
THE FATE OF STAR CLUSTERS NEAR THE GALACTIC CENTER. I.
ANALYTIC CONSIDERATIONS

Stephen L. W. McMillan
1
and Simon F. Portegies Zwart

2,3,4

Received 2002 October 9; accepted 2003 June 13

ABSTRACT

A star cluster in a galactic nucleus sinks toward the galactic center because of dynamical friction. As it
spirals inward, the cluster loses mass through stellar evolution, relaxation driven evaporation, and tidal
stripping, eventually dissolving in the galactic tidal field. We model the in-spiral of dense young star clusters
near the center of our Galaxy to study the extent of the region of parameter space in which the cluster can
reach the inner parsec of the Galaxy within a few million years. Since we neglect changes in cluster structure
due to internal evolution, the present study is most applicable to star clusters less than about one initial relax-
ation time old. We find that only star clusters with initial massese105M� can reach the Galactic center from
an initial distance ofe60 pc within one initial relaxation time or a fewmillion years, whichever is smaller.

Subject headings: black hole physics — Galaxy: center — Galaxy: nucleus —
globular clusters: individual (Arches, Quintuplet) — methods: analytical —
stellar dynamics

1. INTRODUCTION

The innermost �100 pc of the Milky Way Galaxy
contains a number of intriguing objects. These include the
central �(2–3) �106 M� black hole (Genzel et al. 2000;
Ghez et al. 2000), a cluster containing at least 15 massive
young stars (Tabmlyn & Rieke 1993; Krabbe et al. 1995), a
much larger population of older stars (Alexander 1999), and
at least two young dense star clusters—the Arches and the
Quintuplet systems (Nagata et al. 1995, 1990; Okuda et al.
1990).

Krabbe et al. (1995) found �15 bright He i emission line
stars in the Galactic center. They are part of the comoving
7–8 Myr old e104 M� association known as IRS 16
(Tamblyn & Rieke 1993; Krabbe et al. 1995), and are
accompanied by many less luminous stars of spectral types
O and B (Genzel et al. 2000). Detailed spectroscopic
analysis of the Galactic center region (Najarro et al. 1997)
indicate that these emission-line stars are evolved, with a
high surface ratio of helium to hydrogen nHe=nH ¼ 1–1.67.
Allen, Hyland, & Hillier (1990) classify them as Ofpe/WN9
stars, while Najarro et al. (1997) identify them as 60–100
M� luminous blue variables (LBVs), the late evolutionary
stages of very massive stars (Langer et al. 1994). Depending
on the interpretation of the data, the age of IRS 16 therefore
lies in the range 3–7 Myr, the lower figure corresponding to
the LBV identification.

One possible explanation for these stars is a recent �104

M� starburst (Krabbe et al. 1995). However, this model is
problematic, as the formation of stars within 1 pc of the
Galactic center is difficult; the Galactic tidal field is sufficient
to unbind gas clouds with densities d107 cm�3 (Güsten &
Downes 1980). Gerhard (2001) has proposed that a 106 M�
star cluster formed at a distance of d30 pc from the
Galactic center could have reached the Galactic center via

dynamical friction before being disrupted by the Galactic
tidal field or by internal dynamical evolution. This qualita-
tive argument solves the problem of the presence of young,
very massive stars in the Galactic center. Gerhard’s dynami-
cal friction timescale assumed that the stellar density in the
vicinity of the Galactic center is described by an isothermal
sphere; in addition, he ignored stellar mass loss and the
internal dynamical evolution of the cluster. In this paper we
present a more quantitative approach to the problem.

This is the first in a series of papers in which we consider
the timescale on which a star cluster sinks to the Galactic
center and is disrupted by the Galactic tidal field. In the
semianalytic calculations presented here, we study the in-
spiral of three quite different cluster models. We begin with
the simplifying approximation that the in-spiraling object
has constant mass. Later, we relax that assumption and
allow the cluster to lose mass, first by tidal stripping, then
also by stellar evolution and relaxation. For definiteness,
and for purposes of illustration, we adopt a simple analytic
prescription for mass loss from the evolving cluster, and
investigate its consequences. In a future paper we will
incorporate more realistic treatments of cluster dynamics.

The organization of this paper is as follows. In x 2 we first
consider the orbital decay of a nonevolving point mass. In
x 3 we expand our study to include clusters of nonzero radii,
allowing their masses to evolve in time as material is
stripped by the Galactic tidal field. The introduction of
physical parameters into our models then allows us to incor-
porate simple treatments of stellar mass loss and evapora-
tion within our simple model. In x 4 we apply the model to
star clusters near the Galactic center, to determine the
region of parameter space in which clusters can transport a
considerable fraction of their initial mass to within a few
parsecs of the Galactic center before disruption. We discuss
our results and conclude in x 5.

