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Complexity in the Sherrington-Kirkpatrick model in the annealed approximation
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A careful critical analysis of the complexity, at the annealed level, of the Sherrington-Kirkpatrick model has
been performed. The complexity functional is proved to be always invariant under the Becchi-Rouet-Stora-
Tyutin supersymmetry, disregarding the formulation used to define it. We consider two different saddle points
of such functional, one satisfying the supersymmetry@A. Cavagnaet al., J. Phys. A36, 1175~2003!# and the
other one breaking it@A. J. Bray and M. A. Moore, J. Phys. C13, L469 ~1980!#. We review the previews
studies on the subject, linking different perspectives and pointing out some inadequacies and even inconsis-
tencies in both solutions.
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I. INTRODUCTION

The organization of thermodynamic states in comp
systems, fundamental to the understanding of dynamic p
erties, is a rather difficult task to deal with. The quench
disorder characterizing these systems and the conseq
frustration are such that a huge number of stable and m
stable states arises, even growing exponentially with
number of elements composing the system. In order to th
light on the structure of the landscape of the thermodyna
potential, a very important theoretical tool is the logarithm
the number of states, either calledcomplexityor configura-
tional entropy.

In structural glasses, seen as disordered amorphous s
and, thus, treated by the techniques of complex system
the glass transition the entropy drops to a~often much!
smaller value, going from the liquid to the solid state and
states, as opposed, e.g., to the crystal states do not dis
any specific symmetry. The condensed system has los
ability of visiting different states~at least on the observatio
time scale considered! and this codifies into the loss of en
tropy. All the other possible states, not selected at the
ment of the transition of the liquid to a glass, are, anyw
still there from a statistical point of view and could, in prin
ciple, still be reached on much larger time scales. The c
plexity counts the many equivalent states that could h
been chosen at the moment of the quench.

In disordered mean-field models for glasses, e.g.,
p-spin interaction spin glass models with stable one-step
lica symmetry breaking~1RSB! frozen phase,1–3 the pres-
ence of many metastable states can be detected looking a
relaxation that displays a dynamical transition, with dive
ing relaxation time scales, at a temperature~the dynamical
temperature! above the point where a true thermodynam
transition takes place, calledstatic temperature. In the range
between the static and dynamic temperatures the comple
displayed turns out to be extensive.

What happens moving from 1RSB-stable spin-glass m
els to spin-glass mean-field models whose frozen phas
described by means of a full replica symmetry break
~FRSB! solution?

In the last 20 years basically two different proposals ha
been put forward for the nature and behavior of the comp
0163-1829/2003/68~17!/174401~15!/$20.00 68 1744
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ity of the spin-glass mean-field Sherrington-Kirkpatrick~SK!
model,4 the prototype of mean-field spin-glass models. T
first one was originally presented by Bray and Moore5 ~BM!;
there the complexity was analyzed both in theannealed
approximation—i.e., as the logarithm of the disordered av
age of the number of states—and as quenched average—
the average of the logarithm—performed making use of
replica trick in the case of replica symmetry. The second o
was initially proposed in Ref. 6, where Parisi and Pott
showed that the complexity could be obtained by calculat
the partition function ofm distinct real replicas of the
system7 and provided the connection with the previous fo
malism by means of the generalization of thetwo-group
ansatz.8 In that context the annealed solution was called ‘‘u
broken’’ two-group.

Over the years it has become more and more evident
an important role in the study of the complexity of diso
dered systems is played by the so-called Becchi-Rouet-St
Tyutin ~BRST! symmetry. Such a property, first discovere
in the quantization of gauge theories,9 is a supersymmetry
~susy!, in the sense that it transforms bosons into fermio
and vice versa. In the context of stochastic field equation
can be shown that the integration of the generating functio
of correlation functions over disorder leads to an action p
senting BRST symmetry10 ~for the random field Ising mode
case see also Ref. 11!. The integrated generating function
formally coincides with the average over the quenched r
dom couplings of the number of metastable states of me
field spin-glass models. In such a context, the property
BRST-SUSY invariance has recently been analyzed in R
12 and 13. In this approach, imposing the invariance help
simplifying the computation and it is equivalent to setting t
due interdependence between the physical objects deri
from the Thouless-Anderson-Palmer~TAP! free energy func-
tional and composing the action—namely, the TAP fun
tional itself, its first derivatives with respect to the avera
site magnetization~i.e., the TAP equations!, and its Hessian.
In Ref. 13 a BRST symmetric annealed complexity is bu
while the BM complexity functional appears to violate su
symmetry.

Generally speaking, the fact that the solutions of a se
equations are BRST invariant is connected with some rob
ness of the equations under linear perturbation. Let us t
©2003 The American Physical Society01-1
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into account the equations]mi
F50, whereF is the thermo-

dynamic functional and the derivative is taken with resp
to the microscopic variablemi , i 51,...,N. If we perturb the
equations by means of small external fields,]mi

F50

→]mi
F5hi , the whole set of solutions could, in principle

drastically change. In general, solutions will appear or dis
pear at different values ofF with no given prescription for
the relative transformation of the complexity function and
dominion. The BRST SUSY can be recovered assuming
the number of solutions at a given value ofF does not
change. In Sec. II D we present an argument to explain s
correspondence.

Both the approach of Ref. 5 and the one of Ref. 13 id
tify an extensive complexity, computing the number of so
tions of TAP equations14 in the annealed approximation an
with the further simplification of neglecting the modulus
the determinant of the Hessian of the TAP free energy fu
tional. However, the two complexities display many diffe
ences. They have a different lower band-edge value of
complexity curve versus free energy and a different dom
ion in free energy, with different thresholds. Their magnitu
is different, BM complexity being much larger than the o
satisfying the BRST SUSY. Performing the integration ov
the whole interval of possible free energy values yield
finite result in the BM case, but zero in the BRST-SUS
one.15 At the threshold, the behavior is once again quali
tively different: the BM complexity goes to zero smoothl
whereas the BRST-SUSY one drops discontinuously to z

What do the two different complexities represent a
which one of the two is the ‘‘right’’ one, yielding prope
information over the organization of the states? Moreov
what do these quantities become in an exact FRSB quen
computation?

We study the complexity of the SK model, mean-fie
spin model with quenched disorder, critically reviewing t
analysis made at the annealed level in the far and near
linking apparently different approaches and discussing
role of BRST supersymmetry in this contest. We will car
fully look at the limitations of the annealed approaches,
particular from the point of view of physical stability, includ
ing the incompleteness of the one-step RSB approxima
for the SK model.

Our aim is to present here a comprehensive picture of
annealed level, leaving for elsewhere the study of
quenched~FRSB! complexity.16

Before dealing with details and derivations we now ve
briefly anticipate the main results of this paper and we o
line the scheme of their presentation.

The BM formalism5,17is equivalent to the supersymmetr
one as presented in Refs. 12 and 13. Both at the ‘‘mic
scopic’’ level ~site commuting and anticommuting variable!
and at the ‘‘macroscopic’’ level~order parameters! the ac-
tions in the two formalisms are related to each other b
simple change of variables. The form of BRST transform
tions and of the Ward identities are also obtained in the B
notation. We thus can consider just one~supersymmetric!
functional generating one set of saddle point equations.

Both the BRST-SUSY and BM solutions~which we will
17440
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often refer to as the BRST-SUSY-breaking solution! for the
annealed complexityare solutions of the same set of sadd
point equations.

In Secs. II B and II C we derive such properties, comp
ing the two approaches in all essential details.

