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Two-level system with nonlinear coupling
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We present a numerical study of a two-level system coupled quadratically to a harmonic oscilla-
tor. The possibility of an instability as a function of the coupling strength is studied. The model
might be relevant for the behavior of quadratically coupled polarons in solids. In the adiabatic limit
the thermodynamical properties of the system can be calculated exactly over the whole coupling
range. In addition, we discuss computations based on a discrete path-integral representation for the
partition function. In the adiabatic limit there is a transition as a function of the coupling strength
from the weak-coupling regime to a state where the oscillator mode is soft.

I. INTRODUCTION

Two-level systems are often used to describe in some
approximate way the behavior of several models in solid-
state physics. Many systems with linear coupling have
been studied this way, e.g., the molecular polaron'— and
impurities embedded in a crystal lattice.>~’ In those
models the description is restricted to the two lowest ener-
gy levels of the unperturbed system. Such an approxima-
tion is adequate if the higher levels are not thermally oc-
cupied.

In this paper we study the model Hamiltonian

H=—ho"+p>/2M ++MQ*x?>+Ax%0*, (1.1)
where o* are the Pauli spin-+ matrices. The coupling
constant A, which we choose to be nonnegative, has to be
smaller than or equal to %M Q?, so that the Hamiltonian
is bounded from below. The case of negative and positive
A are equivalent, since they can be mapped onto one
another. This model may represent for instance a molecu-
lar system in which one electron can be on either of two
sites on a molecule and where the electron is coupled to a
harmonic rotational mode. Then the first factor in (1.1)
describes the (free) hopping motion of the electron in
terms of pseudospin operators. The next two terms
represent a harmonic degree of freedom and the last part
of the Hamiltonian is a quadratic coupling.

A quadratic coupling is not very common and would
apply in those cases where the linear term vanishes be-
cause of symmetry or where the linear term is very small.
Gutfreund and Weger have suggested® that the quadratic
coupling of electrons to librons in tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ) type compounds
is important in understanding the transport properties.
The coupling they propose is more complicated than ours.
We do not know yet of a physical realization where the
quadratic coupling has the form as in (1.1). We will study
the Hamiltonian (1.1) on its merits, being a simple but
nontrivial quantum model. In particular, we will address
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the question of a possible phase transition as a function of
the coupling strength.

The possibility of a transition in (1.1) will be studied in
the adiabatic limit (M — o, MQ? finite). Taking this
limit is equivalent to neglecting the kinetic energy of the
oscillator. The energy scale of the unperturbed two-level
system is consequently taken to be much larger than the
one of the harmonic degree of freedom. We expect that
the adiabatic limit shows qualitatively the same behavior
as the nonadiabatic limit. An advantage of working in
the adiabatic limit is that now all thermodynamical prop-
erties can be computed numerically to any desired pre-
cision for every coupling parameter A and temperature 7T.

If there is no coupling the spin will oscillate with fre-
quency 2h between the states |s,=++) and
| s,=—=). In the weak-coupling range the periodic
motion still persists. In the corresponding linear models
there is a ground-state phase transition at a certain critical
value of the coupling strength.!=> The effective flipping
rate vanishes, so that flipping of the spin does not occur.
The system is effectively confined to one of the s, states.
In polaron theory this is called a self-trapped state.!—>

We will perform exact numerical calculations and, in
addition, we will apply a discrete path-integral method to
our model. Results from calculations based on a discrete
path-integral representation of the partition function will
be compared with the exact results. In this way we will
have a nontrivial check on the path-integral method. This
is very useful because this method is applied to many sys-
tems whose exact solution cannot be obtained.

In general, the use of path integrals is ideally suited to
study systems containing a small number of particles cou-
pled to a bath of phonons. Since the phonon variables ap-
pear quadratically in the Hamiltonian, they can be elim-
inated analytically in a path-integral formulation.>!® In
this way the number of variables can be reduced greatly.
Furthermore, this representation is very appropriate for
numerical evaluation and allows the computation of all
model properties over the whole coupling range in a uni-
fied manner. Going beyond the adiabatic limit we are
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only able to use this approach.

In Sec. II we give some analytical results and we derive
the discrete path-integral expressions for the partition
function and some observable quantities. In Sec. III we
present exact numerical results and results obtained from
calculations based on discrete path-integrals. The con-
clusions drawn can be found in Sec. IV.

II. THEORY

A. T=0

First we discuss the case for temperature 7 =0. In the
adiabatic limit the spin ground-state properties are readily
calculated. Exact diagonalization of the Hamiltonian
with respect to the spin coordinates and minimalization of
the energy with respect to the x variable gives:

Ey=—h, (2.1a)

[0)=|sy=+7 ,x=0) . (2.1b)
The magnetization in the z direction is

(o) =0. (2.2)

Equations (2.1) and (2.2) are independent of the coupling
parameter A. We conclude that this quadratic model does
not exhibit a ground-state phase transition as a function
of A.

