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An exact expansion is obtained for the free energy of the Ising spin glass with an arbitrary distri-
bution of exchange bonds when the ground state is assumed to be replica symmetric. The expansion
is examined for low-temperature thermodynamics. It is argued that the zero-temperature entropy is
zero for a bimodal distribution of exchange bonds if the distribution has an infinitesimally small

asymmetry.

Identification of the low-energy defects in an ordered
phase provides interesting insights into the nature of that
phase.! And good estimates of the energy (or free-
energy) cost of creating those defects provide a point of
departure for developing detailed, quantitative theories
for the stability of the phase and for the phase transitions
by which the phase is obtained.

In this paper I shall discuss in the context of the repli-
ca formalism the nature of defects in the replica-
symmetric Ising spin glass.? I shall present an expansion
for the free energy in the number of defects.? The expan-
sion leads to the conclusion that the zero-temperature en-
tropy of the replica-symmetric Ising spin glass is zero at
all finite dimensions when the random-bond distribution
is bimodal and has an infinitesimally small value for the
mean. By contrast, the zero-temperature entropy is nega-
tive for all distributions, including the asymmetric bimo-
dal distribution, when d — o« and the cumulants of the
distribution are suitably scaled by powers of 1/d to ob-
tain a finite free energy.

The value of the zero-temperature entropy has been of
great concern in spin-glass theory ever since the paper by
Sherrington and Kirkpatrick® (SK) in 1975, which
presented a precise formulation of the ideas in a paper by
Edwards and Anderson.* The SK paper showed that a
simple ansatz for the saddle point giving the mean-field
description of the Ising spin glass, called the replica-
symmetric ansatz, leads to a negative value of the zero-
temperature entropy. That saddle point is unacceptable
for another reason: In 1978 de Almeida and Thouless
showed that the spectrum of fluctuations about that sad-
dle point has an unstable mode.® It took almost 5 years
before a physically acceptable saddle point was
discovered, by Parisi, by breaking the replica symmetry
in a specific way.?2

Is the spin-glass phase in d =3—or, for that matter, at
any finite d —similar to the phase discovered by Parisi in
the context of mean-field theory? The question has not
been resolved yet, although De Dominicis and Kondor
have made considerable progress in studying fluctuations
about Parisi’s mean-field theory.® Meanwhile, the
question’s relevance now extends far beyond the need to
understand the low-temperature behavior of dilute mag-
netic alloys, because ideas developed to understand

4

replica-symmetry breaking have found applications in a
variety of fields.>’ In the absence of any definitive study
of the possible spin-glass phase or phases at finite d, how-
ever, a variety of arguments have accumulated suggesting
that for the Ising spin glass, unlike the ferromagnet or
any other widely discussed ordered phase, the mean-field
theory may be a singular limit of the models as a function
of the dimensionality. ®°

The result about the vanishing of the zero-temperature
entropy of a replica-symmetric spin glass is not sufficient
to decide the important question about the nature of the
spin-glass phase at finite d, namely, whether or not it is
replica symmetric. Settling that question will require
studies of the Edwards-Anderson susceptibility, which is
inversely related to an eigenmode of the replica theory
that is unstable in the replica-symmetric choice of the
mean-field saddle point.'® Comparison between the
ground-state energies of the replica-symmetric and possi-
ble replica-symmetry-broken phases may also be neces-
sary in settling that question.!! But the result about the
zero-temperature entropy in the replica-symmetric phase
at finite d is important for at least three reasons. First, it
is an exact result. Second, it provides the first concrete
hint for the possibility that the spin-glass thermodynam-
ics at finite d might indeed be very different from those at
d— . Third, it underscores once again the need to
study the Ising spin glass in finite dimensions rather than
by expansions about the mean-field theory. !?

It should also be mentioned in passing that the fact the
result for the zero-temperature entropy discussed here is
for a bimodal distribution, rather than for the Gaussian,
which is more often studied analytically, is an advantage
rather than a drawback. This is because a lot of numeri-
cal work, especially the extensive searches by Sourlas for
thermodynamic behavior indicative of replica-symmetry
breaking,!® has been done predominantly for a bimodal
distribution.

Let us start with the usual Ising spin-glass model* *
defined by the Hamiltonian
H= 3 J00,. (1)

(i)
Here o, and o are Ising spins at sites i and j, and Jj; are
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random exchange bonds between spins on nearest-
neighbor sites of a d-dimensional hypercubic lattice. The
sum is over all distinct nearest-neighbor pairs (ij). Let
the distribution P(J;;) of each J;; be defined by the cumu-
lants J,,, m >0. In the replica method the thermo-
dynamics of a system with quenched disorder are ob-
tained from the statistical mechanics of an effective Ham-
iltonian that is derived from the average over the
quenched random variables of the nth power of the parti-
tion function.* Using the definition of cumulants, the
effective Hamiltonian for the problem defined by (1) is

(Z”)av=T§exp( —BH,), (2)
@ Jm n m
—BH,= 3 3 " |B 3 00" 3)
(i#j)m=1 a=1

Thus there is an n-component vector of, a=1,...,n, at
every site i. Each component of the vector is an Ising
variable and takes values +1 or —1.