Afterwards, we give some hints in order to understand
physical meaning of the BRST SUSY, showing, in Sec. II
the connection between such property and the property
nonbifurcationof TAP solutions of linearly perturbed TAP
equations with respect to the unperturbed solutions and
BRST SUSY. In Sec. II E the identification between the a
nealed BRST-SUSY solution and the static 1RSB solution
zero magnetic field, the main topic of Ref. 13, is rederived
the case of the BM formulation. Moreover, in Sec. II F, w
recast everything in the formulation of the generalizedtwo-
group ansatzof Ref. 6 and we show that breaking the sup
symmetry amounts to consider a nontrivial ansatz in the r
lica calculation.

In the second part of the paper, Sec. III, we discuss s
eral issues connected with the problem of selecting the r
solution between the BM and BRST supersymmetric one
particular, we show thatthe sign of the determinant of th
Hessian cannot be determined by the saddle point solutio
the leading order in Nand, applying Plefka’s criterion to the
analysis of the physical meaning of TAP solutions, we e
plain why the parameterB entering the determinant has to b
set equal to zero, as in Refs. 5, 6, 12 and 13, and why
opposed to what is stated in Refs. 5 and 18, such a ch
does not guarantee the positivity of the determinantof the
Hessian of the TAP free energy functional.

We also recall the results of Kurchan19 about the sponta-
neous BRST-SUSY breaking taking place on the BM sad
point: the BRST SUSY is recovered by the analysis of
prefactor of the exponent ofNSBM showing it to be zero on
the BM saddle point. This result, while ensuring mathema
cal consistency, poses the problem of which is the corr
prefactor of the saddle point when the modulus of the de
minant is not dropped.

As a by-product, dealing with the problem that the tr
thermodynamic description of the low-temperature phase
the SK model is yielded by a FRSB solution instead o
1RSB one, in Sec. III D we show thatthe complexity pro-
posed by Bray, Moore, and Young,20 as the quenched analo
of the above broadly mentioned annealed complexity,is
computed over a BRST-SUSY saddle point.

II. COUNTING THE TAP STATES: THE COMPLEXITY
IN THE ANNEALED APPROXIMATION

AND THE BRST SUSY

Before discussing the properties of the number of so
tions of the mean-field equations for the SK model, we ve
shortly summarize the basic, widely known, features of
Thouless-Anderson-Palmer14 formulation. The TAP equa-
tions for the local average magnetizationmi of the i th spin
are

mi5tanh@b~ h̃i2b~12q!mi !# ; i 51, . . . ,N, ~1!
1-2
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h̃i5(
j

Ji j mj , ~2!

whereq is the self-overlap of TAP configurations,

q[
1

N (
i

mi
2 , ~3!

andJi j are distributed as

P~Ji j !5A N

2p
expS 2N

Ji j
2

2 D . ~4!

The associated free energy functional is

F tap~$m%!5Etap~$m%!2TStap~$m%!, ~5!

Etap~$m%!52(
i , j

Ji j mimj2
Nb

2
~12q!2, ~6!

Stap5(
i

stap~mi ;q!

5(
i

H ln 22
b2

4
~12q!2

2
1

2
ln~12mi

2!1mi tanh21mi J , ~7!

whereEtap andStap are, respectively, the expressions for t
internal energy and the entropy of a$mi% configuration and
Eq. ~1! is yielded by differentiating Eq.~5! ~Ref. 14!
]mi

F tap50. Furthermore, one defines the disord
independent ‘‘field’’

g~mi ;q![
1

b
tanh21mi1b~12q!mi ~8!

so that Eq.~1! can be reformulated as

]mi
F tap5g~mi ;q!2(

j
Ji j mj50. ~9!

Using Eq.~9!, the expression for the energy of a TAP sol
tion $mi

sol% can be written without making use of the disord
Ji j as

E~$msol%!52
1

2b (
i

g~mi ;q!mi2
b

2
~12q!2

52
1

2b (
i

mi tanh21mi2
b

2
~12q2!. ~10!

Combining this last result with the expression~7! for the
entropy one is able to formally rewrite the TAP free ener
as a sum of single site-free energies of TAP solution as
17440
-

F~$msol%!5(
i

f ~mi ;q!

5
1

N (
i

H 2 ln 22
b2

4
~12q2!

1
1

2
@mi tanh21mi1 ln~12mi

2!#J , ~11!

wheref (mi ,q) is the site free energy computed on a soluti
of Eq. ~9!.

A. Complexity in the annealed approximation

What we are interested in is the number of solutions
the TAP equations at different free energy levels, which c
provide substantial information in order to understand
free energy landscape and, therefore, the organization o
states. If we label each of theN solutions with the indexa
51,...,N, the number of solutions having free energy de
sity equal tof is

rs~ f !5 (
a51

N
d@F tap~$m

a%!2N f#. ~12!

This can be formally transformed as

rs~ f !5 (
a51

N E
21

1

)
i 51

N

dmid~mi2mi
a!d@F tap~$m%!2N f#

5E
21

1

)
i 51

N

dmid„]mi
F tap~$m%!…udet~]mi

]mj
F tap~$m%!u

3d@F tap~$m%!2N f#, ~13!

where the Hessian takes the form

]mi
]mj

F tap~$m%!

52Ji j 1F 1

b

1

12mi
2

1b~12q!Gd i j 1OS 1

ND . ~14!

Terms of order 1/N will be neglected since they are not re
evant for the present discussion.

At this point, one can compute the annealed complexity
i.e., the logarithm of the average over the disorder of
density of TAP solutions:

Sa5
1

N
ln rs~ f !, ~15!

where the overbar represents the average over the dist
tion of the Ji j ’s. Details of such computation for the SK
model can be found both in the original paper of Bray a
Moore ~Ref. 5! and in the supersymmetric formulation o
Ref. 13, as well as in many other works: e.g., Refs. 17,
and 22. Here, we only stress the basic fact that, in b
procedures, the determinant of the Hessian is taken with
absolute value, thus implying that the quantity actually co
1-3
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puted would coincide with the ‘‘true’’ complexity~even
though in the annealed approximation! only if the determi-
nant of all the solutions we are counting were positive. Su
an assumption is hard to verify in the SK model.

B. BRST invariance of the density of TAP solutions

The density of TAP solutions can be written making u
both of anticommuting$c%,$c̄% and commuting variables
$m%,$x% as12,13

rs~ f !5E DxDmDc̄DcebS(m,x,c̄,c) ~16!

S~m,x,c̄,c!5(
i

xi]mi
F tap~$m%!

1(
i j

c̄ ic j]mi
]mj

F tap~$m%!

1u@F tap~$m%!2N f#, ~17!

where Da[prefactor3) idai . The transformation unde
which such an action is invariant is10,12,13

dmi5ec i dxi5euc i dc̄ i52exi dc i50. ~18!

The Ward identities generated by imposing invariance w
respect to the above transformations of observables are,

^c̄ ic i&52^mixi&, ~19!

u^c̄ ic i&5^xi
2&, ~20!

where the averagê(•••)& is computed over the measureeS.
Bray and Moore5 used explicitly, in their computation, th

TAP equation~9! in order to simplify the procedure. In Re
13 it was claimed that such a substitution led to an action
longer BRST invariant. Such an inconvenience is, howe
only apparent. Indeed, shifting the integration variables$x%
the BRST-invariant form is readily restored. The acti
yielded by the BM procedure is different from the so-call
SUSY one because of the insertion of Eq.~9!, which means

S~x,m,c̄,c!5SBM~x,m,c̄,c!

1uF1

2 (
i j

Ji j mimj2
1

2b (
i

g~mi ;q!mi G .
~21!

