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Analysis on the stability of Josephson vortices at tricrystal boundaries: A &,/2-flux case
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We consider Josephson vortices at tricrystal boundaries. We discuss the specific case of a tricrystal boundary
with a 77 junction as one of the three arms. It is recently shown that the static system adifmts1ai?) ¢, flux,
n=0,1,2[Phys. Rev. B61, 9122(2000]. Here we present an analysis to calculate the linear stability of the
admitted states. In particular, we calculate the stability ofgg/2 flux. This state is of interest, since ener-
getically this state is preferable for some combinations of Josephson lengths, but we show that in general it is
linearly unstable. Finally, we propose a system that can have a $table 2) ¢, state.
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Half-integer flux quantization is a tool to probe the sym- The time-dependent governing equation of the phase dif-
metry of unconventional superconductérd. Half-flux  ference along the junctions is described by the perturbed
quanta will be naturally created at the intersection of thresine-Gordon equation
grain boundaries if one of the boundaries has a phase shift of 5 S .
w4 In a recent paper, Kogan, Clem, and Kirttegonsider N = by = 0 sin &' + ady, (1)
theoretically Josephson vortices at tricrystal boundaries.

When one of the three Josephson junctions isjanction, a W't.h.':l’z 3,x>0, 1>0, af?d_“ IS a positive dam_p'”g co-
half-integer flux is spontenously generated and attached t fficient. The damping coefficient is not necessarily the same

the joint. For experimental reports on the observation of Jolor aII_ the junctions. The spbsqnptof the Jose.phso.n length
sephson vortices in grain boundaries withrgunction we is omitted for brevity. The mdexngmbe'rs the.JuncUon. The
refer to Refs. 1-3. Kogan, Clem, and Kirtfesiso consider a constan_tﬁ' represents the type doh junction. Without Ioss_of
general case where the Josephson lengths of the junctio§§nerality, we consider the cag=-¢=-6=-1. This

\y's are not the same. Besides ti#g/ 2 state, they also notice Models a tricrystal boundary with onejunction. The over-
the existence of multiple half-flux states—i.e.(n all coupling boundary conditions at the intersection#te

+1/2) ¢y, N=1,2. 1y 42, 43—
The system of three Josephson junctions meeting at one ¢+ ¢+ =0,

end point has been considered first by Nakajima, Onodera, 1o .3

and Ogawa. The derivation of this system coupled via the by = dx = by 2

boundary conditions using an electrical analog is given by, -

Nakajima and OnodefaThe dynamic behavior of integer all evaluated ak=0.

fluxes in this system with three junctions of the same type

and with the same Josephson length has been discussed in *1 . . .

Refs. 7 and 8. H=> f E()\iqﬁ;)z + 6 (1 - cos¢')dx. (3)
Knowing the eigenvalues of a state is of importance, also Peo

for experimentalists, since one can then predict whether @A time-independent solution of E¢l) representing a @,/2

particular state can be observed in experiments or not. In thigux is given by

paper we will calculate analytically the linear stability of

The total Hamiltonian energy of Eql) is given by

static (multiple) semifluxons sitting at or near the meeting ¢é:4 tarr(e" VM) - 7,

point of a tricrystal junction with oner junction. We will

consider the general case where the Josephson lengths are ¢(2):4 tan (e dN2) |

not the same. As an example we will calculate the stability of

a 3¢,/ 2 state. We use this state as a particular example since d)g = 4 tar{(e* M) — 277, (4)

energetically this state is preferable for some combinations

of Josephson lengths, compareddg 2 at the branch point where thex; are determined by Eq2). For simplicity we
plus ¢y at infinity.* Nonetheless, calculation of the energy of scale\, to 1 such that in the calculation we need to consider
this state does not establish the stability of it. In this reportonly A, and A3. We will discuss the linear stability of the
we will show that this state is in general unstable. state given by Eq4), but the method can be applied to other
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soliton solutions admitted by Eqg¢l) and (2). Combining
Egs.(4) and(2) gives'

2y2y3m° = (L+ %+ 9577 +1=0,

Y% =N/, p=sin2 tar (M),
1:\1-y
ez BTN g 5

Yin
The first case we consider is thet=1 for all i. Conse-
quently we have;=x,=x3=0. In this case the system has
S; symmetry? We linearize about the solutiog,. We write
#'(x,t)=¢p+ul(x,t) and substitute the spectral ansatz
=e“'(x). Retaining the terms linear io' gives the eigen-
value problem

vixx— (0 + aw+ ¢ cos (bi))vi =0, (6)
with boundary conditions at=0 given by
vl+v2+0%=0, vi=vi=vl. (7)

The spectrumw consists of the essential spectrum and the

point spectrum(isolated eigenvalugs The essential spec-
trum is given by thosev for which there exist a solution to

Vi~ [0? + aw+(limé cos¢p)v' =0,

X—00

ie.,
vi(x— (0 +aw+1)p'=0 (8)
of the formov'=€**, with « real.
It follows that
—at\a? - 41 +K
. at\a (1+k°) . )

2

It is easy to see that Re@) <0. The right-hand side of E¢9)
is plotted in Fig. 1, withk as parameter.
The above stability analysis shows that solutiéncan be
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FIG. 1. A sketch of the point spectfarossesand the essential
spectrum Eq(9) (thick line9 for two cases ok: (a) 0<a<2 and
(b) @>2. Whena= 2, there is a part of the boundary lines that is at
the negative real line from point-a/2-va?/4-1,0 to point
(—al2+Va?/4-1,0. There is no spectrum with positive real part
implying the linear stability of solutior4).

