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ABSTRACT

Background

Radiation is an effective anti-cancer therapy but leads to severe late radiation toxicity in 5%-—
10% of patients. Assuming that genetic susceptibility impacts this risk, we hypothesized that
the cellular response of normal tissue to X-rays could discriminate patients with and without
late radiation toxicity.

Methods and Findings

Prostate carcinoma patients without evidence of cancer 2 y after curative radiotherapy were
recruited in the study. Blood samples of 21 patients with severe late complications from
radiation and 17 patients without symptoms were collected. Stimulated peripheral
lymphocytes were mock-irradiated or irradiated with 2-Gy X-rays. The 24-h radiation response
was analyzed by gene expression profiling and used for classification. Classification was
performed either on the expression of separate genes or, to augment the classification power,
on gene sets consisting of genes grouped together based on function or cellular colocalization.

X-ray irradiation altered the expression of radio-responsive genes in both groups. This
response was variable across individuals, and the expression of the most significant radio-
responsive genes was unlinked to radiation toxicity. The classifier based on the radiation
response of separate genes correctly classified 63% of the patients. The classifier based on
affected gene sets improved correct classification to 86%, although on the individual level only
21/38 (55%) patients were classified with high certainty. The majority of the discriminative
genes and gene sets belonged to the ubiquitin, apoptosis, and stress signaling networks. The
apoptotic response appeared more pronounced in patients that did not develop toxicity. In an
independent set of 12 patients, the toxicity status of eight was predicted correctly by the gene
set classifier.

Conclusions

Gene expression profiling succeeded to some extent in discriminating groups of patients
with and without severe late radiotherapy toxicity. Moreover, the discriminative power was
enhanced by assessment of functionally or structurally related gene sets. While prediction of
individual response requires improvement, this study is a step forward in predicting
susceptibility to late radiation toxicity.

The Editors’ Summary of this article follows the references.
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Introduction

Radiotherapy is one of the most effective treatments for
cancer. The incidence of prostate cancer is high, but most
patients will be cured or free from tumor symptoms within
several years after radiotherapy. The success of radiotherapy
depends on its ability to kill cancer cells while sparing normal
tissue [1]. Toxicity risk is affected by radiation dose and
volume as well as age and condition of the patient. Clinical
trials have demonstrated that escalation of the radiation dose
increases local tumor control [2-4] but may also increase the
risk of late complications [5]. Late toxicity after radiotherapy
for prostate cancer includes disturbed rectal, bladder, and
sexual functions. The percentage of patients developing
severe late toxicity determines the maximum acceptable
radiation dose. Generally an adverse effect frequency of 5%-
10% is considered acceptable. Many more patients develop
minor toxicity, and only a few remain symptom-free.

Radiation risk can only be partly explained by clinical
factors such as age, condition of the patient, and radiation
dose and volume. There is evidence of large patient-to-
patient variability in the development of late complications
[6-8], suggesting the existence of additional risk factors.
There is increasing evidence that genetic predisposition is a
determining factor [7]. In the past decade, several research
groups have tried to develop assays for predicting radiation
toxicity in normal tissues [8-14]. However, the resulting data
are contradictory, and correlations observed in most studies
are at best marginally significant [15]. Frequencies of
chromosomal aberrations in ex vivo irradiated peripheral
blood lymphocytes are generally increased in patients
displaying normal tissue toxicity after radiotherapy. How-
ever, the correlation is too weak to allow pretreatment
identification of such patients [16].

The individual variability in normal tissue response after
radiotherapy may be caused by subtle mutations in genes
involved in the cellular response to radiation. Genotoxic
stress has been shown to induce massive alterations at the
transcriptional level [17]. Investigation of the transcriptional
response by gene expression profiling may therefore be a
suitable approach to identify individuals with a genetic
predisposition for late radiation toxicity. Recently, it has
been shown that variation in the expression level of many
genes has a heritable component [18].

Rieger and co-workers used gene expression profiling with
microarrays to characterize and classify a diverse group of
cancer patients with acute radiation toxicity [19]. They
concluded that genes involved in the response to DNA
damage, including apoptosis and ubiquitin genes, were
associated with the observed clinical toxicity. However, the
genes associated with radiation toxicity were not the most
pronounced radiation responsive genes described in several
other studies [20-22]. There are additional promising gene
expression profiling studies in oncology [23,24], but the
applicability of their findings is—to an extent—limited [25].
Because of the sheer number of genes being monitored, it is
often possible to find highly specific settings that provide an
optimal and acceptable misclassification rate. To avoid some
of this bias, Michiels and co-workers proposed a random
validation strategy for classification [25]. However, some
commentators have suggested, based on this work, that
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thousands of patients would be required to thoroughly
validate a microarray classifier [26,27].