Following the successful use of the replica method in
Anderson localization, where replica symmetry is unbro-
ken, we may in our study of the replica-symmetric spin-
glass phase treat o as if we had an integer number of Is-
ing spins and disregard any complications that might
arise from the limit n — 0, which we must take in the end.
We therefore regard as our ground state the state that
maximizes —H, and in which the Edwards-Anderson
(EA) order parameter, defined by De Dominicis and
Young as'

1 n
g nlil’}) n(n—1) a;&B<Sl SI ) ’ @

is unity. This is the state in which all replicas at each site
point in the same, say, ‘“‘up,” direction.® Excitations
about this ground state consist of sites (or contiguous
clusters of sites) at which spins in some of the n replicas
point down. (We shall call sites having spins in some of
the replicas misaligned with respect to the ground state
“flipped sites,” and we shall call replicas misaligned with
respect to the ground state “flipped replicas.”) To obtain
the contribution of these excitations to the free energy,
one must sum the number of flipped replicas between 1
and n at each flipped site. Furthermore, because the re-
plicas are all regarded as equivalent, states with different
numbers of flipped replicas must be weighted by binomial
coefficients, which give the number of ways of partition-
ing the set of n replicas into subsets of aligned and
misaligned replicas.

In this description of the states of the “replicated” Is-
ing spin-glass model, there is a kink-like defect in the lat-
tice whenever two nearest-neighbor sites have spins in
one or more replicas pointing in opposite directions.
These kinks satisfy the renormalization-group equation
for kink couplings in a one-dimensional random-
exchange Ising model with power-law interactions. '3

For the Gaussian distribution of exchange bonds, the
contribution of states with a few flipped sites reproduces
in the limit d — oo the low-temperature expansion for the
SK free energy,® a fact that should further assure us that
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the replica-symmetric phase we are studying is the same
as obtained and studied in the SK model by the replica-
symmetric ansatz for the saddle point.

The free energy, other thermodynamic functions, and
the order parameter may now be expanded in the number
of flipped sites. The expansion should be reminiscent of
the so-called low-temperature expansion for Ising and
Heisenberg models. There is, however, a difference. Un-
like in pure Ising magnets, for which each term of the ex-
pansion is exponentially small at low temperatures, the
low-temperature behavior of the terms in the spin glass
depends on the form of the probability distribution of ex-
change bonds.

For a given number p of flipped sites, there may be
several topologically distinct clusters, and so the expan-
sion for the free energy per site f may be formally written
as

F=3Lotp - (5)
pr

In (5), f,, is the free-energy contribution of the rth topo-
logically distinct connected cluster of p flipped sites and
L, ,, the lattice factor, is the number of ways per site of
obtaining that connected cluster of p sites. The lattice
factors may be obtained from the known low-temperature
expansion for the Ising ferromagnet.

Unlike the use of the low-temperature expansions for
the Ising ferromagnet, the immediate goal in the study of
the Ising spin glass is not to determine the singularities at
the spin-glass transition, but to understand the low-
temperature thermodynamics around, and stability of,
possible spin-glass ground states. For that purpose the
expansion (5) may be regarded as exactly known. This is
because it is possible to write down a simple rule for ob-
taining the f, ,:

p—1
fp,r:(_l/ﬁ)(bp,r_ E ECS,I;p,r sl - (6)

s=1 1

Here @, , is —f times the free energy of the rth topologi-
cally distinct cluster of p Ising spins embedded in a lattice
of “up” spins and interacting with one another as well as
with the lattice of “up” spins with nearest-neighbor ran-
dom bonds whose distribution, independent for each
bond, is given by the cumulants J,,. The partition func-
tion Z,, of the cluster is a function of R (p,r) exchange
bonds, hereafter called the flipped bonds y;, connecting
the spins in the cluster to one another and to the lattice
of up spins. More precisely, the partition function
Z, . {yi} of the cluster is a sum of 2” exponentials, one for
each of the 27 states of the cluster of p Ising spins, whose
arguments are linear combinations of the y;’s. Formally,
the free energy @, , of the cluster may be written as

R(p,r)
®,,=[ Hl dy,P(y;)InZ, ,{y;} . @)
j=
Finally, in Eq. (6), C ;,,, is the number of ways the /th
topologically distinct connected cluster of s flipped sites
can be obtained from the original cluster of p flipped
sites. For p=4, for example, there are two topologically
distinct clusters—a chain and a ring. Call them 1 and 2,
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respectively. Each of these gives rise to a topologically
distinct connected cluster with three, two, or one sites,
and each of these smaller clusters can be obtained from
the original four-site cluster in four ways. Therefore,
C3,1.41=Cy,1;4,1=C1,1;4,1 =4 for the four-site chain, and
the same holds also for the second four-site cluster, the
ring.

