
Measurement System Analysis for

Binary Inspection: Continuous Versus

Dichotomous Measurands

JEROEN DE MAST and TASHI P. ERDMANN

Institute for Business and Industrial Statistics of the University of Amsterdam (IBIS UvA),
Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands

WESSEL N. VAN WIERINGEN

Department of Epidemiology and Biostatistics, VUmc University Medical Center &
Department of Mathematics, VU University Amsterdam,

De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

We review methods for assessing the reliability of binary measurements, such as accept/reject inspection

in industry. Our framework introduces two factors that are highly relevant in deciding which method to use:

(1) whether a reference value (gold standard) can be obtained and (2) whether the underlying measurand is

continuous or truly dichotomous. Artificially dichotomizing a continuous measurand, as is commonly done,

creates complications that are underappreciated in the literature and in practice. In particular, it introduces

an intrinsic reason for the assumption of conditional i.i.d. to be violated. For most methods, this is not

crucial provided the samples are random (or at least representative). But, also for most methods, it is,

in general, not clear how one can obtain a random sample from the relevant population. The taxonomy

presents methods that are generally known in industry, such as nonparametric estimation of false-acceptance

and false-rejection probabilities, AIAG’s analytic method (logistic regression), latent class modeling, and

latent trait modeling. The methods discussed are applied to an example presented in the measurement-

system-analysis manual from the automotive industry.
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Introduction

I
N INDUSTRY, binary measurements abound. Think

of visual inspections of products where the out-
come can be ‘pass’ or ‘fail’, functional tests where the
outcome is ‘ok’ or ‘nok’, and automated tests where
some parts are rejected and others are accepted.
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Also beyond industry, binary classifications are om-
nipresent, as in diagnostic tests in medicine (think of
a pregnancy test).

Binary measurement aims to classify items as ‘ac-
cept’ or ‘reject’, or in terms of another dichotomy, in
such a way as to reflect a relevant underlying prop-
erty of the items such as ‘good’ versus ‘defective’.
This property that underlies the binary classifica-
tion is traditionally called the item’s ‘true value’ or
‘true state’, but, following the terminology in ISO’s
Guide to the Expression of Uncertainty in Measure-
ment (GUM) (International Organization for Stan-
dardization (1995)), is better called the ‘measurand’.

Binary inspections are, like all measurements, sub-
ject to error, especially because they are often based
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on visual or other sensory assessments by humans.
A measurement system analysis (MSA), an assess-
ment of the quality and reliability of a measurement
procedure, is as important for binary inspections as
it is for other types of measurements. The litera-
ture describes a multitude of methods for studying
the reliability of binary measurements; see, for ex-
ample, Van Wieringen and Van den Heuvel (2005)
for an overview; Boyles (2001), Danila et al.(2008),
Van Wieringen and De Mast (2008), and Danila et
al. (2010) for recent contributions in quality engi-
neering; and Pepe (2003) for a recent overview in
the diagnostic sciences. In this paper, we aim to pro-
vide insight into the question of when and how these
methods should be applied. We introduce two fac-
tors that, in our view, are decisive in designing an
MSA study for assessing the reliability of a binary
measurement procedure. One factor, the availability
of a so-called gold standard, is generally recognized.
The other factor, whether the measurand is a true
dichotomy or rather a continuum, is, as we see it, un-
derappreciated, despite the strong ramifications this
distinction has for i.i.d. assumptions and the need for
random sampling.

In the next section, we introduce and discuss these
two factors and the concept of a false dichotomy. The
subsequent four sections treat the situations where
the measurand is dichotomous or continuous and
where a gold standard is available or unavailable. In
each of the four settings, we briefly describe methods
for experimental design and estimation available in
the literature and we discuss potential complications
that arise, especially in the case of a false dichotomy.
Some of our concerns, as well as a proposal for deal-
ing with false dichotomies, are illustrated from an
example taken from the automotive industry’s MSA
reference manual. We summarize the ramifications of
our analyses in a Conclusions section.

General Set-Up

We denote the result of an accept/reject type of
measurement as Y , which can be 0 (‘reject’) or 1
(‘accept’). The measurand (‘true value’) is denoted
X, which can be a discrete or a continuous property.
Our taxonomy of methods discerns four situations,
depending on whether a reference value (gold stan-
dard) is available and whether the underlying mea-
surand is continuous or a true dichotomy.

Availability of a Gold Standard

The measurand is often unknowable on principle.
But what we may be able to know instead is the re-

sult of the application of a higher order, authoritative
measurement procedure. This sometimes-available,
but usually hypothetical, authoritative result is the
item’s ‘reference value’; in the diagnostic sciences,
it is called a ‘gold standard’. Although the measur-
and and the reference value are conceptually not the
same, for practical purposes, we take the reference
value to play the role of the measurand (meaning
that we assume that there is no error in the refer-
ence classification). For example, by means of a more
thorough analysis or examination, one may establish
whether a rejected part is truly defective or whether
a woman who obtains a positive result from a preg-
nancy test is truly pregnant; the result of this higher
order analysis is the reference value or gold standard.
If a gold standard is unavailable, an assessment of
the reliability of binary inspections must treat the
measurand as a latent value, and the methods to be
discussed for that situation resort to latent variable
modeling.

Continuous and Dichotomous Measurands

In some cases, the measurand is dichotomous (that
is, X ∈ {0, 1}). The proverbial example is a preg-
nancy test: one is either pregnant or not. Note that
the measurand is whether a woman is or is not preg-
nant; the measurand is not the levels of chemical
markers that such tests detect, as these are just the
intermediate results and not the ultimate property
that the test aims to establish. An industrial example
of a dichotomous measurand is in functional tests on
lightbulbs—the measurand X is whether the light-
bulb is good or defective, while the measurement Y
is ‘accept’ or ‘reject’.