An alternative approach is a classification strategy based on
functional modules made up of multiple genes [28-31]. This
approach might better accommodate the existing genetic
heterogeneity within a patient group. The joint behavior of
functionally or spatially related genes may be significant,
whereas the activity of individual genes may not. Another
advantage of this approach is that it might lead to a more
relevant biological interpretation of the results.

In our study we used gene expression profiling to try to
discriminate prostate cancer patients with severe late
radiation complications following radiotherapy (over-res-
ponders [ORs]) from patients without such complications
(non-responders [NRs]). The study was restricted to the
extreme responders to optimize the chances of success. For
late normal tissue toxicity, prostate cancer patients are
advantageous to study as they form a relatively homogeneous
group. Confounding factors are limited since there is no
gender effect, age variability is relatively small, and the only
cancer treatment adjunctive to radiotherapy is medical or
surgical castration.

Methods

This study was approved by the local medical ethical
committee.

Patient Selection

Late toxicity was recorded in 800 patients with prostate
cancer irradiated at the Academic Medical Center of
University of Amsterdam, the Netherlands, between 1996
and 2003 using the EORTC SOMA scale [32]. Patients with no
clinical progression or no prostate-specific antigen rise 2 y
after curative external beam radiotherapy were selected.
Patients with T1 and T2 tumors received 70 Gy of conformal
external beam prostate radiotherapy; patients with T3 and T4
tumors received elective pelvic radiotherapy (40 or 50 Gy)
plus a conformal boost of the prostate to 70 Gy, and 3 y of
androgen deprivation therapy. Patients were preselected
based on recorded toxicity grading, which was reconfirmed
during a standard follow-up appointment. ORs were defined
as patients with grade III toxicity to the bladder andlor
rectum. Different from the SOMA scale, patients with severe
or frequent blood loss requiring medical intervention were
also classified as OR with grade III toxicity. NRs were defined
as patients that experienced no adverse effects (grade 0
toxicity). Some of the patients previously recorded “without”
toxicity had minor (grade I) or moderate (grade II) toxicity on
careful re-interviewing. Based on the data registration,
corrected by out-patient reconfirmation, the estimated
prevalence of grade 0 toxicity was 5%-10%, of grade I or II
toxicity was 80%-90%, and of grade III toxicity was 5%-10%.
Life-threatening toxicity was not reported.

Following written informed consent, blood samples were
collected from 50 donors. Thirty-eight patients—21 ORs and
17 NRs—participated in the primary classification study.
Twelve patients (six ORs and six NRs) were used for an
independent validation. From the ORs, 21 had severe
proctitis, two had severe proctitis and cystitis, one had
cystitis only, one had small bowel ileus, and two had rectal
fibrosis.
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Sample Preparation

Lymphocytes were isolated from whole blood using Ficoll
(Ficoll-Paque PLUS, Amersham Biosciences [now GE Health-
care], http://www.amershambiosciences.com) gradient separa-
tion. Freshly isolated T cells at a cell density of 5 X 10° cells/ml
were stimulated for 44 h [33] with phytohemagglutinin at a
final concentration of 1 pg/ml. In the validation set, only
frozen lymphocytes were available for nine patients. These
samples were thawed and stimulated for 68 h. After
stimulation, 107 cells/sample were irradiated at room temper-
ature with 0- or 2-Gy X-rays (200 kV, 4.0 mA, 0.5 Gy/min).
After 24-h incubation, RNA was extracted with an RNeasy
Mini Kit (Qiagen, http://www.qiagen.com). Biotin-labeled
cRNA probes were generated starting from 2-5 pg of RNA
and were hybridized to HG-U133A GeneChip arrays (Affy-
metrix, http:/lwww.affymetrix.com) according to the manu-
facturer’s recommendations. Arrays were scanned, and
images were processed (MAS5) to obtain an intensity value
for each oligonucleotide probe. Several parameters were
considered for quality control: present calls 37%-56% (46.0
* 0.5, average = SEM), GAPDH 5'/3" 0.81-2.18 (1.13 =
0.02), and noise (RawQ)) 1.04-3.56 (1.98 = 0.06).

Preprocessing of Microarray Data

Microarray analyses were made in R v. 2.1.1 using functions
from Bioconductor v. 1.6 [34]. Additional scripts developed in
house are available at http://www.medgencentre.nl/plafindex.
html. For each of the 50 patients, the scanned intensities (CEL
files) from the hybridizations (0 and 2 Gy) were preprocessed
pairwise: background was corrected and mismatch probes
were subtracted according to the MASH procedure, and the
intensities were normalized by quantiles [35]. The multiple
probe signals per gene, measured with Affymetrix micro-
arrays, were not averaged; rather, the individual intensities
were used as separate entities in a linear regression model
[36]. Per gene and patient, the logs signal intensities were
used in the following model:

Signal;j = B;Probe; + Bo;Treatment; + &; (1)

for each probe i and treatment j. The g; variables were
assumed to be independent and random with mean 0 and
variance 62 [36]. For each gene at least 22 probe signals were
measured to estimate the P coefficients. The B; coefficients
estimate the influence of the individual probes, and the B
coefficients correspond to the treatment response of 2 Gy for
each individual lymphocyte sample. Since a log base 2 was
used, the By coefficient estimates can be regarded as the fold
changes induced by X-irradiation. Heat maps were generated
using TreeView [37]. To determine the radiation response for
the subgroups, t-tests were performed under the null
hypothesis that expression levels after 2 Gy were unchanged
(B2 = 0). The proportion of unchanged genes was estimated
using the method developed by Storey and Tibshirani [38].

