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In an ESR investigation of the 300-K second-order structural phase transition in rhom-
bohedral Alurg(Cl04); and Gaurg(ClO,4); the critical exponent B has been obtained from the
temperature dependence of the ESR parameter £ below 7,.. The change in 8 indicates a simul-
taneous lattice and order-parameter dimensionality crossover at T=T7,—50 K from d =2, n =2
to three-dimensional behavior. The two-dimensional behavior is associated with the occurrence
of layers in the structure containing equivalent ions with a uniform phase of the local order
parameter. In the d =3 region we suggest a six-dimensional order parameter with wave vectors

contained in the star of {g,} = {(2020)} (hexagonal setting) with §=% near T,.

I. INTRODUCTION

It is well known' that the exponents describing the
critical behavior at phase transitions depend on the
lattice dimensionality d, the dimensionality of the
order parameter n, and on the symmetry of the in-
teractions. For universality class with d =2 n =2
various examples are known for magnetic systems.?
However, few systems are mentioned in the literature
displaying d =2 n =2 behavior that undergo nonmag-
netic structural transitions with short-range interac-
tions.> It is the purpose of the present paper to
show on the basis of the results of electron spin reso-
nance (ESR) experiments* that Alurs(ClO4); and
Gaurg(ClO,4); belong to this class [ur =urea
=CO(NH;),].

The structure of rhombohedral Alurg(ClO4); and
Gaurg(ClO,); consists of two sets of columns parallel
to the trigonal axis C; containing ClO4 groups and
Murg groups, respectively (M = Al,Ga). Each ClO,
group can take on two positions (Fig. 1). The tem-
perature variation of the ESR results can be formally
envisaged as originating from the succession of two
phase transitions: D{;(R3¢) — S¢ (R3)— S, (P1).
The former transition would take place at some tem-
perature above the decomposition temperature of the
crystals, while the latter one occurs at approximately
300 K. From the ESR results it is not possible to
discriminate against predominantly order-disorder or
displacive character of the transitions. However it is
likely that the high-temperature transition is associat-
ed with the onset of ordering in the ClO, groups,
which is linearly coupled to a Gy = (000) mode of
A (I'y) symmetry of the Murg units. The 300-K
transition on the other hand is associated with the
condensation of a {qy} = {(%OO)(O%O)(-}—;—O)) mode

of X, symmetry (G expressed in 27 X reciprocal-

lattice units for a hexagonal setting®). Symmetry and
q values follow directly from a Landau-type argu-
ment. The high-temperature transition results in two
domains in the S¢ phase. Due to the 300-K transi-
tion each of these domains is again split into three
domains, each corresponding to one of the three @
values. At the 300-K transition the volume of the
unit cell is doubled.®

II. EXPERIMENTAL RESULTS

The ESR experiments have been performed* on
CrlllI doped single crystals, and are interpreted in
terms of a spin Hamiltonian’

H=gBH-S+D(S2-L) +E(s2-5))

The parameters D and E are related to the com-
ponents D;; of the EFG (electric field gradient) ten-
sor at the metal ion site: D « (2D,, — D, — D,,) and
E « (D, —D,,). In this paper we focus on the tem-
perature dependence of E.

Since the temperature dependence of £ near
T. is due to the local order parameter ¢,
= Eq exp(iq - 'r“.)qS? we can expand E in terms of
@, the order of the leading term in the expansion
being determined by symmetry considerations. The
300-K transition results from the condensation of an
X, zone-boundary mode with {g}= '(%00)}. In the
S¢ phase the metal ion site symmetry is C3. The lo-
cal order parameter ¢; and E transform according to
the same representation £(I';). Thus we obtain
E=e($)).

A preliminary interpretation® of the £ (T) data
yielded B 2% for T— T,. A more careful examina-

tion results in 8=10.34(+0.04, —0.01) near 7, with
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FIG. 1. View along hexagonal z axis of an M urg unit and nearby CIO,4 groups. St)lid and dashed lines (Cl1O,4 groups) and
stars and dots (hydrogen bonds) correspond to the two completely ordered states of the ClO, groups in the.S62 phase. Z coordi-
nates of some of the atoms are included (height of the hexagonal unit cell=100). The position of the next Murg unit in the
column is obtained by inversion with respect to the center at z = 50.
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FIG. 2. Crossover behavior in the value of the critical exponent 8 from the temperature dependence of the ESR parameter
E. Left- and right-hand scales correspond to M = Al and M = Ga, respectively.
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T.=298.0 +0.5 K for Alurg(ClO,); and
T.=301.5+0.5 K for Gaurg(ClO4);. From Fig. 2 it
is clear that there exists another region at lower tem-
peratures with 8=0.22 +0.02. Crossover between
the two regions takes place within a narrow tempera-
ture range at Ine=—1.8 (7. — T =50 K). The devi-
ation of B from the mean field value B=—;— persists
down to € =0.6 indicating a large critical temperature
region.