Since the quenched disorderJi j enters the action a
Ji j (ximj1c̄ ic j1u/2mimj ), a shift in the integration vari-
able

xi→xi85xi1
u

2
mi ~22!

is enough to make both actions coincide:

S~x,m,c,c̄ !5SBMS x1
u

2
m,m,c,c̄ D . ~23!
17440
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In the new set of variables$x8,m,c,c̄% the transformation
~18! keeping a BSRT-SUSY function invariant remains u
changed. The shift ofxi is performed over an integratio
variable, thus without affecting the final result, yet the tran
formations given in Eq.~18! and the Ward identities com
puted with the BM measure in the original set of variab
are changed.

In the old set of variables the BRST transformation rea
~as discussed also in Ref. 23!

dmi5ec i dxi5e
u

2
c i dc̄ i52exi dc i50, ~24!

and the averages over the two actions are connected by

^a~x!&5 K aS x2
u

2
mD L

BM

, ~25!

where the averagê(•••)&BM is computed over the measur
eSBM so that Ward identities computed with the BM actio
become

^c̄ ic i&BM52^mixi&BM1
u

2
q, ~26!

u^c̄ ic i&BM5^xi
2&BM2u^mixi&BM1

u2

4
q. ~27!

Inserting Eq.~26! into Eq. ~27! one gets

^xi
2&BM5

u2

4
q. ~28!

Even if in the notation of Ref. 13 it seemed that the acti
SBM was not satisfying the BRST relations, this was exc
sively due to the fact that such relations in the BM notati
read differently.

Moving to the macroscopic level, where the average nu
ber of solution is expressed as a function of the parameteq,
D, l, andB, the two approaches continue to be linked a
equivalent to each other. The final expressions for the co
plexity in Refs. 5~BM! and 13@Cavagna, Giardina, Paris
and Mezard~CGPM!# are

BM rs~ f ;u,B,q,D,l!

5ext$uBqDl% expH NF2lq2bu f

2~B1D!~12q!1
~B22D2!

2b2
1 ln I G J , ~29!
1-4
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I 5E
21

1 dm

A2pb2q
S 1

12m2
1BD

3expH 2
~Dm2tanh21m!2

2b2q
1lm21u f~m;q!J ,

~30!

f ~m;q!52 ln 22
b2

4
~12q2!1

1

2
m tanh21m

1
1

2
ln~12m2!, ~31!

CGPM rs~ f ;u,B,q,D,l!

5ext$uBqDl% expH NF2lq2bu f2~B1D!~12q!

1
~B22D2!

2b2
2

b2

4
u2q2

2Duq2b2uq~12q!1 ln I G J , ~32!

I 5E
21

1 dm

A2pb2q
S 1

12m2
1BD

3expH 2
~Dm2tanh21m!2

2b2q
1lm21u F0~m;q!J ,

~33!

F0~m;q!52 ln 22
b2

4
~12q!21m tanh21m

1
1

2
ln ~12m2!. ~34!

The first expression is obtained making explicit use of E
~10! for the TAP energy, while the second one is compu
without ever using such a relation. Apparently the two e
pressions differ. Since, however, both actions describe
evolution in the parameter space of the same system, the
formulations must coincide~exactly as the ‘‘microscopic’’
description and the final results do!, introducing a proper
change of variables. Indeed, to link the two approaches
following transformation can be set:

DBM5DCGPM1
b2

2
uq, ~35!

lBM5lCGPM1
1

2
uDCGPM1

b2

8
u2q. ~36!

Notice that the two functionsf (m;q) ~in the BM formalism!
and F0(m;q) ~in the formalism of Ref. 13! are related to
each other by
17440
.
d
-
e
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f ~m;q!5F0~m;q!2
1

2
m tanh21m2

b2

2
q~12q!. ~37!

Since the formulations are equivalent, the notation to ad
is no longer important. We will use the original notation
Ref. 5, not simply because it is the oldest one, but rathe
have a more direct comparison with other works: e.g.,
one of Parisi and Potters,6 which showed that the BM action
can be obtained from the Legendre transform approach
Ref. 7 making a two-group ansatz on the matrixQab entering
the computation of the free energy of the coupled replicas~in
this way they were able to find new solutions of the B
equations called ‘‘unbroken two-group’’! or the quenched
computation of the complexity of Refs. 20 and 24. For si
plicity we drop the subscript BM in the following.

C. Saddle point equations

The variational equations, yielding the saddle point~s! val-
ues of the parameters for the annealed complexity, take
form

]Sa

]u
50→ f 5^ f ~m;q!&, ~38!

]Sa

]B
50→B5b2S 12q2K 12m2

11B~12m2!
L D , ~39!

]Sa

]q
50→l5B1D2

1

2q
1

^~Dm2tanh21m!2&

2b2q2
1

b2

2
uq,

~40!

]Sa

]D
50→D52

b2

2
~12q!1

1

2q
^m tanh21m&, ~41!

]Sa

]l
50→q5^m2&, ~42!

where the average

^O~m!&5
1

I E21

1

dmO~m!eL(m;u,q,D,l), ~43!

I 5E
21

1

dmeL(m;u,q,D,l), ~44!

is taken over the action

L~m;u,q,D,l!5 lnS 1

12m2
1BD 2

1

2
ln~b22pq!

2
~Dm2tanh21m!2

2b2q
1lm21u f~m;q!.

~45!

As noted in Ref. 13 the last term of Eq.~40! was missing in
Ref. 5. The free energy of the TAP solutionsf (m;q) is the
one expressed in Eq.~11! or ~31!.
1-5
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Fixing u, therefore leavingf as a free parameter, the abo
equations have at least two different solutions.25 One solu-
tion satisfies the two relations of BRST supersymmetry
stated in Refs. 12 and 13, which we rewrite here in
present notation as

B1D52
b2

2
uq, ~46!

l5
b2

8
u2q. ~47!

The saddle point Equation~39!, substituting Eq.~42! into it,
admits a solution forB>0 ~see Appendix A for details!. In
Sec. III A we recall that a general criterion, formulated
Plefka,36 can be applied as anecessarycondition to select
physically relevant solutions. We anticipate that this criter
requiresB50, so that Eq.~46! becomes a condition forD
alone.

In Figs. 1, 2, and 3 we show the behavior, atT50.2, of
both solutions, both versusf andu. The annealed complexity
computed over the supersymmetric solution goes to z
smoothly asu→02; it displays a maximum at someumax ~or
f th , if the behavior versus free energy is considered! and
crosses theu-ax at someu0 such thatu0,umax,0. Unlike
Sa(u), the curveSa( f ) is not univocal: it displays a cusp a
f th ~see Fig. 1! and then turns back.

The other solution of the saddle point equations, wh
will refer to as the BM or BRST-SUSY-breaking solution,
the one introduced in Ref. 5. Such a solution does not sa
relations~46! and ~47!, thus spontaneously breaking BRS
SUSY; its dominion inu ~or f ) is broader than the one of th
symmetric solution, the maximum value ofSa is for u50,
and, at any temperature, it is larger than the correspon

FIG. 1. Comparison of complexities yielded, respectively, by
BRST-SUSY solution~dashed line! and the BRST-SUSY-breaking
solution ~solid line! of the annealed saddle point equations atT
50.2. The range of free energy values of the solution breaking
supersymmetry of the TAP action~45! is much larger than thef
range of the SUSY one. The maximum complexity for this solut
is also much higher than the one for the BRST-invariant solut
~the value at the cusp of the dashed curve!. Such a difference in-
creases by loweringT.
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value on the BRST-invariant solution. The behavior of t
annealed complexity is univocal both inu and in f.

D. Physical meaning of BRST SUSY in the context
of TAP solutions

In this section we will follow a reasonment allowing fo
an intuitive explanation of the physical meaning of the BR
supersymmetry in terms of a particular behavior of the so
tions of the TAP equations.

