease and X(q) smears out. This is consistent with
the behavior for p= (see Fig. 3).

Finally Fig. 6 shows what happens for p= 37—2 At
this low density, a single-particle description should
become useful and we might expect the Hartree-
Fock approximation to work well. Indeed, we find
maxima in X(g) at the correct positions, and S(q)
(which is not shown) is flat for 2kr <q <2(7m —kpg).
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IV. DISCUSSION

The spinless fermion Hamiltonian (1.1) is a sim-
ple model that might explain the 4kp scattering
in tetrathiofulvalene-tetracyanoquinodimethane
(TTF-TCNQ).'** Several different mechanisms to
explain the observed scattering have been suggest-
ed."1~19 All assume that there are strong repulsive
interactions between the electrons. Usually the dis-
cussion starts from the extended Hubbard model®!!

M
H=—t 2 2 (ai?,‘aai+l,a+ai*+l,aai,a)
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In the limit of large on-site interaction U the elec-
tronic motion can be described by the spinless fer-
mion model (1.1)."'2° Then 4k in the electron
model corresponds to 2kr in the spinless model
(1.1). Because the coupling to the lattice distortions
has not been taken into account, one can inter-
change particles and holes such that p~0.6 (which
is the value of the charge transfer in TTF-TCNQ) is
the same as p~0.4. In this case, our simulations
indicate that more-distant interactions are required
to have a maximum at 4kf in the spectral func-
tions. Thus the Wigner lattice picture might ex-
plain the presence of 4kf if more-distant interac-
tions are strong. However, the hopping term H,
redistributes the spectral weight in such a way that
the relative maxima are not large. A qualitative
measure of the effect of the nonzero bandwidth is
obtained by comparing our figures with those of
Ref. 8. We never observed the higher harmonics
found in classical Monte Carlo work.?

A more complete picture can be obtained by tak-
ing electron-phonon interactions into account be-
cause it is via the lattice distortions that the 4kf sa-
tellite is observed in x-ray scattering. If one makes
the assumption that the coupling is linear in the lat-
tice displacements, it is possible to eliminate the
phonons analytically. We obtain a fermion model
with retarded electron-electron interactions. From
the point of view of simulations this only requires

slight modifications in our program. Therefore, it
is possible to apply the quantum Monte Carlo
method to the electron-phonon model. We have
shown that the Monte Carlo approach to quantum
statistical mechanics can be useful to study model
properties which are not accessible by current
analytical methods.
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APPENDIX

Here we derive an approximate expression for the
static susceptibility

B
X p= fo dA{eMgTe—2p) (A1)

Replacing the integral by a sum and application of
the Trotter formula gives

m — — s
XABz—ZL 2 Tr(e THoe THI)M_J

m j=1

xdte ™o~ 1yip . (A2)

If A and B are diagonal in the representation that
diagonalizes the interaction H;, we find (in the no-
tation of Ref. 2)

m  ((sgn(P)A,)_; 1B )
i< {(sgn(P) ) ’

where 4;(B;) denote the quantity measured on the
jth chain. Using the cyclic permutation property of
the trace, we can also write

m.m ((sgn(P)AjTBj:))
22 Gae)

This quantity is expected to have statistical errors
1/V'm times smaller than (A3), but because of the
extra sum the computation time increases so drasti-
cally that we had to use (A3) in our simulation.

XABzT (A3)

(A4)
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XABz"—
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