Network Analysis

The network images and accompanying analyses were
generated using Ingenuity Pathways Analysis (Ingenuity
Systems, http:/lwww.ingenuity.com).

Definition of Gene Sets
Gene sets were used as defined by the Gene Ontology (GO)
Consortium [39]. Using the Bioconductor package hgul33a of
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May 17, 2005, on the HG-U133A array, there were 5,912 GO
terms that reflected a defined cellular component, biological
process, or molecular function. Of the 22,283 transcripts on
the array, 8,141 were discarded because they were associated
with GO terms inferred by electronic annotation, i.e.,
experimental proof for a biological function is lacking.

Kappa statistics were used to characterize the relationship
between gene sets, providing a quantitative measure of the
degree of overlap between terms sharing the same genes. For
gene sets sharing large overlap (kappa > 0.8), all but one gene
set were discarded. Only gene sets containing more than five
members on the array were considered. After excluding gene
sets based on these criteria, 1,182 gene sets remained.

Classification Using Signature Genes

A binary clinical outcome was defined: NR or OR. Training
and validation sets were repeatedly and randomly selected
among 38 patients according to the method described by
Michiels and co-workers [25]. The estimates of B, were used as
input. A resampling approach was used to randomly divide
the dataset (N = 38) 500 times into training sets (size n) with n/
2 patients of NRs and ORs, and into balanced validation sets
(size N — n). The value of n was varied from ten to 34 (5-17
ORs + 5-17 NRs). In addition, we tested unbalanced random
training and validation sets. We identified a molecular
signature for each training set and calculated the proportion
of misclassifications for each associated validation set. For
each training set, the molecular signature was defined as the
50 genes with the highest correlation between B9 coefficients
and clinical outcome as shown by Pearson’s correlation
coefficient. We defined two profiles (NR and OR) as vectors of
the average Bo coefficients of these 50 signature genes in the
two groups, also known as centroids. Each patient in the
corresponding validation set was classified according to that
patient’s nearest centroid, i.e., the highest correlation
between the Po coefficients of the patient’s signature genes
and the two average profiles. Based on the 500 repeated
assessments, we established the misclassification rates with
95% confidence intervals using a test of proportions.

Classification Using Gene Sets

The classification method for the gene sets was analogous
to that for the genes. We combined the By coefficients into
one value r (Figure 1), which was subsequently used as input
in a random cross-validation procedure, as described above.
The r values were determined as follows: a specific gene set k&
is represented by n genes on the array. Of these, u are up-
regulated and d are down-regulated more than 1.3-fold after
treatment (fo < —0.4 or Bs > 0.4, respectively) in patient I.
The threshold of 1.3-fold was selected since this is the average
change of the most significant radio-responsive genes (Figure
S1). For each gene set k and patient [, the ratio 7y = (u — d)in
was calculated. When all genes of a gene set were up-
regulated by treatment, then 7, = 1, and, similarly, when all
genes were down-regulated, then r,; = —1. When equal
numbers of genes were up- and down-regulated, then 7, = 0.

Calculation of Individual Risk of Late Radiation Toxicity
For each patient, the individual probability for late
radiation toxicity was calculated. For the original 38 patients,
with a training set size of 32 patients, the certainty of
classification was calculated as the absolute difference in
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Example of gene set analysis consisting of four gene sets, three patients, and eight genes. (1) Definition of the gene sets consisting of 2-3 genes (purple
squares). Gene sets 1-3 are partially overlapping. The dendrogram shows the relationship between the gene sets identified using kappa statistics. (2)
Heat map of the gene expression response per patient. (3) Pairwise correlations of all gene responses between the patients. Assuming that patient 1
and patient 3 represent different classes, patient 2 would correlate slightly better with patient 1 than with patient 3. (4) For each patient, the gene
responses were combined for every gene set and visualized in a heat map. (5) Pairwise correlations of all gene sets between the patients, showing

improvement in correct classification of patient 2.
DOI: 10.1371/journal.pmed.0030422.g001

correlation between each patient and the NR and OR
centroid, i.e., X = |cor(C;, Cygr) — cor(C;, Cor)|, where C; is
the vector of By or r values (for genes and gene sets,
respectively) for patient 7, and where i € (1,38) and Cygr and
Cor are the centroids of 16 NR and 16 OR patients randomly
selected. As the cross-validations were performed repeatedly,
the tolerance interval was calculated by X *= Ko where X and
G represent the mean and the standard deviation of X and K
=1.93 for 95% confidence and 90% coverage. Patients were
considered to be classified with certainty if the tolerance
interval did not include zero.

