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We consider Josephson vortices at tricrystal boundaries. We discuss the specific case of a tricrystal boundary
with a p junction as one of the three arms. It is recently shown that the static system admits ansn+1/2df0 flux,
n=0,1,2 [Phys. Rev. B61, 9122(2000)]. Here we present an analysis to calculate the linear stability of the
admitted states. In particular, we calculate the stability of a 3f0/2 flux. This state is of interest, since ener-
getically this state is preferable for some combinations of Josephson lengths, but we show that in general it is
linearly unstable. Finally, we propose a system that can have a stablesn+1/2df0 state.
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Half-integer flux quantization is a tool to probe the sym-
metry of unconventional superconductors.1–3 Half-flux
quanta will be naturally created at the intersection of three
grain boundaries if one of the boundaries has a phase shift of
p.4 In a recent paper, Kogan, Clem, and Kirtley4 consider
theoretically Josephson vortices at tricrystal boundaries.
When one of the three Josephson junctions is ap junction, a
half-integer flux is spontenously generated and attached to
the joint. For experimental reports on the observation of Jo-
sephson vortices in grain boundaries with ap junction we
refer to Refs. 1–3. Kogan, Clem, and Kirtley4 also consider a
general case where the Josephson lengths of the junctions
lJ’s are not the same. Besides thef0/2 state, they also notice
the existence of multiple half-flux states—i.e.,sn
+1/2df0, n=1,2.

The system of three Josephson junctions meeting at one
end point has been considered first by Nakajima, Onodera,
and Ogawa.5 The derivation of this system coupled via the
boundary conditions using an electrical analog is given by
Nakajima and Onodera.6 The dynamic behavior of integer
fluxes in this system with three junctions of the same type
and with the same Josephson length has been discussed in
Refs. 7 and 8.

Knowing the eigenvalues of a state is of importance, also
for experimentalists, since one can then predict whether a
particular state can be observed in experiments or not. In this
paper we will calculate analytically the linear stability of
static (multiple) semifluxons sitting at or near the meeting
point of a tricrystal junction with onep junction. We will
consider the general case where the Josephson lengths are
not the same. As an example we will calculate the stability of
a 3f0/2 state. We use this state as a particular example since
energetically this state is preferable for some combinations
of Josephson lengths, compared tof0/2 at the branch point
plusf0 at infinity.4 Nonetheless, calculation of the energy of
this state does not establish the stability of it. In this report,
we will show that this state is in general unstable.

The time-dependent governing equation of the phase dif-
ference along the junctions is described by the perturbed
sine-Gordon equation

li
2fxx

i − ftt
i = ui sin fi + aft

i , s1d

with i =1,2,3, x.0, t.0, anda is a positive damping co-
efficient. The damping coefficient is not necessarily the same
for all the junctions. The subscriptJ of the Josephson length
is omitted for brevity. The indexi numbers the junction. The
constantui represents the type ofith junction. Without loss of
generality, we consider the caseu1=−u2=−u3=−1. This
models a tricrystal boundary with onep junction. The over-
all coupling boundary conditions at the intersection are4–6

f1 + f2 + f3 = 0,

fx
1 = fx

2 = fx
3, s2d

all evaluated atx=0.
The total Hamiltonian energy of Eq.(1) is given by4

H = o
i
E

0

` 1

2
slifx

i d2 + uis1 − cosfiddx. s3d

A time-independent solution of Eq.(1) representing a 3f0/2
flux is given by4

f0
1 = 4 tan−1sesx−x1d/l1d − p,

f0
2 = 4 tan−1sesx−x2d/l2d,

f0
3 = 4 tan−1sesx−x3d/l3d − 2p, s4d

where thexi are determined by Eq.(2). For simplicity we
scalel1 to 1 such that in the calculation we need to consider
only l2 and l3. We will discuss the linear stability of the
state given by Eq.(4), but the method can be applied to other
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soliton solutions admitted by Eqs.(1) and (2). Combining
Eqs.(4) and (2) gives4

2g2g3h3 − s1 + g2
2 + g3

2dh2 + 1 = 0,

gi = li/l1, h = sinf2 tan−1se−x1/l1dg,

e−xi/li =
1 ± Î1 − gi

2h2

gih
, i = 2,3. s5d

The first case we consider is thatli =1 for all i. Conse-
quently we havex1=x2=x3=0.4 In this case the system has
S3 symmetry.9 We linearize about the solutionf0

i . We write
fisx,td=f0

i +uisx,td and substitute the spectral ansatzui

=evtvisxd. Retaining the terms linear inui gives the eigen-
value problem

vxx
i − sv2 + av + ui cosf0

i dvi = 0, s6d

with boundary conditions atx=0 given by

v1 + v2 + v3 = 0, vx
1 = vx

2 = vx
3. s7d

The spectrumv consists of the essential spectrum and the
point spectrum(isolated eigenvalues). The essential spec-
trum is given by thosev for which there exist a solution to

vxx
i − fv2 + av + s lim

x→`
ui cosf0

i dgvi = 0,

i.e.,

vxx
i − sv2 + av + 1dvi = 0 s8d

of the formvi =eikx, with k real.
It follows that

v =
− a ± Îa2 − 4s1 + k2d

2
. s9d

It is easy to see that Resvd,0. The right-hand side of Eq.(9)
is plotted in Fig. 1, withk as parameter.

The above stability analysis shows that solution(4) can be
stable. We cannot conclude whether the solution is linearly
stable or not before analyzing the point spectrum.

To complete the analysis, our next task is to find the point
spectrumv. The point spectrum consists of those values ofv
for which there exist solutionsvi to Eq. (6) with boundary
conditions(7) that converge to 0 at̀ .