III. DISCUSSION

A. Lattice dimensionality crossover

From the Ginzburg criterion’ concerning the extent
of the critical temperature region, a crossover from
lower dimensionality to d =3 in Alurg(ClO,4); and
Gaurg(ClO,4); seems very probable. This criterion
relates the relative temperature difference €. at which
critical effects become non-negligible to the zero tem-
perature correlation length £,. Analyzing the depen-
dence of €, on d one finds €.(d =2) >> e¢.(d =3).
The large critical temperature region observed in the
present systems thus is a strong indication for low di-
mensional critical behavior.

It has previously® been shown that the experimen-
tal data can also be interpreted in terms of
E « (T, T)® with 8=+ near T, and E « (Ty— T)*
with Ty= T, +200 K and ﬂ'=% (mean field
behavior) further away from 7,. However, apart
from the extent of the critical region cited above
there are other reasons which favor a crossover
d=2—d=3.

(i) The crossover from 8=0.22 to 8=10.34 strong-
ly suggest crossover from d =2 n=2to d=3. For
comparison, from Ref. 1 one obtains in the d =2
n =2 region for short-range interaction 8 =0.23.

(i) A fit to classical behavior can only be obtained
by invoking an improbably large difference Ty— T,.

(iii) For increasing values of T, — T the present
systems exhibit negative values for (¢,5 — ¢.) where
¢ = ¢doe”?*. This is contrary to the case of SrTiO;
where outside the 8= % region classical behavior is

well established.!®

(iv) The decrease in the slope of the InE — Ine
plot for increasing Ine indicates a smaller value of B8
for increasing values of 7. — 7. These considerations
provide a firm basis for the interpretation of the ex-
perimental results in terms of a crossover from d =2
n =2 to d =3 behavior.

The two-dimensional-behavior in the present sys-
tems can be explained by referring to the change of
the translational symmetry at the 300-K transition.
Due to the antiferrodistortive nature of the phase
transition, the local order parameter has opposite

phase £or equivalent ions separated by
T=mb+nT+p7 (m+n+p=odd) for domains or
clusters with q, = (0—;%),, T=ma+nT+p7 for
= (%0%),, and T=ma+nb4+pT7 for

;= (%%0), (see Fig. 3). The corresponding vectors
in a hexagonal setting are @, = (0%0), 0= %%0),
and 4= (%00). For all other equivalent ions the lo-

cal order parameter has the same phase. The result
of these phase relations is the occurrence of layers
containing ions moving with uniform phase. For in-
stance, Fig. 4 (and Fig. 3) clearly demonstrates the
layered structure for @, = (%-;—O) domains. Open and
full circles refer to ions with opposite phase for the
local order parameter. For simplicity only the metal
ions are indicated in the figure. The layers are paral-
lel to the (112) plane for q, (Fig. 4), and parallel to
(012) for @ and (102) for qs.

From the occurrence of these layers we expect for
T — T, a softening of the appropriate phonon modes
extending over a wide range in q along
{d,) = {+ (£02¢) + (£22¢) + (0£2¢)) (each value
corresponding with a particular layer direction). It
would be of interest to see if this could be observed
directly from the dynamic structure factor S (G, w) in
quasielastic x-ray or neutron scattering.

It is noteworthy that {G,} contains both G = (000)
(wave vector of the high-temperature transition) and
Gy} = {(500) (050) (550} (300K transition).
Thus one may envisage a situation where the initial
condensation of the I'-point mode is followed by the
softening of the X-point mode. A similar situation is
encountered in various other systems displaying a
strong anisotropy in the fluctuations [for instance
NH;Br (Ref. 11) and KMnF; (Ref. 12)].

FIG. 3. Definition of the rhombohedral unit cell. Open
and full circles refer to metal ions with opposite phase of the
local order parameter.



23 ELECTRON SPIN RESONANCE OBSERVATION OF CROSSOVER . . . 3467

-~ ) —
>

- -

FIG. 4. Occurrence of a layered structure as a consequence of the phase relations between the local order parameters of
equivalent ions. The figure includes a set of 2 X 2 hexagonal cells. For simplicity only metal ions have been indicated, open and
full circles referring to ions moving with opposite phase. Layer orientation for other domains is obtained by rotating about Cy

over +120°.