Classification of an Independent Set of Patients

The By and r values of 12 additional patients were used for
validation. The genes/gene sets present in more than 20% of
the 500 repeated cross-validations with a training set size of
34 patients were used to calculate the centroid of the o and r
values in the OR and NR groups. The samples were classified
according to the nearest centroid, as previously.

The individual certainty of classification was calculated as
before, but patients were considered to be confidently
classified if the difference in correlations was larger than
0.2 (the smallest difference in correlations in the training set
resulting in a certain classification).

Results

From a cohort of 800 patients treated by radiotherapy for
prostate cancer, 21 ORs with grade III toxicity and 17 NRs
with grade 0 toxicity were selected. The OR and NR patient
groups were comparable in age, primary tumor stage,
hormone use, and radiation dose and volume (Table S1). No
significant group differences were found in the absolute
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number of white blood cells and the percentages of
monocytes, lymphocytes, and granulocytes between a control
group [40] and a cohort of 12 patients (n =6 ORs, n =6 NRs)
as determined by flow cytometry.

As a first attempt towards distinguishing the NR and OR
groups, the gene expression response of lymphocytes to X-ray
treatment was investigated. The treatment effect (Bg) on each
gene and patient was identified by linear regression, and the
radio-responsive genes in each patient group were identified
by statistical testing (Figure SI1A-SID). In both groups,
irradiation of stimulated lymphocytes led to the induction
(p < 0.001) of well-known radio-responsive genes [20-22] such
as CDKNIA, GADD45A, FAS, DDB2, and XPC (Figure S2A and
S2B). Considerable patient-to-patient variation in expression
was detected in the most significantly radio-responsive genes.
However, this variability was not linked to patients’ radiation
toxicity. Grouping the most radio-responsive genes by k-
means (k= 2) clustering [41] showed no correlation to toxicity
status (OR and NR, Figure S2C).

To find a molecular signature for the development of late
toxicity, a cross-validated classifier was constructed within the
patient data set using the Pg coefficients as input. We
compared the results of a random validation method based
on a conventional classification using separate gene expres-
sion levels with those of a classification based on functionally
related gene sets (Figure 2). With the former, the maximum
proportion of correct classification using the 50 individual
genes with the highest correlation to responder status was
0.63 = 0.02 (Figure 2A). There was a clear trend towards
better classification with increasing training set size. We
estimated the certainty of classification of each patient
(Figure 2B and 2D) using the cross-validation results at a
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Figure 2. Improved Patient Classification Using Functionally Related Gene Sets

(A) Gene classification (in red) and gene set classification (in blue), following the strategy of Michiels et al. [25], with 95% confidence intervals for the test
of proportions. The minimal misclassification rate was 37% = 2% with gene classification and 14% = 2% with gene set classification.

(B and C) The certainty of microarray classification for each patient was calculated based on (B) genes or (C) functionally related gene sets. The certainty

was calculated at the training set size of 32 patients (red arrow in [A]).

(D and E) Contingency tables summarizing the concordance between the physician and microarray classifications using (D) genes and (E) gene sets.
Numbers of patients classified with certainty (cases where the tolerance limit does not include zero) are in parentheses.

DOI: 10.1371/journal.pmed.0030422.g002

training set size of 32 patients (the largest training set size for
which the associated validation set still contained an NR
patient). The certainty (including tolerance limits of 95%
confidence and 90% coverage) was calculated as stated in the
Methods. Only six patients, whereof one was misclassified,
had tolerance limits not including zero.

We found 62 genes to be present in more than 20% of the
500 assessments performed (Figure 3). To investigate whether
these genes function in common pathways, we studied their
connectivity by Ingenuity pathway analysis. Ten pathways
with more than five pathway members—including small
molecule biochemistry, cell morphology, cancer, cell death,
and immune response—were significantly (p < 0.01) enriched
among these classifying genes. When relating the classifying
genes by the interactions of their gene products, a highly
connected network emerged (Figure 4). For the proteins in
this sub-network of the human interactome, we calculated the
number of interaction partners (protein degree). Interest-
ingly, the classifying proteins had significantly (p < 0.001,
Wilcoxon test) less direct connections than the connecting
proteins, with means of 18.7 and 68.6 interactions, respec-
tively. This suggests that the classifying proteins interact with,
but are not themselves, “master regulators” (highly connected
hubs).

