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Introduction

0.1 Summary

In this thesis, we consider several optimal control problems for diffusion processes. The
processes considered in Chapter 1 arise from optimization of dividend flows for a company.
In Chapter 2, the processes correspond to optimization of investments in real options. The
solutions to both problems are of singular type, i.e. they have a “bang-bang” character.
The processes considered in Chapter 3 model financial asset behaviour. We give an explicit
solution for the optimal trading strategy. Unlike the problems considered in Chapter 1 and
2, this problem is of regular type, i.e. the optimal control is “smooth”. The aim of this
thesis is to outline a method for finding explicit solutions for optimal control problems in
one-dimensional diffusions. General stochastic control theory for diffusions is treated in
[Krylov], [Oks], [FlemSoner].

The results of Chapter 1 have been submitted to Stochastics [Bog3]. The results of
Chapter 2 have been published in Theory of Probability and Its Applications [Bog2] and
Russian Mathematical Surveys [Bog1]. The results of Chapter 3 appeared in Risk Magazine
[Bog4].

0.2 Overview

Here we provide an overview of the thesis.

In Chapter 1, we consider a model for a firm whose reserve X = (Xt)t≥0 evolves according
to the stochastic differential equation

dXt = µdt+ σdWt − dZt, (1)

where W = (Wt)t≥0 is a standard Wiener process, and µ and σ are known positive constants.
The control process Z = (Zt)t≥0 represents the cumulative amount of dividend paid out
up to time t. The major requirements on the control process Z = (Zt)t≥0 are that it is
nonnegative, nondecreasing, and adapted to the filtration. The bankruptcy time τ is defined
as τ = inf {t ≥ 0 : Xt ≤ 0}. It is assumed that the initial reserve x0 is positive and that the

iii



iv INTRODUCTION

liquidation value S, i.e. the salvage value of the firm’s assets at the time of bankruptcy, is
nonnegative. With λ the constant discount rate, the expected total pay-off to shareholders
together with the discounted liquidation value equals

V (x, Z) = Ex{
∫ τ

0

e−λtdZt + Se−λτ}. (2)

We present explicit formulae for the optimal admissible process Z̃, i.e. the control process
that maximizes V (x, Z), for the case of bounded dividend rates, for the case of discrete
dividends with transaction costs, and for the general case when the dividend process is
allowed to be any nonnegative, nondecreasing, right-continuous process.

In Chapter 2, we consider a model for long-term irreversible investments. The predicted
cost remaining at time t to complete the project is given by

dXt = −Itdt+ β
√
XtItdWt + γXtdW̃t, (3)

where Wt and W̃t are uncorrelated standard Wiener processes, β and γ are nonnegative
constants, and I(Xt) represents the investment rate. The time τ at which the project
is completed, is defined by τ = inf {t ≥ 0 : Xt ≤ 0}. It is assumed that the initial cost of
completing the project, X0 = x, is positive, and that the value of the project after completion
is given by a positive constant V . With r the constant interest rate, the expected total profit
on the project equals

F (x, I) = E{
∫ τ

0

(−I(Xt)e
−rt)dt+ V e−rτ}. (4)

We present explicit solutions for the optimal investment rate I∗, i.e. the investment rate that
maximizes F (x, I) for three separate cases: technical uncertainty (β = 0, γ 6= 0), input cost
uncertainty (β 6= 0, γ = 0), and the case where both uncertainties are present (β 6= 0, γ 6= 0).

In Chapter 3 we consider the position management problem for an agent trading a mean-
reverting asset. This problem arises in many statistical and fundamental arbitrage trading
situations when the short-term returns on an asset are predictable, but limited risk-bearing
capacity does not allow the agent to fully exploit this predictability. We use an Ornstein-
Uhlenbeck process to model the price process X = (Xt)t≥0

dXt = −kXtdt+ σdBt,

where k and σ are positive constants and Bt is a standard Wiener process. The model
reproduces some realistic patterns of trader behaviour. The control αt represents the trader’s
position at time t, i.e. the number of units of the asset held. Assuming zero interest rates
and no market friction, the wealth dynamics for a given control αt is given by

dWt = αtdXt = −kαtXtdt+ αtσdBt.
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We assume that there are no restrictions on α, so short selling is allowed, and there are
no marginal requirements on the wealth W . Introduce the power utility function Ψ(w) =
(wγ − 1)/γ, w ≥ 0, for some γ ∈ (−∞, 1). The expected utility at time T conditionally on
the information available at time t is

J(Wt, Xt, t) = EtΨ(WT ).

We present an explicit solution for the optimal position α∗, i.e. the position that maximizes
J(Wt, Xt, t).
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Chapter 1

Dividend optimization models

In this chapter, we consider several models for dividend optimization. We consider sepa-
rately three cases: the case of bounded dividend rates, the case of discrete dividends with
transaction costs, and the case when the dividend process is any nonnegative, nondecreas-
ing, right-continuous process. In the Introduction, Section 1.1, we formulate the problem
and give an overview. In Section 1.2, we present the main results. The Sections 1.3, 1.4
and 1.5 present the proofs of optimality for the cases of bounded dividend rate, discrete and
cadlag dividends respectively. Appendix 1.6 contains the notation reference, and Appendix
1.7 presents the technical material we used for proving optimality of the solution.

1.1 Introduction

1.1.1 Choice of reserve process and structure of dividend process

Radner and Shepp (1996) [Radner] have proposed a model for a firm whose reserve Xt in
the absence of dividends evolves as an arithmetic Brownian motion1{

dXt = µdt+ σdWt,
X0 = x0,

(1.1)

where µ and σ are known positive constants, W = (Wt)t≥0 is a standard Wiener process, and
x0 is the initial reserve. All processes are assumed to be adapted to the standard filtration
(Ft)t≥0 of the Brownian motion W . In particular F0 is the σ-field generated by the null sets.

The firm’s board of directors influences the stochastic fluctuations of the company’s
reserve by choosing the timing and the size of dividend payments. The dynamics of the
reserve become {

dXt = µdt+ σdWt − dZt,
X0 = x0 − z0,

(1.2)

1They also show why geometric Brownian motion is an inappropriate model for the reserve.

1



2 CHAPTER 1. DIVIDEND OPTIMIZATION MODELS

where the control process Z = (Zt)t≥0 represents the cumulative amount of dividends paid
out up to time t with the initial dividend payment Z0 = z0. The initial payment z0 does
not exceed the initial reserve, i.e. 0 ≤ z0 ≤ x0. The control process Z is assumed to be
nonnegative, nondecreasing, and right-continuous.

We will distinguish three classes of admissible control processes. The first class consists
of control processes with bounded dividend rates. In other words, the rate of the dividend
payments is bounded by a positive constant K. More precisely, an admissible control process
Z in this class is given by

Zt = z0 +

∫ t

0

Usds, t ≥ 0, (1.3)

where the dividend rate process U = (Ut)t≥0 is assumed to be optional and to be bounded
by a finite constant K, say; 0 ≤ Ut ≤ K < ∞. As a second class we consider the case
when the admissible control process Z with Z0 = z0 is given via a bivariate point process
(Ti, ξi)

∞
i=0 by

Zt = ξ0 +
∑
i≥1

ξiI(Ti < t), t > 0, (1.4)

where ξ0 = z0 is the initial gross dividend payment, and where ξi denotes the gross dividend
payment at time Ti. There is a transaction cost γ > 0 associated with every dividend
payment, including the initial payment at time t = 0 provided it is positive. A gross dividend
payment, i.e. nett dividend payment summed with the transaction cost, does not exceed
the current reserve but if nonzero should be bigger than transaction cost γ, i.e. z0 = 0 or
γ ≤ z0 ≤ x0, and γ < ξi ≤ XTi− for i = 1, 2, . . .. Consequently, the nett dividend payments
are z0 − γ, if z0 6= 0, and (ξi − γ). It is assumed here that 0 = T0 < T1 < T2 < . . . holds
a.s. The assumptions imply that the admissible control process Z in (1.4) is nonnegative,
nondecreasing, and right continuous.

The third class of admissible controls consists of all nonnegative, non-decreasing, right-
continuous processes Z that start at z0, z0 ≤ x0, and satisfy Zt ≤ Xt− for all t > 0.

The firm exists from time zero until the first moment τ , at which the cash reserve falls
down to zero; τ = inf {t : Xt ≤ 0}. The moment τ is called the bankruptcy time.

1.1.2 The value function

The aim of the board of directors is to maximize the expected total discounted nett dividend
paid out during the existence of the firm together with the discounted salvage value at the
time of bankruptcy. The maximum will be called the initial value of the firm, and denoted
by v0. It depends only on the initial reserve x0. We introduce the value function of our
optimization problem Ṽ = Ṽ (·) by

Ṽ (x) = supEx

{∫ τ

0

e−λtdZt + Se−λτ

}
, (1.5)



1.2. THE MAIN RESULT 3

with some adaptation in the case of discrete payments to take care of the transaction cost.
Here the expectation is taken conditionally on X0 = x and∫ τ

0

e−λtdZt =

∫
(0,τ)

e−λtdZt.

The constant S is the liquidation value, i.e. the salvage value of the firm’s assets at the time
of bankruptcy, the discount rate λ is a positive constant, and Z0 = z0 is the initial dividend
payment. The supremum is taken over all admissible control processes Z = (Zt)t≥0.

In our analysis we will encounter the value function Ṽ = Ṽ (·). But the board of directors
is interested to know the initial value of the firm v0. If there is no initial payment z0 then
X0 = x0 and v0 = Ṽ (x0). Else X0 = x0 − z0 by right continuity of the process X, and
v0 = z0 − γ + Ṽ (x0 − z0) where z0 is the gross payments at time t = 0, and γ is the
transaction cost.

1.1.3 Objective

Our aim is to find, for each initial reserve x0, the initial value of the firm v0, the value
function Ṽ (·), and the optimal dividend policy Z̃ = (Z̃t)t≥0.

1.1.4 Normalization

Without loss of generality, we may and will assume that σ2 = 1 by changing the time scale
if necessary. This is achieved on replacing (µ, λ,K) by (µ/σ2, λ/σ2, K/σ2).

1.1.5 Overview

A survey on the subject may be found in Taksar (1999) [Taksar]. The case of zero liquidation
value S = 0 was solved by Jeanblanc and Shiryaev (1995) [JeanShir]. Here we present the
general solution for any constant S. The salvage value S even may be negative.

1.2 The main result

Here we present the main results. A reader who is interested only in the results, but not in
the proofs can stop after this section.

1.2.1 The case of bounded dividend rates

Suppose we are given the initial reserve x0 ≥ 0, the liquidation value S, the discount rate
λ > 0, the upper bound K on the dividend the rate U in the case of bounded dividend rates,
K ≥ U ≥ 0. Let us set



4 CHAPTER 1. DIVIDEND OPTIMIZATION MODELS

r1 = −µ+
√
µ2 + 2λ > 0, (1.6)

r2 = µ+
√
µ2 + 2λ > 0, (1.7)

ρ = −(K − µ) +
√

(K − µ)2 + 2λ > 0, (1.8)

Q =
K

λ
− 1

ρ
. (1.9)

Define the functions u1(·), u2(·) , w(·), f(·) and A(·) on [0,∞) by

u1(x) = e−r2x, (1.10)

u2(x) = er1x − e−r2x, (1.11)

v(x) = e−ρx, (1.12)

w(x) = u1(x)u
′
2(x)− u′1(x)u2(x), (1.13)

f(x) = S
w(x)

u′2(x)
+
u2(x)

u′2(x)
, (1.14)

A(x) =
1− Su′1(x)

u′2(x)
, x ≥ 0. (1.15)

The optimal control process in the case of a bounded dividend rate is of the “bang-bang”
type and may be described now as follows.

Theorem 1.2.1 The initial value of the firm, the value function Ṽ = Ṽ (·) and the optimal
dividend strategy in the model for bounded dividend rates are the following.

1) If S ≥ Q holds, then the optimal strategy is to liquidate the company immediately and
to distribute the initial reserve x0 as dividend. In this case τ = 0, z0 = x0, and the initial
value of the firm is v0 = x0 + S.

2) If S < Q holds, then the equation f(x) = Q has a unique positive solution x̃, and the
optimal initial dividend payment is

z0 =

{
0, x0 < x̃,

x0 − x̃, x0 ≥ x̃;

the optimal dividend rate at time t is Ũt = ũ(Xt) with

ũ(x) =

{
0, x < x̃,
K, x ≥ x̃;

the value function Ṽ (·) is

Ṽ (x) =

{
Su1(x) + A(x̃)u2(x), x < x̃,
K/λ+ v(x)/v′(x̃), x ≥ x̃;
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and the initial value of the firm is

v0 =

{
Ṽ (x0), x0 < x̃,

x0 − x̃+Q, x0 ≥ x̃;

This theorem states:as soon as the reserve Xt hits the optimal value x̃, one should
start distributing dividends at the maximum possible rate K until the reserve
falls back below x̃. This is illustrated in Fig. 1.1.

Note 1.2.1 In the special case S = 0 the statements S < Q and S ≥ Q are equivalent to
K > λ/(2µ) and K ≤ λ/(2µ) respectively (see Lemma 1.7.1). Returning to the original
parameters these inequalities become K > σ2λ/(2µ) and K ≤ σ2λ/(2µ). These inequalities
might have nice economic explanations.

1.2.2 The case of discrete dividends

Suppose we are given the initial reserve x0 ≥ 0, liquidation value S, discount rate λ > 0 and
transaction cost γ > 0. Let r1, r2, u1(·), u2(·), f(·), A(·) be defined as above by (1.6), (1.7),
(1.10), (1.11), (1.14), (1.15), respectively.

Suppose S < µ/λ. The function A = A(·) is increasing-decreasing on [0,∞) with a
unique maximum at x̄, see Corollary 1.7.4. There exists a maximal interval (amin, bmax) so
that A(amin) = A(bmax), and amin = 0 or bmax = ∞. For b ∈ (x̄, bmax) let a = a(b) be the
unique point in (amin, x̄) where A(a) = A(b), and define

Λ(b) =

∫ b

a(b)

u′2(x)(A(x)− A(b))dy,

γmax = Λ(bmax).

For details see Corollary 1.7.7 and Section 1.7.3. The following theorem gives the optimal
strategy for the case of discrete dividends.

Theorem 1.2.2 The initial value of the firm, the value function, and the optimal dividend
strategy in the model for discrete dividends with transaction cost are the following.

1) If S ≥ µ/λ and γ < x0 hold, then the optimal strategy is to liquidate the company
immediately and to distribute the initial reserve x0 as dividend. In this case τ = 0,
z0 = x0, and the initial value of the firm is v0 = x0 − γ + S,

2) If −1/r2 < S < µ/λ and γ ≥ γmax hold or if S ≥ µ/λ and γ ≥ x0 hold, then the
equation f(x) = x − γ + S has a unique positive solution x∗, and the initial dividend
payment is

z0 =

{
0, x0 < x∗,
x0, x0 ≥ x∗;
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Figure 1.1: An example of the reserve and the dividend payments for the case of bounded
dividend rate; dashed: an uncontrolled trajectory; black: reserve when the control is off;
light grey: reserve when the control is on, grey bars: discounted dividends paid.
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the optimal dividend strategy (ξ̃i, T̃i) is to wait until the reserve reaches the critical
level x∗ and then immediately distribute the whole reserve as dividend ξ̃1 = x∗, T1 =
inf{t > 0 : Xt = x∗}, and liquidate the company.

The value function Ṽ = Ṽ (·) is given by

Ṽ (x) =

{
Su1(x) + A(x∗)u2(x), x < x∗,

x− γ + S, x ≥ x∗;

and the initial value of the firm is v0 = Ṽ (x0).

3) If −1/r2 < S < µ/λ and γ < γmax or if S ≤ −1/r2 then the the equation Λ(b) = γ
has a unique solution b̃, b̃ ≥ x̄ (see Section 1.7.3). With ã = a(b̃) the optimal initial
dividend payment is

z0 =

{
0, x0 < b̃,

x0 − ã, x0 ≥ b̃;

and the optimal dividend strategy (ξ̃i, T̃i) is to pay the amount (b̃− ã) as groos dividend
as soon as the reserve reaches the critical level b̃, i.e. ξ̃i = b̃ − ã, Ti = inf{t > Ti−1 :
XTi

= b̃}.
The value function is

Ṽ (x) =

{
Su1(x) + A(b̃)u2(x), x < b̃,

Ṽ (ã) + x− ã− γ, x ≥ b̃;

and the initial value of the firm is v0 = Ṽ (x0).

This theorem states: whenever the reserve Xt hits a certain level b̃, one should
pay b̃ − ã in dividend pushing the value of Xt instantaneously to the value ã if
only transaction costs are reasonable and the liquidation value is not very big.
This is illustrated in Fig. 1.2.

1.2.3 The case when the dividend process is any nonnegative,
nondecreasing, right-continuous process

Suppose as before we are given an initial reserve x0 ≥ 0 and a liquidation value S, but as-
sume now that the dividend process is any nonnegative, nondecreasing, and right-continuous
process. Let r1, r2, u1(·), u2(·), f(·), A(·) be defined as above by (1.6), (1.7), (1.10), (1.11),
(1.14), (1.15) respectively.

Before we formulate the theorem let us first introduce reflecting Brownian motion with
drift for the barrier x̄. Let x ≤ x̄ hold. Consider the solution (X̄, L) = (X̄t, Lt)t≥0 to
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Figure 1.2: An example of the reserve and the dividend payments for the case of discrete
dividend with transaction costs; dashed: an uncontrolled trajectory; black: reserve when
the control is off; light grey: reserve when the control is on, grey bars: discounted dividends
paid.
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the stochastic differential equation with reflection (see [RevuzYor] Chapter IX, §2, Exercise
2.14)

X̄t = x+ µt+Wt − Lt, (1.16)

where L = (Lt)t≥0 is a continuous nondecreasing F -adapted process with L0 = 0 such that

Lt =

∫ t

0

I(X̄s = x̄)dLs (1.17)

and Xt ≤ x̄.
It is well known that a solution (x̄, L) exists, that the barrier x̄ is a reflecting boundary

for the process X̄, and that L is the local time spent by the process X̄ at the boundary x̄.
Now let us formulate again the theorem that describes the optimal strategy.

Theorem 1.2.3 The initial value of the firm, the value function, and the optimal dividend
strategy for the case when the dividend process is any nonnegative, nondecreasing, right-
continuous process are the following.