=-1 or w=0,-a with the corresponding eigenfunctions
given by

[v1,02%,0%]=[1,0,- JeX(tanhx + 1) =[1,0, - Isechx,

[v1,0%,0%]=[1,- 1,0eX(tanhx+ 1) =[1,- 1,0sechx.

This result shows that there are quadruple eigenvalues at
zero when the damping term is absent. A double-zero eigen-

stable. We cannot conclude whether the solution is linearlyalue bifurcates to the left half-plane wheris nonzero. The

stable or not before analyzing the point spectrum.

value =0 gives bounded but not decaying eigenfunctions

To complete the analysis, our next task is to find the poinfrom which we obtain the edge of the essential spectrum

spectrumw. The point spectrum consists of those values of
for which there exist solutions' to Eqg. (6) with boundary
conditions(7) that converge to O at.

[x=0 in Eq.(9)]. A sketch of the locations and the bifurca-
tion of the point spectra is presented in Fig. 1.
Hence, we conclude that the solution given in E4).is

The eigenfunction' that corresponds to the eigenvalue is linearly stable.

of the formt®11
: X = X;
v'(x) = cie”<x'xi)’”i<tanli—)\ H - M)a wW=o’+taw+l,
i

(10)

where Réuw) <0 andc; needs to be determined from H®).
Hence, we obtain

m(Cy+C+Cy) =0,

C1(1 = p?) = cp(1 — p?) = c3(1 = ).

The fact thaty' cannot be zero for ail implies thatu=0 or
pu=x1. From the condition that Rg) <0, we obtainu

Next we will consider the general case of th¢,B2 state
for any given combinations of Josepshon lengths. It is clear
thatx; [see Eqs(5)] can be either positive or negative, but
not all combinations of;’s satisfy the governing equation. In
Fig. 2, we show the sign-set diagram showing combinations
of signs ofx; that are needed for a solution to satisfy the
governing equation® A solution with two +’s has a higher
Hamiltonian energysee Eq(3)] than a solution with one +
for given values of\;.*

To search for an asymptotically stablebg@2 state, it is
suggested to look at tricrystals with the Josephson length of
the 77 arm being larger than those of the 0 arms.

We have obtained an expression for the eigenvalues of the
3¢yl 2 state. Combining Eqg7) with (10) yields a polyno-
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FIG. 2. The sign-set diagram feggn(x,), sgnxy) , sgrxs)). This
diagram corresponds to Fig. 4 of Ref. 4

mial of order 5 inu, with coefficients that depend og/\
and \3/\ ;. Asymptotic analysis shows that one root is less
than —1 if [\o/\q| <1 and|\3/\4|<1. In Fig. 3 we show

numerically that this result extends to general values of
N\o/\; andhz/\;. Remembering thagi?= w?+ aw+1, the two
3 , -
‘ -
: -1.08
)\2:

25
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FIG. 4. The evolution of a @y/2 state(4) with «=0.05 and
\3=0.5; i.e., the Josephson length of thejunction is larger

than the Josephson lengths of the ordinary junctions. As an initial
state, we choose the solution with one positiuelhe release of an

integer fluxon moving away from the branch point shows the insta-
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bility of the state.

plots inform us that when the Josephson lengths differ, a pair
of eigenvalues at the real line bifurcates from the quadruple
zero. This implies instability if there is a Josephson length
different from the others. Further numerical analysis shows
that in this case the other zero eigenvalues move along the
imaginary axis(with negative real part whem # 0). Solu-
tions with one + have another pair of eigenvalues at the
imaginary axis bifurcating from the edges of the continuous
spectrum.

The calculation we have done shows that there is no
stable 3$y/2 state in tricrystal junctions with one arm,
except at some unphysical combinations of the Josephson
lengths. We have used numerical simulations of @&g.to
confirm the result of our linear stability analysis. In the
scheme we takepy(x,0)=0 and ¢'(x,0)=¢, as the initial

conditions. Indeed we observed the same result for the sta-
FIG. 3. (Color online The contourplot of the smallegt as a  bility or instability. In_Fig. 4 we present the evolution of two
function of N\o/\; and A3/\, for the 3py/2 solution with(uppey 3¢/ 2 states for a given value of’s.

one + and(lower two +'s in the (sgnx;),sgr(xy),sgnxs)). A

With the above analysis, it can be easily shown that the

3¢,/ 2 state is marginally stable jfi=-1 which is attained only at ¢y/2 state is stable and thepf/2 state is unconditionally
unphysical combinations. unstable.
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One can also show, using the same analysis, that this never observed in experiments, especially in film
3¢,/ 2 state will be unconditionally stable in the tetracrystalsgeometry* The stability analysis can be applied to discuss
with one arm? One can also calculate that the @2 state  the stability of solutions of other Josephson junction systems.
will be marginally stable in pentacrystals with omearm.  \We also have written systems that can presumably have a
We conjecture that a stabld/2+n)¢, state exists in @ stable(1/2+n) ¢, state.
+1) or more junctions connected to a joint with one of the
arms is am junction. All the stable states require the maxi- H.S. thanks T. P. P. Visser for many illuminating discus-
mum field to be at the jointsee Fig. 1 in Ref. ¥ sions, B. J. Geurts for explanations of numerical schemes,

To summarize, we have described an analysis to study thend J. R. Kirtley for fruitful discussions on experiments and
(in)stability of a state in a tricrystal junction. We have con- manipulations of half-fluxons in tricrystal junctions. He
sidered a special case—i.e¢gd 2 flux—and shown that the thanks also V. G. Kogan for his comment to the draft. This
state is linearly unstable. According to the theory presentewvork is supported by the Royal Netherlands Academy of
in Ref. 4 and combining the result with the stability analysisArts and Science@KNAW) and partially by the PiShift Pro-
we present here gives a clear explanation whypg/2 state  gram.
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