2. IN-SPIRAL WITH CONSTANT MASS

We begin our study with the simplifying assumption
that the mass of the in-spiraling object is constant. This
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idealization may be appropriate for a single massive black
hole or a very compact star cluster that is much smaller than
its Jacobi radius, the limiting radius of a cluster in the tidal
field of the Galaxy. In the latter case, however, for the con-
stant-mass approximation to hold, internal dynamical
evolution of the cluster should also be negligible on the
timescale on which the cluster sinks to the Galactic center.
In practice, especially for small clusters, this will not be the
case, as we discuss in x 5.

2.1. Dynamical Friction

We characterize the massMwithin a sphere with radiusR
centered on the Galactic center as a power law,

MðRÞ ¼ AR� ; ð1Þ

where A and � are constants, with 1 < � < 2 of interest
here. The density at distanceR then is

�ðRÞ ¼ A�

4�
R��3 ; ð2Þ

and we can write expressions for the orbital acceleration at
distanceR from the Galactic center,

aðRÞ ¼ GAR��2 ; ð3Þ

the potential

�ðRÞ ¼ GA

�� 1
R��1 ; ð4Þ

the circular velocity

v2cðRÞ ¼ GAR��1 ; ð5Þ

and the total energy of a circular orbit

EcðRÞ ¼
1

2
GAR��1 �þ 1

�� 1

� �
: ð6Þ

The object’s acceleration due to dynamical friction is
(Binney & Tremaine 1987, p. 425)

af ¼ �4� ln�G2�m
vc
v3c

� : ð7Þ

Here,m is the mass of the object, vc is its velocity vector (in a
circular orbit around the Galactic center), ln� �
lnhri=R � 5 is the Coulomb logarithm (where hri is the
object’s characteristic radius, roughly the half-mass radius
in the case of a cluster),G is the gravitational constant, and

� � erfðXÞ � 2Xffiffiffi
�

p e�X 2

; ð8Þ

where X ¼ vc=
ffiffiffi
2

p
� and �2ðRÞ is the local one-dimensional

velocity dispersion, assumed to be isotropic and locally
Maxwellian.

Substitution of equations (1), (2), and (5) into equation
(7) results in

af � jaf j ¼ �� ln�
Gm

R2
; ð9Þ

fromwhich we note that

af
aðRÞ ¼ �� ln�

m

M
: ð10Þ

For � ¼ 1:2, we obtain X ’ 0:89 (see Appendix), and hence
� ’ 0:34.With ln� ¼ 5 we find af =aðRÞ ’ 2m=M.

2.2. Orbital Decay

We can now derive the in-spiral timescale for a star cluster
with constant mass m in a power-law density profile given
by equation (1). The time derivative of equation (6) is

dEc

dt
¼ 1

2
ð�þ 1ÞGAR��2 dR

dt

¼ � � ln�G2 �m

vc
; ð11Þ

where the second equation expresses the work done by
dynamical friction (eq. [9]). Hereafter, R should be inter-
preted as RðtÞ, the distance from the cluster in question to
the Galactic center. Substitution of equations (2) and (5)
leads to

dEc

dt
¼ ��� ln�G3=2A1=2mRð��5Þ=2 ; ð12Þ

whence

dR

dt
¼ ��R�ð�þ1Þ=2 ; ð13Þ

where

� ¼ 2m ln�
��

�þ 1

G

A

� �1=2

: ð14Þ

Solving equation (13) with RðtÞ ¼ R0 at time t ¼ 0 results
in

RðtÞ ¼ R0 1� ð�þ 3Þ�
2R

ð�þ3Þ=2
0

t

" #2=ð�þ3Þ

: ð15Þ

SettingR ¼ 0 at t ¼ tdf and substituting equation (1) yields

tdf ¼
�þ 1

�ð�þ 3Þ
1

� ln�

M0

G

� �1=2 R
3=2
0

m
; ð16Þ

where M0 ¼ MðR0Þ. In terms of the orbital period of a
circular orbit around the Galactic center at distance R0,
T0 ¼ 2� GM0=R

3
0

� ��1=2
, equation (16) becomes

tdf
T0

¼ �þ 1

2��ð�þ 3Þ
1

� ln�

M0

m
: ð17Þ

For � ¼ 1:2,M0=m ¼ 103, and ln� ¼ 5, we find tdf ’ 40T0.

3. CLUSTERS WITH VARIABLE MASS

We now consider the possibility that the mass of the
cluster varies with time, m ¼ mðtÞ. Most mass loss from
the cluster is the result of tidal stripping as the cluster sinks
toward the Galactic center. We begin by determining the
Jacobi (tidal) radius rJ of the cluster in the tidal field of
the Galaxy.