1) If S ≥ µ/λ then the optimal strategy will be to distribute the initial reserve x0 as
dividend immediately, so z0 = x0, and hence to go bankrupt at the start, so τ = 0 and
Xt = 0 for all t > 0. This strategy yields the initial value of the firm, v0 = x0 + S.

2) If S < µ/λ holds then the equation f(x) = µ/λ has a unique positive solution x̄, and
the initial dividend payment is

z0 =

{
0, x0 < x̄,

x0 − x̄, x0 ≥ x̄.

The optimal dividend strategy is to wait until the reserve hits the critical level x̄, then
the process of dividend payments L = (Lt)t≥0 and the reserve process X̄ = (X̄t)t≥0 are
the solutions of a SDE with reflection X̄t = x + µt+Wt − Lt, where L = (Lt)t≥0 is a
continuous nondecreasing and adapted process with L0 = 0. The value function is

Ṽ (x) =

{
Su1(x) + A(x̄)u2(x), x < x̄,

x− x̄+ µ/λ, x ≥ x̄;

and the initial value of the firm is v0 = Ṽ (x0).

This means that whenever the reserve Xt hits a certain value x̄ from below
one should start distributing the dividend so fast that the reserve reflects at x̄.
The dividend comes from the local time spent by the reserve at x̄.
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1.3 The case of bounded dividend rate

In the case of bounded dividend rates the stochastic optimal control problem defined by
(1.2), (1.3) and (1.5) may be reformulated as follows. The reserve of the company is given
by {

dXt = (µ− Ut)dt+ dWt,
X0 = x0 − z0,

(1.18)

where x0 is the initial reserve, z0 is the initial dividend payment, and U = (Ut)t≥0 is the
bounded dividend rate process, 0 ≤ U ≤ K. Here we define the value function Ṽ (·) by

Ṽ (x) = sup
0≤U≤K

Ex

{∫
(0,τ)

e−λtUtdt+ Se−λτ

}
, x ≥ 0, (1.19)

where the supremum is taken over all dividend rate processes U bounded by K, and where
λ is the discount rate, S is the salvage value, and τ the bankruptcy time.

The initial value of the firm v0 equals

v0 = max
z

{
z + Ṽ (x0 − z)

}
,

where z is some initial dividend payment, 0 ≤ z ≤ x0. Note that the value function
corresponds to the situation where no initial dividend payment is allocated, i.e. z0 ≡ 0.

1.3.1 The candidate value function and the candidate optimal
control

Suppose we found a candidate value function, say V ∗ = V ∗(·). For now we leave the
optimality check of the candidate value function, but discuss its properties.

Definition of the candidate value function and the candidate optimal control

Let us define the candidate value function V ∗(·) on [0,∞) by

V ∗(x) =

{
Su1(x) + A(x̃)u2(x), x < x̃,
K/λ− (1/ρ)e−ρ(x−x̃), x ≥ x̃,

(1.20)

where x̃ is the nonnegative solution of the equation f(x) = S ∨Q.
The boundary x̃ solves a free boundary problem, a so-called Stefan problem. Roughly

speaking, the Stefan problem considers two regions and a free boundary between them. The
boundary moves to maximize/minimize the associated functional (to maximize the utility
function in our case). To make it more visual one can imagine two regions: one with ice
and another with water and a moving boundary between them. The moving boundary
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eventually reaches the optimal state. In our case the Stefan problem is quite trivial, as it is
only one-dimensional and perpetual in time. The two regions are [0, x̃] and [x̃,∞), and the
moving boundary x̃ is a number that does not depend on time.

The two regions [0, x̃) and [x̃,∞) have the crucial property: the candidate optimal control
u∗ is 0 in [0, x̃) and K in [x̃,∞), i.e.

u∗(x) =

{
0, x < x̃,
K, x ≥ x̃.

(1.21)

It is easy to see that the candidate optimal control is of “bang-bang” type and assumes as
its values the extreme values of the set of admissible controls [0, K]. In the region [0, x̃) we
only “observe” and don’t pay any dividends, but as soon as the process reaches the region
[x̃,∞) we start paying out dividends at the maximum possible speed.

Properties of the candidate value function

As we will see later the candidate value function V ∗ and the candidate control u∗ introduced
above were chosen to satisfy the Bellman equation (1.29) and the Bellman inequality (1.28).
To show this we need properties of the candidate value function V ∗ in the regions [0, x̃] and
[x̃,∞).

Denote by L the differential operator

L = µ
d

dx
+

1

2

d2

dx2
− λ.

Then the following proposition holds.

Proposition 1.3.1 The function V ∗(·) defined by (1.20) satisfies{
LV ∗(x) = 0, x < x̃,
LV ∗(x) = K(V ∗′(x)− 1), x ≥ x̃.

Proof. The first equality follows from the fact that the functions u1(·) and u2(·) from
definition (1.20) of V ∗ are linearly independent solutions of the differential equation Lu = 0.
The second equality we obtain from the knowledge that (K/λ−Ce−ρx), where C is any real
constant, is a solution to uxx/2 + (µ−K)ux − λu+K = 0. �

The following lemma describes the behaviour of V ∗′(x)−1 in the regions [0, x̃] and [x̃,∞).

Lemma 1.3.1 With x̃ defined as the root of equation f(x) = S ∨ Q, the function V ∗(·)
given by (1.20) is C2 on [0,∞) and satisfies

V ∗′(x)− 1 > 0, x < x̃, (1.22)

V ∗′(x)− 1 = 0, x = x̃, (1.23)

V ∗′(x)− 1 < 0, x > x̃. (1.24)
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Proof. We discern two cases.

• Suppose S ≥ Q. We have x̃ = 0 by Lemma 1.7.2. Clearly, the function V ∗ is C2 on
[0,∞) then and we have

V ∗′(x)− 1 = −ρ
(
S − K

λ

)
e−ρx − 1 ≤ e−ρx − 1 < 0, x > 0,

since the statement S ≥ Q is equivalent to ρ
(
S − K

λ

)
≥ −1 by definition of Q.

• Suppose S < Q. It is obvious that the function V ∗ is C2 on [0, x̃) and on (x̃,∞).
Furthermore, V ∗(x̃−) = Su1(x̃) + A(x̃)u2(x̃) = f(x̃) = Q and on the other hand
V ∗(x̃+) = K/λ− 1/ρ = Q hold. For the first derivative we have

V ∗′(x̃−) = Su1
′(x̃) + A(x̃)u2

′(x̃) = Su1
′(x̃) +

1− Su1
′(x̃)

u2
′(x̃)

u2
′(x̃) = 1

V ∗′(x̃+) = e−ρ(x̃−x̃) = 1.

We have checked that V ∗ is C1 on [0,∞) (note that we also proved (1.23)). Hence
LV ∗ is continuous by Proposition 1.3.1. By definition of L this implies that V ∗ is C2

on [0,∞). Now let us check (1.24) and (1.22). Again by Lemma 1.7.2 we have x̃ > 0.
For x > x̃ we have

V ∗′(x)− 1 = e−ρ(x−x̃) − 1 < 0,

and hence (1.24). Let x̄ be a solution to the equation f(x) = µ/λ (see Section 1.7.2).
Note that x̃ < x̄ holds, as they are the solutions of f(x) = Q and f(x) = µ/λ
respectively, and Q < µ/λ holds by Lemma 1.7.1. Also note, that f(x) is an increasing
function for x < x̄. Then by results from Corollary 1.7.5 we have for 0 ≤ x < x̃ < x̄

V ∗′(x)− 1 = Su′1(x) + A(x̃)u′2(x)− 1 = u′2(x) (A(x̃)− A(x)) > 0.

�

1.3.2 Optimality of the initial payment

Now let us find the candidate initial value of the firm.
The initial value of the firm was defined as v0 = maxz

{
z + Ṽ (x0 − z)

}
, where z is the

initial dividend payment. We are looking for a candidate initial value of the firm

v∗0 = max
z
{z + V ∗(x0 − z)} , (1.25)

and for a candidate initial dividend payment z∗0 such that v∗0 = z∗0 + V ∗(x0 − z∗0).
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Write x = x0− z and ψ(x) = x0− x+ V ∗(x). In order to determine v∗0 in (1.25) we have
to maximize ψ(x) over 0 ≤ x ≤ x0. Since ψ′(x) = V ∗′(x) − 1 ≤ 0 unless S < Q and x < x̃
(by Lemma 1.3.1), the maximum of ψ is attained at x̃. Recall that x̃ was defined as the
solution of f(x) = Q if S < Q, and as 0 if S ≥ Q. Hence returning to the previous notation
we obtain
1. For S < Q and x0 < x̃ we have z∗0 = 0 and v∗0 = V ∗(x0).
2. For S < Q and x0 ≥ x̃ we have z∗0 = x0 − x̃ and v∗0 = x0 − x̃+ V ∗(x̃) = x0 − x̃ + Q .
3. For S ≥ Q we have z∗0 = x0 and v∗0 = x0 + V ∗(0) = x0 + S.

Collecting all results, we see that we have found the initial value of the firm v0 = v∗0 and
the initial dividend payment z0 = z∗0 provided we prove that the candidate value function is
the best performing candidate and corresponds to the best control process. We will do this
in the next section.

1.3.3 Value function optimality

Stochastic control verification properties

Suppose the board of directors uses the dividend strategy U = (Ut)t≥0. Let V (x, U) be the
expected total discounted dividend corresponding to the board’s strategy added together
with the discounted liquidation value received upon bankruptcy with reserve x, x = x0− z0

V (x, U) = Ex

{∫
(0,τ)

e−λtUtdt+ Se−λτ

}
.

Assume we have a candidate U∗ for the optimal strategy and a candidate V ∗(·) for the
value function. To prove that these candidates are optimal indeed, it is enough to check the
standard stochastic control verification properties:

(A) For any admissible control U

V (x, U) ≤ V ∗(x), for all x ≥ 0. (1.26)

(B) The control U∗ satisfies

V (x, U∗) = V ∗(x), for all x ≥ 0. (1.27)

Indeed, if these verification properties are satisfied, they just show that no admissible
control can beat U∗, i.e. Ṽ (x) = V ∗(x) = V (x, U∗) for all x ≥ 0.
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The variational inequalities

Here we will show that the verification properties are satisfied once the variational inequali-
ties described below are. This means that for proving optimality of U∗ and V ∗, it is enough
to check these variational inequalities, which are named after Bellman.

Assume there exist a bounded function V ∗(·) in C2[0,∞) and an adapted control U∗

such that the following variational inequalities hold:

• Bellman inequality. For any admissible control U

LV ∗(x) + Ut

(
1− V ∗′(x)

)
≤ 0, for any x ≥ 0. (1.28)

• Bellman equation.

LV ∗(x) + U∗
t

(
1− V ∗′(x)

)
= 0, for any x ≥ 0. (1.29)

Let us show that the verification properties (1.26) and (1.27) are satisfied if V ∗ and U∗

satisfy (1.28) and (1.29).
Apply Itô’s formula to (e−λtV ∗(Xt))t≥0, yielding

e−λ(t∧τ)V ∗(Xt∧τ ) = V ∗(x) +

∫ t∧τ

0

e−λs
[
LV ∗(Xs)− UsV

∗′(Xs)
]
ds+

∫ t∧τ

0

e−λsV ∗′(Xs)dWs.

Taking the expectation Ex and using Bellman’s inequality (1.28) we obtain

V ∗(x) = Exe
−λ(t∧τ)V ∗(Xt∧τ )− Ex

∫ t∧τ

0

e−λs
[
LV ∗(Xs)− UsV

∗′(Xs)
]
ds

−Ex

∫ t∧τ

0

e−λsV ∗′(Xs)dWs

≥ Exe
−λ(t∧τ)V ∗(Xt∧τ ) + Ex

∫ t∧τ

0

e−λsUsds− Ex

∫ t∧τ

0

e−λsV ∗′(Xs)dWs. (1.30)

The last stochastic integral in (1.30) is a martingale. Therefore its expectation is equal
to zero. Letting t → ∞ we find e−λ(t∧τ)V ∗(Xt∧τ ) → e−λτS. Since V ∗ and U are bounded,
we may apply Lebesgue’s theorem on dominated convergence and obtain

V ∗(x) ≥ Exe
−λτS + Ex

∫ τ

0

e−λsUsds = V (x, U).

It is obvious that property (A) is satisfied. Property (B) can be checked in the same
way but instead of the Bellman inequality we use the Bellman equation (1.29).
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Verifying the Bellman inequalities

In the previous section we have proved that if for some function V ∗ = V ∗(·) from C2[0,∞)
to [0,∞) and an adapted control U∗ variational inequalities (1.28) and (1.29) are satisfied,
then V ∗ = V ∗(·) and U∗ = u∗(·) give the optimal solution to our optimal control problem.

Recall that the boundary x̃ was defined as x̃ = 0 if S ≥ Q, otherwise x̃ is the unique
solution of equation f(x) = Q. Then the following lemma completes the argument.

Lemma 1.3.2 Functions V ∗(·) and u∗(·) given by (1.20) and (1.21) correspondingly satisfy
variational inequalities (1.28) and (1.29), i.e. for any admissible Ut

LV ∗(x) + Ut

(
1− V ∗′(x)

)
≤ 0, for any x ≥ 0,

LV ∗(x) + u∗(x)
(
1− V ∗′(x)

)
= 0, for any x ≥ 0.

Proof. We discern two cases.

• For x < x̃ we have

LV ∗(x) + Ut

(
1− V ∗′(x)

)
= Ut

(
1− V ∗′(x)

)
≤ 0, (1.31)

as LV ∗(x) = 0 by Proposition 1.3.1, 0 ≤ Ut ≤ K by definition, and (1 − V ∗′(x)) < 0
by Lemma 1.3.1. Moreover, we see that the Bellman equation is satisfied if u∗(x) = 0
for all 0 ≤ x < x̃.

• For x ≥ x̃ we have

LV ∗(x) + Ut

(
1− V ∗′(x)

)
= K(V ∗′(x)− 1) + Ut

(
1− V ∗′(x)

)
= (K − Ut)(V

∗′(x)− 1) ≥ 0,

by Proposition 1.3.1, by (1.23) and (1.24), and since 0 ≤ Ut ≤ K holds’. by definition.
The equality is satisfied if Ut = u∗(x) = K. �

Thus we see that Lemma 1.3.2 completes the proof of Theorem 1.2.1. Existence of the
optimal solution, i.e. the existence of x̃, follows from Corollary 1.7.2, see Appendix B.

1.4 The case of discrete dividend with transaction

costs

Suppose the board of directors uses a dividend strategy with discrete payments π =
(Ti, ξi)i≥1. Here dividend payments are represented by ex-dividend times 0 = T0 < T1 <
T2 < . . . and by the amount of the gross dividends ξ0 = z0, ξ1, . . ., which are not allowed
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to exceed the present reserve, ξ0 = z0 ≤ x0, ξi ≤ XTi−, i = 1, . . .. The dividend process is
given by

Zt = z0 +
∑
i≥1

ξiI(Ti ≤ t ∧ τ), (1.32)

where τ is the bankruptcy time τ = inf {s : Xs ≤ 0}.
The reserve of the company follows from{

dXt = µdt+ dWt − dZt,
X0 = x0 − z0,

(1.33)

where x0 is the initial reserve, ξi is the gross dividend payment made at time Ti, and z0 is the
initial dividend payment. A transaction cost γ is associated with each dividend payment.
Consequently, the share holder gets nett dividend payments ξi− γ, while the company pays
gross dividends ξi. By common sense the nett dividend payments ξi − γ must be positive.
For notation convenience the initial dividend payment ξ0 = z0 is always present but could
be zero, z0 = 0, in which case no transaction cost is charged.

We measure the performance of a dividend policy by a functional of the dividend process
π = (ξi, Ti)i≥1 and of the transaction cost γ via

V (x, π) = Ex

(∑
i≥1

e−λTi (ξi − γ) I(Ti ≤ τ) + Se−λτ

)
, (1.34)

where S is the liquidation value and the expectation is taken conditionally on x = X0 =
x0 − z0.

In a similar way as in the preceding Section 1.3 we define the value function Ṽ (·) by

Ṽ (x) = sup
π
V (x, π), x ≥ 0,

and the initial value of the firm is

v0 = max
0≤z≤x0

{
((z − γ) ∨ 0) + Ṽ (x0 − z)

}
,

with x0 the initial reserve. Observe that Ṽ (0) = S as in the case of a bounded dividend
rate, since x = 0 implies τ = 0.

1.4.1 The candidate value function and the candidate optimal
control

Suppose we found a candidate value function, say V ∗ = V ∗(·). For now we leave the
optimality check of the candidate value function for the following section, but discuss its
properties.
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N CASE ã b̃

1 −1/r2 < S < µ/λ 0 solution to f(x) = x− γ + S
γ ≥ γmax

2 S ≥ µ/λ 0 solution to f(x) = x− γ + S
γ ≥ x0

3 −1/r2 < S < µ/λ a(b̃) solution to Λ(x) = γ
γ < γmax

4 S ≤ −1/r2 a(b̃) solution to Λ(x) = γ

5 S ≥ µ/λ, γ < x0 0 0

Table 1.1: Boundaries ã and b̃ in the case of discrete dividends, γ > 0.

Definition of the candidate value function and the candidate optimal control

Let ã and b̃ be given by Table 1.1. To recall the notation see Section 1.6. Define the
candidate value function

V ∗(x) =

{
Su1(x) + A(b̃)u2(x), x < b̃,

V ∗(ã) + x− ã− γ, x ≥ b̃,
(1.35)

with the exception of case 5 of Table 1.1 with S ≥ µ/λ, γ < x0, when we set V ∗(x) = S for
x ≥ 0.

Again, as in the case of bounded dividends the candidate optimal control is zero on [0, b̃).
And again, the boundary b̃ defined by Table 1.1 solves a free boundary problem. But unlike
the case of bounded dividends there are in fact two boundaries ã and b̃ tied to each other by
some relation with the transaction cost γ. As we will see later the boundaries were chosen

to satisfy the relation
∫ b̃

ã
(1− V ∗′(y))dy = γ.