In other cases, the measurand is a continuum
(X ∈ R); an item is rejected if the appraiser assesses
the measurand to be beyond a certain threshold USL
(upper specification limit) on this continuum. As an
example, consider a visual inspection where products
are accepted or rejected based on whether their wrap-
ping is good (meaning that the wrapping should not
be too crooked). The underlying, continuous measur-
and X is the crookedness of the wrapping, while the
measurement Y is ‘accept’ or ‘reject’. Note that this
measurand is not measured directly; as a matter of
fact, it is not even operationally defined nor is there
an explicit, quantitative norm for crookedness, and
USL is, consequently, only given a vague and ambigu-
ous definition, for example, in the form of a photo.

A convenient way of modeling the stochastics of
measurement procedures is by means of character-
istic curves (which are, actually, only curves if the
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measurand is continuous),

q(x) := P (Y = 0 | X = x),

and, therefore,

P (Y = 1 | X = x) = 1 − q(x).

If X is dichotomous, then p = P (X = 0) is the defect
rate, q(0) is the probability of correct rejection, and
q(1) is the false-rejection probability. If X is contin-
uous, then FX(x) = P (X ≤ x), and q(x) is typically
an S-curve, such as defined by the logit function,

log
(

q(x)
1 − q(x)

)
= (x − δ)/σ (1)

(see Figure 1). Items with X > USL are defective,
while items with X > δ are likely to be rejected.
Thus, the curve’s inflection point δ can be inter-
preted as the threshold that appraisers appear to ap-
ply (with q(δ) = 0.5), as opposed to USL, which is
the nominal rejection bound. The difference δ−USL
could be interpreted as systematic measurement er-
ror; in cases where false acceptance has more serious
consequences than false rejection, it could be advan-
tageous to design the inspection procedure to have
an inflection point δ strictly below USL. The value
σ is a discrimination parameter, larger values corre-
sponding to poorer measurement reliability.

Note: in our discussion, we will ignore apprais-
ers as a factor, as this complication distracts from
the points we aim to bring across. Thus, we assume
that repeated measurements of an item are done by
the same appraiser or that the appraisers are in-
terchangeable (that is, have identical characteristic
curves). All the methods to be discussed can be ex-
tended to involve characteristic curves qj for each ap-
praiser j separately. These extensions are typically
straightforward and formulas can be found in the
provided literature references.

Repeated measurements of an item are in general
not independent, their having the same underlying X
value inducing correlation. The estimation methods
discussed in the next sections assume that, besides
X, there are no other properties of the items and
no environmental factors that induce dependencies
among the measurement results. Inference concerns
the infinite sequence of random variables {Yij}, with
items i = 1, 2, . . .; and repeated measurements j =
1, 2, . . . (the population). During the MSA study, we
observe a finite part of this sequence (the sample),
namely, {Yij} with i = 1, . . . , n and j = 1, . . . , m,
with n the number of items in the sample, and m ≥ 1
the number of repeated measurements per item. In

FIGURE 1. Characteristic Curve q(x) = P(Y = 0 | X = x)

(Solid Curve) and Density fX(x) = d P(X ≤ x)/dx (Dashed

Curve).

general, to allow extrapolation of sample statistics
to inferences on population parameters, we need the
{Yij}, i = 1, 2, . . .; j = 1, 2, . . . to be independent
and identicaly distributed (i.i.d.) conditional on the
measurands Xi (or, in Bayesian terminology, we need
the sequence to be exchangeable in Y conditional on
X; Lindley and Novick (1981)). As we will see next,
this assumption of conditional i.i.d. is easily violated
in practice.

False Dichotomies and Conditional I.I.D.

In practice, one often evaluates binary inspections
in terms of q(0) and q(1), even if the measurand is
continuous. Thus, one treats a continuous measurand
as artificially dichotomous by defining a dummy mea-
surand X̃, which is 1 if X < USL and 0 if X ≥ USL.
We have

p̃ = P (X̃ = 0) =
∫ ∞

USL

fX(x)dx,

and further,

q̃(0) = P (Y = 0 | X̃ = 0)

=
∫ ∞

USL

q(x)fX(x)dx
/ ∫ ∞

USL

fX(x)dx.

q̃(1) = P (Y = 0 | X̃ = 1)

=
∫ USL

−∞
q(x)fX(x)dx

/ ∫ USL

−∞
fX(x)dx. (2)

The q̃(0) and q̃(1) of the artificial dichotomy are
the average q(x) over the relevant intervals of x,
weighted by fX(x). Treating a continuous measur-
and as dichotomous creates complications, as, in gen-
eral, it creates an intrinsic reason for the conditional
i.i.d. assumption to be violated. For example, re-
peated inspections of an item i that are independent
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conditional on a continuous measurand X (that is,
P (Yi1 = 0, Yi2 = 0 | Xi = x) = q2(x)) are, in gen-
eral, not independent conditional on the artificially
dichotomized X̃i:

P (Yi1 = 0, Yi2 = 0 | X̃i = 0)

=

∫ ∞

−∞
P (Yi1 = 0, Yi2 = 0, X̃i = 0 | Xi = x)fX(x)dx

P (X̃i = 0)

=

∫ ∞

USL

P (Yi1 = 0, Yi2 = 0 | Xi = x)fX(x)dx∫ ∞

USL

fX(x)dx

=
∫ ∞

USL

q2(x)fX(x)dx
/ ∫ ∞

USL

fX(x)dx, (3)

which is, in general, not equal to (
∫ ∞

USL
q(x)fX(x)dx/∫ ∞

USL
fX(x)dx)2 = q̃2(0), unless q is a step function

with step at x = USL. In words, Y depends not only
on X̃ (whether the item is good or defective), but in
addition, it depends on X (the degree of goodness or
defectiveness). Violations of conditional i.i.d. when a
continuous measurand is treated as dichotomous may
also concern the identically distributed aspect, espe-
cially when the distribution of X values in the sam-
ple is not identical to the population distribution. We
introduce the phrase false dichotomies for such mea-
surands that are artificially dichotomized and whose
characteristic curve is not a step function.

Treating a continuous measurand as dichotomous,
and thus creating a false dichotomy, introduces an in-
trinsic reason for conditional i.i.d. not to hold, and
this fact has consequences for estimation and sam-
pling.

