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One-particle and two-particle correlation functions have been computed of particles hopping

on a chain by using simulation techniques. No indications for the long-time behavior « ¢

—1/4

have been found. Moreover, the two-particle correlation function does not decay to zero, ow-
ing to the nonergodicity of the hopping model with excluded volume. In a magnetic-resonance
experiment this would appear as a nonzero averaged dipolar interaction, if the most important
magnetic interaction would be the dipole-dipole coupling between the hopping particles. The
magnetic-resonance spectrum of such a system strongly resembles that of a one-dimensional

rigid-lattice spectrum.

I. INTRODUCTION

One-dimensional (1D) dynamics are of much
current interest.! The occurrence of slow long-time
tails seems to be a feature of almost any 1D model.
A hydrodynamic argument gives a t~/? behavior for
a local correlation obeying a 1D diffusion equation.
Even in 1D disordered or random systems the ¢~1/2
decay manifests itself.>> Richards showed that in the
dynamics of particles on a chain correlation functions
are involved which, due to excluded-volume effects,
decay even slower than ™24 Computer simulations
demonstrated that the mean-square displacement is
o« 112, rather than « 1, indicating that no self-diffusion
coefficient can be defined for this model. This prop-
erty of the mean-square displacement was proven
subsequently by describing the local concentration
fluctuation in the neighborhood of a particle in terms
of the deviation of the location of this particle from a
configuration of regular spaced particles.” This proof
depends in a crucial way on the fact that the particles
cannot pass each other in the 1D hopping problem.
In other words it leans on the nonergodicity of the
model. The absence of a self-diffusion coefficient is
a well-known property of low-dimensional liquids.®

Fedders calculated a two-particle correlation of the
1D hopping model.” In the frequency domain he
found a low-frequency behavior « w™/*, pointing to a
t~14 tail. The same long-time behavior was suggest-
ed by Richards for a one-particle corrrelation func-
tion.* We have sampled in a computer simulation of
this model one- and two-particle correlation func-
tions. No evidence for a /% behavior was found.
We will present our results in the next section. We
will also discuss the consequences of our results for
the magnetic resonance properties of the 1D hopping
model.

II. CORRELATION FUNCTIONS

We will start with the two-particle correlation func-
tions, because they show the most spectacular effects.
The two-particle correlation function we will discuss
is C(1),

C(H=N"'3 3 (ph(O)phs1 (0)ps(Dppsa (D) , (1)

i#ja,B

in which the stochastic operator pl, is defined to van-
ish unless particle i occupies site «, in which case the
operator equals unity. N is the number of particles
and M the number of sites. The occupation density
or simply the density p=N/M. C(f) measures the
probability that two particles occupy neighboring sites
at time ¢ given they were neighbors at time 0. It is
straightforward to show that C(0) =p. To calculate
the ¢t = oo limit of a correlation function one generally
assumes that no correlations are left, and that decou-
pling is appropriate. Adopting this decoupling pro-
cedure, and using {p’pL+ ) =1/M?, one finds that
C(t — ) = N/M?, which can be neglected in the
thermodynamic limit. Our computer simulations,
however, indicate that C(t — o) = p?, which certain-
ly cannot be neglected. The discrepancy between the
two results can be understood readily. The particles
cannot pass each other, so the sequence of the parti-
cles is a constant of the motion. In decoupling the
correlation function and averaging the two parts indi-
vidually, one averages over all possible orders of the
particles, which is incorrect. This difficulty becomes
very clear if we label the particles in such a way that
particle i is situated in between particle i —1 and

i +1. In this notation C(#) can be written as

C(O=N"3 3 (ph(0)pii (Ops (Dpst () . ()
i apf
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Decoupling at infinite time is permitted now, because
in doing so we do not alter the sequence of the parti-
cles any longer. The order of the particle remains
constant, and is determined by the initial conditions.
Using (pip'th ) =N/M? we find C(t — ) =p?, in
agreement with the simulations. If we would like to
characterize the long-time dependence of C (1), we
would have to subtract the infinite time limit p?.