It is also useful to point out that unlike the case of bounded dividends, in the case of
discrete dividends there are no restrictions on the speed of dividend payments. Thus, if we
pay dividends with “the maximum possible speed” and start from below the boundary b̃



18 CHAPTER 1. DIVIDEND OPTIMIZATION MODELS

then the corresponding reserve process does not leave [0, b̃]. In other words, the candidate
optimal control is designed to keep the reserve process within the strip [0, b̃]. As soon as
the reserve reaches the boundary b̃ the amount b̃− ã is paid as a dividend, and the reserve
process starts again from ã. More precisely, the candidate optimal control π∗ is defined as
a multivariate point process π∗ = (T ∗i , ξ

∗
i )i≥1 consisting of candidate optimal payment times

T ∗i = inf(t > T ∗i−1 : Xt− = b̃), and of candidate optimal dividend payments ξ̃i = b̃ − ã,
i = 1, 2, . . ..

Thus, it seems reasonable to consider three regions instead of two, namely [0, ã), [ã, b̃),
and [b̃,∞).

The properties of the candidate value function

The following lemma describes the behaviour of V ∗′(x) − 1 in the regions [0, ã), [ã, b̃), and
[b̃,∞).

Lemma 1.4.1 With ã and b̃ defined by Table 1.1, the candidate value function V ∗(·) given
by (1.35) is C1 on [0,∞) and satisfies with the exception of case 5 of Table 1.1,

V ∗′(x)− 1 > 0, 0 ≤ x < ã, (1.36)

V ∗′(x)− 1 = 0, x = ã, for ã > 0, (1.37)

V ∗′(x)− 1 < 0, ã < x < b̃, (1.38)

V ∗′(x)− 1 = 0, x ≥ b̃. (1.39)

Proof. It is obvious that the function V ∗ is C1 on [0, b̃) and on (b̃,∞). Let us check this
property at b̃.

• Suppose (−1/r2 < S < µ/λ and γ ≥ γmax) or (S ≥ µ/λ and γ ≥ x0), see Table 1.1
cases 1 and 2. Then V ∗(b̃−) = Su1(b̃)+A(b̃)u2(b̃) = f(b̃). On the other hand V (b̃+) =
S + b̃− γ. Moreover f(b̃) = S + b̃− γ by definition of b̃. Hence V ∗(b̃−) = V ∗(b̃+).

• Suppose (−1/r2 < S < µ/λ and γ < γmax) or S ≥ −1/r2, see Table 1.1 cases 3 and 4.
By definition of ã and b̃ we have

γ =

∫ b̃

ã

u2
′(y)

(
A(y)− A(b̃)

)
dy =

∫ b̃

ã

(
1− V ∗′(y)

)
dy

= b̃− ã− (V ∗(b̃−)− V ∗(ã)).

Hence V ∗(b̃−) = V ∗(ã) + b̃− ã− γ = V ∗(b̃+).
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For the left derivative we have

V ∗′(b̃−) = Su1
′(b̃) + A(b̃)u2

′(b̃) = Su1
′(b̃) +

1− Su1
′(b̃)

u2
′(b̃)

u2
′(b̃) = 1. (1.40)

Note, that (1.40) can be repeated for ã > 0, since A(b̃) = A(ã), and, therefore, we also
have V ∗′(ã) = 1. Moreover, for the right derivative as well as for all x ≥ b̃ we obtain
V ∗′(x)− 1 = 0, since V ∗(x) = V ∗(ã) + x− ã− γ. Consequently, V ∗′(b̃−) = 1 = V ∗′(b̃+). In
this way we have seen that V ∗ is C1 on [0,∞). Now let us check the remaining properties
(1.36) and (1.38). Indeed, for x < b̃, b̃ > 0 we have by definition of A(·) (see 1.74)

V ∗′(x)− 1 = Su′1(x) + A(b̃)u′2(x)− 1

= u′2(x)
(
A(b̃)− A(x)

)
= −φ(b̃, x).

Thus, by Lemma 1.7.6 we obtain the required results. �

1.4.2 Firm’s initial value optimality

Here we find explicitly the candidate initial value of the firm. The candidate initial value of
the firm is given by

v0 = max
0≤z≤x0

{((z − γ) ∨ 0) + V ∗(x0 − z)} , (1.41)

where V ∗(·) is given by (1.35) for the cases 1 — 4 of Table 1.1, and V ∗(x) = S, x ≥ 0 for
the case 5.

For the case 5, when V ∗ is a constant, we get z0 = x0 and v0 = x0 − γ + S.
Now let us study the remaining cases 1 — 4. Denote y = x0− z and y0 = x0− z∗0 . Define

the function v = v(·) as v(y) = ((x0 − γ − y) ∨ 0) + V ∗(y). We reformulate the problem
(1.41) as

v0 = max
0≤y≤x0

v(y) = max
0≤y≤x0

{((x0 − γ − y) ∨ 0) + V ∗(y).} .

Consider separately the following cases

• Suppose x0 − γ ≤ 0. Taking in mind that V ∗ is an increasing function we get y0 = x0

and v0 = V ∗(x0).

• Suppose x0 − γ > 0. The derivative of v is

v′(y) =

{
−1 + V ∗′(y), y < x0 − γ,
V ∗′(y), y > x0 − γ

. (1.42)

V ∗ is an increasing function. Moreover V ∗′(y) − 1 > 0 for y < ã, and V ∗′(y) − 1 ≤ 0
for y ≥ ã by the results of Lemma 1.4.1. Thus, from (1.42) we get:
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• Suppose ã > x0 − γ. Then v = v(·) is an increasing function. Consequently,
y0 = x0, i.e. z∗0 = 0, and v0 = V ∗(x0).

• Now suppose ã < x0 − γ. Here the function v = v(·) has the following dynamics

v(y) =


↗, 0 < y < ã,
↘, ã < y < x0 − γ,
↗, x0 − γ < y < x0.

Thus, in order to find the maximum, we have to compare v(ã) and v(x0), i.e. to
compare x0 − ã− γ + V ∗(ã) and V ∗(x0).

If x0 ≥ b̃, then by definition of V ∗ we have V ∗(x0) = x0 − ã − γ + V ∗(ã). We
choose the candidate initial dividend payment z∗0 to be equal to the maximum
possible optimal value x0 − ã.

Now suppose x0 < b̃. Let us consider the following cases.

• The cases 1 and 2 of Table 1.1, x0 < b̃. Here ã = 0. Consequently, by Lemma
1.4.1 and the definition of b̃, we get

V ∗(x0)− x0 ≥ V ∗(b̃)− b̃ = S − γ,

or rearranging the terms

V ∗(x0) ≥ x0 − γ + S = x0 − ã− γ + V ∗(ã).

• Consider the cases 3 and 4 of Table 1.1, x0 < b̃. Recall that ã and b̃ were
defined to satisfy the following equality (see Section 1.7.3)

γ =

∫ b̃

ã

(
1− V ∗′(y)

)
dy.

Moreover, by Lemma 1.4.1 we have 1− V ∗′(y) > 0 for ã < y < b̃. It follows

γ =

∫ b̃

ã

(
1− V ∗′(y)

)
dy ≥

∫ x0

ã

(
1− V ∗′(y)

)
dy, for x0 < b̃.

Rewriting the latter integral we get γ ≥ x0−V ∗(x0)−ã+V ∗(ã), or rearranging
the terms V ∗(x0) ≥ x0 − ã− γ + V ∗(ã).

Thus, v∗0 = V ∗(x0) for x0 < b̃. It also means that the candidate initial dividend
payment z∗0 in case x0 < b̃ is zero.
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Collecting all the results, we see that, if given the best performing candidate value function,
or, more precisely, if given V ∗(x) such that V ∗(x) ≥ V (x, π) for any x ≥ 0 and any admissible
strategy π, then we immediately have the initial value of the firm, v0 = v∗0 = V ∗(x0), and
the initial dividend payment z0 = z∗0 , where z∗0 is presented by the formulae

z∗0 =

{
0, x0 < b̃,

x0 − ã, x0 ≥ b̃,

with ã and b̃ given by Table 1.1.
We are going to check the optimality of the candidate value function in the following

section.

1.4.3 Value function optimality

Let the process X = (Xt)t≥0 correspond to a chosen dividend strategy π = (Ti, ξi)i≥1, i.e.{
dXt = µdt+ dWt − dZt,
X0 = x0 − z0,

(1.43)

where

Zt =
∑
i≥1

ξiI(Ti ≤ t ∧ τ).

Note that if the initial dividend payment coincides with the candidate initial dividend pay-
ment z0 = z∗0 , where

z∗0 =

{
0, x0 < b̃,

x0 − ã, x0 ≥ b̃,

with ã and b̃ given by Table 1.1, then it follows X0 = x0 − z∗0 ≤ b̃.

Stochastic control verification properties

LetMπ ⊂ R+ be the range of the processX = (Xt)t≥0 corresponding to the dividend strategy
π = (Ti, ξi)i≥1. Assume we have a candidate π∗ = (T ∗i , ξ

∗
i ) for the optimal strategy and a

candidate V ∗(·) for the value function. To prove that the strategy π∗ and the function V ∗(·)
are optimal, it is enough to check the standard stochastic control verification properties:

(Ad) For any admissible control π = (Ti, ξi)i≥1

V (x, π) ≤ V ∗(x), for all x ≥ 0. (1.44)
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(Bd) The control π∗ satisfies

V (x, π∗) = V ∗(x), for all x ∈Mπ∗ . (1.45)

The property (Ad) says that no other function can be better than the candidate V ∗

on the range of all possible processes X controlled by π, i.e. [0,∞). But the property
(Bd) points out a certain control π∗ on which the corresponding utility function V (x, π∗)
coincides with the best performing candidate V ∗. Under this control π∗ the range of the
corresponding controlled process X could be smaller compared to the original range [0,∞).
To prove optimality it is enough to consider the range Mπ∗ . As we will see later, in our case
Mπ∗ is the strip [0, b̃], where b̃ is given by Table 1.1.

An analogue of the variational inequalities

Recall the notation

L = µ
d

dx
+

1

2

d2

dx2
− λ. (1.46)

Assume there exist a C2 function V ∗(·) of [0,∞] to [0,∞) and an adapted control
π∗ = (T ∗i , ξ

∗
i )i≥0 such that the following analogues of the Bellman inequality (1.28) and

the Bellman equation (1.29) hold:

I For all admissible controls π = (Ti, ξi)i≥1 and the candidate value function V ∗(·) we
have

a) LV ∗(x) ≤ 0 , for all x ≥ 0,

b)
∫ XTi

−
XTi

(1− V ∗′(y))dy ≤ γ, where ξi = XTi− −XTi
, i = 1, 2, . . ..

II The candidate optimal control π∗ = (T ∗i , ξ
∗
i )i≥1 and the candidate value function V ∗(·)

satisfy

a) LV ∗(x) = 0, for all x ∈Mπ∗ ,

b)
∫ XT∗

i
−

XT∗
i

(1− V ∗′(y))dy = γ, where ξ∗i = XT ∗i − −XT ∗i
, i = 1, . . ..

Let us show now that the verification properties (1.44) and (1.45) are satisfied for such
V ∗(·) and π∗ = (T ∗i , ξ

∗
i )i≥1.

Apply Itô’s formula to the semimartingale (e−λtV ∗(Xt))t≥0:
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e−λ(t∧τ)V ∗(Xt∧τ ) = V ∗(X0) +

∫ t∧τ

0

(−λe−λsV ∗(Xs))ds+

∫ t∧τ

0

e−λsV ∗′(Xs−)dXs

+
1

2

∫ t∧τ

0

e−λsV ∗′′(Xs)ds+
∑

0<s≤t∧τ

e−λs
{
V ∗(Xs)− V ∗(Xs−)− V ∗′(Xs−)∆Xs

}
= V ∗(X0)−

∫ t∧τ

0

e−λsV ∗′(Xs−)dZs +

∫ t∧τ

0

e−λsLV ∗(Xs)ds

+

∫ t∧τ

0

e−λsV ∗′(Xs)dWs +
∑

0<s≤t∧τ

e−λs
{
V ∗(Xs)− V ∗(Xs−)− V ∗′(Xs−)∆Xs

}
(∆XTi

=−ξi)
= V ∗(X0) +

∫ t∧τ

0

e−λsLV ∗(Xs)ds (1.47)

+

∫ t∧τ

0

e−λsV ∗′(Xs)dWs +
∑

0<s≤t∧τ

e−λs {V ∗(Xs)− V ∗(Xs−)} .

Note that the last term in (1.47) can be represented as∑
0<s≤t∧τ

e−λs {V ∗(Xs)− V ∗(Xs−)} = −
∑

i≥1,Ti≤t∧τ

e−λTi(ξi − γ)I(ξi > γ)

+
∑

i≥1,Ti≤t∧τ

e−λTi [V ∗(XTi
)− V ∗(XTi−)− (∆XTi

+ γ)]I(ξi > γ)

= −
∑

i≥1,Ti≤t∧τ

e−λTi(ξi − γ)I(ξi > γ)

+
∑

i≥1,Ti≤t∧τ

e−λTi

[∫ XTi−

XTi

[−V ∗′(u) + 1]du− γ

]
I(ξi > γ).

Thus, taking the expectation of (1.47) conditionally on X0 = x we obtain

V ∗(x) = Exe
−λ(t∧τ)V ∗(Xt∧τ )− Ex

∫ t∧τ

0

e−λsLV ∗(Xs)ds

−Ex

∫ t∧τ

0

e−λsV ∗′(Xs)dWs + Ex

{ ∑
i≥1,Ti≤t∧τ

e−λTi(ξi − γ)I(ξi > 0)

}
(1.48)

−Ex

{ ∑
i≥1,Ti≤τ

e−λTi

[∫ XTi−

XTi

[−V ∗′(u) + 1]du− γ

]
I(ξi > γ)

}
.

The stochastic integral in (1.48) is a martingale, as V ∗′(x) is bounded on [0, b̃] as a
continuous function, and V ∗′(x) = 1 on [b̃,∞). Therefore its expectation vanishes. Also,
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letting t→∞ and using the fact V ∗(0) = S, we obtain

V ∗(x) = Exe
−λτS + Ex

{ ∑
i≥1,Ti≤τ

e−λTi (ξi − γ)

}
− Ex

∫ τ

0

e−λsLV ∗(Xs)ds

−Ex

{ ∑
i≥1,Ti≤τ

e−λTi

[∫ XTi−

XTi

[−V ∗′(u) + 1]du− γ

]}
.

By I a) and I b) this yields V ∗(x) ≥ V (x, π), i.e. (Ad). Property (Bd) is obtained in the
same way using II a) and II b).

Verifying the analogue of the Bellman inequalities

In the previous section we have proved that if for some C2 function V ∗(·) from [0,∞) to
[0,∞) and an adapted control π∗ = (T ∗i , ξ

∗
i )i≥1 the analogues of the variational inequalities

Ia,b and IIa,b from this Section 1.4.3 are satisfied, then V ∗ = V ∗(·) and π∗ = (T ∗i , ξ
∗
i )i≥1

are the optimal solution to our optimal control problem. Let us check those variational
inequalities for the function V ∗(·) and the process π∗.

Lemma 1.4.2 Let ã, b̃ be given by Table 1.1; let V ∗(·) be the candidate value function given
by (1.35); and let π∗ be the candidate optimal dividend process, which is a multivariate point
process π∗ = (T ∗i , ξ

∗
i )i≥1 consisting of candidate optimal times T ∗i = inf(t > T ∗i−1 : Xt− = b̃),

and of candidate optimal dividend payments ξ̃i = b̃− ã, i = 1, 2, . . ..
Then the candidate value function V ∗ = V ∗(·) and the candidate optimal dividend process

π∗ = (T ∗i , ξ
∗
i )i≥1 satisfy the analogue of the variational inequalities I a), I b), II a) and II

b) from this Section 1.4.3.

Proof.

I a) • Suppose x < b̃. Then by definition of V ∗(·) we have V ∗(x) = Su1(x)+A(b̃)u2(x),
see (1.35). But u1(·) and u2(·) linearly independent solutions to the differential
equation Lu = 0, see Note 1.6.1. It follows that LV ∗(x) = 0 for 0 ≤ x < b̃.

• Suppose x ≥ b̃. Then by definition of V ∗(·) we have V ∗(x) = V ∗(ã) + x− ã− γ,
see (1.35). Thus,

LV ∗(x) = µ− λV ∗(x) = λ
(µ
λ
− V ∗(x)

)
≤ λ

(µ
λ
− V ∗(b̃)

)
.

Therefore, if we show that V ∗(b̃) ≥ µ/λ, where b̃ is given by Table 1.1, then we
will have proved the desired property I a) for x ≥ b̃.
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Indeed, if S ≥ µ/λ then

µ

λ
− V ∗(b̃) ≤ µ

λ
− V ∗(0) =

µ

λ
− S ≤ 0.

Now suppose S < µ/λ. Recall that µ/λ = f(x̄) by definition of x̄, see Table 1.2,
and V ∗(b̃) = f(b̃) by definition of the functions V ∗ and f . Also note that b̃ > x̄,
as it follows from Lemma 1.7.4 for the case γ ≥ γmax, and from construction of b̃
for the case γ < γmax. Thus, by Corollary 1.7.1,

µ

λ
− V ∗(b̃) = f(x̄)− f(b̃) ≤ 0.

I b) The function φ = φ(b, ·) is defined by (1.76) as

φ(b, x) = u′2(x)(A(x)− A(b)).

It follows 1 − V ∗′(u) = φ(b̃, u), where b̃ is given by Table 1.1. Then by Lemma 1.7.6
φ(b̃, x) is negative for any x ≥ 0 except for x with ã ≤ x ≤ b̃, where ã and b̃ are given
by Table 1.1. Thus, by Lemma 1.7.6, we have for any 0 ≤ x < y∫ y

x

(1− V ∗′(u))du =

∫ y

x

φ(b̃, u)du ≤
∫ b̃

ã

φ(b̃, u)du

=

∫ b̃

ã

(1− V ∗′(u))du = γ.

II a) We are going to prove LV ∗(x) = 0 for all x ∈ Mπ∗ . We start by describing the range
Mπ∗ . By proving the property I we showed that no utility function V (x, π) can beat
V ∗. Thus, the initial dividend payment z0 coincides with the candidate initial dividend
payment, or more precisely it equals 0, if x0 < b̃ and it equals x0− ã if x0 ≥ b̃. It means
that X0 = x0 − z0 ≤ b̃, or in other words the underlying best controlled process X
starts from below b̃. Moreover, from the definition of π∗ we see that once started from
below b̃ and being controlled by π∗ the process X will never leave the strip [0, b̃]. In
other words the range Mπ∗ is contained in [0, b̃]. Now it is easy to see that LV ∗(x) = 0
for all x ∈ [0, b̃] by definition of V ∗.