Gold Standard Available,
Dichotomous Measurand:
Nonparametric Estimation

In this and the subsequent sections, we consider
each of the four situations defined by our set-up and
we describe methods that can be used in each situ-
ation and possible complications. The first situation
we discuss is where the measurand is dichotomous
and a gold standard is available. The distribution of
X is characterized by p = P (X = 0), with p the
true defect rate. Further, p(1) = P (X = 0 | Y = 1)
and p(0) = P (X = 0 | Y = 0). The probabili-
ties of interest are q(1) = P (Y = 0 | X = 1) and
q(0) = P (Y = 0 | X = 0), and we have the rejection
rate q = P (Y = 0). The inspection procedure’s error
rates are given by the false-acceptance probability,

FAP = 1 − q(0), and the false-rejection probability,
FRP = q(1). Variants of nonparametric estimation
of error rates are common in the diagnostic sciences;
see, for instance, Pepe (2003, Chapter 2). Also, the
AIAG MSA Manual (Automotive Industry Action
Group, 2003, pp. 128–134) presents approaches akin
to the ones discussed in this section.

By expressing FAP and FRP in terms of q(x),
where x is assumed to be 0 or 1, the approaches
in this section assume that the measurand is a di-
chotomy. But they are often applied to cases where
the measurand is continuous, thus creating a false di-
chotomy. An example are credit cards, which, before
they are released for use, are inspected for bleeding
of colors. If one assesses the quality of this inspec-
tion procedure in terms of q(0) and q(1), one treats
a continuous measurand (X = degree of bleeding) as
dichotomous (X̃ = 0 or 1).

Farnum: Samples of Good and Defective
Items

One set-up for an MSA study proposed, for ex-
ample, in Farnum (1994), is to obtain a sample of n0

defective items and a sample of n1 good items. These
items are classified by the inspection procedure un-
der study, which gives the totals m0|0, m1|0, m0|1,
and m1|1 (where, for example, m1|0 is the number of
items with Y = 1 and X = 0). Estimation is straight-
forward from sample proportions: q̂(0) = m0|0/n0

and q̂(1) = m0|1/n1; the FAP and FRP are derived
from these values.

We study what happens if the measurand is a false
dichotomy, with X̃ = 1 or 0, depending on whether
a continuous property X is smaller or larger than a
threshold USL. The discussion concerns the expected
value of the sample proportion estimators, such as

E(q̂(1)) = E(m0|1/n1)

=
∫ USL

−∞
q(x)fs

X(x)dx
/ ∫ USL

−∞
fs

X(x)dx,(4)

with F s
X the sampling distribution of X (i.e., the dis-

tribution determined by the sampling mechanism).
We discuss potential complications, especially for
false dichotomies, in a number of scenarios.

Random Sampling

Truly random samples from the subpopulations
of defective and good items allow unbiased estima-
tion of FAP and FRP, even in the case of a false
dichotomy. Namely, random samples ensure that, in
Equation (4), the distribution F s

X of X in the sample
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equals the population distribution FX and, therefore,
E(q̂(1)) = q̃(1) = P (Y = 0 | X̃ = 1), per Equation
(2).

Nonrandom Sampling for True Dichotomies

Also, nonrandom samples allow unbiased estima-
tion, provided q(x) is a step function (step at x =
USL); that is, provided the measurand is truly di-
chotomous. Equations (3) and (4) show that, if q(x)
is a step function, E(q̂(1)) is independent of the sam-
pling distribution F s

X , and there is no intrinsic reason
for repeated classifications of an item not to be i.i.d.
conditional on the measurand.

Nonrandom Sampling for False Dichotomies

But if the dichotomy is false, nonrandom sampling
may create a bias, due to the fact that F s

X may not
be identical to FX , and thus, conditional i.i.d. of the
Yij is violated (or, in Bayesian terminology, Yij in
the sample and population are not exchangeable).
This bias can be arbitrarily large, as illustrated from
the following two numerical examples. Both exam-
ples concern a situation where the population dis-
tribution FX of X values is the standard normal.
Suppose, further, that USL = 2.5 and that the in-
spection procedure’s characteristic curve is given by
Equation (1) with δ = USL and σ = 0.5, which
gives FRP = 0.0284 (from Equation (2)). The first
example of a nonrandom sample is inspired by the
tendency among some practitioners to sample items
guided by the idea of “covering the whole range”; as
a result, the distribution F s

X of X values in the sam-
ple might approach a uniform distribution on the in-
terval [−3, 3]. Such a sampling approach would give
an expected result of E(F̂RP ) = 0.0630, overesti-
mating the FRP by more than a factor of two. Our
second example considers a sample consisting mainly
of difficult-to-judge parts, which we interpret by tak-
ing F s

X to be a normal distribution with mean 2.5
and standard deviation 0.5. The expected result is
E(F̂RP ) = 0.325, overestimating the FRP by nearly
a factor of 12.

Naive Sampling Without Swapping for False

Dichotomies

The fact that, for false dichotomies, the quality
of the estimation hinges on the randomness of the
samples creates a potentially serious problem for Far-
num’s set-up, as it is all but clear how such random
samples of good and defective items can be obtained.
A naive way to do so has one collect random sam-
ples from the streams of accepted and rejected items

and use the gold standard to single out and remove
the falsely accepted and falsely rejected items, thus
obtaining samples of n0 defective and n1 good items.
These samples are then used for the MSA study; that
is, they are classified by the inspection procedure
under study and the FAP and FRP are estimated
from the results. We refer to this sampling scheme as
naive sampling without swapping. The problem with
this procedure is that the subsamples of n0 and n1

items, thus obtained, are not representative for the
subpopulations of defective and good items in false-
dichotomy cases. For example, items with X values
close to USL are underrepresented in the sample of
defective items, as they have a larger probability of
slipping through and therefore a smaller probabil-
ity of being in the stream of rejects and the assess-
ment of the inspection’s FAP will be too optimistic.
The Appendix shows, by calculation, that the sam-
pling distribution of X in the subsamples thus ob-
tained is different from the distribution in the sub-
populations of defective and good items and, conse-
quently, that the resulting estimators for the FAP
and FRP are biased. The Appendix also shows that
this bias is modest (|E(F̂AP ) − FAP | < 0.035 and
|E(F̂RP ) − FRP | < 0.030) if the inflection point δ
of the inspection procedure’s characteristic curve is
equal to USL. If δ �= USL, the bias can be arbitrarily
large.