We next used gene sets based on function or cellular
colocalization reported in publicly available databases to
distinguish the NR and OR groups (Figure 1). For each gene
set, the combined fractions of induced and repressed genes in
each patient (r value, see Methods) were used as input in the
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random validation classifier. Genes whose expression
changed more than 1.3-fold were selected as induced or
repressed. This rather low threshold was used as the
expression of many genes is affected by X-rays to a moderate
extent (Figure S1). Gene set classification substantially
improved the classification result, increasing the proportion
of correct classifications to 0.86 = 0.02 (Figure 2A). The gene
set classifier performed better than the gene classifier for all
training set sizes.

Additionally, we tested the stability of our classification
results by varying the number of both genes and gene sets in
the classifiers between 20 and 70. Classification perform-
ance—especially that of the gene set classifier—remained
stable and independent of the number of gene sets used as
input in the classifier (Figure S3B and S3D). Also, the
classifiers were tested based on totally random attribution
to training and validation sets (as opposed to the balanced
attribution of equal numbers of NR and OR patients in the
training set). Third, for better comparison between gene and
gene set classification, gene classification was performed on
Bs coefficients for genes that were filtered for annotation and
within a reasonably sized gene set size (5<<n <500). In all tests
gene set classification gave better classification than individ-
ual genes. Classification results of all tests were largely within
the previously determined 95% confidence intervals (Figure
S3).

To investigate whether the estimate of classification
certainty of each patient was also improved by gene set
classification, we dissected the cross-validation results at a
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I, » < sponder status

Figure 3. Expression Profiles of Classifying Genes

Heat map of B, values of 62 genes that were present in more than 20% of the 500 repeated assessments with 34 patients in the training set of the
classifier. These discriminating genes were used in a supervised two-dimensional hierarchical clustering of NRs (green) and ORs (red) based on the f3,
values representing the radiation response.
DOI: 10.1371/journal.pmed.0030422.g003

training set size of 32 patients (Figure 2C and 2FE). The
certainty of classification was indeed predicted with higher
accuracy with the gene set classifier. For 31 out of the 38
patients, toxicity status was correctly classified on an
individual basis, and 21 of the 38 patients were classified
with certainty (had tolerance intervals not including zero).
Only one of these patients was misclassified.

Frequently occurring gene sets among the gene set
classifiers may provide insight into the pathways that are
differentially regulated between the two patient groups.
Examining the classifying gene sets at a training set size of
34 patients, 72 were found in more than 20% of the 500
repeated assessments. Among the most frequently occurring
gene sets are gene sets engaged in protein metabolism and
ubiquitination, development, stress signaling, and apoptosis
(Figure 5). The apoptotic response, represented by the gene
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set “induction of apoptosis,” is more pronounced in NR
group than the OR group.

To test the reproducibility of classification, additional
blood samples were taken at least 1 y after the original
sampling from four patients. The gene set classifier repro-
duced the predictions for responder status of all four
patients, whereas the gene classifier produced a different
outcome for half of the samples.

A small independent set of 12 additional patients (Table
S2) was used to validate the gene and gene set classifiers.
Unfortunately, we had to adjust the experimental protocol to
some extent, since only three patients could be recruited to
provide fresh lymphocytes. From nine patients, limited
amounts of frozen lymphocytes were available, and after
applying a modified protocol, enough RNA was obtained for
microarray hybridization. Gene set classification predicted a
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Of the gene products most frequently present in the gene classifier, 33 pr
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oteins are present in the Ingenuity database. These are represented by colored

symbols (green symbols indicate proteins that have higher induction after irradiation in NRs, and red symbols indicate proteins that have higher

induction in ORs). The intensity of the colors indicates the difference bet

ween the groups in the magnitude of induction. The connecting proteins are

represented by empty symbols. Only three of the colored proteins are not directly or indirectly linked through a connecting protein.

Inset: The degree distribution of the proteins in the sub-network. For

each protein we calculated the number of interactions in the total human

interaction network (protein degree, z) and plotted it against the proportion of each protein degree, P(z). Vertical blue and black lines indicate the
average protein degree, showing that the classifier proteins (blue) and the connecting proteins (black) represent two separate populations (p < 0.001,

Wilcoxon test).
DOI: 10.1371/journal.pmed.0030422.g004

responder status of eight of these 12 new patients identical to
that recorded by the physician (Figure 6A). Seven patients
were classified with certainty, whereof five classifications were
correct. To get a visible impression for all patients of the
performance of the classifying gene sets, a principal
component analysis was carried out, which revealed two
main clusters of NRs and ORs (Figure 6B). The gene classifier
did not allow classification of the validation set (Figure S4).