II b) With XT ∗i
= ã and XTi−)∗ = b̃ we have by construction of ã and b̃∫ Ti∗−

T ∗i

(1− V ∗′(u))du =

∫ b̃

ã

(1− V ∗′(u))du = γ.

This completes the proof. �

Thus we see that the analogues of the Bellman (in)equalities are satisfied, and, con-
sequently, Theorem 1.2.2 is proved. The matter of existence of the optimal solution (the
existence of ã and b̃, given by Table 1.1) is discussed in Lemma 1.7.4 and in Lemma 1.7.5.
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1.5 The case when the dividend process is any nonneg-

ative, nondecreasing, and right continuous process

Let us consider the case when the control process Z is allowed to be any nonnegative,
nondecreasing, and right continuous process, adapted to the Brownian filtration. The reserve
of the company is given by {

dXt = µdt+ dWt − dZt,
X0 = x0 − z0,

(1.49)

where x0 is the initial reserve, z0 is the initial dividend payment, and Z = (Zt)t≥0 is the
dividend process.

Let S be the liquidation or salvage value and λ the discount rate. We define the value
function Ṽ (·) by

Ṽ (x) = sup
Z

Ex

{∫
(0,τ)

e−λtdZt + Se−λτ

}
, x ≥ 0, (1.50)

where the supremum is taken over all admissible processes Z, and the expectation is taken
with respect to X0 = x0 − z0 = x. The initial value of the firm v0 equals

v0 = z0 + Ṽ (x0 − z0) = sup
0≤z≤x0

{
z + Ṽ (x0 − z)

}
,

with x0 the initial reserve.

1.5.1 The candidate value function and the candidate optimal
control

Suppose we found a candidate value function, say V ∗ = V ∗(·). As in the case of discrete
dividend, we leave the optimality check of the candidate value function for the next section,
but discuss its properties here.

Definition of the candidate value function and the candidate optimal control

Let the candidate value function V ∗ = V ∗(·) be defined by

V ∗(x) =

{
Su1(x) + A(x̄)u2(x), x < x̄.

x− x̄+ µ/λ, x ≥ x̄,
(1.51)

where x̄ is the root of the equation f(x) = (S ∨ µ/λ).
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The candidate optimal control is a local time process at x̄. Let x ≤ x̄ hold. Consider
the solution (X̄, L) = (X̄t, Lt)t≥0 to the stochastic differential equation with reflection (see
[RevuzYor] Chapter IX, §2, Exercise 2.14)

X̄t = x+ µt+Wt − Lt, (1.52)

where L = (Lt)t≥0 is a continuous nondecreasing F -adapted process with L0 = 0 such that

Lt =
∫ t

0
I(X̄s = x̄)dLs, and X̄t ≤ x̄.

As is well known a solution (x̄, L) exists, the barrier x̄ is a reflecting boundary for the
process X̄, and the process L is the local time spent by process X̄ at the boundary x̄.

It can also be noted that the candidate optimal dividend process can be obtained as limit
of the case of a bounded dividend rate as K → ∞, and of the case of discrete dividends
as γ → 0. Indeed, the definitions of x̃ = x̃(K) and x̄ just below formulas (1.20) and
(1.51), respectively, and formula (1.79) of Lemma 1.7.1 show that x̃(K) → x̄ as K → ∞ ,
by (relevant formulas) the values ã and b̃ draw together, converging to x̄, as γ goes to 0.
Thus, it is not surprising that as we will see later the optimal initial dividend payment is
z0 = (x0 − x̄) ∨ 0, and that the optimal dividend process Z̃ = (Z̃t)t≥0 corresponds to the
process X with a reflecting barrier at x̄. The dividends come from the local time the process
X spends at the reflecting boundary x̄.

For some other optimal reflection problems for linear diffusions see [Alvarez].

Properties of the candidate value function

The following lemma shows the behaviour of V ∗′(x)− 1 in the regions [0, x̄) and [x̄,∞).

Lemma 1.5.1 With x̄ being the root of equation f(x) = S ∨ (µ/λ), the candidate value
function V ∗(·) defined by (1.51) is C1 on [0,∞), and satisfies the following relations

V ∗′(x)− 1 > 0, x < x̄, (1.53)

V ∗′(x)− 1 = 0, x = x̄, (1.54)

V ∗′(x)− 1 = 0, x > x̄. (1.55)

Proof. It is obvious that the function V ∗ is C1 on [0, x̄) and on (x̄,∞). Let us check con-
tinuity and continuous differentiability of V ∗ at x̄. Indeed, V ∗(x̄−) = Su1(x̄)+A(x̄)u2(x̄) =
f(x̄) = µ/λ. On the other hand V ∗(x̄+) = x̄ − x̄ + µ/λ = µ/λ. For the left derivative we
have

V ∗′(x̄−) = Su1
′(x̄) + A(x̄)u2

′(x̄) = Su1
′(x̄) +

1− Su1
′(x̄)

u2
′(x̄)

u2
′(x̄) = 1.
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For the right derivative, and for all x ≥ x̄, we get V ∗′(x̄) = 1, since V ∗(x) = x − x̄ + µ/λ.
Therefore V ∗ is C1 on [0,∞), and in passing we also proved (1.54) and (1.55).

Now let us show (1.53). Since x̄ = 0 holds in case S ≥ µ/λ, the interval [0, x̄) is nonempty
only if S < µ/λ. Then, by Corollary 1.7.5 we obtain

V ∗′(x)− 1 = Su1
′(x) + A(x̄)u2

′(x)− 1

= u′2(x) (A(x̄)− A(x)) > 0.

�

1.5.2 Firm’s initial value optimality

Now we are ready to find explicitly the candidate initial value of the firm. The candidate
initial value of the firm is defined as

v∗0 = max
z
{z + V ∗(x0 − z)} , (1.56)

where z is the initial dividend payment, 0 ≤ z ≤ x0.
Write x = x0 − z and ψ(x) = x0 − x + V ∗(x). In order to determine v∗0 in (1.56) we

have to maximize ψ(x) over 0 ≤ x ≤ x0. Note that among all possible values at which the
maximum is attained we take the minimal possible value. Since ψ′(x) = V ∗′(x) − 1 = 0
unless S < µ/λ and x < x̄ (by Lemma 1.5.1), the maximum of ψ is attained at (the minimal
possible) x̄ if S < µ/λ, and at 0 if S ≥ µ/λ. Hence returning to the previous notation we
obtain
1. For S < µ/λ and x0 < x̄ we have z∗0 = 0 and v∗0 = V ∗(x0).
2. For S < µ/λ and x0 ≥ x̄ we have z∗0 = x0 − x̄ and v∗0 = x0 − x̄+ V ∗(x̄) = x0 − x̄+ µ/λ .
3. For S ≥ µ/λ we have z∗0 = x0 and v∗0 = x0 + V ∗(0) = x0 + S.

Thus we have found the initial value of the firm v0 = v∗0 and the initial dividend payment
z0 = z∗0 once we will have proved that the candidate value function is the best performing
candidate, i.e. once we will have proved V ∗(x) ≥ V (x, Z) for any x ≥ 0 and any admissible
strategy Z; cf. (1.44).

We are going to check the optimality of the candidate value function in this way in the
following section.

1.5.3 Value function optimality

Let the process X = (Xt)t≥0 correspond to a chosen dividend strategy Z = (Zt)t≥0, i.e.{
dXt = µdt+ dWt − dZt,
X0 = x0 − z0,

(1.57)
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where Z = (Zt)t≥0 is any nonnegative, nondecreasing, and right continuous process with z0

the initial dividend payment. Note, that if the initial dividend payment coincides with the
candidate initial dividend payment, then z0 = z∗0 , where z∗0 is defined as

z∗0 =

{
0, x0 < x̄,

x0 − x̄, x0 ≥ x̄,

with x̄ the nonnegative root of equation f(x) = S ∨ (µ/λ). Then it follows that X0 =
x0 − z0 ≤ x̄.

Stochastic control verification properties

As in the case with discrete dividend let MZ ⊂ R+ be the range of the process X = (Xt)t≥0

corresponding to the chosen dividend strategy Z = (Zt)t≥0. Suppose the board of directors
uses the dividend strategy Z = (Zt)t≥0. Let V (x, Z) be the expected total discounted divi-
dend corresponding to the board’s strategy added together with the discounted liquidation
value received upon bankruptcy with reserve x, x = x0 − z0

V (x, Z) = Ex

{∫
(0,τ)

e−λtdZt + Se−λτ

}
.

Assume we have a candidate Z∗ = (Z∗t )t≥0 for the optimal strategy and a candidate V ∗(·)
for the value function. To prove that the strategy Z∗ and the function V ∗(·) are optimal, it
is enough to check the standard stochastic control verification properties:

(Ag) For any admissible control Z = (Zt)t≥0, i.e. any nonnegative, nondecreasing, cadlag
process Z,

V (x, Z) ≤ V ∗(x), for all x ∈MZ . (1.58)

(Bg) The control Z∗ satisfies

V (x, Z∗) = V ∗(x) for all x ∈MZ∗ . (1.59)

Note that the range MZ coincides with [0,∞). The property (Ag) says that no other
function can be better than the candidate V ∗ on the range of all possible controlled by Z
processes X, i.e. [0,∞). But the property (Bg) points out a certain control Z∗ on which the
corresponding utility function V (x, Z∗) coincides with the best performing candidate V ∗.
Under this control Z∗ the range of the corresponding controlled process X could be smaller
than the original range [0,∞). To prove optimality it is enough to consider the range MZ∗ .
As we will see later, in our case MZ∗ will be the strip [0, x̄], where x̄ is the solution to
f(x) = S ∨ µ/λ.



30 CHAPTER 1. DIVIDEND OPTIMIZATION MODELS

Analogue of variational inequalities

Recall the notation

L = µ
d

dx
+

1

2

d2

dx2
− λ. (1.60)

Assume there exist a C2 candidate value function V ∗(·) from [0,∞] to [0,∞) and an adapted
candidate control Z∗ = (Z∗t )t≥0 such that the following analogues of the Bellman inequality
(1.28) and the Bellman equation (1.29) hold:

I For all admissible controls Z = (Zt)t≥0 and the candidate value function V ∗(·) we have

a) LV ∗(x) ≤ 0 , for all x ≥ 0,

b)
∫ XTi

−
XTi

(1− V ∗′(y))dy ≤ 0, where ξi = XTi− −XTi
, i = 1, 2, . . ..

II The continuous candidate optimal control Z∗ = (Z∗t )t≥0 and the candidate value func-
tion V ∗ = V ∗(·) satisfy

a) LV ∗(x) = 0, for all x ∈MZ∗ ,

b)
∫ t∧τ

0
e−λs (1− V ∗′(Xs−)) dZ∗s = 0.

Let us show now that the verification properties are satisfied for such V ∗(·) and Z∗ =
(Z∗t )t≥0. Apply Itô’s formula to the semimartingale (e−λtV ∗(Xt))t≥0

e−λ(t∧τ)V ∗(Xt∧τ ) = V ∗(X0) +

∫ t∧τ

0

(−λe−λsV ∗(Xs))ds+

∫ t∧τ

0

e−λsV ∗′(Xs−)dXs

+
1

2

∫ t∧τ

0

e−λsV ∗′′(Xs)ds+
∑

0<s≤t∧τ

e−λs
{
V ∗(Xs)− V ∗(Xs−)− V ∗′(Xs−)∆Xs

}
.

Together with Xt = x+ µt+Wt − Zt, x = X0 = x0 − z0, we get

V ∗(x) = e−λ(t∧τ)V ∗(Xt∧τ ) +

∫ t∧τ

0

e−λsV ∗′(Xs−)dZs −
∫ t∧τ

0

e−λsLV ∗(Xs)ds (1.61)

−
∫ t∧τ

0

e−λsV ∗′(Xs)dWs −
∑

0<s≤t∧τ

e−λs
{
V ∗(Xs)− V ∗(Xs−) + V ∗′(Xs−)∆Xs

}
.
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Taking the expectation of (1.61) conditionally on X0 = x we obtain

V ∗(x) = Exe
−λ(t∧τ)V ∗(Xt∧τ ) + Ex

∫ t∧τ

0

e−λsdZs − Ex

∫ t∧τ

0

e−λs(1− V ∗′(Xs−))dZs

− Ex

∫ t∧τ

0

e−λsLV ∗(Xs)ds− Ex

∫ t∧τ

0

e−λsV ∗′(Xs)dWs (1.62)

− Ex

∑
0<s≤t∧τ

e−λs
{
V ∗(Xs)− V ∗(Xs−)− V ∗′(Xs−)∆Xs

}
.

The stochastic integral in (1.62) is a martingale, as V ∗′(x) is bounded on [0, x̄] and
V ∗′(x) = 1 on [x̄,∞). Therefore its expectation is equal to zero. Also, letting t → ∞ and
using the fact V ∗(0) = S, we get

V ∗(x) = Exe
−λτS + Ex

∫ τ

0

e−λsdZs

− Ex

∫ τ

0

e−λs(1− V ∗′(Xs−))dZs − Ex

∫ t∧τ

0

e−λsLV ∗(Xs)ds

− Ex

∑
0<s≤t∧τ

e−λs
{
V ∗(Xs)− V ∗(Xs−)− V ∗′(Xs−)∆Xs

}
. (1.63)

Note that Lemma 1.5.1 implies
V ∗′(x) ≥ 1 (1.64)

and that consequently I b) yields the following inequality

V ∗(Xs)− V ∗(Xs−)− V ∗′(Xs−)∆Xs ≤ V ∗(Xs)− V ∗(Xs−)−∆Xs

=

∫ Xs−

Xs

(
1− V ∗′(u)

)
du ≤ 0. (1.65)

Thus, applying (1.65), I a), and (1.64) to 1.63) we get the property (Ag), i.e. V ∗(x) ≥
V (x, Z). To get the property (Bg) note that under the candidate control Z∗ the underlying
process X is continuous, and consequently V ∗(Xs) − V ∗(Xs−) − V ∗′(Xs−)∆Xs = 0. Thus,
by using II a) and II b) we obtain property (Bg) from (1.63). This completes the proof.

Verifying the analogue of the Bellman inequalities

In the previous section we have proved that if for some C2 function V ∗(·) on [0,∞) and an
adapted control Z∗ = (Z∗t )t≥0 the analogues of variational inequalities Ia),b) and IIa),b)
from this Section 1.5.3 are satisfied, then V ∗(·) and Z∗ = (Z∗t )t≥0 are the optimal solution
to our optimal control problem. Let us check those variational inequalities for the function
V ∗(·) and the process Z∗.
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Lemma 1.5.2 Let x̄ be the solution to f(x) = S ∨ (µ/λ) and V ∗(·) the candidate value
function given by (1.51). Let Z∗ be the candidate optimal dividend process, Z∗t = Z0 + Lt,
where L = (Lt)t≥0 is a continuous nondecreasing F-adapted process with L0 = 0 such that

Lt =
∫ t

0
I(X̄s = x̄)dLs, i.e. L is the local time spent by process X̄ at the boundary x̄.

Then the candidate value function V ∗ = V ∗(·) and the candidate optimal dividend process
Z∗ = (Z∗t )t≥0 satisfy the analogues of the variational inequalities I a), I b), II a) and II b)
from this Section 1.5.3.

Proof.

I a) • Suppose x < x̄. It follows from the definition of V ∗ = V ∗(·) and the fact that u1(·)
and u2(·) are linearly independent solutions to the differential equation Lu = 0
(see Section 1.6), that LV ∗ = 0 holds.

• Suppose x ≥ x̄. Then we have

LV ∗(x) = µ− λV ∗(x) = λ
(µ
λ
− V ∗(x)

)
≤ λ

(µ
λ
− V ∗(x̄)

)
= 0.

I b) This property follows from Lemma 1.5.1.

II a) We are going to prove LV ∗(x) = 0 for all x ∈ MZ∗ . Let us start by describing the
range MZ∗ . By proving the property I we showed that no utility function V (x, Z) can
beat V ∗, i.e. V ∗ is the best performing candidate. Thus, as we discussed in Section
1.5.2, we can figure out the initial dividend payment. The initial dividend payment
z0 is 0 if x0 < x̄, and x0 − x̄ if x0 ≥ x̄. It means that X0 = x0 − z0 ≤ x̄, or in other
words the underlying best controlled process X starts from below x̄. Moreover, from
the definition of Z∗ we see that once started from below x̄ and being controlled by Z∗

the process X will never leave the strip [0, x̄], but will reflect at the boundary x̄. In
other words the range MZ∗ coincides with [0, x̄]. Now it is easy to see that LV ∗(x) = 0
for all x ∈ [0, x̄] by definition of V ∗.

II b) The candidate optimal control Z∗ = (Z∗t )t≥0, defined as Z∗t = z0 +Lt with L0 = 0 and

Lt =
∫ t

0
I(X̄s = x̄)dLs, is continuous by construction. Moreover, V ∗′(y) = 1 at y = x̄

by direct calculation. Thus it follows that
∫ t∧τ

0
e−λs (1− V ∗′(Xs−)) dZ∗s = 0. �

Thus, we see that the analogues of the Bellman (in)equalities are satisfied, and, conse-
quently, Theorem 1.2.3 is proved. The issue of existence of the optimal solution, i.e. the
existence of x̄, is discussed in Corollary 1.7.3.
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1.6 Appendix A. Notation reference

In this section for reference purposes we present the notation we used in this chapter. First
recall that we were given parameters λ > 0, K > 0, µ ≥ 0, γ ≥ 0, S ∈ R. Now let us define
the following constants and functions

r1 = −µ+
√
µ2 + 2λ > 0, (1.66)

r2 = µ+
√
µ2 + 2λ > 0, (1.67)

ρ = −(K − µ) +
√

(K − µ)2 + 2λ, (1.68)

Q =
K

λ
− 1

ρ
, (1.69)

u1(x) = e−r2x, (1.70)

u2(x) = er1x − e−r2x, (1.71)

v(x) = e−ρx (1.72)

w(x) = u1(x)u
′
2(x)− u′1(x)u2(x), (1.73)

A(x) =
1− Su′1(x)

u′2(x)
, (1.74)

f(x) = S
w(x)

u′2(x)
+
u2(x)

u′2(x)
, (1.75)

φ(b, x) = u′2(x)(A(x)− A(b)). (1.76)

A straightforward computation gives

f(x) = Su1(x) + A(x)u2(x),
r2 − r1
r1r2

=
1

r1
− 1

r2
=
µ

λ
.