The objects of interest of the present approach are s
over TAP states, multiplied by some weight function, typ
cally of the formebuF(m). We make the hypothesis that th

e

e

n

FIG. 2. Detail of the complexity curves for low free energ
values. The asterisks stand for the complexity of the static one-
RSB solution at zero magnetic field, coinciding with the BRS
SUSY saddle point. The values of free energy at which the co
plexity reaches zero~subexponential growth of solutions of TAP
equations with increasing size! are f BM520.7693, f SUSY

520.7651, both below the true equilibrium value atT50.2:f eq

520.7594~as computed, e.g., in the FRSB scheme!. Notice that
the branch on the left-hand side of the BRST-SUSY solution in
shown.

FIG. 3. Complexity vsu ~conjugated tof ) for both saddle
points. The BRST-SUSY complexity displays a maximum belo
zero @corresponding to the cusp in thef dominion ~see Fig. 1!#. It
goes to zero asu→0. On the contrary the solution with broke
SUSY has a maximum foru50.
1-6
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set of solutions over which we perform the sums does
qualitatively change adding a small magnetic field to a sin
spink. This means that each solutiona with associated mag
netizations$mi

a% goes continuously to a new solution in pre
ence of the fieldhk , defining the functions$mi

a(hk)%.
Given a generic observable depending on the magne

tions, its white average—i.e., the average value that the
servableg takes over each TAP solution—is given by

@g~m!#sol[
1

Ns
(
a

g~mi
a!, ~48!

whereNs is the number of solutions we are summing ove
We now assume that~a! no solution bifurcates and~b! no

new solution appears. This can take place either as a gl
property of all TAP states or as a property of a restric
subset of dominant states, selected according to t
weights. Under these hypotheses this means that we
write

@g„m~h!…#sol5
1

Ns
(
a

g„mi
a~h!…. ~49!

As a consequence, for anyn, the following relation holds:

]n@g„m~h!…#sol

]hn
5

1

Ns
(
a

]ng„mi
a~h!…

]hn
. ~50!

We start consideringg(m)5mke
buF(m), which is the average

of the magnetization with the weightebuF, used to count
solutions of a given energy. In general we have

]@mle
buF(m)#sol

]hk
52^xkml&, ~51!

where the average on the right-hand side~RHS! is computed
with respect to the actionS(x,m,c̄,c) @Eq. ~17!#. However,
under the above hypothesis, this must be equal to the ave
on each solution of the derivative ofmke

buF(m) with respect
to hk , which is

(
a

S ]ml
a

]hk
ebuF(ma)1mlbu

]F~ma!

]mj
a

]mj
a

]hk
D . ~52!

We can drop the second term since, by definition, it is z
on the TAP solutions, and we are left with

1

Ns
(
a

xkle
buF(ma)5

1

Ns
(
a

S ]2F

]ma]maD
kl

21

ebuF(ma)

5^c̄ lck&. ~53!

Thus we have

2^xkml&5^c̄ lck&, ~54!

i.e., for k5 l , the first Ward identity for BRST-SUSY sys
tems, Eq.~19!. To obtain the second Ward identity, Eq.~20!,
we must apply the same procedure to the second deriva
of the quantityg(m)5ebuF(m), proportional to the complex
ity. From Eq.~17! we have
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]2@ebuF(m)#sol

]hi]hj
5b^xixj&. ~55!

Under the hypothesis of Eq.~49!, this must be equal to the
following quantity:

1

Ns
(
a

]2ebuF(ma)

]hi]hj
5

1

Ns
(
a

S bu
]2F~ma!

]hi]hj

1b2u2
]F

]ml

]ml

]hi

]F

]ms

]ms

]hj
DebuF(ma),

~56!

where the second term is zero over any TAP solution and
are left with

(
a

bu
]2F~ma!

]hi]hj
ebuF(ma)5bu^c̄ ic j&. ~57!

Thus we obtain

^xixj&5u^c̄ ic j&. ~58!

The previous BRST relations can be obtained under wea
conditions than those considered initially; in particular t
above derivation still holds if we allow the onset of ne
solutions, provided that they appearonly outsidethe en-
semble of dominant solutions: e.g., at the threshold. Inde
in presence of a weightebuF(m), only solutions of a certain
free energy count, thus supporting our assumption that, in
dominion of interest, the total number of states,Ns , does not
change. Instead, the condition of no bifurcation seems
avoidable to obtain the BRST relations by means of t
argument.

E. Identification of the BRST-SUSY solution with the static
solution: Link with replica computation

In this section we very shortly recall the connection b
tween the static solution at the one-step RSB approxima
and the BRST-SUSY solution ofSa ~Ref. 13!. We compare
results at given values of the breaking parameterm in replica
formalism and at given values of the variableu, Legendre
conjugated off, in the framework of the annealed comput
tion of the complexity.

The total replica free energy at one-step RSB is

f rep52
b

4
~122q1!2

b

4
@~12m!q1

21mq0
2#

2
1

bmE Dz0lnE Dz1 p1~m,z0 ,z1!, ~59!

with

p1~m,z0 ,z1![@2 cosh~bz0Aq01bz1Aq12q0!#m.
~60!

Self-consistency equations take the form
1-7
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q05E Dz0^tanh~bz0Aq01bz1Aq12q0!&2, ~61!

q15E Dz0^tanh2~bz0Aq01bz1Aq12q0!&, ~62!

b

4
~q1

22q0
2!1

1

bm2E Dz0F lnE Dz1p1~m,z0 ,z1!

2^ ln p1~m,z0 ,z1!&G50, ~63!

with

^~••• !&[
E Dz1~••• !p1~m,z0 ,z1!

E Dz1p1~m,z0 ,z1!

. ~64!

Leavingm as a free parameter@thus ignoring Eq.~63!#, at a
given temperature we can define the complexity of the s
tem as the Legendre transform ofbm frep:

S1~ f !5max
m

@bm f2bm frep~m!#, ~65!

with conjugated variablesbm and f,

f 5
]m frep

]m
, ~66!

bm5
]S1

] f
. ~67!

Equations~66! and ~67! yield the relation betweenf andm.
Introducing Eq. ~66! in the Legendre transformation o
bm frep @Eq. ~65!# one can obtain the following relation:

S1~ f !5bm2
] f rep

]m U
m( f )

5
b2

4
m2~q1

22q0
2!1E Dz0F lnE Dz1p1~m,z0 ,z1!

2^ ln p1~m,z0 ,z1!&G , ~68!

wherem5m( f ).
In zero external magnetic fieldq050. In this particular

case S1 represents the entropy ofhidden statesthat we
would get with the method of them coupled real replicas7

and a formal connection can be established between the c
plexity of the BRST-SUSY saddle point of the anneal
computation and the one-step RSB replica free energy. T
was shown in Ref. 13@Eqs. ~32!–~34!# but the formal con-
nection also holds in the original notation of Ref. 5.

Indeed, the expression of the annealed complexity
tained simplifyingD andl in the logarithm of Eq.~29! by
means of the BRST relations, Eqs.~46! and~47!, comes out
to be
17440
s-

m-

is

-

Sa~ f ;u,q!5
1

N
ln rs„f ;u,q,D~u,q!,l~u,q!…

5buH 2
b

4
@122q1~11u!q2#

1
1

bu
lnE Dz@2 coshbzAq#2u2 f J . ~69!

It can be easily seen that, puttingq050 in the replica free
energy, Eq.~59!, this is bounded to Eq.~69! by

Sa~ f ;u,q!5bu@ f rep~q,2u!2 f # ~70!

provided that one makes the identification

m52u, q15q. ~71!