3.1. Mass of a Tidally Limited Cluster

The differential acceleration at distance rJ from the center
of the cluster is obtained from equation (3),

Datide � ð�� 2ÞGAR��3rJ ; ð18Þ
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or, relative to the internal cluster acceleration at rJ,

jDatidej
aJ

¼ ð�� 2Þ M

mJ

� ��
rJ
R

�3

: ð19Þ

Here aJ ¼ GmJ=r
2
J and mJ, the cluster mass within radius rJ

(still to be determined), will henceforth be identified as the
cluster mass. Setting jDatidej ¼ aJ, we find

M

mJ

� ��
rJ
R

�3

¼ 1

2� �
: ð20Þ

This may be conveniently (and conventionally) expressed in
terms of average densities �J ¼ 3mJ=4�r

3
J and �G ¼

3M=4�R3, as

�J ¼ ð2� �Þ�G: ð21Þ

To proceed further, we must make a connection between
mJ and rJ. Two particularly simple cluster density profiles
lend themselves easily to analytic development:

1. A homogeneous sphere of mass m0, radius b, and
uniform density

�0 ¼
3m0

4�b3
: ð22Þ

2. A Plummer (1911) model of mass m0 and scale radius
b, with

�ðrÞ ¼ �0 1þ r2=b2
� ��5=2

; ð23Þ

where �0 is again given by equation (22).

Note that in each case we assume fixed parameters m0 and
b—that is, we neglect structural changes in the cluster due to
dynamical evolution or stellar mass loss. This assumption
greatly simplifies the calculation, but clearly is of question-
able validity when the internal dynamical timescales are
comparable to the in-spiral time (see x 5). In the next subsec-
tion we expand our model to allow for the effects of mass
loss due to stellar evolution and escaping stars. A more
complete treatment of the cluster’s structural evolution
will be the subject of a future paper.

For the homogeneous sphere (case 1), the desired relation
betweenmJ and rJ is simple:

mJ ¼
m0 rJ=bð Þ3 rJ < b ;

m0 rJ � b :

(
ð24Þ

No solution to equation (21) exists for �G > �0=ð2� �Þ, and
the cluster is destroyed at Galactocentric radius

Rmin ¼ m0

ð2� �ÞAb3

� �1=ð��3Þ
: ð25Þ

OutsideRmin, rJ > b andm ¼ m0. Inside, rJ ¼ m ¼ mJ ¼ 0.
For the Plummer model (case 2),

�J ¼ �0 1þ r2J=b
2

� ��3=2 ð26Þ

and again, no solution exists for R < Rmin. Outside Rmin,
rJðRÞ satisfies

1þ
r2J
b2

¼ ð2� �Þ2=3 m0

M0

� �2=3 R0

b

� �2 R

R0

� �2�2�=3

: ð27Þ

Themass of the cluster is then given by equation (21),

mJðRÞ ¼ ð2� �ÞM0
rJ
R0

� �3 R

R0

� ���3

: ð28Þ

We use this model as the basis for our discussion in the
remainder of the paper.

3.2. Mass Loss from Stellar Evolution

Many clusters dissolve so quickly that stellar evolution
barely affects their mass. However, if the cluster survives for
more than a few million years, mass loss from the most mas-
sive stars may become important (see McMillan 2003 for a
recent review). Recent detailed N-body simulations by
Portegies Zwart et al. (2001) have quantified the expansion
of a tidally limited cluster as its mass decreases. The expan-
sion drives more rapid disruption, while the mass loss slows
the in-spiral.

We include stellar mass loss in our model as follows. First
we rewrite equation (28) as mJðRÞ ¼ hminJðRÞ, where nJ(R)
is the number of stars within the Jacobi radius and hmi is the
mean stellar mass, which is now a function of time because
of stellar evolution. We assume that the mass functions of
the cluster and of the escaping stars are identical. (Again,
this is equivalent to the neglect of internal dynamical evolu-
tion.) We parameterize the cluster’s expansion in response
to stellar mass loss by

b ¼ b0hmi0=hmi ; ð29Þ

which is equivalent to the assumption that the cluster loses
mass adiabatically, as found by Portegies Zwart et al.
(2001).

The mean mass in the cluster can be computed from the
initial mass function. For clarity, we assume that all the
mass in stars having masses above the cluster’s turnoff mass
is simply lost from the cluster. So long as the turnoff mass
exceeds �8 M�, this assumption is justified by the high-
velocity kick imparted to compact objects by the super-
novae in which they form, allowing them to escape from the
cluster. For older clusters this assumption breaks down as
lower mass stars turn into white dwarfs, which do not
receive high velocities at formation, although such clusters
are not of direct interest in the present paper. Integrating
the initial mass function, we find

hmi ¼ 1� x

2� x

� �
m2�x

to �m2�x
min

m1�x
to �m1�x

min

; ð30Þ

where x is the exponent for the (assumed) power-law mass
function (Salpeter, x ¼ 2:35),mto is the cluster turnoff mass,
and mmin is the lower mass limit. We determine the turnoff
mass using fits to the stellar evolution models of Eggleton,
Tout, & Fitchet (1989).