Discussion

This study shows that analysis of gene expression profiles
can be greatly improved by considering the joint behavior of
functionally related genes. With this approach, we were able
to substantially improve correct classification of NRs and ORs
among prostate cancer patients that had received radio-
therapy. Our findings also provide support for the existence
of a genetic component to late radiation toxicity. A clear
association was found between the development of late
normal tissue reactions following radiotherapy and the gene
expression responses of patients’ ex vivo irradiated lympho-
cytes. Patient toxicity status may therefore be related to
interindividual variability in the response to radiation-
induced DNA damage. The clinical trait of normal tissue
radiation toxicity may result from a combination of poly-
morphisms in DNA-damage-responsive genes [42] that
influence the expression of multiple functionally connected
genes. Interestingly, the apoptotic response appeared to be
more pronounced in patients who did not develop toxicity,
similar to the results of Barber et al. [14]. It is tempting to
speculate based on our findings that a more pronounced
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apoptotic response protects patients against developing late
radiation toxicity.

Our results suggest that interpatient variability in late
radiation toxicity relates to individual differences in down-
stream targets of cellular pathways, in addition to apoptosis,
involved in protein metabolism, ubiquitination, and stress
signaling. These downstream targets are less conserved than
hubs [43] and therefore are plausible sources of interindivid-
ual variation. However, no single gene or functionally related
set of genes was found that by itself correlated perfectly with
the observed clinical radiation toxicity. This finding is
consistent with results from Rieger and co-workers [19] that
suggest a connection between acute toxicity and alterations
in six main cellular processes: DNA repair, stress response,
cell cycle, ubiquitination, apoptosis, and RNA processing.
Although similar cellular processes seem to be involved in our
study, there is little overlap between the two studies in the
individual genes identified. This is not unexpected given that
acute and late radiation toxicity are distinct, albeit likely
related, phenomena. This finding, however, provides addi-
tional support for the hypothesis that individual suscepti-
bility to late radiation toxicity is substantially determined by
genetic predisposition. On the other hand, our results do not
exclude the additional role of other factors such as age,
radiation dose and volume, and comorbidity. Stochastic
effects also contribute to the uncertainty of classification [6].

There are numerous choices to be made when performing
gene set classification. A variety of properties can be used to
group genes into sets. While we used GO terms as the basis for
gene set definition, an alternative approach is to group genes
based on protein-protein interactions or transcription factor
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binding activities. Furthermore, we had to choose a Bs
threshold for the calculation of r values. In general, it is
important that threshold settings allow generous selection of
affected genes [44]. The By values for the most significantly
changed genes (Benjamini-Hochberg false discovery rate of
5%) were 0.36 and 0.39 for the NR and OR groups,
respectively (Figure S1). This corresponds to a fold change
of 1.3. Therefore a threshold of |Bs
calculation of the r values for gene set classification. We also
had to select a method for combining the expressions of the

= 0.4 was chosen for the

multiple genes belonging to a gene set into a single value.
Segal and co-workers recently proposed using the signifi-
cance of modules for this purpose [28]. In our case, because
the radiation responses of the classifying genes were of
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opposite direction (up-regulated in NR and down-regulated
in OR, or vice versa; Figure 3), we chose to calculate for each
patient and gene set a single r value by subtracting the
number of down-regulated genes from the number of up-
regulated genes and dividing that by the total number of
genes in that gene set (r = [u — d]n).

Although the performance of our gene set classifier was
significantly better than that of the gene classifier, the
discriminative power and reliability of the latter were still
significantly better than in most studies using microarrays to
predict cancer outcome [25]. We deliberately chose to use
parameters settings (i.e., 50 top features, 500 assessments)
identical to those used by Michiels et al. [25] when reanalyzing
several cancer studies. Two striking differences of the present
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Figure 6. Validation of the Gene Set Classification with an Independent
Patient Set

(A) Contingency table of the physician and microarray classification of 12
additional patients. The 72 most discriminating gene sets in the training
set were used to predict responder status. Numbers of patients classified
with certainty are in parentheses.

(B) A principal components analysis plot of the two principal
components separating the NRs (green) from the ORs (red). Circles
represent the 38 patients of the original training set, and triangles
represent the 12 patients of the independent validation set.

DOI: 10.1371/journal.pmed.0030422.g006

analysis were observed: our misclassification rates were lower,
while our confidence intervals were narrower. We attribute
these differences to two factors. First, we did not study basal
expression but instead treatment response, where each
irradiated sample was compared to the unirradiated control
of the same patient. Second, we studied normal tissue instead
of cancer cells, which are notorious for their genetic
heterogeneity, instability, and variability. A consequence of
adapting a classifier according to Michiels et al. is the
calculation of confidence instead of tolerance intervals. The
obtained narrow 95% confidence limits are not very
informative as they result from 500 iterations. For example,
with an independent validation set of only 12 samples, a 14%
misclassification rate would lead to a much wider 95%
confidence interval, ranging from 0% to 35%. The 33%
misclassification we found for our validation set is within this
range. The adjustments we had to make in the experimental
protocol for part of the validation set may have caused the
misclassification rate to be on the higher side of the
confidence interval. This issue highlights the need for
standardized procedures [45]. Furthermore, these misclassifi-
cation rates are population-based, while in the end it is the
certainty of correct classification of individual patients that is
of clinical value.