B. T+0

To study the adiabatic limit for 7540 we perform exact
numerical calculations and computations based on a
path-integral formulation of (1.1). To perform the former
type of calculations we first eliminate analytically the spin
degree of freedom, and get the following expression for
the partition function:

Z= [ dx{exp(—B+MQ*x2)2cosh[Bh>+1%x4)!2]}
(2.3)

where we have neglected the kinetic energy of the oscilla-
tor. Similar expressions can be obtained for the energy,
the specific heat, the magnetization in the z direction, etc.
These thermodynamical quantities can now be computed
numerically for arbitrary model parameters. This is a
nice feature of the adiabatic limit.

The derivatives of the free energy with respect to the
coupling A are of special interest. The first derivative of
the free energy is the expectation value of the coupling
term of the Hamiltonian:

3F /L= (x%07%) . (2.4)

The second derivative is a measure for the fluctuation of
the coupling energy. A discontinuity in 8F/dA or
9%F /3A? as a function of A would mean that the free ener-
gy is not an analytical function of A and, in analogy with
the theory of phase transitions, this indicates that the sys-
tem undergoes a transition.

To derive a discrete path-integral representation for the
partition function we use Trotter’s formula'!*!? and obtain

Z=Tr(e P!)= lim Z, , (2.5a)
m— oo
Z,, =Tr(e e ™aym (2.5b)

where 7=/m and where, in the adiabatic limit, H; and
H, represent the first and last two terms of (1.1), respec-
tively. From an operational point of view the adiabatic
limit is equivalent to neglecting the kinetic energy of the
oscillator. Inserting complete sets of states (for the spin
we use the eigenstates of ¢7) in (2.5) and working out all
resulting matrix elements, we find

Z,, =[~ sinh(27h)]""? f dx 3 exp(—S), (2.6a)
{s;}
m
S= 3 [—Js;s; 1 +xATMQ*+As;)] . (2.6b)
i=1
Here we used the identities
(s;|e™ |s; o) =[+ sinh(27h)]* 2 exp(Js;s; 1)
(2.7a)
J =+ Incoth(rh) . (2.7b)

Now the boson variable can be eliminated analytically

from (2.6) to obtain for the mth approximant of the spin
s . S /. .

partition function Z,, (in the following we shall factor out

the boson part of the partition function and only calculate

the spin properties):

—1/2 m
exp |J D sisiqy

i=1

m
1+4C 3 s;/m

i=1

,  (2.8)

Zy=13

{s;}

where C=2A/MQ? (range of C: 0<C <1). Equation
(2.8) resembles the partition function of an Ising system.
However, the spin-spin interaction constant J is size (m)
dependent. From (2.6) and (2.8) we see that the system
tends to become polarized in the negative z direction.

From (2.8) it is straightforward to derive the mth ap-
proximants for the related thermodynamical quantities.
For example, the expressions for the spin energy ES and
the first derivative of the free energy with respect to the
normalized coupling constant C are

ES=—n coth(ZThH—h<Es,~s,~+1/m>/sinh(27'h) ,

(2.9a)

> si/m

1+C 3 s;./m
i

d

3C (2.9b)

<F,i>=%/3—‘<

In practice one can never take the limit m — « (7—0),
so taking a finite value for m constitutes the only approxi-
mation being made in this approach. The sum over spin
states can easily be done exactly for m values up to 20.
Thus results presented here for m <20 are numerically
exact. For larger m values (appropriate for lower tem-
peratures) we have performed Monte Carlo simulations.'?

The case m =1 is of special interest. It is an appropri-
ate description for the high-temperature limit (m =1 and
7—0 imply T— «). In our model we can calculate
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analytically the m =1 approximants. We summarize a
few results:

Ef:—htanh(ﬁh)rﬁ —h?B, (2.10a)
(1+C)~""2—_a—0)~1”2

o) = , (2.10b

(o), (1+0)~ 24 (1—C)~'/2 )

Q osy 1 (140732 _(1—0)732

aC(Fl)- 2B (1+C)_1/2+(1_C)_1/2 . (2.10¢)

In the limit AC=(1—-C)—0, the last two quantities
behave like

(%) —>—1+(2A0)1%,
dF;/3C——+(BAC)~! .

(2.11a)
(2.11b)

We see that, in the high temperature limit, C =1 is a crit-
ical value and that dF3 /dC diverges as (AC)™ .