3.3. Mass Loss due to Relaxation

A tidally limited star cluster in the tidal field of the Galaxy
will also lose mass through internal relaxation as occasional
interactions between cluster members result in velocities
high enough for stars to escape the cluster potential.
Portegies Zwart & McMillan (2002) have simulated star
clusters near the Galactic center; they derive the following
approximate expression for relaxation-driven cluster
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mass loss,

mðtÞ ¼ m0 1� t

0:29trt

� �
: ð31Þ

Here trt is the relaxation time at the cluster tidal radius,

trt ¼ 2:05 Myr
rJ

1 pc

� �3=2 mJ

M�

� ��1=2 nJ
logð0:4nJÞ

; ð32Þ

where nJ is the number of stars contained within the Jacobi
radius.

The clusters in the study of Portegies Zwart & McMillan
(2002) did not spiral in to the Galactic center, so the relaxa-
tion time at the tidal radius remained constant over the life-
time of the cluster. In our case, where clusters sink toward
the Galactic center, the relaxation time at the tidal radius
changes with time. We therefore recast equation (31) as
follows. Differentiating equation (31) with respect to time,
identifying mðtÞ with mJ and trt with the instantaneous
relaxation time at rJ, and including the radial dependence of
the relaxation time, assuming a tidally limited cluster, we
obtain

dm

dt
¼ � m0

0:29trt;0

R

R0

� �ð��3Þ=2
: ð33Þ

For the purposes of this paper, we draw a distinction
between the processes of tidal stripping, in which stars out-
side the Jacobi radius are removed by the Galactic tidal field
as the cluster sinks toward the Galactic center and the
Jacobi radius shrinks, and evaporation, in which stars are
driven across the instantaneous Jacobi radius by internal
two-body relaxation. All models discussed in the following
section include tidal stripping; models discussed in x 4.2 and
subsequently also include both evaporation-driven and
stellar-evolution mass loss.

4. RESULTS

From x 2.2, the distance from the cluster to the Galactic
center satisfies

dR

dt
¼ ��ðRÞR�ð�þ1Þ=2 ð34Þ

(eqs. [13] and [14]), with R ¼ R0 at t ¼ 0. Transforming to
dimensionless variables � ¼ R=R0 and 	 ¼ t=T0, and substi-
tuting equation (14), we rewrite this equation in the form

d�

d	
¼ 4��

�þ 1
� ln�

mJ

M0
��ð�þ1Þ=2 : ð35Þ

For a Plummer model, the cluster mass mJ varies as a
function of R and therefore � via equation (28). We solve
equation (35) numerically, as it admits no simple analytic
solution. For all models we adopt A ¼ 4:25� 106 M�
(measuring R in eq. [1] in parsecs) and � ¼ 1:2 (Sanders &
Lowinger 1972;Mezger et al. 1999).

For simplicity, we assume that � ln� ¼ 1 for the remain-
der of this section, unless indicated otherwise. A value of
� log� ¼ 1:2 or 1.3 is probably more appropriate (Binney
& Tremaine 1987; Spinnato, Fellhauer, & Portegies Zwart
2003). The dynamical friction timescale is inversely propor-
tional to � ln� (see eq. [16]), so the effects of different
choices can be easily estimated.

4.1. Solutions without Stellar Evolution

For systems without significant stellar mass loss or evapo-
ration, the evolution can be conveniently parametrized by
the dimensionless quantities


 ¼ b0=R0 ;

l ¼ m0=M0 : ð36Þ

The contours and gray scale in Figure 1 present the scaled
cluster lifetime (tdiss � trmd=T0, where tdiss is the cluster dis-
solution time) as a function of 
 and l.

Figure 1 shows that compact, massive clusters have the
shortest lifetimes, and that the lifetime decreases with
increasing mass at fixed initial cluster radius (b0), increases
with increasing radius at fixedmass, and is largely independ-
ent of the radius for small radii. This last point simply
means that clusters initially well inside their Jacobi radii
(b05 0:9rJ) experience significant stripping only near the
end of the in-spiral process. There is no initial solution when
�G > �0=ð2� �Þ, i.e. when b0 > rJ.

Since the stellar density diverges toward the Galactic cen-
ter, no extended cluster can actually reach R ¼ 0 (although
a black hole can). Figure 2 shows the cluster’s distance to
the Galactic center as a function of time (again in units of
the initial orbital period of the cluster around the Galactic
center) for several selected values of 
 and l. Not surpris-
ingly, more massive clusters (larger values of l) spiral in
more quickly, and physically larger clusters (larger 
)
dissolve at larger distances from the Galactic center.

The long lifetimes of clusters with b0e0:9rJ (see Fig. 1)
and small values of l are due to the weak effect of dynamical
friction in those cases. Since we ignore stellar mass loss and
internal dynamical evolution (specifically, evaporation) in

Fig. 1.—Scaled cluster lifetime tdiss (contours and gray scale) as a function
of the dimensionless parameters 
 and l (see eqs. [35] and [36]), for models
with tidal stripping but without additional mass loss by stellar evolution or
evaporation. The parameter 
 is the ratio of the initial cluster length scale
to the initial distance to the Galactic center. The parameter l is the ratio of
the initial cluster mass to the mass of the Galaxy contained within the initial
orbit. The numerical labels on the contours give the scaled disruption time
tdiss in units of the cluster’s initial orbital period around the Galactic center.
The gray shades provide the same information as the contours; darker
shades represent longer cluster lifetime. The dotted line indicates the values
of 
 and l corresponding to b0 ¼ 0:9rJ; the characteristic scale of the initial
Plummer model is 90% of the cluster Jacobi radius. No initial solution
exists for the area to the right of the curve b0 ¼ rJ (also indicated).
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this simple model, such clusters survive for unrealistically
long times. In practice, these systems will be strongly
affected by stellar evolution and evaporation, as we now
demonstrate.