Furthermore, the saddle points of such a functionSa coin-
cide with those off rep, if the correspondencef rep(q,2u
5m!)5 f holds at the static value of the breaking parame
m; i.e., m! satisfies Eq.~63!.

The identification in Eq.~71! is evident for the overlap:q1
is the self-overlap of states in the replica 1RSB framew
and q is the self-overlap of TAP states; i.e., they are ju
different representations of the same thermodynamic obs
able. For what concerns the connection between the brea
parameterm and the variableu conjugated with the TAP free
energy, we can observe that the derivative with respect tof of
Eq. ~69! gives

]Sa

] f
52bu. ~72!

Simply comparing this with Eq.~67! one can identify2bu
asbm, the slope of the complexity as a function of the fr
energy. As a matter of fact we are just saying that Eq.~69!
can be seen as the Legendre transform of (2bu frep) with
conjugated variables2bu and f.

Notice that, as a consequence of the link shown in E
~70! and~71!, the average defined in Eq.~43! coincides with
the one defined in Eq.~64!. Therefore we used the sam
symbol.

The one-step RSB static solution is not thermodyna
cally stable, as can be shown computing the Hessian of
replica thermodynamic potential with respect to the ord
parameters variations around their self-consistently deri
values, given by Eqs.~61! and ~62!. Indeed, the eigenvalue
associated with the overlap-overlap fluctuations—i.e.,
replicon—is

LR512b2^cosh24~bAq1z1!&. ~73!

Using the identity cosh245(12tanh2)2, the stability condi-
tion LR.0 can be written as

T2.122q11^tanh4~bAq1z1!&. ~74!

This is the analogous in the replica formalism of Plefka
criterion for the physical relevance of TAP solutions36 ~see
Sec. III A!.
1-8
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COMPLEXITY IN THE SHERRINGTON-KIRKPATRICK . . . PHYSICAL REVIEW B68, 174401 ~2003!
As we can see from Fig. 4, the replicon of the one-s
RSB solution at zero magnetic field, as a function ofu
52m, is always negative in the dominion where the co
plexity is positive, even on the ‘‘static’’ pointf 0[ f (m!).
From the same figure, though, we observe that the equiva
quantity computed over the BM saddle point of the annea
complexity is such that Plefka’s criterion is always satisfie
This is a necessary condition supporting the possibility t
the BM annealed complexity could represent the numbe
states of the SK model, yet not a sufficient one, as we
see in Sec. III.

F. Two-group ansatz breaks the BRST SUSY

In Ref. 8 Bray and Moore introduced thetwo-group an-
satz in order to solve the instability problem of the replic
symmetric solution of the SK model. In Ref. 7 Monass
showed how the formalism of Legendre transforms can
applied to mean-field disordered models through thepinning
of real replicasin a configuration space extended tom copies
of the system.

Parisi and Potters6 explained how the BM action can b
obtained through the method of Monasson provided that
symmetry between real replicas is broken according to a g
eralized two-group ansatz.n being the number of replica
introduced to compute the quenched average~following the
standard scheme4,26! and m the number of real copies, the
analyzed

lim
n→0

1

n
ln Zmn5extf@ ln rs~ f !2mbN f#, ~75!

FIG. 4. The quantityT22^(12m2)2& is plotted vsu. Following
the Plefka’s criterion, if such a quantity is positive, the solution
physically meaningful~see text for details!; otherwise it is not. In
the case of the BRST solution, it coincides with the replicon~sta-
bility eigenvalue of theq1 fluctuations in the one-step RSB stat
solution with no external field!, which we plot with asterisks. From
the plot one can see that Plefka’s criterion is satisfied only by
BM solution. This means that if the annealed approximation in
complexity computation would be a reliable one, and if no furth
inconsistency would arise, the physically relevant saddle point o
which it should be computed would be the one breaking the BR
SUSY.
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where Zmn is the partition function ofn3m copies of the
system. In terms of the replicated matrix parameterQ̂ its
average is

Zmn5extQ̂expH NFb2

4
~mn2TrQ̂2!

1 ln (
$sa

c%

expS b2

2 (
ab,cd

Q̂ab
cdsa

csb
dD G J , ~76!

where the indexesa,b51,...,n while c,d51,...,m. The
four-index matrixQ̂ab

cd can be expressed as the compositi
of n2 submatricesQab of dimensionm3m of the form

~77!

The matricesQab
6 are further parametrized as

Qab
6 5Qab6

Aab

y
1

Cab

2y2
. ~78!

Furthermore isQ̂aa
cc[0. In Ref. 6 the last term wasBab /y2.

We write Cab52Bab both in order to avoid confusion with
the parameterB in theSa expression of Sec. II and to obtai
more symmetric expressions in following works.

Equation~75! is, then, computed making use of the abo
ansatz, getting a complexity that can be formally connec
to the one of Bray, Moore, and Young, Ref. 20 through
given change of variables. We will analyze it more explicit
elsewhere,16 where we will use such transformation.

For the time being we are mostly interested in the a
nealed case, which can be obtained putting in matrix~77! all
Qab with aÞb equal to zero. The ansatz reduces, then,
considern diagonal blocks ofm3m matrices~77!, for b
5a, where the elements are built withQaa5Q, Aaa5A,
Caa5C. In this case, the change of variables we need
connect the BM formulation of the annealed complexity
the Parisi-Potters~PP! one is27

BM PP

q5Q, ~79!

D5S A1
m

2
QD , ~80!

l5
b2

2 S C1mA1
m2

4
QD , ~81!

u52m.

Writing the equations with the substitutions~79!–~81! al-
lows for an immediate connection between breaking the m
trices structure into two groups and breaking the BR
SUSY. Indeed, Eqs.~80! and ~81! transform into the BRST
relations~46! and~47! if we setA5C50—i.e., if we do not

e
e
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break the matrix structure at all~unbroken two-group!. On
the contrary, setting values ofA and C different from zero
amounts to breaking the BRST symmetry and leads to va
of q, D, andl independent among each other: i.e., to the B
solution.

III. PROPERTIES OF THE ANNEALED COMPLEXITIES

In the previous part of the paper, we have studied
so-called BM complexity5 ~the one breaking the supersym
metry! and the BRST-symmetric complexity13 as two differ-
ent solutions of the same saddle point equations, der
from the same BRST-SUSY functional~see Sec. II B!.

In this section we will discuss several issues connecte
the problem of selecting a proper, physically meaning
complexity and to see whether any of the two candida
fulfill the minimal requirements.

We start noticing that not all TAP solutions can be as
ciated to stable thermodynamic states. They have first to
isfy the Plefka’s criterion~see below!, which guarantees the
right expression for the linear susceptibility of the states
der consideration, and, then, to be minima of the TAP f
energy functional.

Operationally speaking, what happens is that, even if
physical grounds we are willing to count only the minima
the TAP free energy, in practice, we also count other kinds
solutions of the TAP equations. As a consequence, it m
happen that we have a mathematically correct computa
which, however, has no physical meaning at all or a rat
obscure one. In Sec. III A we will see that, at the pres
stage, we have no way to state that any of the two soluti
of the complexity saddle point equations correspond
counting only minima of the TAP free energy. On the oth
hand, though it is just a necessary condition, a partial
crimination can be done on the basis of Plefka’s criteri
which is satisfied by the BRST-SUSY-breaking solution b
not by the BRST-SUSY solution.

Since the BRST solution can be linked to the saddle po
solution obtained in a 1RSB replica computation in ze
magnetic field, it is natural to check its stability according
the usual criteria in that framework—e.g., the positivity
the replicon eigenvalue; however, as we anticipated in S
II E, this condition is formally identical to the Plefka crite
rion, which is, therefore violated by the BRST-SUSY so
tion. This violation leads to a mathematical inconsistency
we show in Sec. III A.