Naive Sampling with Swapping for False Dichotomies

A variant of the previous case is to take random
samples from the streams of accepted and rejected
items, but falsely accepted or rejected items are not
removed but added to the other sample. We refer
to this sampling plan as Naive Sampling with Swap-
ping. Also under this strategy, the estimated FAP
and FRP are biased, with similar consequences as for
naive sampling without swapping; see the Appendix.

Plan I: Samples of Accepted and Rejected
Items

An alternative for Farnum’s set-up is to randomly
select m0 items from the stream of rejected items and
m1 accepted items. This is Plan I in Danila et al.
(2008). Determining for these items the measurand
gives the numbers m0|0, m1|0, m0|1, and m1|1. From
these, p̂(0) = m0|0/m0 and p̂(1) = m1|0/m1 and, for
example,

q̂(1) =
q̂(1 − p̂(0))

q̂(1 − p̂(0)) + (1 − q̂)(1 − p̂(1))
, (5)

with q̂ an historical estimate of the rejection rate q.
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Also for this approach, we study the applicability
in the case of false dichotomies. The estimates for
q(0) and q(1) are derived from equations of the form
of Equation (5). Thus, one needs a good estimate
for q, p(0), and p(1). To ensure the latter, the two
subsamples of accepted and rejected items must be
random, even in the truly dichotomous case, in order
that the sample proportions m0|0/m0 and m1|0/m1

are unbiased estimates of p(0) and p(1). Random
sampling from the streams of accepted and rejected
items will be straightforward in most cases, and we
conclude that Plan I is feasible even in the case of a
false dichotomy.

Plan II: A Sample from the Total Items
Population

A third option (Plan II in Danila et al. (2008)) is
to collect a random sample of n items from the study
population of items and determine each item’s mea-
surand X, which gives the totals n0 and n1 of defec-
tive and good items, and next apply the classification
procedure under study, which gives the totals m0|0,
m1|0, m0|1, and m1|1. Estimation is done from sam-
ple proportions: q̂(0) = m0|0/n0 and q̂(1) = m0|1/n1.
If there is additional information about either p or
q from historical data, then, in Plan II, the prob-
abilities can be estimated more efficiently using an
approach described in Danila et al. (2008).

Equations of the type of Equation (4) tell us that,
in the case of a false dichotomy, the sample must
be really random to avoid complications as discussed
for Farnum’s approach. In truly dichotomous cases,
where conditional i.i.d. holds, even a nonrandom
sample allows good estimation of q(0), q(1), and the
FAP and FRP, but inferences involving the defect
rate p are impaired. Whereas a truly random sam-
ple is difficult to achieve in Farnum’s set-up, it will
be mostly straightforward under Plan II. However, a
practical problem with Plan II is that the number n0

of defects in the random sample will be zero or very
low in the typical situation where p is close to zero,
which makes estimation of q(0) precarious.

Gold Standard Unavailable,
Dichotomous Measurand:
Latent Class Modeling

In this second situation, the measurand is assumed
dichotomous and a gold standard unavailable; X,
therefore, is treated as a latent class. One needs a
sample of n items from the study population. Van
Wieringen and De Mast (2008) find that the stan-

dard error of the estimates is minimized by taking a
balanced sample, in which the numbers n1 and n0 of
good and defective items are about equal.

In the gold-standard-available situation, each item
is usually measured once (which results in a single
Y -value per item and an X-value). Here, in the gold-
standard-unavailable situation, it seems unavoidable
that each item is measured at least twice (and to
ensure identifiability of the model, in the case of a
single appraiser, one needs at least three repeats;
Van Wieringen (2005)); as a result, one has multi-
ple Y -values for each item, associated with a single
unobserved X-value.

The parameters q(0) and q(1) can be estimated
from the measurements Y (treating the X as a la-
tent class) by maximizing the likelihood function.
Van Wieringen and De Mast (2008) use an EM algo-
rithm to achieve this, under the assumption of con-
ditional i.i.d.; see also Hui and Walter (1980), Boyles
(2001), and Beavers et al. (in press). From the re-
sults, the error rates FAP and FRP can be derived.
Danila et al. (2010) study the effectiveness of a num-
ber of more complex set-ups, exploiting additional
information about the rejection rate.

We study potential complications. Without a gold
standard, it is difficult to obtain a sample with a suf-
ficiently large number of defective items. In practice,
one will sample from the streams of accepted and re-
jected items, but even in the latter, the percentage
of good items is large if p is low,

P (X = 1 | Y = 0)
= q(1)(1 − p)/(q(1)(1 − p) + q(0)p). (6)

For example, if p = 0.01, q(0) = 0.95, and q(1) =
0.05, the percentage of good items in the stream of
rejects is 84%. As a consequence, an approximately
balanced sample is difficult to obtain in practice and,
instead, samples may contain just a few defective
items; the resulting standard error in the estimation
of q(0) and FAP will be large. Note that, in this light,
it may be a good idea to take a sample only from the
stream of rejected items, as suggested by Danila et
al. (2010).

Provided one manages to obtain a sample with
sufficient defective items, latent class modeling is ef-
fective if the measurand is a true dichotomy and
conditional i.i.d. holds. However, in case of a false
dichotomy, randomization becomes of crucial impor-
tance. The whole sample need not be a random sam-
ple of items but, to avoid biased estimates, the sub-
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samples of n1 good and n0 defective items must
be random samples from their respective subpopula-
tions (Van Wieringen and De Mast (2008)). Without
a gold standard, such random samples are quite dif-
ficult to achieve in practice. The naive way to do so,
namely, to select m0 and m1 items from the streams
of rejected and accepted items, results in a sample
in which the difficult-to-judge items with X close to
the inflection point δ are underrepresented. As a con-
sequence, latent class modeling comes across similar
problems as the ones discussed for Farnum’s set-up in
the previous section; in fact, the situation is compa-
rable to the naive sampling with swapping scenario.