The m =2 approximants are also easily calculated and
give the first temperature-dependent corrections on (2.11).
For the magnetization in the z direction we find

(1_+_C)—1/2__(1_C)—1/2
(14+C)" 12 4+(1—C)" 24 2tanh*(Bh /2)

(2.12)

(Uz)m=2=

An analogous correction holds for 3F3 /3C.

C. Perturbation theory

In this subsection we consider the case where the cou-
pling is weak and calculate the partition function by
means of perturbation theory. The Hamiltonian of the
noninteracting system is

Hy=—ho"+p?/2M + +MQ*?, (2.13a)
and the interaction is given by
H;=\x%0". (2.13b)

To second order in C the Taylor expansion of the parti-
tion function reads

Z(C)=Zy+Z, , (2.142)

Zo=Tr(e 0y, (2.14b)
B — —

Z,=4B [ dyTr(e” "o 7 om,) . (2.14¢)

The first-order term is zero because (o?),=0. Using

standard techniques we obtain in the adiabatic limit
Z,/Zy=3C?tanh(Bh)/8ph . (2.15)

To second order in C the interaction energy is given by

3
Ez=—£(22/zo), (2.16)
and with (2.15) we find
E,=3C?[ tanh(Bh)— Bh / cosh®(Bh)]/88%h .  (2.17)

Calculating the z magnetization to lowest order in C we
obtain

(0?)=—+Ctanh(Bh)/Bh . (2.18)

In the high-temperature limit, (2.18) agrees with (2.10b) to
lowest order in C. Analogous results can be found for
9F5/dC.

III. NUMERICAL RESULTS

In our calculations we have set 4 as the energy unit.
The system can then be characterized by two parameters:
the temperature 7 /h and the coupling C=2A/MQ?, see
Eqgs. (2.7b) and (2.8)—(2.12). First we discuss the expect-
ed behavior. At sufficiently low temperatures we expect
that there is a weak-coupling regime for every C (for
T =0 the energy is independent of C). As the tempera-
ture is raised we anticipate that for C =1 the system rap-
idly becomes polarized ({0?)— —1) and the oscillator
mode will become soft. For smaller values of C the sys-
tem will be adequately described by means of perturbation
theory. As a function of C therefore we expect an insta-
bility to occur for C—1. For C>1 the Hamiltonian is
not bounded from below.

Besides performing exact numerical calculations we
have used discrete path integrals to study (1.1). In gen-
eral, the convergence as a function of m should be studied
for any set of parameters. Different thermodynamical
quantities will have different convergence rates. Since in
this case we can also calculate the thermodynamical quan-
tities exactly from (2.3) we shall not make extrapolations
to m = « but shall compare our finite m results directly
with the exact ones. In all figures, drawn lines represent
exact results.

In Fig. 1 we plot the spin energy ES for C =0 and
C =0.8 as a function of temperature. We have also
shown the weak-coupling results for C=0.8. We see
that, besides for temperatures T /h <O0.1, the system is
not in the weak-coupling regime.

Results for the coupling energy dF5/3C [see Eq. (2.4)]
as a function of the coupling are presented in Fig. 2 for
T/h =0.1. At this low temperature we have found that
the system can adequately be described by perturbation
theory for C values up to 0.7 as expected. When C ap-
proaches 1 the coupling energy increases rapidly, it exhib-
its a divergency for C =1.

In Fig. 3 the coupling energy is shown as a function of
temperature for C =0.5 and 1—10~%. It turns out that
the results for the temperatures T/h <0.1 and T/h <1,
for C=1—10"* and 0.5, respectively, agree exactly with
results from perturbation theory. We conclude that for all
C there is a weak-coupling regime at sufficiently low tem-
peratures. For C not too close to 1 the behavior changes
smoothly to the high-temperature regime. As C—1 the
system becomes polarized ({o”) — — 1, see Fig. 5) and the
oscillator mode becomes soft. Then at a certain tempera-
ture (which becomes lower if C is closer to 1, see Fig. 4)
the derivative of the free energy begins to increase sharp-
ly. Clearly there is an instability for C =1. In this inter-
mediate regime the derivative shows a divergence as a
function of the coupling C. The high-temperature
behavior corresponds exactly with the result we have cal-
culated for the m =1 approximant (2.10c), which is valid
for large T/h. Calculations of the second derivative,
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FIG. 1. The spin energy — ES as a function of the tempera-
ture T/h for C =0.8. Drawn lines represent exact results (the
zero-coupling results are also shown). Symbols represent data
from discrete path-integral calculations for m =4, 6, 8. Weak-
coupling results are given by the dashed line for C =0.8.
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FIG. 2. Coupling dependence of the derivative of the free en-
ergy with respect to the coupling C for the temperature
T/h =0.1. Exact results (drawn line) and results for different
values of m (symbols) are shown.
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which is a measure of the fluctuations in the coupling en-
ergy, show the same general behavior.