Note 1.6.1 The functions u1(·) and u2(·) defined by (1.70) and by (1.71) are linearly inde-
pendent solutions of the differential equation µu′ + 1

2
u′′ − λu = 0.

The rest of the notation is created under assumption S < µ/λ, and presented in Table
1.2

1.7 Appendix B. Technical lemmas

In this section we are going to study the properties of the functions we used for the repre-
sentations of the results.
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x̄ constant the positive root of equation f(x) = µ/λ
a = a(·) function a = a(b), b ∈ [x̄,∞) such that A(b) = A(a(b))

amin constant amin =

{
0, S ≥ − 1

r2
ln(−Sr2)

r2
, S < − 1

r2

bmax constant bmax ≥ x̄, a(bmax) = amin

Λ = Λ(·) function Λ(b) =
∫ b

a(b)
u′2(y) (A(y)− A(b)) dy, b ≥ x̄,

b̃ constant the root of Λ(b) = γ, b ≥ x̄

ã constant ã = a(b̃)
γmax constant γmax = Λ(bmax)

Table 1.2: The notation created under assumption S < µ/λ.

1.7.1 Q = Q(K) as a function of K

Recall that Q = K/λ− 1/ρ where ρ = −(K − λ) +
√

(K − λ)2 + 2λ, see (1.68) and (1.69).
See Fig. 1.3 for a plot of Q as a function of K.

Lemma 1.7.1 Viewed as a function of K, the expression Q defined by (1.9) is denoted by
Q(K) and is strictly increasing. Moreover, we have

Q(0) = − 1

r2
< 0, (1.77)

Q(
λ

2µ
) = 0, (1.78)

Q(∞) =
µ

λ
> 0. (1.79)

Proof. Straightforward computation shows (1.77) and (1.78). Rewrite

Q(K) = (2λ)−1
(
K + µ−

√
(K − µ)2 + 2λ

)
,

and note that the derivative

Q′(K) = (2λ)−1

(
1− K − µ√

(K − µ)2 + 2λ

)

is positive. This proves that K 7→ Q(K) is strictly increasing. Finally note

lim
K→∞

Q(K) = (2λ)−1 lim
K→∞

(
K + µ− (K − µ) +O(

1

K
)

)
=
µ

λ
.4
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Figure 1.3: The graph of Q(K).
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1.7.2 The functions f = f(·) and A = A(·)
Here we study the function f = f(x). See Fig. 1.4 for the case 0 < S < µ/λ.

Lemma 1.7.2 The following properties hold for f = f(·)

1 f(0) = S,

2 f(x) is continuous,

3 f(∞) = 1/r1,

4 If S > 0, then f(x) is a strictly increasing-decreasing function on [0,∞) and the
maximum is attained at the unique positive root of Su2(x) = (r1 + r2)/(r1r2). If
S ≤ 0, then f(x) is strictly increasing on [0,∞).

Proof. Recall

f(x) = S
w(x)

u′2(x)
+
u2(x)

u′2(x)

= S
(r1 + r2)e

(r1−r2)x

r1er1x + r2e−r2x
+

er1x − e−r2x

r1er1x + r2e−r2x
.

Properties 1-3 can be easily checked by direct calculation. To prove property 4, let us write
down a closed form expression for the derivative

f ′(x) = r1r2
(r1 + r2)e

(r1−r2)x

(r1er1x + r2e−r2x)2

(
r1 + r2
r1r2

− Su2(x)

)
.

Thus, since u2(x) is strictly increasing function from [0,∞) onto [0,∞), we obtain the desired
property. �

Corollary 1.7.1 Suppose S < µ/λ. Then f(y) > f(x̄) for y > x̄.

Proof. This is straightforward in the case S ≤ 0, as f(·) is a strictly increasing function
then. Suppose now 0 < S < µ/λ.Note that f(x̄) = µ/λ < 1/r1 = f(∞) holds by Table
1.2, some computation, and Lemma 1.7.2. Since f(·) is a continuous increasing-decreasing
function this implies f(y) > f(x̄) for y > x̄. �

Corollary 1.7.2 The equation f(x) = Q has a positive solution if and only if S < Q holds.

Proof.
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Figure 1.4: Function f = f(x) in the case of reasonable liquidation value 0 < S < µ/λ.
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• Suppose S < Q. By Lemma 1.7.2 and Lemma 1.7.1 we have

f(0) = S < Q <
µ

λ
=
r2 − r1
r1r2

<
1

r1
= f(∞).

Since f is increasing-decreasing or strictly increasing on [0,∞), by Lemma 1.7.2, this
implies that f(x) = Q has a unique positive solution.

• Suppose S ≥ Q. Since f is strictly increasing-decreasing on [0,∞) (see Lemma 1.7.2)
with f(0) = S ≥ Q and f(∞) = 1/r1 > µ/λ = Q(∞) ≥ Q (see Lemma 1.7.1), it
cannot take the value Q at a point x > 0. �

Corollary 1.7.3 The equation f(x) = µ/λ has a positive solution if and only if S < µ/λ
holds.

Proof. The proof is analogous to the proof of Corollary 1.7.2. �

Recall now that by x̄ we denote the positive root of equation f(x) = S ∨ (µ/λ), which
exists and differ from zero if and only if S < µ/λ.

Lemma 1.7.3 Suppose S < µ/λ. The following statements are equivalent

1 A(x) has a stationary point x̄.

2 x̄ satisfies f(x) = µ/λ.

3 x̄ satisfies f ′(x) = 1.

Proof. First observe the following equalities, which are easy to check by direct calculation

u′1(x)u
′′
2(x)− u′′1(x)u

′
2(x) = −r1r2w(x), (1.80)

u′′2 = r1r2u2 − (r2 − r1)u
′
2(x). (1.81)

Now let us check the equivalence of the statements:

1 ⇔ 2 To prove this we take the derivative of A(x)

A′(x) =
−Su′′1(x)u′2(x)− (1− Su′1(x))u

′′
2(x)

(u′2(x))
2

=
S(u′1(x)u

′′
2(x)− u′′1(x)u

′
2(x))− u′′2(x)

(u′2(x))
2

(1.80),(1.81)
=

−r1r2Sw(x)− r1r2u2(x) + (r2 − r1)u
′
2(x)

(u′2(x))
2

=
r1r2
u′2(x)

(
r2 − r1
r1r2

− Sw(x) + u2(x)

u′2(x)

)
=

r1r2
u′2(x)

(µ
λ
− f(x)

)
.
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3 ⇔ 1

f ′(x) = (Su1(x) + A(x)u2(x))
′

= Su′1(x) + A′(x)u2(x) + A(x)u′2(x)

= Su′1(x) + A′(x)u2(x) + 1− Su′1(x)

= 1 + A′(x)u2(x).

�

Together, Lemma 1.7.2 and 1.7.3 have the following consequences.

Corollary 1.7.4 If S < µ/λ then A′(x) > 0 for x < x̄, and A′(x) < 0 for x > x̄. If
S ≥ µ/λ then A′(x) < 0 for x > 0.

Corollary 1.7.5 If S < µ/λ, A(·) is strictly increasing on [0, x̄], and strictly decreasing on
[x̄,∞). If S ≥ µ/λ the function A(·) is strictly decreasing on [0,∞).

Corollary 1.7.6 If S < µ/λ then f ′(x) > 1 for 0 < x < x̄, and f ′(x) < 1 for x > x̄,
f ′(x̄) = 1. If S ≥ µ/λ then f ′(x) < 1 for x > 0.

Corollary 1.7.7 For each b, x̄ ≤ b < bmax, there exists a unique a, amin < a ≤ x̄, such that
A(a) = A(b) if and only if S < µ/λ.

Lemma 1.7.4 Let xs be a positive solution to f(x) = S + x − γ. Then this solution is
unique, and moreover if S < µ/λ then xs > x̄, where x̄ solves f(x) = µ/λ.

Proof. In view of f(0) = S, Corollary 1.7.6 shows that the function ψ(x) = f(x)− S − x,
x ≥ 0, is increasing on [0, x̄] and decreasing on [x̄,∞) if S < µ/λ, and is decreasing on
[0,∞) if S ≥ µ/λ. Moreover, it satisfies ψ(0) = 0, ψ(∞) = −∞. Consequently, ψ(x) = −γ
has a unique solution xs, and if S < µ/λ then xs > x̄ for γ > 0. �

The behaviour of A = A(x) as a function of x when −1/r2 < S < µ/λ, is shown in
Fig.1.5.

1.7.3 The functions a = a(·) and Λ = Λ(·)
Suppose S < µ/λ. In this case the function A = A(·) is increasing-decreasing with a
positive maximum in x̄ > 0, and there exists a maximal interval (amin, bmax) ⊂ [0,∞) so
that A(amin) = A(bmax). Indeed A(0) = (1 + r2S)/(r1 + r2) and A(∞) = 0 gives

amin =

{
0, −1/r2 < S < µ/λ

ln(−Sr2)/r2, S ≤ −1/r2.
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Figure 1.5: The graphs of A = A(x) if −1/r2 < S < µ/λ and if S ≤ −1/r2.
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The constant bmax, bmax ≥ x̄, can be obtained from the expression A(amin) = A(bmax). Note
that in the case S ≤ −1/r2 the value of bmax equals infinity.

For S < µ/λ there is a continuous decreasing function b 7→ a(b) mapping b ∈ [x̄, bmax)
into a = a(b) ∈ (amin, x̄] so that

A(a) = A(b), a = a(b).

For S < µ/λ by Λ = Λ(·) we denote a map from [x̄, bmax) to [0,∞) given by the formula

Λ(b) =

∫ b

a(b)

u′2(y) (A(y)− A(b)) dy.

Proposition 1.7.1 Suppose S < µ/λ. The function b 7→ Λ(b) from [x̄, bmax) to [0,∞) is
continuous and strictly increasing, and Λ(x̄) = 0. If bmax = ∞ then Λ = Λ(·) is unbounded.

Proof. It is easy to see from the definition that Λ = Λ(·) is a continuous function, and
Λ(x̄) = 0 as a(x̄) = x̄.

Moreover u′2(y) (A(y)− A(b)) ↗ as b↗ from x̄ to bmax, because A(b) ↘ as b↗ from x̄
to bmax. Also (b− a(b)) ↗ as b↗ from x̄ to bmax. Therefore, we conclude that Λ = Λ(·) is
a strictly increasing function.

Let us show that in the case S ≤ −1/r2 the function Λ(·) is unbounded on [x̄, bmax).
Indeed, here bmax = ∞, and consequently A(bmax) = 0. Thus we have for Λ(bmax)

Λ(bmax) =

∫ bmax

amin

u′2(y) (A(y)− A(bmax)) dy =

∫ ∞

amin

u′2(y)A(y)dy

=

∫ ∞

amin

(1− Su′1(x)) dx =

∫ ∞

amin

(
1 + Sr2e

−r2x
)
dx = ∞.

�

Lemma 1.7.5 Suppose S < µ/λ. The equation Λ(b) = γ has a unique solution b̃, b̃ ≥ x̄, if
and only if γ < γmax or S ≤ −1/r2.

Proof. By the results of Proposition 1.7.1 it follows that for any γ > 0 starting from b = x̄
and continuously increasing b from x̄ to ∞, we find the unique values b̃ and a(b̃) such that
Λ(b̃) = γ. In case −1/r2 < S < µ/λ while we are continuously increasing b from x̄ to bmax

(in this case bmax is finite) we might reach “the maximal possible γ”:

γmax = Λ(bmax) = bmax + S +
(1− Sr1)e

−r2bmax − (1 + Sr2)e
r1bmax

(r1 + r2)
.

Thus the condition γ < γmax must be satisfied for the optimal boundaries pair (ã, b̃),
0 < ã < x̄ < b̃, to exist. This concludes the proof. �
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1.7.4 The behaviour of φ(b, ·).
Recall φ(b, x) was defined by (1.76) as

φ(b, x) = u′2(x)(A(x)− A(b)).

We have the following results.

Lemma 1.7.6 The function φ(b, x), defined by (1.76), has the following properties

• Suppose S < µ/λ and x̄ < b < bmax. Then
φ(b, x) < 0, 0 < x < a(b),
φ(b, x) > 0, a(b) < x < b,
φ(b, x) < 0, b < x.

• Suppose S < µ/λ and b ≥ bmax. Then{
φ(b, x) > 0, x < b,
φ(b, x) < 0, x > b.

• Suppose S ≥ µ/λ. Then for any y > 0 we have{
φ(y, x) > 0, 0 < x < y,
φ(y, x) < 0, x > y.

Proof. Observe that u′2 is strictly positive. Hence φ(b, x) has the sign of A(x)− A(b).

• Suppose S < µ/λ and x̄ < b < bmax. Then the results follow from A(x) < A(a) <
A(y) > A(b) > A(z) for 0 < x < a < y < b < z.

• Suppose S < µ/λ and b ≥ bmax. The desired follows from A(x) > A(b) for x < b and
A(x) < A(b) for x > b.

• Suppose S ≥ µ/λ. The function A(x) is strictly decreasing in this case. The inequali-
ties follow. �



Chapter 2

Investment optimization model

In this chapter we consider a model for investment optimization. We treat three cases: the
case of technical uncertainty only, the case of input cost uncertainty only, and the case where
both uncertainties are present.

In introduction Section 2.1, we formulate the problem. In Section 2.2 we show how we
have found the solution. In Section 2.3 we prove optimality by checking the verification
properties. In Sections 2.4.1, 2.4.2, 2.4.3, and 2.4 we include some well-known properties of
the special functions which we use.

2.1 Introduction, formulation of the problem

We consider the following mathematical model which was proposed by Pindyck in [Pind1].
Let the nonnegative random variable Xt be the predicted cost remaining at time t to com-
plete a project (for example to build a nuclear power plant). We split the uncertainty about
the predicted remaining investment into two components: a technical uncertainty that de-
pends only on the firm’s strategy, and an input cost uncertainty that depends on external
circumstances.

Let us assume that the stochastic process X = (Xt)t≥0 satisfies the following stochastic
differential equation,

dXt = −Itdt+ β
√
XtItdWt + γXtdW̃t, (2.1)

where It is a nonanticipating nonnegative function (investment rate), β and γ are known
nonnegative constants, and W = (Wt)t≥0 and W̃ = (W̃t)t≥0 are uncorrelated Wiener pro-
cesses.

Equation (2.1) shows that the amount needed to complete the project decreases as invest-
ment proceeds. Simultaneously this amount is affected by two different types of uncertainty.

A. The case β = 0, γ > 0 corresponds to input cost uncertainty governed by the Wiener
process W̃ . The fluctuations are proportional to the remaining predicted cost Xt. Examples

43
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are fluctuations in cost of labor and material, and in government regulations. These can
influence X irrespectively of what the firm does. Here X can fluctuate even when there is no
investment. The conditional expectation of the quadratic variation E

(
(dX)2 | X

)
= γ2X2dt

does not depend on the investment rate I.
B. The case β > 0, γ = 0 corresponds to the technical uncertainty governed by the Wiener

process W . Here X can fluctuate only if investments are taking place. The conditional
expectation of the quadratic variation E

(
(dX)2 | X

)
= β2IXdt is linear in I.

C. The case β > 0, γ > 0 allows for both types of uncertainties.
In all three cases the total amount of realized investments is known only after completion

of the project. The parameters β and γ are chosen in accordance with the given applied
problem (see [Pind1]).

The rate of investment is the control in our problem. Our purpose is to find an optimal
investment strategy for the project. We assume that the rate of investment It is a nonan-
ticipating, nonnegative, bounded random function, 0 ≤ It ≤ Imax, where Imax is a constant.
A control that satisfies these conditions is called an admissible control. Let us denote the
class of admissible controls by U. Nonnegativity of the investment rate means that we
cannot take back any part of our money once we have invested it. The maximal value of
the investment rate Imax is specified by two factors. The first one is that an investor has
limited liquidity and can invest his money only at a bounded rate. For example, a company
cannot invest in a project more than 1 million $ a year. Besides that there can be external
limitations on the investment rate. For example, construction works cannot be completed
within certain time limits, or research on a new drug cannot be speeded up by additional
investments.

Let F (x, I) denote a utility functional,

F (x, I) = Ex{−
∫ τ

0

Ie−rtdt+ V e−rτ}, (2.2)

where Ex is the conditional expectation given the initial value X0 = x, and where τ = inf{t :
Xt = 0} denotes the point in time of completion of the project. Furthermore, the positive
constant V is the value of the project upon completion, which is known in advance, and the
nonnegative constant r is the investment rate.

The utility functional measures the discounted “expected gain from the project”, i.e. the
expectation of the value minus the investments. The integral in (2.2) denotes the discounted
investment in the project, and the second summand is the discounted gain from the project.

Let us introduce a value function

F (x) = sup
I∈U

F (x, I), x ≥ 0. (2.3)

We consider F (x) as a criterion for investment optimality. Note, that if there is no
restriction on the rate of investment (i.e. Imax = ∞), then the optimal strategy is to invest
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immediately all the capital needed to complete the project. (“If one invests then at the
maximal possible rate.”)

Furthermore, note the scaling property F (x, I, V ) = ImaxF (x/Imax, I/Imax, V/Imax), in
an obvious notation. Thus we can put Imax = 1 without loss of generality.

In this chapter we want to find an optimal investment strategy Ĩ = Ĩ(x) and the value
function F = F (x). Generally, problems of this type (see [JeanShir], [KramMor]) are solved
in the following way. Using heuristic arguments one finds a strategy that is suspected to
be optimal. Subsequently one computes the corresponding value of the utility functional.
Finally, one proves that the strategy is optimal and that the function constructed is indeed
the value function. We will prove that the following strategy is optimal: if the capital needed
to complete the project is less than a certain value x∗, then we should invest at the maximal
rate; if at any moment the capital needed to complete the project exceeds x∗, we should stop
investing in the project.

Pindyck [Pind1] has found the solution for the case of technical uncertainty when the
interest rate is equal to zero (r = 0). It is interesting to note that in the case of input cost
uncertainty and in the presence of both input cost and technical uncertainty the optimal
strategy will be to not invest at all, but to wait while the project is completed ”by itself”!
Indeed, here time is ”free” (r = 0) and the probability that the process (2.1) with It ≡ 0
hits zero in finite time (the probability of completing the project in finite time) is equal to
1. We obtain an explicit solution for the general problem when r > 0. For more information
on the economic background of this model we refer to Pindyck [Pind1].