Pepe (2003, pp. 203–205) raises some concerns
against the use of latent class models in a context
similar to ours, as follows:

1. Latent class modeling may encourage users to
study classifications for which the measurand is
not well (in Pepe’s context: clinically) defined.

2. Validity of the conditional independence as-
sumption cannot be tested.

3. The complex estimation procedure makes it dif-
ficult for practitioners to recognize how factors
and disturbances affect results.

Acknowledging the legitimacy of item 1 in scien-
tific use and of item 3 in practical use, we think our
framework can bring nuance to the second concern.
As explained above, latent class modeling is gener-
ally problematic if X is continuous (as, in that case,
conditional i.i.d. will typically be violated per Equa-
tion (3)). However, if X is truly dichotomous, there
is no intrinsic reason for conditional i.i.d. to be vi-
olated and careful experimental design may enable
the assumption to be fulfilled.

Gold-Standard-Available, Continuous
Measurand: Logistic Regression

False dichotomies bring about complications for
assessing the reliability of binary measurements, as
demonstrated in the previous sections. Some of these
complications can be handled by careful, random
sampling and, in the gold-standard-available situa-
tion, especially Plan I is a viable option. An alter-
native approach is not to artificially dichotomize a
continuous measurand, but to treat it as continuous.
This and the next section outline some approaches
for the gold-standard-available and gold-standard-
unavailable situations, respectively.

AIAG’s MSA Manual (AIAG, 2003, pp. 135–140)
describes a method known as analytic method. It

prescribes selecting n items such that their measur-
ands X1, . . . , Xn are more-or-less equidistant. Each
item is to be classified a number mi of times (with
m0|Xi

the resulting number of rejects). AIAG gives
detailed guidelines for selecting these n items, includ-
ing the requirements that items 1 and n should be
selected extreme enough to ensure that m0|X1 = 0
and m0|Xn

= mi.

AIAG (2003) suggests assuming a normal ogive
as the characteristic curve, q(x) = Φ((x − δ)/σ),
but alternatively, one could take the more traditional
logit link function given in Equation (1), which is
a traditional logistic regression model (with slope
σ−1 and intercept −δ/σ). For each (known) Xi, we
have the corresponding observed proportion q̂(Xi) =
m0|Xi

/mi as an estimate of q(Xi). From the observed
proportions, δ and σ can be estimated. AIAG recom-
mends plotting the q̂(Xi) against the Xi in a normal
probability plot and fitting a straight line. The more
conventional way to estimate δ and σ is by maximum
likelihood, as is standard in logistic regression.

AIAG (2003, pp. 136) defines the systematic mea-
surement error as b = δ − USL. Further, AIAG sug-
gests expressing reliability as the width of a 99% in-
terval, namely (σΦ−1(0.995)+δ−σΦ−1(0.005)−δ)/c,
with c an adjustment constant (c = 1.08 if mi = 20
for all i). This mirrors AIAG’s guidelines for numer-
ical MSA studies, where measurement reliability is
expressed in terms of the length of a 99% prediction
interval 5.15σm, with σm the measurement spread of
the numerical gauge.

Alternatively, one may compute similar metrics as
in the previous section, such as

FAP =
∫ ∞

x=USL

(1− q(x))fX(x)dx
/∫ ∞

x=USL

fX(x)dx

and

FRP =
∫ USL

x=−∞
q(x)fX(x)dx

/∫ USL

x=−∞
fX(x)dx.

For q(x), we have the ogive determined by δ̂ and σ̂.
The parameters of the probability distribution func-
tion FX of X can be estimated separately by taking
a random sample of items and fitting a probability
distribution to the X values.

Gold Standard Unavailable, Continuous
Measurand: Latent Trait Modeling

In the last situation to be discussed, the mea-
surand is continuous and a gold standard unavail-
able; X, therefore, is treated as a latent trait. Where
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logistic regression is an alternative to nonparamet-
ric estimation in the case of false dichotomies, la-
tent trait modeling is the corresponding alternative
for latent class modeling. The experimental design
is, as for all gold-standard-unavailable methods, one
in which each of n randomly selected items is mea-
sured two or more times. The characteristic curves
are S-curves, similar to the logistic regression model
in Equation (1). The difference with logistic regres-
sion, is that the X values are unobservable and they
are treated as a latent variable. This type of model is
standard in the wide and advanced field of item re-
sponse theory (IRT; see Embretson and Reise (2000)
for a recent introduction). Also, for the distribu-
tion FX , one assumes a parametric model, such as
X ∼ N(μX , σ2

X). Note that the origin and scale of
the latent X-continuum are arbitrary and one typ-
ically sets them by fixing μX = 0 and σX = 1, in
which case, FX = Φ.

The estimation problem is complex and is typi-
cally approached using an EM algorithm to compute
maximum likelihood estimates. The parameters σ, δ,
and the parameters of FX are estimated simultane-
ously. An exposition of these algorithms is beyond
the scope of this paper, but the reader is referred to
the IRT literature (with Embretson and Reise (2000),
a recent overview).

Because the x-axis has an arbitrary scale and the
X-values are treated as unobservable and dimension-
less, one cannot determine, in latent trait modeling,
the FAP and FRP because USL is an undefinable pa-
rameter. Instead, De Mast and Van Wieringen (2010)
propose probabilities of inconsistent ordering, which
are the probabilities that an appraiser’s classification
is inconsistent with his or her own rejection bound
δ,

π(1) = P (Y = 0 | X < δ)

=

∫ δ

−∞(1 − q(x))fX(x)dx∫ δ

−∞ fX(x)dx
,

1 − π(0) = P (Y = 1 | X ≥ δ)

=

∫ ∞
δ

q(x)fX(x)dx∫ ∞
δ

fX(x)dx
, (7)

where FAP and FRP express both the systematic
component of measurement error (that is, δ − USL)
and the random component (the degree to which
classifications randomly deviate from an appraiser’s
own δ), these π(1) and 1 − π(0) express the random
component only.