4.2. Evolution with StellarMass Loss and Relaxation

By selecting the Galactic center as a representative
nucleus, we can attach physical units to the selected values
of l and 
. The advantage of introducing physical param-
eters is that the numbers becomemore intuitive, but of course
we lose the scale-free solution from previous section. Another
advantage of fixing the scaling is that we can take stellar evo-
lution and internal relaxation into account. Stellar mass loss
(via eq. [30]) and evaporation (via eq. [33]) are included by
solving equation (35). For most calculations we adopted a
Salpeter initial mass function between 0.1 and 100 M�. The

effect of relaxing this assumption is illustrated in Figure 5
below.

Figure 3 shows distances to the Galactic center as a func-
tion of time for model clusters having initial masses of
64,000 M� (Fig. 3a) and 256,000 M� (Fig. 3b). For each
selected initial distance (R0 ¼ 2, 4, 8, and 16 pc) we choose a
range of initial values for the cluster scale, b0 ¼ 0:2, 0.4, and
0.8 pc. The choice of m0 ¼ 64; 000 M�, R0 ¼ 8 pc, and
b0 ¼ 0:2 pc corresponds to the ‘‘ standard ’’ model indicated
in Figure 2. These models were computed taking both stellar
mass loss and evaporation into account. Models with
b0 ¼ 0 (point mass case, without stellar mass loss or evapo-
ration) are also included for comparison; they are identical
to the calculations presented in Figure 2.

As a result of the extra mass-loss channels (stellar evolu-
tion and evaporation) and the resulting reduction in the in-
spiral (and hence tidal stripping) rate, the lifetimes of the
clusters shown in Figure 3 may be either longer or shorter
than those of clusters in which stellar evolution is neglected
(as in Fig. 2). This is illustrated in Figure 4 for models hav-
ing l ¼ 0:00012 and 
 ¼ 0:05, 0.025 (the ‘‘ standard ’’
model), and 0.0125. Dimensionless times are converted to
Myr using an orbital period of 0.30 Myr, appropriate to a
cluster at an initial distance of 8 pc from the Galactic center.
The dotted curves show the evolution of the dimensionless
models in which only tidal stripping is included. The solid,
dashed, and dash–triple-dotted curves present the same
models with stellar evolution and evaporation taken into
account. At a distance of 8 pc from the Galactic center, the
values of 
 ¼ 0:05, 0.025, and 0.0125 correspond to
b0 ¼ 0:4, 0.2, and 0.1 pc, respectively.

Compact clusters (b0d0:4 pc) are relatively unaffected by
tidal stripping. As a result, the primary effect of stellar mass
loss is simply to decrease the in-spiral rate, increasing the
cluster lifetime. However, in larger clusters (b0e0:4 pc)
the expansion caused by stellar mass loss greatly increases
the stripping rate, significantly decreasing the lifetime
despite the slower in-spiral. For very low mass, or very
large, clusters, relaxation and evaporation may dominate.
However for the cases studied here the effect is almost
negligible. This is illustrated by the first few million years of

Fig. 2.—Scaled distance to the Galactic center R=R0 as a function of
scaled time t=T0, for selected combinations of 
 and l. The three families of
models shown have l ¼ 0:012 (left set of curves), l ¼ 0:0012 (middle
curves), and l ¼ 0:00012 (rightmost curves). The dotted lines give the evolu-
tion for a constant point mass (
 ¼ 0); other curves present models with 

as indicated. The model corresponding to l ¼ 0:0012; 
 ¼ 0:025 (heavy
solid line) is the basis for Figs. 3–5.

Fig. 3a Fig. 3b

Fig. 3.—Time evolution of Galactocentric distanceR for models with (a)m ¼ 64; 000M� and (b) 256,000M�, assuming � ln� ¼ 1. Initial cluster scales b0
are 0.0 (dotted lines), b ¼ 0:2 (solid line), 0.4 (dashes), and 0.8 (dash-triple-dotted lines). The corresponding values for l are indicated near the start of each
family of curves. The ‘‘ standard ’’ model marked in Fig. 2 is also indicated here (heavy solid line). For reference, the orbital periods of clusters at 2, 4, 8, and
16 pc from the Galactic center are 0.09, 0.16, 0.30, and 0.56Myr, respectively.
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evolution of clusters with large b0, such as the dash–
triple-dotted curve in Figure 4. The small deviation of the
b0 ¼ 0:8 pc curve from the 
 ¼ 0:050 dotted curve during
the first�5Myr is the result of relaxation.