In Fig. 4 we focus on the behavior of the coupling ener-
gy as a function of AC in the regime of the instability.
We conclude that in this regime (7 /h =0.1) the first
derivative of the free energy goes like (AC)~ !V for the
range presented. The lower the temperature, the longer
the weak-coupling regime persists for smaller AC. At
higher temperatures 3F5/9C still exhibits a divergence as
a function of C [see Eq. (2.11b)] which is less steep
though. The derivative then behaves like (AC) ™.

Exact results for the z magnetization as a function of C
are presented in Fig. 5 for T/h =0.4 and T/h— «. The
latter is the m =1 approximant (2.10b) for the magnetiza-
tion. In the temperature regime where the derivative of
the free energy with respect to C has the strongest AC
dependence the magnetization grows slowly as a function
of C and rises very rapidly to the value —1 as C ap-
proaches 1. In the high-temperature limit the C depen-
dence of (o*) is more continuous.

We now compare our exact data with the results ob-
tained from calculations using discrete path integrals. In
Fig. 1 we observe that the energy converges from below:
(E; <ES for n <m). We also see that small m values are
sufficient to obtain accurate results. It can be shown,'
that for C =0 the exact values can be reproduced for any
m. For Cs0 we therefore expect the m value required
for accuracy to increase with C. Leaving the weak-
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FIG. 3. The derivative of the free energy with respect to the
coupling constant C for C=0.5 and 0.9999 as a function of
T /h. For the latter discrete path-integral results are included.
Open symbols: exact summations for m =18,20. Closed sym-
bols: Monte Carlo results for m =40,80 (error bars not shown
have the size of symbols). Drawn lines: exact results.
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FIG. 4. The coupling energy 9F/3C as a function of
AC=1-C for different values of the temperature. In the re-
gime of the instability the coupling energy shows a power
dependence of -1.49(1) on AC for T/h =0.1. Dotted lines are
guides to the eyes only.

coupling regime by increasing the temperature requires
larger m values for accuracy, compare the m =4, 8 results
in Fig. 1.

Comparing the m-values of Fig. 2 with the ones of Fig.
1 we see the expected difference in convergence rate for
different thermodynamical quantities. We also observe
that the convergence becomes slower if C— 1.

Results from exact summations of spin states
(m =18,20) and Monte Carlo simulations ( m =40,80) are
presented in Fig. 3. Most of the Monte Carlo data were
obtained from runs of 50000 samples per spin each. At
low temperatures we observe that for m =18,20 the devi-
ations from the exact results are enormous. This is an in-
trinsic property of the finite m approximation. Letting
the temperature go to zero implies that we must take the
limit of m to infinity first. Also the qualitative behavior
deviates from exact results at low temperatures. As the
temperature is increased the convergence as a function of
m increases. For T/h >1 the m =1 results for the first
two derivatives of the free energy with respect to C are
within 10~ of the exact values. This not only holds for
C close to one but for all C. However, the other thermo-
dynamical quantities, in particular for large C, are not
well described by their m =1 approximants for T/h > 1.
This is because of differences in convergence rates. A
m =1 description of the system is only reliable when
T/h>>1.
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FIG. 5. Coupling dependence of the z magnetization. The
exact results for T/h= o and T/h=0.4 (curves 1 and 4) are
given. The Trotter approximants for m =2 are shown for
T/h=1and T/h=0.4(2 and 3).

The qualitative behavior of the discrete path-integral
data in Fig. 4 is identical to the exact behavior for the
temperature range in which the instability occurs. In-
creasing the temperature we see that the convergence as a
function of m increases.

Results for the z magnetization as a function of C are
presented in Fig. 5. Besides the exact result for
T/h =0.4 the m =1 and 2 approximants of (o®) have
been plotted, the former is valid for T/h— « and the
latter for T/h =0.4, 1 respectively. The m =2 results
show the temperature-dependent corrections on the m =1
case.

IV. CONCLUSIONS

We have discussed the global features of a two-level
model with a quadratic coupling, see the Hamiltonian
(1.1). For C =1 the system exhibits an instability. There
is a transition from the weak-coupling regime to a state in
which the system is nearly fully magnetized in the z direc-
tion and where the oscillator mode has become soft.

Application of discrete path-integral methods and com-
parison with exact results have shown that, using these
methods, the model properties can be calculated accurate-
ly in a systematic way.
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