Like latent class modeling, latent trait modeling
also has some unresolved difficulties. A random sam-
ple of items ensures consistent estimates for π(0) and
π(1), but may contain too few defective items and
items in the steep part of q(x) for precise estima-
tion. A nonrandom sample, perhaps including more
items with larger X values, still allows estimation
of the characteristic curve q(x), but the distribution
FX may be misestimated. In logistic regression, this
could be solved by estimating the parameters of FX

from a second, random sample, but in latent trait
analysis, this is not possible because the scale of the
X continuum would be different in the two analy-
ses, and therefore, the fitted q(x) and FX(x) would
be fitted on different x-scales. Also, it is difficult to
interpret the fitted characteristic curve in tangible
terms, as the x-axis is abstract and dimensionless.

Example: Reliability of
a Go/No-Go Gauge

We illustrate and discuss the various methods on
the basis of an example taken from the AIAG man-
ual (AIAG, 2003, pp. 125 ff.). The measurand X is
continuous and parts are considered ‘good’ if X is be-
tween LSL = 0.450 and USL = 0.545 and ‘defective’
otherwise. One could treat the case as artificially di-
chotomous by defining X̃ = 1 if 0.450 ≤ X ≤ 0.545
and X̃ = 0 otherwise. For normal inspection, the ref-
erence values X are not available and neither are the
X̃. Instead, the appraisers use a go/no-go gauge that
returns ‘accept’ (Y = 1) or ‘reject’ (Y = 0). The
aim of the study is to establish the quality of this
go/no-go gauge.

The data set gives the results of an experiment
in which 50 parts have been gauged three times by
each of three appraisers, A, B, and C (giving 9 Y
values per part). In addition, the data set gives the 50
parts’ X values and the corresponding X̃ values, so,
for the sake of the MSA experiment, a gold standard
is available.

Treating the Measurand as Dichotomous:
Nonparametric Estimation and Latent Class
Analysis

Our first analysis approach is a nonparametric es-
timation of FAP and FRP, thus treating the measur-
and as dichotomous, and taking the X̃ values as ref-
erence values. The 50 parts are claimed to be a ran-
dom sample from the parts population (AIAG, 2003,
p. 126), so the sampling plan is similar to Plan II of
Danila et al. Out of 50 parts, 16 are nonconforming,
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giving an estimated defect rate of p̂ = 16/50 = 0.32.
Note that a sample of 50 parts is rather small for es-
timating a defect rate if X is treated as a dichotomy;
a 95% confidence interval on p is [0.21, 0.46], which is
rather wide. Such a small sample size, when Plan II is
used, will typically also create the problem that there
are no or just very few defectives in the sample, but
the fairly high defect rate here ensures that even in
this rather small sample there are sufficient defective
parts. Each part was measured 9 times, so altogether
450 measurements were made (302 times ‘accept’,
148 times ‘reject’). This gives an estimated rejection
rate of q̂ = 0.329. The probability of rejecting a de-
fective item is estimated as q̂(0) = 0.917 and the
probability of rejecting a good item as q̂(1) = 0.052
(estimated from sample proportions), giving the fol-
lowing error rates:

• False-acceptance probability F̂AP = 0.083.
• False-rejection probability F̂RP = 0.052.

These error rates could also be calculated for each
appraiser separately.

This analysis treats the measurand as dichoto-
mous, but it is in fact continuous and, thus, we are
dealing with a false dichotomy. As a consequence, q,
q(0), and q(1) are estimated well only if the sam-
ple of parts is representative and, in fact, there is
some evidence that refutes AIAG’s claim that the
sample is random. Namely, AIAG states that the
process’s performance is Pp = Ppk = 0.50 (where
Pp = (USL − LSL)/6σX), suggesting that X has a
mean of μX = 0.4975 and a standard deviation of
σX = 0.032 and that the defect rate is p = 0.13.
However, the sample defect rate of p̂ = 0.32 is signif-
icantly different (p-value < 0.001) from 0.13, and also
the sample’s standard deviation σ̂X = 0.045 is signif-
icantly different from the process standard deviation

σX = 0.032 (p-value < 0.001 based on a chi-square
test). We conclude that the given sample, being not
representative and given that the dichotomy is false,
is not suited for this analysis. The miss rates (FAP)
and false-alarm rates (FRP) per appraiser as given by
AIAG (2003, p. 132) may therefore be misestimated.

If the 50 X̃ values had not been available for the
MSA study, one would have had to resort to a latent
class analysis. Using the algorithm described in Van
Wieringen and De Mast (2008), the model parame-
ters are estimated as p̂ = 0.361, q̂(0) = 0.862, and
q̂(1) = 0.027. This results in the following misclassi-
fication probabilities:

F̂AP = 0.138 F̂RP = 0.027.

Note that these estimates were obtained solely from
the Y -values; the reference values were not used in
the computations, as they are treated as a latent
class. Because we are dealing here with a false di-
chotomy and a sample of parts of which representa-
tiveness is questionable, the results are not reliable.

Treating the Measurand as Continuous:
Logistic Regression and Latent Trait Analysis

The artificial dichotomy defined by the X̃-values
is a false dichotomy and, consequently, repeated rat-
ings of the same part are not i.i.d. conditional on
X̃. One way to solve the resulting problems is to en-
sure a random sample. The other way to go about
it is not to dichotomize the measurand but to treat
it as continuous. First, we apply logistic regression.
The example is slightly more involved, in that we are
dealing here with a lower and an upper boundary. In
fact, the situation is basically not binary but ordinal
with three classes, in which the two extreme classes
(‘below LSL’, and ‘above USL’) are collapsed into

FIGURE 2. Characteristic Curve q(x) = P(Y = 0 | X = x) and Density fX(x) = φ(x).
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one class (‘reject’). We fit the curve

1 − q(x) =
exp((δU − x)/σ)

1 + exp((δU − x)/σ)

− exp((δL − x)/σ)
1 + exp((δL − x)/σ)

,

where δL and δU are the decision limits that are
effectively used by the gauge (as opposed to LSL
and USL, which are the nominal requirements). This
characteristic curve is derived from a logistic regres-
sion model based on the logit link function for ordi-
nal responses (McCullagh and Nelder (1989), p. 152).
The maximum likelihood estimates are δ̂L = 0.453,
δ̂U = 0.547, and σ̂ = 0.00415. Because the estimated
δL and δU are close to the LSL and USL, we conclude
that the gauge has negligible bias.