Figure 5 illustrates how varying the cluster initial mass
function alters the time evolution of its Galactocentric
radius and mass. The dotted curve (Fig. 5a only) shows the
constant point-mass case for l ¼ 0:0012. The solid curve
shows the evolution of the standard model with 
 ¼ 0:025,
scaling times to Myr assuming an initial Galactocentric dis-
tance of 8 pc. The dashed curves give the results when stellar
mass loss and evaporation are taken into account, assuming
lower mass limits for the initial mass function of 0.1, 0.2,
0.4, and 0.8M�.

Increasing the low-mass cutoff in the mass function
increases the effective stellar evolution mass-loss rate, and

reduces the cluster lifetime. A similar effect can be achieved
by increasing the power-law slope x of the mass function.
The models are therefore degenerate in the x-mmin plane.
For example, a model with a Salpeter initial mass function
(x ¼ 2:35) and a low-mass cutoff at 0.2 M� evolves almost
identically to a model with x ¼ 2:13 and mmin ¼ 0:1 or with
x ¼ 2:90 andmmin ¼ 0:4.

4.3. Comparison with Kim et al. (2000)

Kim (2000) used GADGET, the tree code developed by
Springel, Yoshida, &White (2001), to compute the dynami-
cal friction of dense star clusters near the Galactic center. In
these calculations, the inner part of the Galaxy was repre-
sented by 2 million point particles distributed as a truncated
softened power-law similar to our equation (2), except that
the overall density was 2.5 times smaller than ours. The
black hole in the Galactic center was represented as a single
particle. The star cluster was modeled as a Plummer sphere
with b0 ¼ 0:85 pc, using 105 point particles having a total
mass of m0 ¼ 106 M�. Initially, the cluster was placed in a
circular orbit at a distance of R0 ¼ 30 pc from the Galactic
center. The simulations ignored mass loss by stellar
evolution and evaporation.

The time dependence of the cluster’s Galactocentric dis-
tance, as determined by Kim (2000), is shown in Figure 6.
His cluster orbits become slightly eccentric during the evolu-
tion, but this seems to have little effect on the dynamical fric-
tion timescale. For clarity we do not show the actual results
reported by Kim, but instead match his initial conditions,
which are plotted in Figure 6 as the rightmost dashed curve.
This model is computed without stellar evolution or evapo-
ration, as in Kim’s simulations. Our model closely reprodu-
ces Kim’s results when we adopt ln� ¼ 3:7, which is close
to the value used by Kim. For reference, we also plot the
evolution of a constant point-mass model (dotted curve),
and a model in which stellar evolution and evaporation are
taken into account (solid curve). To guide the eye, we also
plot the same series of runs with ln� ¼ 10.

Fig. 4.—Mass as a function of time for a 64,000 M� star cluster at a
distance of 8 pc from the Galactic center (l ¼ 0:00012) with various
values for b0 (as indicated). The dotted curves present the corresponding
evolution of the cluster without stellar evolution or evaporation. The values
of 
 correspond to the choices of b0. All calculations were made using
� ln� ¼ 1.

Fig. 5a Fig. 5b

Fig. 5.—Evolution of (a) the distance to the Galactic center and (b) mass for model clusters with initial mass m0 ¼ 64; 000 M�, initial radius b0 ¼ 0:2 pc,
and initial Galactocentric distanceR0 ¼ 8 pc. The dotted curve in (a) shows the evolution of the model without stellar evolution or evaporation, assuming that
the cluster is a point mass. The solid curves are the ‘‘ standard ’’ model, computed without stellar evolution or evaporation, with 
 ¼ 0:025, appropriate to the
choice of b0. The dashed curves include stellar evolution and evaporation and are computed using a Salpeter initial mass function with different lower mass
limitsmmin, ranging from 0.1M� (heavy dashed line) to 0.8M� (as indicated). As before, we assume � ln� ¼ 1.

No. 1, 2003 FATE OF STAR CLUSTERS NEAR GALACTIC CENTER. I. 319



5. DISCUSSION

In this section we discuss some consequences of our semi-
analytical calculations. In particular, we consider Gerhard’s
(2001) conjecture, discussed in x 1, that IRS 16 and the asso-
ciated young stars observed in the Galactic center may have
been deposited there by the in-spiral and disruption of a
much more massive system. We take the two known
Galactic center clusters—the Arches and Quintuplet—as
templates.

Table 1 presents the observed parameters for the Arches
and Quintuplet systems. The final columns give the clusters’
half-mass relaxation time and the time required to reach the
Galactic center, according to equation (32). (The half-mass
relaxation time is computed by substituting rhm for rJ in that
equation.) It is clear that neither cluster will reach the
Galactic center within the next fewMyr, and that both were
probably born at roughly their present distance from the
Galactic center. For these calculations we have again
adopted � log� ¼ 1.