B. Order parameter dimensionality

The order parameter dimensionality is obtained!?
by multiplying the number of inequivalent vectors in
the star of § by the dimensionality of the small
representations. For rhombohedral systems all § ex-
cept (000) have small representations that are one di-
mensional. Thus n equals the number of vectors in
the star.

The experimental data on 8 lead unambiguously to
n =2 in the d =2 region, while they are not con-
clusive with respect to n in the d =3 region. Elastic
x-ray scattering in the low-temperature phase
shows superlattice reflections® with {q}
= {(%00)(0-;-0)(%%0)]. These values of G
satisfy the symmetry conditions of a Lifshitz ‘‘central
point,”’ ensuring by symmetry a minimum in the free
energy at T,.'* Thus one arrives at n =3 in the d =3
region.

At this point we notice that the lattice dimensional-
ity crossover can be accompanied by a simultaneous
reduction of the value of n [cf. NbO, (Ref. 3)]. This
is because the onset of large anisotropy in the corre-
lations singles out one or more of the possible q.

For instance, out of the three vectors mentioned
above, strong correlations within (112) planes
correspond to G = (%%0) fluctuations. In this way

the complete system can be described by three sets of
independent systems, each corresponding with strong
correlations within layers parallel to one of the planes
(102), (112), (012).

The observation of n =2 away from 7. leads to the
following conclusions:

(i) The low value of # calls for a decoupling of the
system into three independent systems as described
above.

(ii) To obtain n =2 in each of these subsytems,

the total » should be six in the case of three-
dimensional correlations, i.e., the star of ¢ should
contain six vectors. B

This leads to wave vectors {@,}) = {+ (£02¢)
+ (£22¢) + (0£2¢)) with { = 5. These wave
vectors do not possess a special symmetry in
the reciprocal lattice that precludes the occurrence
of a gradient term ¢V ¢ in the free energy as
is required by the Lifshitz condition for the oc-
currence of a continuous phase transition. Thus, if
the transformation keeps locked on a wave vector
with ¢ ;:f-;— up to T =T,, the necessary occurrence of
a minimum in the free energy at 7, for {qG;} must be
accidental: the value Gy(7) which corresponds to a
minimum in the free energy F (G ) changes with
temperature, passing through {q;} at 7=T7,. The oc-
currence of such an ‘‘accidental’” minimum in F ()
would mean that the critical exponents are those of
the n =6 d =3 model for T near 7.. From the posi-
tion of the x-ray superlattice reflections it seems dif-
ficult to exclude the possibility of a small difference
8=§——% different from zero [cf. the comparison of
neutron and x-ray data for NbO, (Ref. 15)]. In that
case the 300-K transition would result in an incom-
mensurate phase.

Another possibility is that the critical wave vector
is {Q,} with { initially only slightly different from %
for larger values of 7, — T, while {-'% for T —T..
In this description n changes from n =6 to n =3
somewhere in the d =3 region. This crossover will
not be detectable in the critical exponent 8 as the
theoretical values for both models are identical's:
B=0.38 for both n=6d=3 and n=3d=3 [to
O (€?)]. The minimum in F(§) now results from
the symmetry of the X point in the Brillouin zone.

When the latter point of view is adopted we arrive
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at the following conclusions: In the d =2 region
there exist three indepenent n =2 subsystems with
g =[x (2020)}; £ {(£220)); + {(0£2¢)}, correspond-
ing to strong correlations in (102); (112); (012)
planes, respectively. Together with the lattice dimen-
sionality crossover d =2—d =3 (at T=T7,—50 K)
the three n =2 systems couple to an n =6 system
due to the growing importance of the interlayer
correlations. Finally the order parameter dimen-
sionality shifts from n =6 to n =3 near T, as {—'—;-.
Recently it has been shown by Bak!” for the case of
Hg;_sAsFg (n =4) that a stable fixed point of the
LGW (Landau-Ginzburg-Wilson) Hamiltonian as
determined in renormalization-group calculations may
not be accessible, depending on whether below T, a
“‘single-q”” or a ‘‘multiple-§”’ structure is realized.
Similar reasoning for the present systems leads to the
conclusion that the unique stable fixed point for
n =6 is only ‘accessible if the low-temperature phase

is characterized by a ‘‘triple-q"’ structure where <l>?(

is the same for each value in {q,}. However, from

the experimental observation of six domains below

T. where only one of the order parameters by is
¢

nonzero in each domain it follows that the transition
is either first order, or that there is an additional
crossover to lower n. The observation that the tran-
sition is second order within experimental accuracy
favors the latter possibility, in accordance with the
conclusions concerning crossover reached above.
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