When the bond distribution is a Gaussian, the case that
is more often studied analytically, the number of integrals
on the right-hand side of (7) can be reduced by using the
property that the distribution of a sum of Gaussian ran-
dom variables is also a Gaussian random variable.

As an example of how (6) and (7) arise for an arbitrary
distribution P, let us consider the contribution of states
with one flipped site. (For the Gaussian distribution, this
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contribution was first discussed in Ref. 15.) The flipped
site causes 2d flipped bonds, and let the number of flipped
replicas be n,. Therefore, the “Boltzmann” factor is

© Jm
exp 24 3 T (Bin—2m)) |,

!
m=1 :

and as discussed earlier, we need to sum on 7, from 1 to
n. The sum could be easily carried out if the exponent
were a linear function of n —2n,. In the Gaussian case
the exponent is easily linearized using properties of
Gaussian integrals; for the general distribution discussed
here, the linearization may be done using an auxiliary
variable A; for each flipped bond y 7> which gives

2d Jm n n 2d
f dejdk ;€Xp E > P kj)m] > n, |CXP i 3 yilAj—(n ——2n1)[5]) (8)
® =1 =1m=1 """ n =1 j=1
Foo 2d 2d Jm 2d n
=/ dy;dhjexp | 3 3 (A" |exp }_‘,yj ; HZcosh [Bzyj ~1]. 9)
@ j=1 ji=1m=1 =1 =

The coefficient of the term linear in n, needed for the lim-
it n—0, is logarithm of the cosh in (9). We may once
again use the definition of the cumulants to write (9) as

2 cosh (10)

f H dy;P(y;)in

®j=1

EZL

j=1

Equations (5)—(7) were obtained by generalizing the re-
sult obtained by carrying out for several clusters calcula-
tions such as the one outlined above for one flipped site.
Results for up to three flipped sites have already been dis-
cussed in Ref. 9 for the Gaussian distribution. But the
generalization to arbitrary cluster size and distribution
summed up in Eqgs. (5)—(7) above allow us to infer without
further calculation the behavior of the zero-temperature
entropy for the asymmetric bimodal distribution.

It should be apparent from an inspection of Egs.
(5)—(7) that the free energy for finite d will be a linear
combination of logarithms when the distribution P is
discrete and consists of a sum of a finite number of &
functions. The arguments of the logarithms will be sums
of exponentials of arguments proportional to 8. To ex-
tract the low-temperature—or large-S—behavior of the
free energy, we may factor out the exponential with the
largest exponent. The logarithm of it, being proportional
to BB, will give a contribution to the ground-state energy.
The rest of the free energy will consist of a linear com-
bination of logarithms of arguments 1 plus, at low tem-
peratures, exponentially small factors. This suggests that
the zero-temperature entropy will be zero.

Unfortunately, there is a weak link in the argument of
the previous paragraph. Consider, for example, a
symmetrical bimodal distribution, in which the bonds
take values +J or —J with equal probability. When an
even number of random variables with such a distribution

are added, the distribution of their sum has a nonzero
weight at value zero. This observation shows that the ar-
guments of logarithms in Eq. (7) may be pure numbers.
The observation therefore invalidates, for terms arising
from an even number of flipped bonds, the claim in the
previous paragraph that arguments of the logarithms are
sums of exponentials. Some preliminary results show
that such terms add up to zero. There is, fortunately, an
alternative way to circumvent this difficulty. If we start
with a bimodal bond distribution that has an
infinitesimally small asymmetry—with & functions at
J +€ and —J +¢, with € infinitesimal—then the distribu-
tion of the sum of any number of such bonds will not
have a nonzero weight at a value of the sum equal to
zero. For such a distribution, then, the zero-temperature
entropy of the replica-symmetric phase of the Ising spin
glass is zero at finite d. 1°

The zero-temperature phase diagram of the Ising spin
glass with an asymmetric distribution has both a spin-
glass phase and a ferromagnetic (or antiferromagnetic,
depending on the sign of the mean) phase. In mean-field
theory the ferromagnetic or antiferromagnetic phase sets
in when the value of the mean is of the same order but
bigger than the variance. This must be true also in finite
dimensions. We can therefore be sure that the result
about the zero-temperature entropy obtained above is
valid in the spin-glass phase, because the mean € was as-
sumed to be infinitesimally small.

The low-temperature behavior obtained above con-
trasts sharply with that obtained in the limit d — . In
that case even discrete distributions reduce to a Gaussian
or a Gaussian multiplied by a polynomial, depending on
the order in 1/d. In particular, the two-flipped site term,
which was identified in Ref. 9 as the cause of the negative
value of the zero-temperature entropy of the replica-



43 BRIEF REPORTS

symmetric SK solution, gives a negative value for the
zero-temperature entropy for all distributions in the limit
d — . And as in the Gaussian case, terms arising from
more-than-two flipped sites do not contribute to the
zero-temperature entropy at d —c for any symmetric
distribution of the exchange bonds.

It would be interesting to use the ideas discussed here
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to develop a quantitative theory for the phase transition
in the random-field Ising model.
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