We estimate the parameters of the distribution of
the measurand from the given X-values as μ̂X = 0.51
and σ̂X = 0.045 (estimated from the sample average
and standard deviation). The analytic method re-
sults in the following misclassification probabilities:

F̂AP =

∫ LSL

−∞
(1 − q̂(x))f̂X(x)dx∫ LSL

−∞
f̂X(x)dx

+

∫ ∞

USL

(1 − q̂(x))f̂X(x)dx∫ ∞

USL

f̂X(x)dx

= 0.093

F̂RP =

∫ USL

LSL

q̂(x)f̂X(x)dx∫ USL

LSL

f̂X(x)dx

= 0.051,

with q̂ and f̂X the logit function and normal den-
sity based on δ̂L, δ̂U , σ̂, μ̂X , and σ̂X . Also here, the
alleged nonrepresentativeness of the sample of parts
creates some complications, but they are less serious.
The estimation of the parameters of q(x) is not im-
paired, but the estimated μX and σX may be biased.
As a consequence, the estimated characteristic curve
q(x) represents reliably the behavior of the go/no-
go inspections, but the translation into an FAP and
an FRP is affected by the potential bias in μX and
σX . Of course, one could collect a random sample of
parts, apply the gold standard, and estimate μX and
σX from the results. Substituting these estimates in
the equations above would give estimates for FAP
and FRP.

If the X values had not been available, one would
have had to resort to latent trait modeling. The stan-
dard model in IRT for such a situation with both an
LSL and an USL is Masters’ partial credit model in
the generalized form by Muraki (1992),

1−q(x) =
exp

(
x − δL

σ

)

1 + exp
(

x − δL

σ

)
+ exp

(
2x − δL − δU

σ

) .

The normal distribution is assumed for X, with the
origin and scale of the x-axis adjusted such that
μX = 0 and σX = 1. De Mast and Van Wierin-
gen (2010) discuss how this model can be used for
industrial applications and they propose a working
algorithm for fitting the model and providing model
diagnostics.

The fitted model parameters are σ̂ = 0.106, δ̂L =
−1.12, and δ̂U = 0.955; note that the scale of the
X-continuum is arbitrary and meaningless. The re-
sulting characteristic curve is shown in Figure 2. The
definitions for the probabilities of inconsistent order-
ing in Equation (7) become

π(1) = P (Y = 0 | δL < X < δU ),
1 − π(0) = P (Y = 1 | X < δL or X > δU ).

The results are π̂(1) = 0.055 and 1 − π̂(0) = 0.099.
Also, in this case, the potential nonrandomness of
the sample makes the results unreliable; the form of
the characteristic curve in Figure 2 should well rep-
resent the behavior of the go/no-go gauge, but the
distribution of X-values (indicated by their density)
may not properly reflect the distribution in the items
population.

Conclusions

The concept of a false dichotomy and its ramifica-
tions for the conditional i.i.d. property and estima-
tion are this paper’s most important novel contribu-
tions. The essential difference between binary inspec-
tions based on a truly dichotomous measurand ver-
sus a continuous measurand seems underappreciated
in industry, as are the complications brought about
by artificially dichotomizing a continuous measurand
(although the problem was mentioned in Van Wierin-
gen and De Mast (2008) and Danila et al. (2010)).
We think that continuous measurands are far more
common than truly dichotomous measurands and,
therefore, complications for false dichotomies are a
ubiquitous problem. A related issue is that many
guidelines offered in industry are in conflict with our
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conclusion that random sampling is in many cases
crucial. An example of such misconceived advice is
to sample items such that roughly one third is very
bad, one third is very good, and one third is near the
boundary (as quoted in, but not endorsed by, Mawby
(2006), p. 122).

Our framework serves as a structure for a taxon-
omy of methods as shown in Table 1. Most of the
mentioned methods are known in quality engineer-
ing, except for the latent trait modeling approach,
which originates in the field of psychometrics. In the
case of a false dichotomy, careful random sampling
may allow safe use of nonparametric estimation, es-
pecially following Plan I. Random sampling may be
difficult to achieve in Farnum’s scheme and latent
class modeling, and Plan II may result in a sample
containing too few defective items. An alternative
way to handle false dichotomies is to not dichotomize
the continuous measurand at all but rather use logis-
tic regression or latent trait analysis.

An alternative class of methods used and pre-
scribed commonly for MSA studies for binary inspec-
tion are methods based on agreement statistics and
kappa-type indices. On the basis of a random sample
of items that are judged repeatedly, one estimates

the probability of agreement

Pa = P (Y1 = Y2)
= (1 − p){q2(1) + (1 − q(1))2}

+ p{q2(0) + (1 − q(0))2},
where metrics such as FAP and FRP express agree-
ment between observations (Y ) and measurands (X),
Pa expresses agreement among observations only (Y1

to Y2). The κ (kappa) statistic is the probability Pa

of agreement rescaled such that κ = 0 corresponds
to the probability of agreement achieved by noninfor-
mative chance ratings (De Mast and Van Wieringen
(2007), De Mast (2007)). Our framework shows that
agreement may not be the right measure to express
the reliability of accept/reject inspections. Namely,
in industry, p is typically very close to 0 and, in that
case, Pa ≈ (1−p)(q2(1)+(1−q(1))2). In other words,
Pa only reflects the false-rejection probability q(1)
and not the false-acceptance probability 1−q(0), and
it is the latter that is typically more relevant (as it
represents the consumer’s risk).