The BRST supersymmetry is a property of the action a
therefore, its violation poses a consistency problem to
BM saddle point, too, due to the lack of control on what w
are counting. The only possibility for the BRST-SUS
breaking saddle point to be valid is to guess that it cou
only the minima, as it is claimed in Ref. 18. It would d
scribe only a physically stable portion of the set of TA
solution and we would not expect that it satisfies glo
properties valid on the whole set, such as the Ward ident
derived from the BRST SUSY@see Eqs.~19! and ~20!#.
However, this assumption is hard to justify, as we will d
cuss in the Secs. III B and III C, recalling the properties
the Hessian of the TAP free energy as derived in Ref. 28
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The effects of neglecting the sign of the determinant
the TAP solutions, which is at the origin of the BRST sus
are particularly dramatic when we setu50. In this case we
are summing over each extremum of the TAP functional w
a weight given by the sign of its determinant. The Mor
theorem tells us that this quantity is a topological invaria
and it is equal to 1 in this specific case. While the BRS
SUSY solution does satisfy the theorem, the BRST-SUS
breaking saddle point yields a quantity of ordereNSBM@1, if
SBM.0.

A first way to recover mathematical consistency in theu
50 case is to guess that BRST SUSY is restored—e.g.,
cause the prefactor of the exponential ise2NSBM. In this case
the expansion of the prefactor in powers of 1/N will be zero
at all orders~such as the expansion ofe21/x in powers ofx).
This series was considered by Kurchan in Ref. 19 where
shown that its coefficients are indeed all null. This prov
that the BM saddle point is possibly mathematically cons
tent but raises another difficulty. We already stressed tha
the orderN it is not possible to prove whether the BM com
plexity is counting only minima or not. When computing th
corrections without a modulus of the determinant of the H
sian one seems to have a vanishing prefactor, though. Ind
at this stage, in order to accept the BM prediction, we mu
then, assume that the effect of taking the modulus of
determinant into account is to change the value of the p
actor from exponentially small to finite, a completely unju
tified assumption at the present state.

A. Plefka’s criterion

In this subsection we recall the results of Ref. 28 on
properties of the Hessian of the TAP free energy on a gen
configuration$mi%, which is also the inverse of the susce
tibility matrix:

x i j
215

]2F tap~m!

]mi]mj
. ~82!

The problem is studied considering the resolvent of the H
sian. As a by-product of the computation one obtains
magnetic susceptibility of a solution. On physical groun
this must be equal tob(12q); however, it turns out that no
all TAP configurations satisfy this relation. Instead the co
dition for a TAP solution$mi% to yield the right physical
susceptibility is

xP[12b2
1

N (
i

~12mi
2!2>0. ~83!

The TAP solutions which do not satisfy the previous relati
turn out to have the following nonphysical susceptibility:

x l5b~12q!1
xP

p
, ~84!

wherep is defined as

p[b3
1

N (
i

~12m2!3. ~85!
1-10
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COMPLEXITY IN THE SHERRINGTON-KIRKPATRICK . . . PHYSICAL REVIEW B68, 174401 ~2003!
Therefore, after having computed the complexity, we m
check that the Plefka relation is verified to be sure that
are counting physical solutions.

For N→`, the site average becomes, in the notation
the annealed computation of Sec. II C, the average of
~83! over the actionL @Eq. ~45!# and the above inequality
reads

12b2~122q1^m4&!>0. ~86!

As we can see from Fig. 4 such a condition is satisfied by
saddle point breaking the BRST SUSY, but is violated by
BRST-invariant one. In the replica language Eq.~86! is the
replicon. The identification of the measures over which
average is performed is given by Eqs.~69!–~71!.

As we show in Appendix B, the computation of the det
minant of the Hessian, which is a crucial step in the deri
tion of the action, is deeply connected to the Plefka com
tation of the resolvent.28 As a consequence, one sees that
order to set the parameterB of the determinant equal to zero
as was chosen in both solutions, one must check that
Plefka criterion is satisfied. Therefore, the fact that
BRST-SUSY solution violates it turns out to be not only
problem of physical meaning, but also a problem both for
replica computation and for the mathematical consistenc
the solution.

We conclude stressing that although the annealed com
tation is well defined on mathematical grounds, what rea
matters for physics is the quenched computation where
problem can possibly be cured considering a full-R
BRST-SUSY solution. As we will see, this certainly happe
at the lower band edge of the quenched complexity~the free
energy value at which the complexity vanishes! which, as
expected, coincides with the equilibrium free energy giv
by the Parisi solution and it is BRST symmetric.

B. Spectrum of the Hessian ofF tap„ˆm‰…

The spectrum of the eigenvalues of the inverse susce
bility matrix x21(m) on a generic configuration$mi% is de-
termined in Ref. 28 for small eigenvalues and in the reg
of $m% configurations such thatxP.0. The eigenvalue distri-
bution is written, at the leading order inN, as29

r~l!5
1

pAp
Al2

xP
2

4p
, uxPu!1, l!1. ~87!

The minimum of the spectrum is therefore positive, irresp
tive of the value ofxP, implying that the TAP free energy i
semiconvex everywhere at the extensive level. In the sa
paper this result was proved rigorously also for generic c
figurations with a finitexP, either positive or negative. W
remark that this result, however,does not exclude the exis
tence of solutions with a subextensive number of nega
eigenvalues. Actually, the Morse theorem implies that the
solutions do exist and, indeed, there must be an equal n
ber of solutions with positive and negative determinan
Plefka’s result just states that we cannot distinguish them
an extensive level.
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C. Determinant of the Hessian

As we have previously discussed, the fact that no nega
eigenvalue exists in an extensive quantity does not mean
saddles and maxima do not exist, which is indeed imposs
on topological grounds. Therefore, the conditionxP>0 does
not bypass the problem of the sign of the determinant
x21.

In Appendix A the determinant is computed making use
Grassmann variables and using the saddle point metho
one evaluates the saddle point overB before evaluating the
integrals over themi , it turns out that there are two solution
B50 andB.0 (B is the parameter originally used by Bra
and Moore30!. If xP>0, the solutionB50 satisfies the con-
dition for the saddle point of being a maximum of the int
grand on the integration path and is the correct one, whil
xP,0, the correct solution is the one withB.0.

Both the BRST-SUSY and the BRST-SUSY-breaking s
lutions assume thatB50; consequently the expression of th
determinant of the Hessian of the TAP free energy becom

detx215)
i

S 1

b

1

12mi
2D expH N

b2

2
~12q!2J . ~88!

Since the prefactor is positive for any$mi% configuration,
this choice ofB would providean a posteriori justification
for neglecting the absolute value of the determinantif the
calculation were exactat all orders inN. Anyway, we cannot
neglect the fact that all computations are performed at
leading term inN, asN→`, thus ignoring all subextensive
contributions.

As a matter of fact, the sign also depends on neglec
prefactors

detx215a~N!detx21usp, ~89!

wherea(N) cannot be determined at the leading order inN,
but needs to be obtained from corrections ofO(1):

1

N
ln detx215

1

N
ln detx21U

sp

1
1

N
ln a~N!. ~90!

While the magnitude of the determinant is not qualitative
changed byO(1) corrections~provided they are not zero, o
course!, its sign can well be determined by eigenvalues t
are present in a subextensive quantity.

D. Bray-Moore-Young FRSB quenched complexity
is BRST invariant

Both the BRST-SUSY and BRST-SUSY-breaking so
tions give a lower band edge~the free energy value at whic
the complexity vanishes! different from the equilibrium free
energy of the SK model. This is not surprising since we
performing annealed averages, while we expect that
physically correct computation is quenched.