2.2 Finding the solution

2.2.1 Formulating the Stefan problem with a free boundary

The value function F = F (x) is the criterion of optimality in our model:

F (x) = sup
I∈U

Ex{
∫ τ

0

(−I)e−rtdt+ V e−rτ}. (2.4)

Recall that U = {I : 0 ≤ It ≤ 1} is the class of admissible controls, and τ = inf{t : Xt = 0}
is the time at which the project is finished. One can easily see from (2.4) that F (0) = V
and F (x) ≤ V for all x ≥ 0.

Let us introduce operators L1 and L2 acting on functions G = G(x), x ≥ 0, from
C2((0,∞)\{x∗})

⋃
C1(0,∞), ( where x∗ ∈ (0,∞) ) according to the formula

L1G = −dG
dx

+
1

2
β2x

d2G

dx2
, (2.5)

L2G =
1

2
γ2x2d

2G

dx2
− rG.
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Let us assume that there exists a function F̃ = F̃ (x) and a control Ĩ = Ĩ(x) such that
the Bellman equation is satisfied.

Let us write the Bellman equation (see [FlemSoner] for the reference how to obtain the
Bellman equation)

sup
0≤I≤1

{I(L1F̃ (x)− 1) + L2F̃ (x)} = 0. (2.6)

As one can see, equation (2.6) is linear in the control I. Therefore, we may assume that
the optimal control is the following:

Ĩ(x) =

{
1, L1F̃ (x)− 1 ≥ 0

0, L1F̃ (x)− 1 < 0
. (2.7)

In this way we obtain that for those x, where Ĩ(x) = 1, the following equation is satisfied

L1F̃ (x) + L2F̃ (x)− 1 = 0, (2.8)

and for those x, where Ĩ(x) = 0, the following equation holds

L2F̃ (x) = 0. (2.9)

Taking into account intuitive considerations on the structure of the optimal control, we
assume that there exists a constant x∗, such that Ĩ(x) = 1 for x < x∗, and Ĩ(x) = 0 for
x ≥ x∗ (i.e. we must invest at maximal rate if the cost of the project is ”reasonable”, and
abandon the project when it becomes too ”expensive”). In other words we have to solve
the following free boundary Stefan problem: find a value x∗ and a smooth bounded function
F̃ (·) such that

F̃ (0) = V, (2.10)

L1F̃ (x) + L2F̃ (x)− 1 = 0, 0 ≤ x ≤ x∗, (2.11)

L2F̃ (x) = 0, x ≥ x∗. (2.12)

2.2.2 Solution to the Stefan problem

One can easily check a bounded solution for the Stefan problem, (2.10)–(2.12), satisfies

F̃ (x) =
x

(b− 1)(1
2
β2b+ 1)

( x
x∗

)−b

, x ≥ x∗, where b =
1

2

(
1 +

√
1 +

8r

γ2

)
. (2.13)

Indeed, the general solution of (2.12) is c1x
1−b+c2x

b. In order for the solution to be bounded
we must put c2 = 0. We can obtain c1 from (2.11) with x = x∗. Note that the case γ = 0
may be considered as a limit case by letting γ ↓ 0, resulting in F̃ (x) = 0, x ≥ x∗.
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Consider the following differential equation:

L1u(x) + L2u(x) = 0. (2.14)

Suppose u1(x) and u2(x) are linearly independent solutions of (2.14), such that u1(0) = 1,
u2(0) = 0. The following condition is necessary and sufficient for F̃ (x) with 0 ≤ x ≤ x∗ to
be a solution to the Stefan problem (2.10)-(2.12) on [0, x∗]

F̃ (x) =

(
V +

1

r

)
[u1(x)−Θ(x∗)u2(x)]−

1

r
, 0 ≤ x ≤ x∗, (2.15)

where Θ(x) and x∗ are obtained from the following conditions

F̃ ′(x) |x=x∗ = − 1
1
2
β2b+ 1

(the ”smooth pasting” condition), (2.16)

L2F̃ (x) |x=x∗ = 0. (2.17)

Substituting (2.15) in (2.16) and (2.17) we get

Θ(x) =
L2u1(x)−

(
1
2
β2b+ 1

)
u′1

L2u2(x)−
(

1
2
β2b+ 1

)
u′2
, 0 ≤ x ≤ x∗ (2.18)

Note that using (2.14) and (2.5), one can write

L2ui(x)−
(

1

2
β2b+ 1

)
u′i(x) = −L1ui(x)−

(
1

2
β2b+ 1

)
u′i(x)

= −1

2
β2 (xu′′i (x) + bu′i(x)) , for i = 1, 2.

Thus, we may rewrite (2.18) as

Θ(x) =
xu′′1(x) + bu′1(x)

xu′′2(x) + bu′2(x)
, 0 ≤ x ≤ x∗. (2.19)

We shall obtain x∗ as the minimal positive root of the equation Φ(x) = 0, where

Φ(x) =

(
V +

1

r

)
[L1u1(x)−Θ(x)L1u2(x)]− 1. (2.20)

We shall show further that x∗ is also the minimal positive root of the equation

L1F̃ (x)− 1 = 0 (see lemma 3.2).

To find an explicit solution in terms of special functions we have to consider the cases
of technical uncertainty, input cost uncertainty, and the case of the presence of both uncer-
tainties separately. As equation (2.14) is an equation of type 2.1.2.166 in [ZaiPol], we can
write down its explicit solutions u1(x) and u2(x). To find an explicit expression for Θ(x) and
Φ(x) from (2.18), (2.19), and (2.20), we shall use identities from Appendices A, B, and C in
the cases of technical uncertainty, input cost uncertainty, and in the case of the presence of
both uncertainties, respectively.
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The case of technical uncertainty, γ = 0. Let c = 1 + 2/β2. Replace x by z = 2rx/β2

and write u1 as a function ũ1 of z, and likewise for other functions.

u1(x) = ũ1(z) =
2

Γ(c)
zc/2Kc(2

√
z), (2.21)

u2(x) = ũ2(z) =
2

Γ(c)
zc/2Ic(2

√
z) (2.22)

Note, that for γ ↘ 0 we have b↗∞. Consequently, we obtain from (2.19)

Θ(x) = Θ̃(z) =
u′1(z)

u′2(z)

(2.40),(2.41)
= −Kc−1(2

√
z)

Ic−1(2
√
z)
, (2.23)

where Iν(x) and Kν(x) are modified Bessel functions of the first and the second type respec-
tively (see Section 2.4.1). Note that L1ui − rui = 0, i = 1, 2, holds in view of (2.40), (2.14),
and γ = 0. Thus we can write down the expression for Φ(x)

Φ(x) = Φ̃(z) = (V r + 1)
2

Γ(c)
zc/2

(
Kc(2

√
z) +

Kc−1(2
√
z)

Ic−1(2
√
z)
Ic(2

√
z)

)
− 1. (2.24)

The case of input cost uncertainty, β = 0. Let z = rx/(b(b− 1)). Then

u1(x) = ũ1(z) =
Γ(b+ 1)

Γ(2b)
z1−be−1/zM(b+ 1, 2b, z−1), (2.25)

u2(x) = ũ2(z) =
Γ(b+ 1)

Γ(2b)
z1−be−1/zU(b+ 1, 2b, z−1), (2.26)

where M(a, b, x) and U(a, b, x) are confluent hypergeometric functions of the first and the
second type (see Section 2.4.2). Use (2.51) and (2.52) to compute the first and the second
derivatives of ũ1(z) and ũ2(z). Substitute the expressions for the derivatives in (2.19). Then
(2.53) and (2.54) give

Θ(x) = Θ̃(z) = −b− 1

2

M(b, 2b+ 1, z−1)

U(b, 2b+ 1, z−1)
. (2.27)

Note that L1ũi = −r/(b(b − 1))dũi

dz
, i = 1, 2, as β = 0. Take derivatives using (2.51) and

(2.52) to obtain

Φ(x) = Φ̃(z) = (V r+1)
Γ(b)

Γ(2b)
z−be−1/z

(
M(b, 2b, z−1)− 1

2

M(b, 2b+ 1, z−1)

U(b, 2b+ 1, z−1)
U(b, 2b, z−1)

)
−1.

(2.28)
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The case of both uncertainties, β > 0, γ > 0. Let z = rx(c− 1)/(b(b− 1)) and, again,
c = 1 + 2β−2. We have

u1(x) = ũ1(z) = F (b− 1,−b; 1− c;−z) (2.29)

u2(x) = ũ2(z) = zcF (b− 1 + c,−b+ c; c+ 1;−z) (2.30)

where F (a, b; c, x) are hypergeometric functions (see Section 2.4.3). Using (2.59) and (2.60)
we compute the first and the second derivatives of u1(z) and u2(z). Then we substitute the
expressions for the derivatives in (2.19). Thus from (2.63) and (2.64) we obtain

Θ(x) = Θ̃(z) = − (b− 1)b2

c(c− 1)(b+ c− 1)
z1−cF (1 + b, 1− b; 2− c;−z)

F (b+ c,−b+ c; c;−z)
. (2.31)

Using (2.65) and the expression for the first and the second derivatives of ui(z), i = 1, 2, it is
not difficult to obtain expressions for L1ui(z), i = 1, 2. Substituting the obtained expressions
in (2.20) we get

Φ(x) = Φ̃(z) = (V r + 1)[F (b, 1− b; 1− c;−z) + (2.32)

+
b(b− c)

c(c− 1)
z
F (1 + b, 1− b; 2− c;−z)
F (b+ c,−b+ c; c;−z)

F (b+ c, 1− b+ c; c+ 1;−z)]− 1.

Now we can summarize the results in the following theorem:

Theorem 2.2.1 In the model described above the optimal control Ĩ = Ĩ(x) and the value
function F = F (x) are the following:

Ĩt =

{
1, x < x∗

0, x ≥ x∗

F (x) =

{
(V + 1/r) [u1(x)− θ(x∗)u2(x)]− 1/r, x < x∗

x(b− 1)−1(1
2
β2b+ 1)−1 (x/x∗)−b , x ≥ x∗,

where b = 1
2

(
1 +

√
1 + (8r)/(γ2)

)
, x∗ is the minimal positive root of the equation Φ(x) = 0,

and u1(x), u2(x),Θ(x), and Φ(x) are defined by the equalities (2.21) —(2.32).

2.3 The proofs

In this section we prove theorem 2.2.1. We shall need two lemmas.

Lemma 2.3.1 There exists at least one positive root of the equation Φ̃(z) = 0 .1
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Proof of the lemma. Note, that for any z ≥ 0, b > 1, c > 1 we have

Ic−1(2
√
z) > 0,

U(b, 2b+ 1, z−1)
(integral transform)

=
1

Γ(b)

∫ ∞

0

e−t/ztb−1(1 + t)bdt > 0,

F (b+ c,−b+ c; c;−z) (Euler transform)
= (1 + z)−b−cF (b+ c, b; c;

z

z + 1
) > 0.

Together with the continuity of the Bessel, confluent hypergeometric and hypergeometric
functions, these inequalities show that Φ̃ = Φ̃(z) is a continuous function. Taking the
asymptotic representation of the corresponding special functions we get that Φ̃(0) = V r > 0
and Φ̃(+∞) = −1 < 0. By the intermediate value theorem there is a value z∗ where
Φ̃(z∗) = 0. �

Lemma 2.3.2 The following inequalities hold

L1F̃ (x)− 1 > 0, x < x∗, (2.33)

L1F̃ (x)− 1 ≤ 0, x ≥ x∗. (2.34)

Proof of the lemma. Let us prove (2.34). For γ = 0 we have L1F̃ − 1 = −1 < 0. If
γ 6= 0 we have

L1F̃ (x)− 1 =

(
x∗

x

)b

− 1 ≤ 0, x ≥ x∗.

Now let us prove (2.33) separately for each type of uncertainty.

Let Ψ̃(z) = Ψ(x)
def
= L1F̃ (x)− 1. Then in the case of technical uncertainty we have

Ψ̃(z) = (V r + 1)
2

Γ(c)

(
zc/2Kc(2

√
z)− Θ̃(z∗)Ic(2

√
z)
)
− 1.

Take the derivative of Ψ̃(z). Note that Ic−1(2
√
z) > 0, for c > 1. By corollary 2.4.1 from

Appendix D we obtain the inequality

Ψ̃′
z(z) = (V r + 1)

2

Γ(c)

[
−z(c−1)/2Kc−1(2

√
z) + Θ̃(z∗)z(c−1)/2Ic−1(2

√
z)
]

=

= (V r + 1)
2

Γ(c)
z(c−1)/2Ic−1(2

√
z)
[
Θ̃(z)− Θ̃(z∗)

] (cor.2.4.1)
< 0.

Thus, Ψ̃(z) is a strictly decreasing continuous function for z < z∗. Moreover, by asymptotic
properties of modified Bessel functions we have Ψ̃(0) = V r. Also from the conditions of the
lemma we have Ψ̃(z∗) = 0. Thus, Ψ̃(z) > 0 for z < z∗.

1Note that the changes of variables z = z(x) depend on the cases of uncertainty.
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In the case of input cost uncertainty we have:

Ψ̃(z) = (V r + 1)
Γ(b)

Γ(2b)
z−be−1/z

(
M(b, 2b, z−1) +

Θ̃(z∗)

b− 1
U(b, 2b+ 1, z−1)

)
− 1.

Let us consider the difference Ψ̃(z)− Φ̃(z). By corollary 2.4.2 from Appendix D we have

Ψ̃(z)− Φ̃(z) = (V r + 1)
Γ(b− 1)

Γ(2b)
z−be−1/zU(b, 2b; z−1)

(
Θ̃(z∗)− Θ̃(z)

)
> 0, z < z∗.

But for z < z∗ we have Φ̃(z) > 0, as Φ̃(0) = V r > 0 and z∗ is the minimal positive root of
Φ̃(z) = 0. Therefore, Ψ̃(z) > Φ̃(z) > 0.

In the case of two uncertainties we have:

Ψ̃(z) = (V r + 1) (F (b, 1− b; 1− c;−z)−

−(b− c)(b+ c+ 1)

b(b− 1)
Θ̃(z∗)zcF (b+ c, 1− b+ c; c+ 1;−z)

)
− 1.

In order to prove that Ψ̃(z) is positive for z < z∗ we consider separately the cases b− c < 0
and b− c > 0.

Suppose b− c < 0. Note, that

F (b+ c, 1− b+ c; c+ 1;−z) Euler transform
= (1 + z)−b−cF (b+ c, b; c+ 1;

z

1 + z
) > 0

By corollary 2.4.3 from Appendix D we obtain:

Ψ̃(z)− Φ̃(z) = (V r + 1)
b(b− c+ 1)

b(b− 1)
zcF (b+ c, 1− b+ c; c+ 1;−z)

[
Θ̃(z)− Θ̃(z∗)

]
> 0.

Thus, Ψ̃(z) > Φ̃(z) > 0 for z < z∗.
Now suppose b− c > 0. First we note, that

F (b+ c,−b+ c; c;−z) Euler transform
= (1 + z)−b−cF (b+ c, b; c;

z

1 + z
) > 0

Let us rewrite Ψ̃(z) as
Ψ̃(z) = (V r + 1)(1 + z)−bN(z)− 1,

where

N(z) = (1+z)bF (b, 1−b; 1−c;−z)−(1+z)b (b− c)(b+ c+ 1)

b(b− 1)
Θ̃(z∗)zcF (b+c, 1−b+c; c+1;−z)
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Let us take the derivative of N(z) using (2.62),(2.61). By corollary 2.4.3 from Appendix D
we obtain:

N ′
z(z) =

b(b− c)

1− c
(1 + z)b−1F (b+ 1, 1− b; 2− c;−z) +

+ Θ̃(z∗)
(b− c)(b+ c− 1)c

b(b− 1)
zc(1 + z)b−1F (b+ c,−b+ c; c;−z) =

=
(b− c)(b+ c− 1)c

b(b− 1)
z1−c(1 + z)b−1F (b+ c,−b+ c; c;−z)

[
Θ̃(z)− Θ̃(z∗)

]
< 0

Thus, we have proved that N(z) and (1+z)−b are strictly decreasing functions for z < z∗.
Therefore Ψ̃(z) is a strictly decreasing function for z < z∗. Besides that, Ψ̃(0) = V r > 0
and Ψ̃(z∗) = 0.

Thus, Ψ̃(z) > 0 for z < z∗. �

Proof of the theorem. To prove the theorem we need to check if the verification
properties hold.

According to the standard technique of stochastic optimal control the verification prop-
erties are the following:

(A) There exists a function F̃ = F̃ (x) such that for any admissible control I = I(x)

F (x, I) ≤ F̃ (x)

(B) There exists a control Ĩ = Ĩ(x) such that

F (x, Ĩ) = F̃ (x)

Let us show that property (A) holds.

Applying the Îto formula to
(
e−rtF̃ (Xt)

)
t≥0

we obtain

e−r(t∧τ)F̃ (X(t∧τ)) = F̃ (X0) +

∫ t∧τ

0

e−rsL(I)F̃ (Xs)ds+

∫ t∧τ

0

e−rsγXsF̃
′(Xs)dWs

+

∫ t∧τ

0

e−rsβ
√
IsXsF̃

′(Xs)dW̃s

Let us notice that by lemma 2.3.2 we have for any admissible control I

IL1F̃ (x) +L2F̃ (x)− I = I(L1F̃ (x)− 1) +L2F̃ (x) ≤ Ĩ
(
L1F̃ (x)− 1

)
+L2F̃ (x) = 0. (2.35)
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Taking the mathematical expectation Ex of e−rtF̃ (Xt), by (2.35) we obtain

F̃ (x) = Exe
−r(t∧τ)F̃ (Xt∧τ )− Ex

∫ t∧τ

0

e−rs (IL1 + L2) F̃ (Xs)ds−

Ex

∫ t∧τ

0

e−rsγXsF̃
′(Xs)dWs − Ex

∫ t∧τ

0

e−rsβ
√
IsXsF̃

′(Xs)dW̃s ≥

≥ Exe
−r(t∧τ)F̃ (Xt∧τ ) + Ex

∫ t∧τ

0

(−I)e−rsds− Ex

∫ t∧τ

0

e−rsγXsF̃
′(Xs)dWs

− Ex

∫ t∧τ

0

e−rsβ
√
IsXsF̃

′(Xs)dW̃s. (2.36)

Note, that the stochastic integrals in (2.36) are martingales. Therefore the mathematical
expectation of those integrals is equal to zero. Letting t go to infinity in (2.36) we obtain
F̃ (x) ≥ F (x, I), as e−r(t∧τ)F̃ (Xt∧τ ) → V e−rτ . Indeed, if τ < ∞ then F̃ (Xτ ) = V . And if
τ = ∞ then F̃ (Xt) is bounded, e−r(t∧τ) → 0 and V e−r(t∧τ) →, t→∞. Thus it follows from
(2.36) that F̃ (x) ≥ F (x, I), i.e. the property (A) holds.