Figure 7 presents, as a function of initial cluster mass and
galactocentric radius, the time taken for a star cluster with

b0 ¼ 0:2 pc to reach the Galactic center (Fig. 7a), and the
distance from the Galactic center at which the cluster dis-
solves (Fig. 7b). Contours and the gray scale represent in-
spiral time in Figure 7a and dissolution distance in Figure
7b. The cluster is deemed to have dissolved when it comes
within 1 pc of the Galactic center, or when it has lost 99% of
its initial mass. The dotted lines have the same meanings as
in Figure 1.

The rightmost dashed line in Figure 7 marks initial
conditions for which the in-spiral timescale equals the ini-
tial relaxation time. To the right of this curve, the cluster
will experience significant internal dynamical evolution
before disrupting. Our simple description of the cluster’s
internal structure is therefore unreliable to the right of
this curve, but our expression for the evaporation rate is
still valid. The left dashed curve corresponds to an in-
spiral timescale of 0.2trh, where trh is the initial relaxation
time at the half-mass radius. This is roughly the core-
collapse time for a system with a realistic initial mass
function in which stellar evolution is relatively unimpor-
tant (see Portegies Zwart & McMillan 2002). Clusters
with initial conditions to the left of the left dashed curve
are thus expected to dissolve in the Galactic tidal field
before experiencing core collapse.

During and after core collapse (to the right of the left
dashed curve in Fig. 7a) the structure of the cluster changes
considerably, and our simple prescription for cluster disrup-
tion is unlikely to hold. We expect that the structural
changes in these clusters will cause their dense cores to sur-
vive for longer, and that they will sink slightly closer to the
Galactic center than indicated in Figure 7b (see Gerhard
2001 and Portegies Zwart, McMillan, & Gerhard 2003 for
further discussion). The change in disruption radius is not
expected to be great, however, as the residual core masses
are small and their in-spiral correspondingly slow at late
times.

Figure 7 clearly indicates that the two known nuclear star
clusters, the Arches and Quintuplet, will not reach the Galac-
tic center. Their survival times are determined by internal
relaxation rather than by dynamical friction (see also Table
1). The in-spiral timescale for these clusters is of the order of
1Gyr, compared to their predicted lifetime of 100Myr, based
on N-body simulations (Portegies Zwart et al. 2001). Figure
7b indicates that clusters withMd20; 000 M� barely evolve
in Galactocentric radius on this timescale, but instead dis-
solve in situ, as a result of the combined effects of evaporation
and stellar mass loss.

Figure 8 gives the time taken for a star cluster with
m0 ¼ 64; 000 M� to reach the Galactic center and the

Fig. 6.—Time evolution of Galactocentric distance R of a star cluster
having an initial mass m ¼ 106 M�. The rightmost set of curves represents
model 1 of Kim (2000), and have ln� ¼ 3:7; the leftmost curves have
ln� ¼ 10. Dotted lines are for a point-mass (
 ¼ 0) cluster with
l ¼ 0:00845. Dashed lines are for models with b0 ¼ 0:85 pc, but excluding
stellar evolution and evaporation, as assumed by Kim (2000). Solid curves
include stellar mass loss and evaporation, with a Salpeter initial mass
function between 0.1 and 100M�. Although Kim (2000) continued his cal-
culation for only about 9 Myr, his curve and our rightmost dashed curve
are virtually indistinguishable.

TABLE 1

Observed Parameters for the Arches and Quintuplet Star Clusters

Name Reference

Rgc

(pc)

Age

(Myr)

M

(M�)

Rhm

(pc)

trt
(Myr)

tdiss
(Myr)

tdf
(Gyr)

Arches.................... 1 30 2–4 12–50 0.2 12 60 0.3–1.9

Quintuplet ............. 2, 3, 4 35 3–5 10–16 0.5 12 60 5.5–9.6

Notes.—Both clusters lie within 35 pc (in projection) of the Galactic center. The first two columns give
the cluster name and references, followed by the distance to the Galactic center, age, mass, and half-mass
radius. The last three columns give the two-body relaxation time at the half-mass radius, the expected time to
disruption, and the in-spiral timescale.

References.—(1) Figer et al. 1999a; (2) Glass, Catchpole, & Whitelock 1987; (3) Nagata et al. 1990;
(4) Figer,Mclean, &Morris 1999b.
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Galactocentric distance at which the cluster dissolves. In
Figure 7 the initial cluster mass m0 was varied at constant
b0. Now we vary b0 keeping m0 constant, thereby providing
a second slice through the same parameter space as in Fig-
ure 7. As in Figure 7, the approximate locations of the
Arches and Quintuplet clusters are indicated. It is clear that
small shifts in either figure will not alter the basic conclusion
that both clusters will dissolve at large distances from the
Galactic center.