In order to cure this deficiency it is rather obvious th
one has to go on computing the quenched complexity in
Full RSB scheme, for which the SK model is known to
thermodynamically stable. The quenched case is form
1-11
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discussed in Ref. 23, and one instance of FRSB quenc
complexity is presented in Ref. 16. The first step in t
direction, however, was performed by Bray, Moore, a
Young in Ref. 20 where the solution there analyzed ha
lower band edge coinciding with the FRSB static one. No
we notice that the assumptions under which they look
such a solution are exactly the BRST relations~46! and~47!
generalized to the function order parameters one has to
troduce in the quenched FRSB scheme of computation. S
we are using their very same notation, we can directly
write here Eq.~19! of Ref. 20, which we break into two line

D52r~1!, l5
b2

8
u2qEA , ~91!

for the diagonal part~the one surviving in the annealed cas!,
and

r~x!5
b2

2
uq~x!, h!~x!5

b2

4
u2q~x!, ;xP@0,1#,

~92!

for the off-diagonal elements. The further assumption w
then, made:

q~1!5qEA . ~93!

The relations expressed in Eq.~91! @inserting assumption
~93!# are exactly our Eqs.~46! and~47!. The same holds for
the off-diagonal terms if we recognize that, in Eq.~92!, the
off-equilibrium analog ofD is 2r(x) and the analog ofl is
h!(x)/2. What was found is, then, the quenched impro
ment of the annealed BRST-SUSY solution and not
quenched analogue of the BM annealed solution of Ref
for which the above-mentioned relations do not hold. Mo
over, the choice of identifying the elementsq(1) of the di-
agonal block of the FRSB matrix with the elements on
diagonal,qEA , leads precisely to the self-consistent, stab
Parisi solution of the SK model.31 In such a case, though, n
parameter is left free to vary and, therefore, no analysis o
the number of states at givenf can be performed; i.e., no
complexity can be built.

It is the subject of another paper16 to go beyond this point
and look for a generalized solution that allows a ‘‘quench
probe’’ in a free parameter~the state free energyf or the
generalization of them parameter in the Legendre transfor
approach!, yet recovering the right equilibrium value a
lower band edge of the complexity.

IV. CONCLUSIONS

In this paper we have shown that the BM action5 and the
action considered by Cavagnaet al.13 are completely equiva
lent and one can move from one to the other throug
simple change of variables. This is also true at the mic
scopic level, thus implying that the BM action too is BRS
SUSY invariant. In particular, this equivalence implies th
each solution of the BM saddle point equations is a solut
of the equations of Ref. 13 as well and vice versa. As
consequence we are left with the problem of selecting
‘‘right’’ solution.
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In order to determine which one, if any, of the two pr
posals was the one actually representing the multiplicity
stable and metastable states of the Sherrington-Kirkpat
mean-field spin-glass model we have been critically revie
ing the properties of both, sometimes solving apparent inc
gruencies, other times pointing out substantial inadequac

We first summarize the case of the BM BRST-SUS
breaking annealed complexity. The BM saddle point is n
BRST SUSY at any value ofu, while we have shown in Sec
III that the BM action satisfies such a supersymmetry,
though this is differently expressed in the BM notation w
respect to the one of Ref. 13. As already noticed by Kurch
in Ref. 19, we have to be careful and we need some jus
cation before adopting it, if we want to preserve mathem
cal consistency. In particular, one may show that the BR
SUSY is restored considering subextensive corrections to
saddle point and notice that they amount to a prefactor
exp(NSBM). In the caseu50, it has been shown by Kurcha
by means of a series expansion in power of 1/N that the
prefactor of the non-BRST saddle point is zero at all ord
of the expansion. This could imply a zero prefactor or
could leave the way open to a nonzero but exponenti
small prefactor. Both outcomes, however, strongly chan
the BM prediction. Therefore, to save this prediction, o
should show that the effect of keeping the modulus of
determinant amounts to changing the prefactor from an
ponentially small value to a finite one. A step in this directi
could be possibly done generalizing the technique of Ref.
for one-dimensional random systems.

Very recently, in Ref. 18, it was claimed that the BM
saddle point counts only minima. This would imply that th
complexity does not involve a sum over all solutions an
therefore, is not constrained to satisfy global relations, l
those imposed by BRST SUSY or by the Morse theore
However, there is no proof at all that the BM saddle po
counts only minima, since Plefka’s analysis of the Hess
shows that all solutions of the TAP equations have stric
positive eigenvalues only at leading order inN. In order to
get information about the sign of the determinant one sho
be able to select the minima among all states satisfying P
ka’s criterion. This can be explicitly seen in the spheric
p-spin models where these solutions can be classified
minima and saddles, differing only for one negative eige
value. The Plefka criterionxP[12b2(122q11/N( imi

4)
.0 is, thus, not related to the fact that a given solution i
minimum or a maximum or a saddle but rather it guarant
that it yields the correct susceptibility.

The lower band edge of the quenched complexity, co
puted with the Parisi ansatz by Bray, Moore, and Young20

gives the correct equilibrium free energy but such solution
not a modification of the BRST-SUSY-breaking annealed
lution of Bray and Moore.5 On the contrary, it turns out to be
BRST symmetric, as we have shown in Sec. III D. This a
means that, up to now, no quenched extension of the
annealed saddle point has been taken into account. We
show elsewhere what are the minimal assumptions to br
the BRST SUSY in the quenched case.16

Furthermore, the non-BRST solution is not in agreem
with the numerical results recently obtained by Plef
1-12
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through some modified TAP equations.33 By means of its
method he obtains all the minima of the standard TAP f
energy satisfyingxP>0. The special set of solutions h
collects—i.e., the minima withxP>0—is precisely the se
that is supposed to be counted by the BM complexity. No
the BM solution predicts that the great majority of solutio
has a value ofxp , e.g., at temperatureT50.5 given byxp
50.132 408.0 (SBM50.002 775) and atT50.2 by xp
50.595 297 5.0 (SBM50.052 19). Plefka, however, on th
basis of its numerical data, hints that all the minima of t
TAP functional in the thermodynamic limit have a zeroxp as
N→`. Moreover, the range of free energy values ov
which the complexity is nonzero does not sensitively cha
with increasingN. This finding is also in agreement wit
what has been found at the FRSB level of computation
will be discussed in Ref. 16.

Notice also that the BM result forxP cannot be changed
considering the quenched average instead of the anne
one. In Ref. 5 also the replica-symmetric quenched comp
ity was considered and there the authors showed that
annealed and the quenched non-BRST saddle points coin
at u.uc(uc,0) and, in particular, atu50 to which the
highest number of solutions would correspond if the mo
lus of the determinant of the Hessian was taken into acco

It is worth mentioning, anyway, that the zero-temperat
limit of the BM total complexity coincides with the compu
tation of the number of solutions of the zero-temperat
limit of the TAP equations,mi5sgn(( i j Ji j mj ), where no
reaction term is present.5,21,22 If the coincidence of the ex
actly zero-temperature behavior with theT→0 behavior
would be a necessary condition, this would be a strong
that the BM saddle point provides, indeed, the right co
plexity. However, we notice that this does not exclude
existence of other solutions displaying aT→0 limit of the
complexity different from the value directly computed atT
50. For instance, in thep-spin spherical model, a whol
branch of TAP solutions existing at zero temperature dis
pears as soon as we infinitesimally heat the system34 ~see
also the Appendix of Ref. 35!.