Let us check property (B) similarly. Applying Îto formula to e−rtF̃ (Xt) and taking
mathematical expectation we have:

F̃ (x) = Exe
−r(t∧τ)F̃ (Xt∧τ )− Ex

∫ t∧τ

0

e−rs
(
ĨL1 + L2

)
F̃ (Xs)ds−

−Ex

∫ t∧τ

0

e−rsγXsF̃
′(Xs)dWs − Ex

∫ t∧τ

0

e−rsβ
√
IsXsF̃

′(Xs)dW̃s =

= Exe
−r(t∧τ)F̃ (Xt∧τ ) + Ex

∫ t∧τ

0

(−Ĩ)e−rsds− Ex

∫ t∧τ

0

e−rsγXsF̃
′(Xs)dWs −

− Ex

∫ t∧τ

0

e−rsβ
√
IsXsF̃

′(Xs)dW̃s (2.37)

The mathematical expectation of two last terms in (2.37) is equal to zero. Thus, as t→∞
we obtain:

F̃ (x) = Ex

(∫ τ

0

(−Ĩ)e−rsds+ V e−rτ

)
= F (x, Ĩ.)

�

2.4 Appendix

We have used a number of special functions in this chapter. For the reader’s convenience
we include some definitions and properties of special functions in the next subsections.
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2.4.1 Bessel functions

A function Iν(z) is called a modified Bessel function of the first kind (see [AS], [Erd]) if

Iν(z) = (z/2)ν

∞∑
n=0

(z2/4)
n

n!Γ(ν + n+ 1)
. (2.38)

A function Kν(z) is called a modified Bessel function of the third kind if

Kν(z) = π/2
I−ν(z)− Iν(z)

sin (νπ)
. (2.39)

We use the following properties of Bessel functions:

d

dz

(
z

ν
2 Iν(2

√
z)
)

= z
ν−1
2 Iν−1(2

√
z) (2.40)

d

dz

(
z

ν
2Kν(2

√
z)
)

= −z
ν−1
2 Kν−1(2

√
z) (2.41)

The asymptotic behaviour is given by

Iν(2
√
z) ∼ z

ν
2 /Γ(ν + 1), (ν 6= −1,−2, ...) as z → 0, (2.42)

Kν(2
√
z) ∼ 1

2
Γ(ν)z−

ν
2 , (ν > 0) as z → 0, (2.43)

Iν(z) ∼ ez

√
2πz

as z →∞, (2.44)

Kν(z) ∼
√

π

2z
e−z as z →∞. (2.45)

Some computation shows

Iν−2(2
√
z)− (ν − 1)z−1/2Iν−1(2

√
z)− Iν(2

√
z) = 0. (2.46)

Together with (2.40) this implies that G(z) = zν/2Iν(2
√
z) satisfies

zG′′(z)− (ν − 1)G′(z)−G(z) = 0. (2.47)

2.4.2 Kummer functions

In this section we introduce Kummer functions, also known as confluent hypergeometric
functions.
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A function M (a, b, z) is called a confluent hypergeometric function of the first kind (see
[AS], [Erd]) if

M (a, b, z) =
∞∑

n=0

(a)n

(b)n

zn

n!
, (2.48)

(a)n = a(a + 1)..(a + n − 1) = Γ(a + n)/Γ(a), A function U(a, b, z) is called a confluent
hypergeometric function of the second kind if

U(a, b, z) =
π

sin πb

(
M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

)
. (2.49)

We use the following properties of confluent hypergeometric functions:

Integral representation

Γ(a)U(a, b, z) =

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt, a > 0, z > 0. (2.50)

Differential relations

d

dz

[
e−zzb−aM(a, b, z)

]
= (b− a)e−zzb−a−1M(a− 1, b, z) (2.51)

d

dz

[
e−zzb−aU(a, b, z)

]
= −e−zzb−a−1U(a− 1, b, z). (2.52)

Some identities

M(a, b, z)−M(a− 1, b, z) =
z

b
M(a, b+ 1, z) (2.53)

(b− a)U(a, b, z) + U(a− 1, b, z) = zU(a, b+ 1, z). (2.54)

Asymptotic behaviour as z → 0

M(a, b, z) → 1 for b /∈ {0,−1,−2, ...} (2.55)

U(a, b, z) =
Γ(b− 1)

Γ(a)
z1−b +O(|z|b−2), (for b > 2). (2.56)

Asymptotic behaviour as z →∞

M(a, b, z) =
Γ(b)

Γ(a)
ezza−b[1 +O(|z|−1)], (for z > 0), (2.57)

U(a, b, z) = z−a
[
1 +O(|z|−1)

]
. (2.58)
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2.4.3 Hypergeometric functions

A function F (a, b; c; z) is called a hypergeometric function if :

F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
,

where (a)n = a(a+ 1)..(a+ n− 1).
We use the following properties of hypergeometric functions: Differential relations

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z) (2.59)

d

dz

[
zc−1F (a, b; c; z)

]
= (c− 1)zc−2F (a, b; c− 1; z) (2.60)

d

dz

[
(1− z)a−c+1zc−1F (a, b; c; z)

]
= (c− 1)zc−2(1− z)a−cF (a, b− 1; c− 1; z) (2.61)

d

dz
[(1− z)aF (a, b; c; z)] = −a(c− b)

c
(1− z)a−1F (a+ 1, b; c+ 1; z). (2.62)

Some identities

z
d

dz
F (a, b; c; z) + aF (a, b; c; z)− aF (a+ 1, b; c; z) = 0 (2.63)

(c− a− 1)F (a, b; c; z) + aF (a+ 1, b; c; z)− (c− 1)F (a, b; c− 1; z) = 0 (2.64)

z
d

dz
F (a, b; c; z) + (c− 1)F (a, b; c; z)− (c− 1)F (a, b; c− 1; z) = 0. (2.65)

Integral representation

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt, (c > b > 0). (2.66)

Asymptotic behaviour as z → 0

F (a, b; c; z) → 1. (2.67)

Asymptotic behaviour as z →∞

F (a, b; c; z) ∼ Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b, a > b. (2.68)

Euler transform

F (a, b; c; z) = (1− z)−aF

(
a, c− b; c;

z

z − 1

)
.
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2.4.4 Wronskian type property

Lemma 2.4.1 Let f 6= 0 and u = u(x) and v = v(x) be two linearly independent solutions
of the second order differential equation

f(x)y′′ + g(x)y′ + h(x)y = 0. (2.69)

Then Θ(x) = u(x)/v(x) is strictly monotone outside the zeros of v, and its derivative is

Θ′(x) =
const

v2(x)
exp

(
−
∫

g(x)

f(x)
dx

)
. (2.70)

Proof. Since u and v are two linearly independent solutions of (2.69), the following equal-
ities hold:

f(x)u′′ + g(x)u′ + h(x)u = 0 (2.71)

f(x)v′′ + g(x)v′ + h(x)v = 0. (2.72)

Multiply (2.71) by v and (2.72) by u. By subtracting the second term from the first we
obtain

f(x) (u′′v − v′′u) + g(x) (u′v − v′u) = 0. (2.73)

Let w = u′v−v′u. Then w′ = u′′v−v′′u. Therefore we can rewrite (2.73) as a first order dif-
ferential equation in separated variables. The function w(x) = const exp

(
−
∫
g(x)/f(x)dx

)
is the solution of this equation. Thus we obtain

Θ′(x) =
u′v − v′u

v2
=
const

v2

[
exp

(
−
∫

g(x)

f(x)

)]
. (2.74)

�

Corollary 2.4.1 The function Θ(z) = −Kc−1(2
√
z)/Ic−1(2

√
z) is strictly increasing and

Θ′
z(z) = 1

2z
[Ic−1(2

√
z)]

−2
.

Corollary 2.4.2 For b > 1, the function Θ(z) = −(b − 1)M(b, 2b + 1, z−1)/(2U(b, 2b +
1, z−1)) is strictly increasing and Θ′

z(z) = 1
2
e1/zzb [(b, 2b+ 1, z−1)]

−2
.

Corollary 2.4.3 For c > 1 and b > 1 the function

Θ(z) = − (b−1)b2

c(c−1)(b+c−1)
z1−cF (b+1, 1−b; 2−c;−z)/F (b+c,−b+c; c;−z) is strictly increasing

and

Θ′
z(z) =

(b− 1)b2

c(b+ c− 1)
z−c(1 + z)−c−1 [F (b+ c,−b+ c; c;−z)]−2 .
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Chapter 3

Optimal arbitrage trading

In this chapter we consider a model for arbitrage trading.

In section 3.1 we introduce the model. In section 3.2 we present the explicit solution for
the optimal optimal trading strategy and the proof of optimality. In section 3.3 we analyze
the behaviour of the solution from section 3.2 and discuss possible generalizations.

3.1 Introduction

3.1.1 Motivation

Many academic papers about optimal trading rules and portfolio selection assume that the
assets follow geometric Brownian motions, or, more generally, random walks. These papers
are typically concerned with portfolio selection problems faced by long-term investors. In
this paper, we consider a problem where the asset price is driven by a mean-reverting process.
With some exceptions (e.g. [Lo]), this kind of processes is not widely used to model stock or
bond price dynamics. However similar portfolio selection problems arise naturally in many
“relative value” strategies assuming some kind of mean reversion in a tradable asset.

Consider, for example, a limited capital speculator trading the spread (i.e. the difference)
between two cointegrated assets or, more generally, an arbitrageur with a limited capital
trading a mean-reverting asset. The trader knows the “correct” (long-term average) price of
the asset, and he knows that the price will sooner or later revert to the correct level, but the
risk is that the position losses may become unbearable for the trader before the reversion
happens. The finite horizon assumption is quite realistic because the bonuses to traders and
fees to hedge fund managers are usually paid yearly. Just to give an example, Fig. 3.1 shows
the spread of the once famous BASF-Bayer stock pair.

Faced with a mean-reverting process, a trader would typically take a long (i.e. positive)
position in the asset when the asset is below its long-term mean and a short (i.e. negative)

59
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Figure 3.1: Difference of ordinary share close price for BASF AG and Bayer AG, 1997-2001.

position when the asset is below the long-term mean. He would then either liquidate the
position when the price reverts closer to the mean and take the profit or he might have to
close the position before the reversion happens and face the losses. The question is in the
size of the position and how the position should be optimally managed as the price and the
trader’s wealth change and time passes by. An often used rule of thumb is that one opens
the short position as soon as the spread is above one standard deviation from its mean and
a long position as soon as the spread is below one standard deviation.

It is well known that capital and risk-bearing constraints may seriously limit arbitrage
activities. Shleifer [Shl] built an equilibrium model for a market with limited capital arbi-
trageurs.

We solve the optimal problem assuming an Ornstein-Uhlenbeck process for the price and
power utility over the final wealth for a finite horizon agent. This model was first formulated
for the power utility case and solved for the log-utility case by Mendez-Vivez, Morton, and
Naik, [Morton], [M-VMN].

Besides the quantitative result, there is a number of interesting qualitative questions to
answer about the optimal strategy.
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• When and how aggressively should one open the position?

• When should one cut a loosing position?

• Can a trader ever be happy when the spread widens against his position?

• What is the effect of process parameters on the optimal strategy?

• How does the trading strategy and the value function change as the time horizon
approaches?

• What is the effect of risk aversion on position term dependence?

• How does the uncertainty in the process parameters affect the optimal strategy?

We answer these questions in section 3.3.

3.1.2 Choice of the price process

Without loss of generality we can assume that the long-term mean of the price process is
zero. WE stick to the simplest example of a mean-reverting process, namely, the Ornstein-
Uhlenbeck process given by

dXt = −kXtdt+ σdBt, (3.1)

where Bt is a Brownian motion, k and σ are positive constants. This process will revert to
its long-term mean zero. More exactly, given Xt, the distribution of Xt+s, s > 0, is normal
with parameters

E(Xt+s|Xt) = Xte
−ks; V ar(Xt+s|Xt) =

(
1− e−2ks

2k

)
σ2. (3.2)

Informally, the constant k measures the speed of the mean-reversion and σ measures the
strength of the noise component.

3.1.3 Choice of the utility function

For −∞ < γ < 1 we consider the power utility

U = U(WT ) =
1

γ
W γ

T (3.3)

over the terminal wealth WT . This is a simple but rich enough family of utility functions.
Utility functions are defined up to an additive constant. To include the log-utility as a special
case, it is sometimes more convenient to consider the family of utility functions U(WT ) =
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1
γ
(W γ

T − 1). Taking the limit γ → 0 we obtain the log-utility function U(WT ) = log(WT ).

The log-utility version of our problem was solved by A. Morton [Morton].
The relative risk aversion is measured by 1− γ, so the bigger γ is, the less risk averse is

the agent. In the limit γ → 1 we have a linear utility function. In section 3.3 we study the
effect of γ on the trading strategy.

3.1.4 The model

The problem can be treated in the general portfolio optimization framework of [Merton].
Suppose a traded asset follows an Ornstein-Uhlenbeck process (3.1). It is convenient to
think about Xt as a “spread” between the price of an asset and its “fair value”. Let αt be a
trader’s position at time t, i.e. the number of units of the asset held. This parameter is the
control in our optimization problem. Assuming zero interest rates and no market frictions,
the wealth dynamics for a given control αt is given by

dWt = αtdXt = −kαtXtdt+ αtσdBt. (3.4)

We assume that there are no restrictions on α, so short selling is allowed and there are no
marginal requirements on the wealth W .

We solve the expected terminal utility maximization problem for an agent with a pre-
specified time horizon T and initial wealth W0. The utility function (3.3) is defined over
the terminal wealth WT . The value function J(Wt, Xt, t) is the expectation of the terminal
utility conditional on the information available at time t:

J(Wt, Xt, t) = sup
αt

Et
1

γ
W γ

T . (3.5)

3.1.5 Normalization

It is more convenient to work with dimensionless time and money. Let $ be the dimension
of X; we denote it by [X] = $. By T we denote the dimension of time. From Eq. (3.1) it is
clear that [σ] = $T−1/2 and [k] = T−1. Renormalizing price Xt, position size αt, and time t

X → X

σ

√
k, .

α → α√
k
σ, (3.6)

t → kt,

we can assume that k = 1 and σ = 1. The wealth W does not change under this normaliza-
tion. Note that this normalization is slightly different from the one used in [M-VMN].
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3.1.6 Overview

In [M-VMN] it is proven that for γ = 0 (log-utility case) the optimal control is given simply
by

αt = −WtXt.

The case γ = 0 is simpler than the general case because a log-utility agent does not hedge
intertemporally (see [Merton]) and the equations are much simpler. The same paper also
derives an approximate solution for the case γ < 0. The approximation does not behave
particularly well.

In Section 3.2, we obtain an exact solution to the problem defined by Eqs. (3.1) – (3.5)
for the general case γ < 1, γ 6= 0. The answer is given by Eqs. (3.15) and (3.16). In
section 3.3, we analyze this solution. We are looking at how J and α change as the spread
X changes and how the risk aversion affects the trader’s strategy.

We will see that although our model is very simple, it reproduces some of the typical
trader behavior patterns. For example, if a trader is more risk-averse than a log-utility one,
then he will cut his position as the time horizon approaches. This behavior is similar to the
anecdotical evidence on real position management practice.

Section 3.4 concludes with suggestions for possible generalizations.

3.2 Main result

3.2.1 The Hamilton-Jacobi-Bellman equation

We need to find the optimal control α∗(Wt, Xt, t) and the value function J(Wt, Xt, t) as
explicit functions of wealth Wt, price Xt, and time t.

The Hamilton-Jacobi-Bellman equation1 is

sup
α

(
Jt − xJx − αxJw +

1

2
Jxx +

1

2
α2Jww + αJxw

)
= 0 (3.7)

The first order optimality condition on control α∗ is

α∗(w, x, t) = x
Jw

Jww

− Jxw

Jww

. (3.8)

Substituting this condition into the Hamilton-Jacobi-Bellman equation for the value func-
tion, we obtain the non-linear PDE

Jt +
1

2
Jxx − xJx −

1

2
Jww

(
Jxw

Jww

− x
Jw

Jww

)2

= 0. (3.9)

1see e.g. [FlemSoner].



64 CHAPTER 3. OPTIMAL ARBITRAGE TRADING

Note that the first summand at the right-hand side of Eq.(3.8) is the myopic demand term
corresponding to a static optimization problem while the second term hedges from changes
in the investment opportunity set. For a log-utility investor (γ = 0) the second term vanishes
(see [Merton].)

3.2.2 Main theorem

Let
τ = T − t (3.10)

be the time left for trading and define the constant ν and time functions C(τ), C ′(τ), and
D(τ) by

ν =
1√

1− γ
(3.11)

C(τ) = cosh ντ + ν sinh ντ (3.12)

C ′(τ) =
dC(τ)

dτ
= ν sinh ντ + ν2 cosh ντ (3.13)

D(τ) =
C ′(τ)

C(τ)
. (3.14)

As we shall see, the function D(τ) plays a crucial role in determining the optimal strategy.

Theorem 3.2.1 Suppose that γ < 0 or 0 < γ < 1. Then the optimal strategy for the
problem (3.1) – (3.5) is given by

α∗t (w, x, t) = −wxD(τ). (3.15)

The value function is given by

J(w, x, t) =
1

γ
wγ
√
eτC(τ)γ−1 exp

(
x2

2
(1 + (γ − 1)D(τ))

)
, (3.16)

where τ , C(τ), and D(τ) are defined by Eqs. (3.10) – (3.14) and Xt = x, Wt = w.

We will prove the theorem in Section 3.5.