With our classification method, classification with certainty
was achieved for 55% of the patients, a percentage that needs
to be improved before clinical application of this method-
ology. Several explanations exist for the failure to classify
45% of the patients with certainty. First, the “correctness” of
patient classification by the physician is crucial, as intentional
switching of patient labels drastically affects misclassification
rates (data not shown). For some misclassified patients our
analysis suggests that they genetically belong to another
group than suggested by their clinical symptoms. A subset of
patients might show symptoms resembling radiation toxicity,
but unlinked to the radiation therapy. Second, modifiers of
toxicity not yet identified could affect the certainty of
classification. These results indicate that this gene set
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classifier will be suitable for only approximately half of the
extreme responders.

Nevertheless, caution should be taken in regarding the
identified gene sets as unique indicators for late radiation
toxicity. We do not envision that we have captured the whole
spectrum of interindividual variation in gene expression with
this rather limited study of 50 patients. A study of more
patients is likely to reveal subgroups of genetically deter-
mined extreme responders. Also, due to the retrospective
nature of this case-control study, we cannot exclude the
possibility that our findings reflect the genetic consequences
of, rather than the basis for, late radiation toxicity. However,
the fact that we based our classification on lymphocytes’ ex
vivo radiation response rather than basal levels of gene
expression argues against this possibility. The current
retrospective study has paved the way for the larger
prospective validation study needed to clarify this matter.
Such a study is essential before these results can be translated
into the clinic. To maximize the chance of finding measurable
effects at the gene expression level, we selected homogeneous
groups of patients from the two extremes of a wide scale of
clinical radiation toxicity. While additional work is needed to
investigate the applicability of our findings to more moderate
levels of radiation toxicity, the present findings support the
notion that in the future we may be able to attain the desired
outcome of predicting severe late radiation toxicity prior to
radiotherapy.

Supporting Information

Alternative Language Abstract S1. Translation of Abstract into
Swedish by Author J. P. S.

Found at DOI: 10.1371/journal.pmed.0030422.sd001 (21 KB DOC).

Alternative Language Abstract S2. Translation of Abstract into Dutch
by Author B. K.

Found at DOIL: 10.1371/journal.pmed.0030422.sd002 (21 KB DOC).

Figure S1. Characteristics of the Radiation Response in NR and OR
Patients

(A and B) Density distribution of Bs values of genes after applying the
model: Signal = B; Probe + Bo Treatment + & on the background-
corrected and normalized logs signal intensities of each patient and
gene. A 2-fold change (B = —1 or Bo = 1) is commonly used as a
threshold to characterize a gene expression response. In these patient
groups, expression of 4.0% (NR group) and 4.4% (OR group) of the
genes was changed more than 2-fold (Bs < —1 or s > 1, red area).
(C and D) Density distribution of p-values for genes being radio-
responsive after t-testing of the subgroups of NRs and ORs. The
estimated proportion of unchanged genes is indicated by a red line.
(E and F) From the above it was calculated that the proportion of
radio-responsive genes was 24% and 21% for NRs and ORs,
respectively. In order to find a more relevant threshold than a 2-
fold change, we determined the mean of the Bo values for the most
significantly changed genes (Benjamini-Hochberg false discovery rate
of 5%), which was 0.36 and 0.39 for NRs and ORs, respectively (red
lines). This corresponds to a fold change of 1.3. This threshold was
used for the calculation of the r values needed for the gene set
classification.

(A,C, and E) show the NR and (B,D and F) the OR.

Found at DOT: 10.1371/journal.pmed.0030422.sg001 (164 KB TIF).

Figure S2. Heat Maps of By Values of Radio-Responsive Genes

(A and B) The 100 most significantly up- and down-regulated genes
for each patient group as determined by -testing of the By values for
NRs (A) and ORs (B).

(C) The combination of the genes in (A) and (B) yields 162 radiation
responsive genes. A k-means clustering separated the patients into
two groups (top bar, grey versus black), which were unrelated
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(Pearson’s correlation coefficient = 0.03) to the responder status
(secondmost top bar, green [NRs] versus red [ORs]).

Found at DOI: 10.1371/journal.pmed.0030422.sg002 (398 KB TIF).

Figure S3. Variation of Selection Criteria for Classification

As input we varied the number of genes/gene sets (20 < N < 150) with
the highest correlation between Bo/r values) and responder status. (A,
C, and E) show the results from the genes and (B and D) show the
results from the gene sets.

(A and B) Balanced classifier (equal numbers of NRs and ORs in the
training sets).

(C and D) Unbalanced classifier (random attribution of NRs and ORs
to the training sets).

(E) Gene classifier after filtering the genes for having annotation and
belonging to a gene set with 5-500 members.