The eigenfunctionvi that corresponds to the eigenvalue is
of the form10,11

visxd = cie
msx−xid/liStanh

x − xi

li
− mD, m2 = v2 + av + 1,

s10d

where Resmd,0 andci needs to be determined from Eq.(7).
Hence, we obtain

msc1 + c2 + c3d = 0,

c1s1 − m2d = c2s1 − m2d = c3s1 − m2d.

The fact thatvi cannot be zero for alli implies thatm=0 or
m= ±1. From the condition that Resmd,0, we obtainm

=−1 or v=0,−a with the corresponding eigenfunctions
given by

fv1,v2,v3g = f1,0,− 1ge−xstanhx + 1d = f1,0,− 1gsechx,

fv1,v2,v3g = f1,− 1,0ge−xstanhx + 1d = f1,− 1,0gsechx.

This result shows that there are quadruple eigenvalues at
zero when the damping term is absent. A double-zero eigen-
value bifurcates to the left half-plane whena is nonzero. The
value m=0 gives bounded but not decaying eigenfunctions
from which we obtain the edge of the essential spectrum
[k=0 in Eq. (9)]. A sketch of the locations and the bifurca-
tion of the point spectra is presented in Fig. 1.

Hence, we conclude that the solution given in Eq.(4) is
linearly stable.

Next we will consider the general case of the 3f0/2 state
for any given combinations of Josepshon lengths. It is clear
that xi [see Eqs.(5)] can be either positive or negative, but
not all combinations ofxi’s satisfy the governing equation. In
Fig. 2, we show the sign-set diagram showing combinations
of signs of xi that are needed for a solution to satisfy the
governing equations.12 A solution with two +’s has a higher
Hamiltonian energy[see Eq.(3)] than a solution with one +
for given values ofli.

4

To search for an asymptotically stable 3f0/2 state, it is
suggested to look at tricrystals with the Josephson length of
the p arm being larger than those of the 0 arms.4

We have obtained an expression for the eigenvalues of the
3f0/2 state. Combining Eqs.(7) with (10) yields a polyno-

FIG. 1. A sketch of the point spectra(crosses) and the essential
spectrum Eq.(9) (thick lines) for two cases ofa: (a) 0,a,2 and
(b) a.2. Whenaù2, there is a part of the boundary lines that is at
the negative real line from points−a /2−Îa2/4−1,0d to point
s−a /2+Îa2/4−1,0d. There is no spectrum with positive real part
implying the linear stability of solution(4).
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mial of order 5 inm, with coefficients that depend onl2/l1
and l3/l1. Asymptotic analysis shows that one root is less
than −1 if ul2/l1u!1 and ul3/l1u!1. In Fig. 3 we show
numerically that this result extends to general values of
l2/l1 andl3/l1. Remembering thatm2=v2+av+1, the two

plots inform us that when the Josephson lengths differ, a pair
of eigenvalues at the real line bifurcates from the quadruple
zero. This implies instability if there is a Josephson length
different from the others. Further numerical analysis shows
that in this case the other zero eigenvalues move along the
imaginary axis(with negative real part whenaÞ0). Solu-
tions with one + have another pair of eigenvalues at the
imaginary axis bifurcating from the edges of the continuous
spectrum.

The calculation we have done shows that there is no
stable 3f0/2 state in tricrystal junctions with onep arm,
except at some unphysical combinations of the Josephson
lengths. We have used numerical simulations of Eq.(1) to
confirm the result of our linear stability analysis. In the
scheme we takeft

isx,0d=0 and fisx,0d=f0
i as the initial

conditions. Indeed we observed the same result for the sta-
bility or instability. In Fig. 4 we present the evolution of two
3f0/2 states for a given value ofli’s.

With the above analysis, it can be easily shown that the
f0/2 state is stable and the 5f0/2 state is unconditionally
unstable.

FIG. 2. The sign-set diagram for(sgnsx1d ,sgnsx2d ,sgnsx3d). This
diagram corresponds to Fig. 4 of Ref. 4

FIG. 3. (Color online) The contourplot of the smallestm as a
function of l2/l1 and l3/l1 for the 3f0/2 solution with (upper)
one + and(lower) two +’s in the (sgnsx1d ,sgnsx2d ,sgnsx3d). A
3f0/2 state is marginally stable ifm=−1 which is attained only at
unphysical combinations.

FIG. 4. The evolution of a 3f0/2 state(4) with a=0.05 and
l2=l3=0.5; i.e., the Josephson length of thep junction is larger
than the Josephson lengths of the ordinary junctions. As an initial
state, we choose the solution with one positivexi. The release of an
integer fluxon moving away from the branch point shows the insta-
bility of the state.
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One can also show, using the same analysis, that the
3f0/2 state will be unconditionally stable in the tetracrystals
with onep arm.3 One can also calculate that the 5f0/2 state
will be marginally stable in pentacrystals with onep arm.
We conjecture that a stables1/2+ndf0 state exists in 2sn
+1d or more junctions connected to a joint with one of the
arms is ap junction. All the stable states require the maxi-
mum field to be at the joint(see Fig. 1 in Ref. 4).

To summarize, we have described an analysis to study the
(in)stability of a state in a tricrystal junction. We have con-
sidered a special case—i.e., 3f0/2 flux—and shown that the
state is linearly unstable. According to the theory presented
in Ref. 4 and combining the result with the stability analysis
we present here gives a clear explanation why a 3f0/2 state

is never observed in experiments, especially in film
geometry.4 The stability analysis can be applied to discuss
the stability of solutions of other Josephson junction systems.
We also have written systems that can presumably have a
stables1/2+ndf0 state.
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