From Figures 7 and 8 it is clear that only massive (e105

M�) star clusters can transport a significant fraction of their
mass to the vicinity of the Galactic center within a fewMyr.
Also, even a 106 M� star cluster will require several tens of
Myr to reach the Galactic center from an initial distance of
e30 pc. The most promising candidates to reach the central
parsec of the Galaxy within 10 Myr, but after significant
mass segregation has occurred, are star clusters with masses
d105 M�, born within about 20 pc of the Galactic center,

with half-mass radii of �0.2–0.4 pc. Less massive clusters,
clusters farther from the Galactic center, or smaller (larger)
clusters have greater difficulty reaching the Galactic center
before disruption (core collapse).

We therefore conclude that, if they originated in a mas-
sive star cluster, the stars in IRS 16 were born in ad105M�
cluster at a Galactocentric distance of d20 pc. The cluster
deposited about 103 M� of material within �3 pc of the
Galactic center. Since such a cluster would have experienced
core collapse on about the same timescale, the most massive
stars had already segregated to the cluster core. The depos-
ited (core) material was therefore rich in massive stars.
These findings are contrary to the results reported by Kim
(2000).

More detailed studies are underway to qualify and quan-
tify these statements (Portegies Zwart et al. 2003). Prelimi-
nary results indicate that the in-spiral times derived here are
in good agreement with N-body calculations using the

Fig. 7a Fig. 7b

Fig. 7.—(a) In-spiral time and (b) final distance to the Galactic center for clusters with b0 ¼ 0:2 pc, as functions of initial galactocentric distance and cluster
mass. The dotted lines correspond to b0 ¼ 0:9rJ and b0 ¼ rJ, as in Fig. 1. The solid curves indicate initial conditions where the dynamical friction in-spiral
timescale tdf is 1 Myr (left), 10 Myr, and 100 Myr (right). The dashed curves in panel a correspond to tdf ¼ 0:2trh (left) and tdf ¼ trh (right), where trh is the
initial half-mass relaxation time of the cluster, obtained by substituting rhm for rJ in eq. (32). The approximate locations of the Arches and Quintuplet clusters
(see Table 1) are also shown.

Fig. 8a Fig. 8b

Fig. 8.—Contours and gray-scale map of (a) in-spiral time and (b) final distance to the Galactic center for clusters with m0 ¼ 64; 000 M�, as functions of
initial Galactocentric distanceR0 and cluster size b0. The dashed and dotted curves have the samemeanings as in Fig. 7, and the two crosses mark the estimated
locations of the Arches and Quintuplet clusters (see Table 1).

No. 1, 2003 FATE OF STAR CLUSTERS NEAR GALACTIC CENTER. I. 321



GRAPE-6 special-purpose computer (Makino et al 2002),
with the same description of dynamical friction as presented
here. More sophisticated calibration of the dynamical
friction parameters themselves, obtained by modeling the
Galactic background as individual stars, will be the subject
of a future paper.
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discussions, and thank the Institute for Advanced Study

and Tokyo University for their hospitality and the use of
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01112.01-98A awarded by the Space Telescope Science
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NAG5-9264, by the Royal Netherlands Academy of
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for Astronomy (NOVA).

APPENDIX

The argument X ¼ vc=
ffiffiffi
2

p
� in the dynamical friction relation (eq. [7]) of x 2.1 can be evaluated as follows for in-spiral

through a sequence of nearly circular orbits.
Following Binney & Tremaine (1987, eqs. [4]–[30]), we write the equation of dynamical equilibrium (the radial Jeans

equation) for stars near the Galactic center as

d

dR
ð��2Þ ¼ ��

d�

dR
¼ ��

v2c
R

; ðA1Þ

where we assume an isotropic velocity distribution. In the power-law region,M / R� (eq. [1]), we further assume that �2 / v2c .
It then follows that �2� � R2��4, so

R
d

dR
ð�2�Þ ¼ ð2�� 4Þ�2� : ðA2Þ

Substitution in equation (A1) then yields X ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2� �

p
. We note that, as � ! 1, this reduces to the correct expression for an

isothermal sphere (see Binney & Tremaine 1987, p. 230).

REFERENCES

Alexander, T. 1999, ApJ, 527, 835
Allen, D. A., Hyland, A. R., &Hillier, D. J. 1990,MNRAS, 244, 706
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton
Univ. Press), 425

Eggleton, P. P., Tout, C. A., & Fitchett, M. J. 1989, ApJ, 347, 998
Figer, D. F., Kim, S. S., Morris, M., Serabyn, E., Rich, R. M., & McLean,
I. S. 1999a, ApJ, 525, 750

Figer, D. F.,McLean, I. S., &Morris, M. 1999b, ApJ, 514, 202
Genzel, R., Pichon, C., Eckart, A., Gerhard, O. E., & Ott, T. 2000,
MNRAS, 317, 348

Gerhard, O. 2001, ApJ, 546, L39
Ghez, A. M., Morris, M., Becklin, E. E., Tanner, A., &Kremenek, T. 2000,
Nature, 407, 349

Glass, I. S., Catchpole, R.M., &Whitelock, P. A. 1987,MNRAS, 227, 373
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