Note that the optimal position is linear in both wealthWt and spreadXt. The term in the
last exponent in (3.16) measures the expected utility of the immediate trading opportunity.
If Xt = 0 i.e. there are no immediate trading opportunities, the value function (3.16)
simplifies to

J(w, 0, t) =
1

γ
wγ
√
eτC(τ)γ−1.

The 1
γ
wγ term is just the expected utility generated by the present wealth. The square root

term can be thought of as the value of the time. We will analyze Eqs. (3.15) and (3.16) in
more detail in section 3.3.
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3.3 Analysis

In this section, we analyze the behavior of solution (3.15) - (3.16). Unless specified otherwise,
the parameters used for illustrations are k = 2, σ = 1, and γ = −2. From Eq. (3.2), it
follows that the long-term standard deviation of the price process value is 1/2, so, roughly,
an absolute value of X greater than 0.5 presents a reasonable trading opportunity.

3.3.1 Position management

Let us look at how the value function and trading position change as Xt changes. Using
Itø’s lemma, we see from (3.15) that the diffusion term of dαt is

−D(τ) (Wt + αtXt) .

Thus, the covariance of dα and dX is

Cov (dα, dX) = −D(τ)(Wt + αtXt) = WtD(τ)
(
−1 +X2

t D(τ)
)
. (3.17)

This is negative whenever

|X| ≤
√

1/D(τ).

Consequently, as Xt diverges from 0 either way, we start slowly building up the position
αt of the opposite sign than Xt. If Xt diverges further from 0, our position is making a
loss, but we are still increasing the position until the squared spread X2

t reaches 1/D(τ).
If the spread widens beyond that value, we start cutting a loss-making position. Another
interpretation of Eq. (3.17) is that we start cutting a loss-making position as soon as the
position spread −αXt exceeds total wealth Wt. Fig. 3.2 shows how D(τ) depends on the
remaining time τ for different values of γ.

Not surprisingly, for the log-utility case γ = 0, the threshold 1/D(τ) equals identically
one and we are getting the same result as in [Morton] and [M-VMN].

3.3.2 Value function dynamics

Let us check now how the value function J(Wt, Xt, t) evolves with Xt. In [M-VMN], it is
shown that a log-utility agent’s value function always decreases as the spread moves against
his position. It might be the case that a more aggressive agent’s value function sometimes
increases as the spread Xt moves against his position because the investment opportunity
set improves. Let us check whether this ever happens to a power utility agent.

Using Itô’s lemma, we see from (3.16) that the diffusion term of dJt is

JtXt (1−D(τ)) .
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Figure 3.2: D(τ) as a function of the remaining time τ for five different values of γ.

Thus,

Cov (dJ, dX) = JtXt (1−D(τ)) . (3.18)

For γ < 0, the utility function is always negative, so the value function is also always
negative. Similarly, for γ > 0 the value function J is always positive. It is easy to check that
the sign of 1−D(τ) is opposite to the sign of γ for all τ . Thus, Cov (dJ, dX) is positive for
Xt < 0 and negative for Xt > 0. This means that any power utility agent suffers decrease in
his value function J as the spread moves against his position. This is true even for an agent
with an almost linear utility γ → 1.

For 0 < γ < 1 there is a non-zero bankruptcy probability.
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3.3.3 Time value

Let us look once more at how the value function depends on the time left for trading. Recall
that

J(w, x, t) =
1

γ
wγ︸︷︷︸
A

√
eτC(τ)γ−1︸ ︷︷ ︸

B

exp

(
x2

2
(1 + (γ − 1)D(τ))

)
︸ ︷︷ ︸

C

, (3.19)

where τ , C(τ), and D(τ) are defined by Eqs. (3.10) – (3.14) and Xt = x, Wt = w. Thus, the
value function J can be split into three multiplicative terms. Term A is the value derived
from the present wealth, term B is the time value, and term C is the value of the immediate
investment opportunity. Fig. 3.3 shows2 the dependence of the value function J on the
remaining time τ assuming that there is no immediate opportunity, i.e. X = 0.

Since the strategy of the log-utility agent does not depend on the time, his value function
J grows linearly with time (the green line in Fig. 3.3.) Extension of the trading period
beyond a certain minimal length does not significantly increase the value function of a
sufficiently risk-averse agent (the pink and the red lines on Fig. 3.3.)

The time value grows roughly exponentially in X2
t if there is an immediate investment

opportunity.

3.3.4 Effect of risk-aversion on time inhomogeneity

The ratio D(τ) defined by Eq. (3.14) plays a crucial role in most of our formulas: it
determines the position size in Eq. (3.15), the threshold at which we start unwinding a
loosing position (Eq. (3.17)), and it also enters equations (3.16) for the value function and
(3.18) for the covariance of J and X. Fig. 3.2 shows the graphs of D(τ) for different values
of γ. Recall that Eq. (3.15) implies that for given wealth Wt and spread Xt, position size is
proportional to D(τ).

We see that for γ = 0 (log-utility) the optimal position does not depend on time. For
γ > 0 the agent is less risk-averse than a log-utility agent. So, for given price Xt and wealth
Wt, his position increases as the final time approaches. In practice, traders often tend to
become less aggressive as the bonus time approaches. This is consistent with the optimal
behavior of a power utility agent with γ < 0. For example, assume that k = 8 and γ = −2
and let us measure the time in years. Then for the same wealth W and spread X, the
position just a week before the year-end is a third lower than it is at the beginning of the
year.

2The figure shows the graphs of the function J(w, x, τ) − 1
γ for w = 1, x = 0, 0 ≤ τ ≤ 1 and several

different values of γ. Substraction of 1
γ from the value function makes the comparison easier with the

log-utility case γ = 0.
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Figure 3.3: Adjusted time value, X = 0, W = 1.

3.3.5 Simulation results

To study the effect of parameter misspecification, we performed a Monte-Carlo simulation
study. Fig. 3.4 shows a sample price trajectory with the corresponding optimal position and
the wealth trajectories. A simulation without variance reduction also gives a good proxy to
the discretisation and sampling errors, i.e. to the deviations of accumulated wealth from the
predicted wealth due to the sampling error and non-continuous rehedging.

In reality, it is very hard to predict the mean-reversion parameter k. Even if we assume
that the price series is stationary, k has to be estimated from the past data. Figure 3.5
shows the effect of trading with the wrong value of k.

In a Monte carlo simulation, we generated a set of Ornstein-Uhlenbeck process trajecto-
ries with k = 2, σ = 1 and then simulated trading with a wrong value of k. To look at the
dependence of the optimal position α∗ on the mean reversion coefficient K, it is convenient
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Figure 3.4: A simulated price sample together with position and wealth dynamics.

to invert the transforms (3.6) and to rewrite Eq. (3.15) as

α =
k

σ2
wxD(τ/k). (3.20)

Thus, we took K in the interval (1, . . . , 3.2) and simulated trading with position determined
by (3.20), but with K substituted for k. On the horizontal axis of the graph we have
log(K/k). Blue and red dashed lines show the two standard deviations confidence interval
bounds for the mean terminal utility when trading with a given value of K. The black cross
shows the value function from Eq. (3.16) for K = k.

We can see that the influence of misspecification of the mean reversion coefficient is asym-
metric. Trading with a conservatively estimated k reduces greatly the utility uncertainty.
Not surprisingly, overestimation of the mean reversion leads to excessively aggressive posi-
tions and big discretisation errors. It is much safer to underestimate k than to overestimate
it.
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Figure 3.5: A simulated price sample together with position and wealth dynamics.

3.4 Conclusions and possible generalizations

We solved the optimal portfolio selection problem assuming that there is a single risky asset
following an Ornstein-Uhlenbeck process with known parameters and there is a represen-
tative agent with given wealth, investment horizon, and power utility function. The other
assumptions used were the absence of market frictions and perfect liquidity of the asset
traded.

Most of these assumptions are similar to the ones made in the Black-Scholes model. Each
of these assumptions is not quite realistic. Even when one manages to find a mean-reverting
trading asset, one will need to estimate the parameters of the process. The prices usually
seem to follow non-stationary processes, with periodic regime switches and jumps. Market
frictions make continuous trading unviable, while the presence of other traders competing
for the same trading opportunity and the feedback between trades and prices affect the
optimal strategy. A trader usually does not commit all of his capital to trade a single asset,
so the real-world problems involve multiple risky asset portfolio selection.

The model considered can be extended to include many of these more realistic features.
The resulting PDE is not very likely to have an explicit solution, but singular perturbation
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theory may be used to obtain approximations by expansions around our solution. A similar
problem in a discrete setting is considered in [Vigodner]. The discrete framework allows to
introduce easily transaction costs but, in most cases, lacks explicit solutions. The attraction
level of the mean reverting process Xt may be assumed not to be known a priori and to
be inferred from observations of Xt. This problem can be treated in a Bayesian framework
similarly to [Lakner].

On the other hand, our simple model can serve as a benchmark in practical situations.
Quite often, practitioners prefer to introduce ad hoc corrections to a simple model rather
than using a more involved model with a large number of parameters.

3.5 Appendix A.

3.5.1 A technical lemma

To prove the theorem we need the following lemma.

Lemma 3.5.1 The functions α∗ = α∗(w, x, t) and J = J(w, x, t) defined by Eqs. (3.15)
and (3.16) have the following properties

1. J = J(w, x, t) is a solution to Eq. (3.9);

2. boundary condition at T :

J(w, x, T ) =
1

γ
(wγ − 1);

3. concavity in current wealth:

Jww ≤ 0, for all w ≥ 0, x ∈ <, 0 ≤ t ≤ T ;

4. α∗ satisfies the first order optimality condition (3.8).

Proof of the lemma. All properties can be checked by direct calculations. �

3.5.2 Proof of the theorem

Let J(w, x, t, α) be the expected terminal utility if the trader follows a particular strategy α.
It is enough to show that J(Wt, Xt, t) and α∗(Wt, Xt, t) given by Eqs. (3.15), (3.16) satisfy
two standard stochastic optimal control conditions:
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(A) For any control α = α(w, x, t)

J(w, x, t, α) ≤ J(w, x, t) for all x ∈ <, w ≥ 0, 0 ≤ t ≤ T,

(B) The control α∗ = α∗(w, x, t) satisfies

J(w, x, t, α∗) = J(w, x, t).

Condition (A). Applying Itô’s formula to J (Ws, Xs, s)t≤s≤T , we obtain

J(Ws, Xs, s) = J(Wt, Xt, t) +

∫ s

t

L(α)J(Wu, Xu, u)du

+

∫ s

t

Jx(Wu, Xu, u)dBu +

∫ s

t

αuJw(Wu, Xu, u)dBu, (3.21)

where

L(α)J = Jt − xJx − αxJw +
1

2
Jxx +

1

2
α2Jww + αJxw. (3.22)

Using the Lemma, we see that

L(α)J =

=
1

2
Jww

(
α−

(
x
Jw

Jww

− Jxw

Jww

))2

+

(
Jt +

1

2
Jxx − xJx −

1

2
Jww

(
Jxw

Jww

− x
Jw

Jww

)2
)

=
1

2
Jww

(
α−

(
x
Jw

Jww

− Jxw

Jww

))2

≤ 0. (3.23)

Taking the mathematical expectation Et of J(Ws, Xs, s) from (3.21) we obtain

EtJ(Ws, Xs, s) = J(Wt, Xt, t) + Et

∫ s

t

L(α)J(Xu,Wu, u)du

+ Et

∫ s

t

Jx(Wu, Xu, u)dBu + Et

∫ s

t

αJw(Wu, Xu, u)dBu. (3.24)

The stochastic integrals in (3.24) are martingales, so the mathematical expectation of
these integrals is zero. Thus, the last two summands in (3.24) vanish. Now let t→ T . Using
(3.23), we can rewrite (3.24) as

J(Wt, Xt, t) = EtJ(WT , XT , T )− Et

∫ T

t

L(α)J(Xu,Wu, u)du

≥ Et(
1

γ
W γ

T ) = Jα(Wt, Xt, t, α),
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i.e. condition (A) is satisfied.

Condition (B). It is clear from the Lemma that

L(α∗)J = 0.

So for α = α∗ we have

J(Wt, Xt, t) = EtJ(WT , XT , T )− Et

∫ T

t

L(α∗)J(Xu,Wu, u)du

= Et(
1

γ
W γ

T ) = Jα(Wt, Xt, t, α
∗),

i.e. condition (B) is satisfied. This concludes the proof of the Theorem.
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In dit proefschrift beschouwen we verscheidene controleproblemen voor diffusieprocessen,
waarbij het de bedoeling is optimale controlestrategieën te vinden. De stochastische pro-
cessen die we in Hoofdstuk 1 bestuderen, modelleren het uitkeren van dividend van een
bedrijf. De processen in Hoofdstuk 2 corresponderen met het investeren in een project. De
optimale oplossingen voor de problemen uit beide hoofdstukken zijn van het singuliere type,
d.w.z. ze hebben een ”alles of niets” karakter. De processen die we in Hoofdstuk 3 onder
de loep nemen, zijn modellen voor het prijsgedrag van aandelen, waarbij dan een optimale
handelsstrategie het doel is. In tegenstelling tot de problemen die in de Hoofdstukken 2 en
3 worden bestudeerd, is de optimale handelsstrategie in Hoofdstuk 3 van het reguliere type,
d.w.z. de optimale controlestrategie is hier ”glad”. In dit proefschrift worden expliciete
oplossingen voor de genoemde optimale controleproblemen in ééndimensionale diffusiepro-
cessen gevonden.

In Hoofdstuk 1 beschouwen we een model voor een bedrijf waarvan de reserve X =
(Xt)t≥0 zich ontwikkelt volgens de stochastische differentiaalvergelijking

dXt = µdt+ σdWt − dZt, (3.25)

waarbij W = (Wt)t≥0 een standaard Wiener proces is en waarbij µ en σ bekende positieve
constanten zijn. Het controleproces Z = (Zt)t≥0 stelt de cumulatieve hoeveelheid dividend
voor die is uitbetaald tot en met tijdstip t. De belangrijkste eisen die aan het controle proces
Z = (Zt)t≥0 worden gesteld, zijn dat het proces niet-negatief en niet-dalend is en dat het is
aangepast aan de filtratie, d.w.z. dat het slechts gebaseerd is op het verleden. Het tijdstip
τ waarop het bedrijf bankroet gaat, wordt gedefinieerd als τ = inf {t ≥ 0 : Xt ≤ 0}. Er
wordt aangenomen dat het startkapitaal x0 positief is en dat de liquidatiewaarde S, d.w.z.
de waarde van de activa van het bedrijf op het moment van faillissement, niet-negatief is.
Bij een constant rentepercentage λ is de totale verwachte uitbetaling aan de aandeelhouders
tezamen met de gëındiceerde liquidatiewaarde gelijk aan

V (x, Z) = Ex{
∫ τ

0

e−λtdZt + Se−λτ}. (3.26)

We geven expliciete formules voor het optimale, toegestane controle proces Z̃, met andere
woorden het controle proces dat de waarde V (x, Z) maximaliseert, en wel voor drie gevallen:

1. het geval van een begrensde dividenduitkeringssnelheid,

2. het geval van discrete dividenduitkeringen met transactiekosten,

3. het algemene geval waarin het dividend proces elk niet-negatief, niet-dalend, rechtscon-
tinu proces mag zijn.
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In Hoofdstuk 2 bestuderen we een model voor onomkeerbare lange-termijn investeringen.
Hierbij worden de op tijdstip t voorziene kosten om het project af te ronden gegeven door
de stochastische differentiaalvergelijking

dXt = −Itdt+ β
√
XtItdWt + γXtdW̃t, (3.27)

waarbij Wt en W̃t ongecorreleerde standaard Wiener processen zijn en β en γ niet-negatieve
constanten en waarbij I(Xt) de investeringssnelheid voorstelt. Het tijdstip τ waarop
het project wordt voltooid, wordt gedefinieerd als τ = inf {t ≥ 0 : Xt ≤ 0}. Er wordt
aangenomen dat de initieel voorziene kosten om het project af te ronden, X0 = x, posi-
tief zijn en dat de waarde van het project na afronding wordt gegeven door een positieve
constante V . Bij constante rente r is de totale verwachte met het project te behalen winst
gelijk aan

F (x, I) = E{
∫ τ

0

(−I(Xt)e
−rt)dt+ V e−rτ}. (3.28)

We presenteren expliciete uitdrukkingen voor de optimale investeringssnelheid I∗, d.w.z. de
investeringssnelheid die de verwachte winst F (x, I) maximaliseert, en wel voor een drietal
gevallen:

1. technische onzekerheid (β = 0, γ 6= 0),

2. onzekerheid over de investeringskosten (β 6= 0, γ = 0),

3. beide onzekerheden aanwezig (β 6= 0, γ 6= 0).

In Hoofdstuk 3 bekijken we het probleem van de positiebepaling voor een handelaar in
een mean-reverting aandeel. Dit probleem komt in veel handelssituaties voor met statistische
en fundamentele arbitrage wanneer de korte termijn inkomsten op een aandaal voorspelbaar
zijn, maar wanneer een beperkt risicodragend vermogen de handelaar verhindert deze voor-
spelbaarheid volledig uit te buiten. We gebruiken een Ornstein-Uhlenbeck proces om het
prijsproces X = (Xt)t≥0 te modelleren:

dXt = −kXtdt+ σdBt,

waarbij k en σ positieve constanten zijn en Bt een standaard Wiener proces is. Dit model
reproduceert enkele realistische patronen in handelaargedrag. Het controleproces αt re-
presenteert de positie van de handelaar op tijdstip t, d.w.z. het aantal aandelen dat wordt
aangehouden. Wanneer we de rente op nul stellen en aannemen dat er geen wrijving is in de
markt, wordt de dynamiek van het vermogen bij een zeker controleproces αt gegeven door

dWt = αtdXt = −kαtXtdt+ αtσdBt.
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We nemen aan dat er geen beperkingen zijn op α en dat dus in het bijzonder short gaan
is toegestaan. We leggen ook geen beperkingen op aan het startkapitaal W . We gebruiken
de nutsfunctie Ψ(w) = (wγ − 1)/γ, w ≥ 0, voor zekere γ ∈ (−∞, 1). Het verwachte nut op
tijdstip T , voorwaardelijk gegeven de informatie beschikbaar op tijdstip t, is dan

J(Wt, Xt, t) = EtΨ(WT ).

We presenteren een expliciete uitdrukking voor de optimale positie α∗, d.w.z. de positie die
J(Wt, Xt, t) maximaliseert.