An interesting one-particle correlation is 4 (9,

A =N 3 (p(0)ph (D) . ©)

According to Richards 4 (t — o) « r~/4, This depen-
dence was inferred from the #'/2 behavior of the
mean-square displacement and the Gaussian proba-
bility distribution function for the probability that a
particle has traveled a certain distance.*

We have analyzed 4 () and C(#) — p? with the
help of simulation experiments. The results for both
correlations have been fitted to

E(TH™ , 4

I being the hopping rate. We hasten to add that the
simulations can never prove expression (4). Howev-
er, if one assumes expression (4) to be valid, simula-
tions can give reliable estimates for both y and E. In
Table I we have presented the results for three densi-

. 11 1 . .
ties: p=-+,7, and 3. The number of sites used in

the calculations was 2500 and the results presented in
the table are the average of 1000 different initial con-
ditions. The longest times in the experiment were
70/T. We have also monitored different densities
than those displayed in Table I, but the results of
those simulations did not differ in an essential way
from the results of Table I. It is clear that none of
the correlations show a /~/* dependence. One could
argue that one should sample correlation functions at
still longer times to find their asymptotic time depen-

TABLE 1. Long-time dependence of correlation functions.

Correlation

function p E y
A() + 0.3040.02 0.39+0.01
A0 - 0.34+0.02 0.36+0.01
10 5 0.55+0.02 0.33£0.01
c() —p? + 0.04+0.02 0.66+0.09
C()—p? - 0.10+0.03 0.82+0.07
c()—p? = 0.12+0.02 0.8740.05
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FIG. 1. Particle and site correlation functions for a 1D
hopping model. @3P(#) represents the density correlation
function for a three-dimensional hopping model. See Egs.
(2) and (3) for the definition of the 1D correlation func-
tions.

dence. However, in the first place the normalized
density correlation function d(¢), defined by

d(0 =3 (pL(0)ps (D) —p*|(p—pH)7",
a,B

already displayed its 12 dependence very clearly on

the time scale of the experiment, and in the second
place the asymptotic time dependence would only be
of academic interest if one should extend the time
scale dramatically. Since in any physical experiment
short-time corrections would be very important. In
Fig. 1 the single-particle correlation function 4 (¢)
and the two-particle correlation function C(f) are
shown for a half-occupied chain (p= %). To com-
pare these 1D particle correlation functions with a 1D
site correlation function in Fig. 1 the density correla-
tion function d(#) is also displayed. The rather fast
decay of C (1) to its infinite-time limit p? is clear. To
illustrate the inherent ‘‘slow’’ character of all 1D
correlation functions the density correlation function
of a 3D (cubic) hopping model is included in Fig. 1.

III. MAGNETIC RESONANCE

If the hopping particles would possess a magnetic
moment, magnetic-resonance experiments could
probe the correlation functions we discussed in the
previous section. In a resonance experiment the total
Hamiltonian can be partitioned according to

X =3z +3in +IHlattice » (5)

in which 3¢z is the Zeeman Hamiltonian, 3Ciaice
represents the hopping model, and 3C;,, stands for the
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interaction between lattice and subsystem. The
standard procedure to treat Hamiltonian (5) is the
weak-coupling approximation (WCA).® An interest-
ing aspect of 1D motion, however, is the breakdown
of the WCA in describing line shapes and relaxation
times. The slow long-time dependence of correlation
functions in 1D induces divergencies in the WCA.
Line-shape analysis of magnetic resonance experi-
ments in 1D paramagnets has given ample evidence
for the failure of the WCA.%!° The spin-lattice relax-
ation time still can be interpreted within the weak-
coupling scheme, but should display a characteristic
dependence on the Larmor frequency w; connected
with the long-time behavior of the local correlation
function.

If 3C;,, is a site-particle interaction the relevant
correlation function for magnetic resonance will be
A (#). The long-time tail of 4 (#) excludes the WCA
as a possible description for the magnetic resonance
experiments, and more sophisticated approaches, like
mode-mode coupling, should be chosen.