Some binary inspections involve a hybrid between
a continuous and a dichotomous measurand. For ex-
ample, in visual inspection of items for scratches, ‘no
scratch’ is a point (x = 0) but ‘scratch’ is a contin-

TABLE 1. Overview of Methods Discussed in this Paper. Gold standard is Av (available) or

UnAv (unavailable). The table indicates whether methods are suited for

D (dichotomous) or C (continuous) measurands.
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uum (x > 0), ranging from small scratches that are
hardly noticeable, to large, wide and deep scratches.
A leak test is another example, where x = 0 corre-
sponds to ‘no leak’ and positive values correspond
to progressively larger leaks. Methods treating such
measurands as dichotomous will encounter similar
complications as in falsely dichotomous cases. But
also the application of logistic regression or latent
trait models is not straightforward, as the standard
logit and probit characteristic curves are symmetric
in their inflection point, whereas the true character-
istic curve in such hybrid situations is likely to be
strongly asymmetrical. Also, distributional assump-
tions for the X-values need to be critically revised in
such situations where the X-continuum is bounded
by zero. Further research will focus on the open ques-
tion of how such hybrid situations are to be modeled.

In summary, we think that, given the currently
available methods, the problematic situations are as
follows:

• A gold standard is unavailable and the measur-
and is continuous. One has to turn to latent
class modeling or latent trait analysis, but in
the former, it is difficult to obtain random sam-
ples, and, in the latter, it is difficult to translate
the fitted q(x) into tangible results such as FAP
and FRP.

• The measurand is a hybrid of a continuous and
a discrete characteristic. Both logistic regres-
sion and latent trait modeling need nontrivial
adjustments in that case.

These observations present an agenda for future re-
search.

Appendix

Naive Sampling Without Swapping

The continuous measurand is dichotomized by
defining X̃ = 1 if X < USL and X̃ = 0 otherwise.
Let FX = Φ, the normal distribution with μX = 0
and σX = 1, and q defined as in (1). The FAP is the
proportion of accepted items in the subpopulation of
defective items:

FAP =
∫ ∞

x=USL

(1 − q(x))f0
X(x)dx,

with F 0
X the distribution of X in the subpopulation

of defective items:

F 0
X(x) = P (X ≤ x | X̃ = 0)

=
∫ x

t=USL

φ(t)dt
/ ∫ ∞

t=USL

φ(t)dt

(for x ≥ USL). Under naive sampling without swap-
ping, one obtains a sample of items from the stream
of rejects and next removes the wrongly rejected
items. The distribution of X in the resulting sub-
sample of n0 defective items is

FWoS:0
X (x) = P (X ≤ x | X̃ = 0, Y = 0)

=
∫ x

t=USL

q(t)φ(t)dt
/ ∫ ∞

t=USL

q(t)φ(t)dt

(for x ≥ USL). Obviously, FWoS:0
X �= F 0

X and, conse-
quently,

E(F̂AP ) = E
(

m1|0
n0

)

=
∫ ∞

−∞
(1 − q(x))fWoS:0

X (x)dx �= FAP

(a similar derivation can be given for FRP). The bias
E(F̂AP ) − FAP depends on (USL − μX)/σX , (δ −
USL)/σX , and σ/σX . In cases where FX = Φ, q is
the logit link function and δ = USL. Plots of this
bias (Figure 3) show that

• FAP is always underestimated in expectation;
this is caused by the fact that items with X
values close to δ are underrepresented.

• The bias is generally modest and never exceeds
−0.035.

FIGURE 3. Contour Plot of the Bias E(F̂AP)−FAP Un-

der the Naive Sampling Without Swapping Scenario and

Given That δ = USL.
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If δ < USL, the bias is even smaller; but if δ > USL,
the bias can become quite large (as large as 0.5).

A similar expression can be derived for the bias
E(F̂RP ) − FRP . Plots of this bias show that

• FRP is always underestimated in expectation;
this is caused by the fact that items with X
values close to δ are underrepresented.

• The bias is generally quite small and never ex-
ceeds −0.030. This maximum is attained when
USL is close to μX and σ is close to σX .

• The bias becomes negligibly small (below
0.005) when (USL−μX)/σX > 3; when σ/σX <
0.5 the bias becomes negligibly small when
(USL − μX)/σX > 2.

If δ > USL, the bias is even smaller; but if δ < USL,
the bias can become quite large (as large as 0.5). Note
that, as a consequence, the bias in FRP and FAP is
modest if δ = USL; but if δ �= USL, either the bias in
FRP is substantial or the bias in FAP is substantial.

Naive Sampling with Swapping

Here one starts with subsamples of sizes m1 and
m0 from the streams of accepted and rejected items
(m = m0+m1), but now, erroneously classified items
are not removed but added to the other subsample.
The distribution of X values in the total sample of
m items is

FWS
X (x) =

m0

m
P (X ≤ x | Y = 0)

+
m1

m
P (X ≤ x | Y = 1)

=
m0

∫ x

−∞ q(t)φ(t)dt

m
∫ ∞
−∞ q(t)φ(t)dt

+
m1

∫ x

−∞(1 − q(t))φ(t)dt

m
∫ ∞
−∞(1 − q(t))φ(t)dt

.

The distribution in the subsample of defective items
is

FWS:0
X (x) = FWS

X|X̃=0
(x)

=
FWS

X (x) − FWS
X (USL)

1 − FWS
X (USL)

.

Again, FWS:0
X �= F 0

X and the estimates are biased. In
cases where FX = Φ, q is the logit link function, and
δ = USL, plots of the bias show that

• FAP is always underestimated in expectation,
but not by more than −0.035.

• FRP is always overestimated in expectation;
because of the low defect rate, the stream of

rejected items will consist in large proportion
of falsely rejected items (from Equation (6)),
which are then swapped to the subsample of
good items, thus creating an overrepresentation
of hard-to-judge items in the subsample of good
items.

• The positive bias in FRP can be as large as
0.069.

If δ �= USL, the bias in either FAP or FRP can be-
come substantial.
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