Looking at the other solution, we observed that the BRS
SUSY saddle point does not yield a proper result either.
deed, it counts TAP solutions that do not satisfy the Ple
criterion—i.e., solutions not corresponding to physical sta
Furthermore, even its mathematical consistency is doub
since it is obtained settingB50 ~see Appendixes A and B!,
and, according to Plefka’s analysis of the resolvent,28,36 this
assumption is only justified ifxP.0, while for xP,0 a so-
lution with BÞ0 must be considered. It may happen th
upon passing to the quenched computation, the violation
the Plefka criterion of the BRST solution may be cured. C
tainly this happens at the full-RSB lower band edge, whi
as we said above, is BRST supersymmetric.20

In order to solve the problem of selecting a meaning
complexity one can still try to generalize the proof
Kurchan19 to arbitraryu, possibly using a procedure not in
volving a series expansion in 1/N and/or look for a quenched
FRSB solution breaking the BRST SUSY, thus solving a P
risi equation like the one of coupled replicas investigated
Ref. 37 but with a different boundary condition. Both a
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proaches are currently under investigation, together with
study of the quenched BRST solution.16
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APPENDIX A: THE DETERMINANT OF THE HESSIAN
OF THE TAP FREE ENERGY

The inverse susceptibility matrix is

x i j
2152Ji j 1aid i j , ~A1!

ai5
1

b2

1

12mi
2

1b~12q!1OS 1

ND , ~A2!

where theJi j are distributed according to

P~Ji j !5A N

2p
expS 2

Ji j
2 N

2 D . ~A3!

As is usually done, we will not consider terms of order 1N
in the following computation.

The determinant can be written with the help of Gra
mann variables (h, h̄) as

detx215E )
i 51

N

dh i dh̄ iexpH(
i j

h̄ ix i j
21h j J

5E )
i 51

N

dh i dh̄ iexpH 2(
i , j

Ji j ~ h̄ ih j1h̄ jh i !

1(
i

h̄ iaih i J . ~A4!

Its average over the disordered interaction is

detx21

5E )
i 51

N

dh i dh̄ iexpH 2
1

2N S (
i

h̄ ih i D 2

1(
i

h̄ iaih iJ
5E

2`

` dwe2w2N/2

A2p/N
E )

i 51

N

dh i dh̄ i

3expH(
i

h̄ i~ iw1ai !h i J
5E

2`

` dwe2w2N/2

A2p/N
expH(

i
ln~ iw1ai !J

5E
2`

` dw

A2p/N
exp@NH~w!#, ~A5!
1-13
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H~w![2
w2

2
1

1

N (
i

ln~ iw1ai !. ~A6!

To compute the integral for largeN we make use of the
saddle point approximation, thus evaluating the solution

]H

]w
52w1

1

N (
i

i

iw1ai
50, ~A7!

]2H

]w2
5211

1

N (
i

1

~ iw1ai !
2
,0. ~A8!

The second inequality is a condition that in most cases
sures that the integration path can be modified in orde
cross the saddle point in the proper way and is analogou
the maximum condition of the Laplace method. Changingiw
in

iv[ iw1b~12q!5 iw1ai2
1

b

1

12mi
2

~A9!

the stationarity condition for the saddle point reads

vF12
b2

N (
i

~12mi
2!2

11 ivb~12mi
2!

G50 ~A10!

and the condition forH becomes

12
b2

N (
i

~12mi
2!2

@11 ivb~12mi
2!#2

.0. ~A11!

The saddle point equation~A10! has two solutions:v50,
v5v!Þ0.

1. Solution vÄ0

In this case Eq.~A11! simplifies to

12
b2

N (
i

~12mi
2!2.0. ~A12!

This is exactly Plefka’s criterion characterizing a physica
relevant solution. The stationary valuev50 is a maximum
of the exponentH and corresponds to TAP solutions yieldin
the physical expression of the linear susceptibility.

2. Solution vÄv!

For such a saddle point Eq.~A11! can be written as

12
b2

N (
i

~12mi
2!2

11 ivb~12mi
2!

1 iv
b

N (
i

~12mi
2!3

@11 ivb~12mi
2!#2

.0, ~A13!

of which the first two terms cancel each other. Sincemi
2

,1 always, this implies that in order to have
17440
n-
to
to

iv
b

N (
i

~12mi
2!3

@11 ivb~12mi
2!#2

.0, ~A14!

iv must be real and positive. In order to go back to the B
notation we define the real variableB5 ivb. If B.0, the
stationary pointB5 iv!b is a maximum ofH. Inserting such
a positive value into the saddle point, Eq.~A10!, one gets the
inequality

15
b2

N (
i

~12mi
2!2

11B~12mi
2!

,
b2

N (
i

~12mi
2!2,

~A15!

thus violating Plefka’s criterion.
Summarizing, if the Plefka criterion is satisfied, the co

rect solution isB50, while if it is not satisfied, one mus
choose the solution withB.0. Therefore, if one setsa priori
B50, then one must self-consistently check that the Ple
criterion is verified. Therefore, from this point of view, th
BRST solution is mathematically inconsistent. The Plef
criterion arises as a condition to determine which is the c
rect solution of the resolvent equation; the fact that it is a
the condition for determine the correct saddle point forB, as
we derived above, is not surprising; indeed the two com
tation are intimately related as we shown in the followi
appendix.

APPENDIX B: IDENTIFICATION OF det xÀ1 SADDLE
POINT EQUATION AND RESOLVENT EQUATION

FOR xÀ1

In this appendix we would like to stress the analogy b
tween the saddle point equation forw52 i @B/b1b(1
2q)# ~see Appendix A! and the equation for the resolvent o
the inverse susceptibility. Using the notation of Ref. 28, t
resolvent is

R~z!5
1

N
Tr

1

z2x21
5

1

N
Tr

1

z2J2ai
, ~B1!

where the resolvent equation is

R~z!5
1

N (
i

1

z2R~z!2ai
~B2!

and the condition Im@R(z)#.0 must hold for Im(z),0.
We notice that Eq.~B2! evaluated inz50 is identical to

Eq. ~A7! in Appendix A provided the transformatio
Re@R(0)#5 iw is performed. Conversely the conditio
Im@R(z)#.0 for Im(z),0 is equivalent to Eq.~A8!. Indeed
the derivative of the resolvent comes out to be

dR

]z
52

Y~z!

12Y~z!
, ~B3!

Y~z![
1

N (
i

1

~2z1R~z!1ai !
2

. ~B4!

The functionY(z) is always positive, for any realz.
1-14
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If we expandR(z) around a given real value ofz5zR for
a small negative imaginary part2 i e, we get

R~zR2 i e!5R~zR!2 i e Y~zR!S 12
dR

dz U
zR

D . ~B5!

Thus, the condition on the imaginary part ofR(z) for nega-
tive Imz ~Pastur theorem28,38! reads

lim
Im z→02

Im R~z!5e lim
Im z→02

Y~z!S 12
dR

dz D.0, ~B6!

leading to the condition
a

he

43

ys

si,

17440
dR

dz U
Im z50

,1. ~B7!

Equation~B3! evaluated atz50 satisfies condition~B7! if
Y(0),1.

If we set R(0)5 iw, Eqs. ~B2! and ~B7! evaluated atz
50 are equivalent respectively to Eqs.~A7! and ~A8!, thus
legitimating this last equation as a validity condition for th
saddle point ofH(w).

The resolvent equation has two roots, which, for smaz
and in the region whereb2(122q1^m4&).1, were evalu-
ated, e.g., in Ref. 28. They correspond to theB50 andB
.0 solutions of the previous section. The conditio
Im@R(z)#.0 for Im(z),0 selects one or the other solutio
depending on the value ofxP inasmuch as the condition~A8!
selects the correct solutionB50 or B.0 depending on the
value ofxP.
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