Found at DOI: 10.1371/journal.pmed.0030422.sg003 (213 KB TIF).

Figure S4. Validation of the Gene Classification on an Independent
Patient Set

(A) The 62 most discriminating genes in the training set were used to
predict responder status for 12 additional patients.

(B) A principal components analysis plot of the two principal
components separating the NRs (green) from the ORs (red). Circles
represent the 38 patients of the original training set, and triangles
represent the 12 patients of the independent validation set.

Found at DOI: 10.1371/journal.pmed.0030422.sg004 (69 KB TIF).

Table S1. Patient Characteristics of NRs and ORs
Found at DOI: 10.1371/journal.pmed.0030422.5t001 (54 KB DOC).

Table S2. Patient Characteristics of Validation Set (n = 12)
Found at DOI: 10.1371/journal.pmed.0030422.5t002 (56 KB DOC).
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Editors’ Summary

Background. More than half the people who develop cancer receive
radiotherapy as part of their treatment. That is, tumor cells are destroyed
by exposing them to a source of ionizing radiation such as X-rays.
lonizing radiation damages the genetic material of cancer cells so that
they can no longer divide. Unfortunately, it also damages nearby normal
cells, although they are less sensitive to radiation than the cancer cells.
Radiotherapists minimize how much radiation hits normal tissues by
carefully aiming the X-rays at the tumor. Even so, patients often develop
side effects such as sore skin or digestive problems during or soon after
radiotherapy; the exact nature of the side effects depends on the part of
the body exposed to the X-rays. In addition, a few patients develop
severe late radiation toxicity, months or years after their treatment. Like
early toxicity, late toxicity occurs in the normal tissues near the tumor
site. For example, in prostate cancer—a tumor that forms in a gland in
the male reproductive system that lies between the bladder and the end
of the gut (the rectum)—late radiation toxicity affects rectal, bladder,
and sexual function in 5%-10% of patients.

Why Was This Study Done? It is not known why some patients develop
late radiation toxicity, and it is impossible to predict before treatment
which patients will have long-term health problems after radiotherapy. It
would be useful to know this, because radiation levels might be reduced
in those patients, while larger doses of radiation could be given to
patients at low risk of late complications to ensure a complete
eradication of their cancer. One theory is that some patients are
genetically predisposed to develop severe late radiation toxicity. In other
words, their genetic make-up makes it more likely that their tissues
develop long-term complications after radiation damage. In this study,
the researchers looked for markers of a genetic predisposition for late
radiation toxicity by comparing radiation-induced changes in the pattern
of cellular proteins in patients who had late radiation toxicity after
radiotherapy with the changes seen in patients who did not develop
such complications.

What Did the Researchers Do and Find? The researchers recruited 38
patients who had been treated successfully with radiotherapy for
prostate cancer two years previously. Of these, 21 had developed severe
late radiation toxicity. They isolated lymphocytes (a type of immune
system cell) from the patients’ blood, stimulated the lymphocytes to
divide, exposed them to X-rays, and analyzed the pattern of genes active
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in these cells—their gene expression profile—before and after irradi-
ation. The researchers found that irradiation induced the expression of
numerous genes in the lymphocytes, including many well-known
radiation-responsive genes. They then used an analytical process called
“random cross-validation” to look for a gene expression profile (or
molecular signature) that was associated with late radiation toxicity. They
report that a signature based on the radiation response of 50 individual
genes correctly classified 63% of the patient population in terms of
whether the patient had developed late radiation toxicity. A signature
based on the radiation response of gene sets containing genes linked by
function or cellular localization correctly classified 86% of the patient
population.

What Do These Findings Mean? Gene expression profiling identified
groups of patients who had had severe late radiation toxicity pretty well,
particularly when sets of related genes were used to classify the patients.
The approach was not so good, however, at identifying individual
patients who had had problems, being correct and certain only half the
time. Additional studies are needed, therefore, before this promising
approach can be used clinically to predict patient responses to
radiotherapy. Overall, the study supports the idea that some patients
are genetically predisposed to develop late radiation toxicity, and it also
provides clues about which cellular pathways help to determine late
radiation toxicity. Most of the genes and gene sets that discriminated
between the patients with and without late radiation toxicity are
involved in protein metabolism, apoptosis (a special sort of cell death),
and stress signaling networks (pathways that protect cells from damage).
This information, if confirmed, might help researchers to develop
therapeutic interventions to minimize late radiation toxicity in vulnerable
individuals.

Additional Information. Please access these Web sites via the online

version of this summary at http://dx.doi.org/10.1371/journal.pmed.

0030422.

e US National Cancer Institute patient information on radiotherapy and
on prostate cancer

e American Cancer Society information on radiation therapy

e Cancer Research UK patient information on radiotherapy

e Wikipedia pages on radiotherapy (note that Wikipedia is a free online
encyclopedia that anyone can edit)
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