If 3C;n: would be a particle-particle interaction, viz.,
the dipole-dipole interaction, the relevant correlation
function for magnetic resonance would be C(7). The
nonvanishing of C(#) for long times introduces an
interesting complication to the problem. Rather than
having to study a slow decay of the local correlation
of the resonance problem, C (1), we are faced with a
local correlation decaying to a constant value. The
philosophy of the WCA, and essentially of any form
of time-dependent perturbation theory, is that the in-
teraction term should represent the fluctuating part.
A constant term in JC;,; should be transferred to the
subsystem Hamiltonian. An expansion in the new
interaction Hamiltonian will be free from divergen-
cies due to persistent correlations. Divergencies due
to slow decay should be renormalized, but that is no
principal problem. The new subsystem Hamiltonian
reads, restricting the dipolar interaction to nearest
neighbors only,

B =36 +(p Taclfs™) | ©)

where 3C4, represents the dipolar interaction between
particles i and j. The new partitioning of 3C can be
interpreted as having subtracted from the dipolar in-
teraction the part proportional to (r,j“3), and having
added this invariant part to the Zeeman interaction.
The invariant part (r; 3) vanishes in the higher-
dimensional lattices. The new partitioning of the
Hamiltonian seems to reflect all the standard proper-
ties of a standard motional-narrowing Hamiltonian.
This is deceptive, because our subsystem Hamiltoni-
an has been modified into an interacting many-body
system. That is to say without any coupling at all to
the lattice the magnetic resonance spectrum would al-
ready have finite linewidths of the order of pwp, wp

being a typical dipolar frequency. Whatever the in-
fluence of the remaining interactions will be, pwp
sets a lower limit to the linewidth. All the other in-
teractions, the broadening mode (3C;,), and the nar-
rowing mode (3C.uice) can be neglected if they give
contributions much smaller than pwp. Estimates of
the additional ‘‘narrowed contributions’’ show that
they are at least an order of magnitude smaller than
the intrinsic dipolar broadening. For instance, as-
suming a ¢~ decay for C(#) —p?, using a hopping
rate of 108 Hz and a dipolar broadening of 10* Hz,
we find the narrowed contributions to be smaller
than pwp by a factor of 10 when p=0.1, and by a
factor of 20 when p=0.5. So one will hardly ever
encounter a situation where the narrowing motion is
the dominating factor determining the linewidth.
The many-body character of the subsystem Hamil-
tonian will influence the spin-lattice relaxation. The
contribution of the interaction term is essential be-
cause it is needed for the exchange of energy with
the lattice. The condition for the observation of re-
laxation times o w} ™ is pwp << w; << TI. The con-
dition w; << T originates from the fact that only the
long-time behavior of the correlation functions is
« t77, and short-time contributions would spoil the
scaling behavior with frequency of the relaxation
times. The condition pwp << w; expresses the fact
that the magnetization should be damped by the in-
teraction term, and not in the many-body subsystem
itself. For realistic values of hopping rates and dipo-
lar interaction these conditions do not leave much
space in the frequency domain to observe the charac-
teristic frequency behavior of the relaxation rates.
Our analysis is in disagreement with Fedders’ cal-
culation of the relaxation rates. Fedders apparently
did not encounter the fact that C (¢ — oo) is finite.’
Fedders’ calculation is of the mode-coupling form.
Reiter has pointed out that mode-coupling theories
can be qualitatively incorrect if a correlation does not
decay to zero due to coupling to a conserved vari-
able.!! More specific in this case, Fedders calculated
the moments of the correlation function to leading
order in p. We will give a simple example to show
that such an approach will never give the constant
value at infinite time if this constant is of lower order
in p than the value of the correlation function at
t=0. For instance, summing moments of the func-
tion (1—p)e~!!l +p to leading order in p will result
in the function e~*!!l. In this way one has lost all in-
formation about the infinite-time limit.

IV. SUMMARY

We have shown that the magnetic resonance of
particles hopping on a chain with excluded volume
hardly exhibits any features of motional narrowing if
the relaxation is mediated by the dipolar interaction
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between the hopping particles. This is due to the
nonergodicity of the model. The average distance
between two particles remains finite in this model.
This is reflected in the fact that the two-particle
correlation function C (1), defined in Eq. (1), does
not decay to zero, but tends to p2 for long times.
The single-particle correlation 4 (¢), defined in Eq.
(3), is shown to decay with an exponent of about
—0.36, which is faster than the previous estimate of
—0.25.* The results of our computer simulations for
C (1) — p? point to exponents in the neighborhood of

—0.85, which is even faster than the decay of the
density correlation function.
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