Appendix for “Political Shocks, Public Debt
and the Design of Monetary and Fiscal Insti-
tutions” by Beetsma and Bovenberg

Notation: for a generic variable y, we define y¢ =E;_; [y;] and v = y, —v¢.

A Derivation of infinite-horizon commitment
solution.

The central bank selects 7; so as to minimize:

Qr M (71',5 — W?) +

v (me —mf —7¢) — py — fﬂt] 0 [Biy () = mi] + S, [Ltcfi] - )

1
2

where 7} depends only on the shocks y, and 7,, so that E,_; (7}) = 0. The
CB'’s first-order conditions for 7m; and 7§ can be written as, respectively:

) +6; = 0,
)]+0t == 07

Qg (M — 7)) + v (v (T — 7] — 7o) =y —
Eiq[v(v(m —7f—1¢) —

z
-

which can be combined to give:

g (T = m5) v (v (e —mp = 71) = g — ) = B [ (v (mp — 70 = 74) — 1, =

= 0.

The government, which is of the type 7, in period t selects 7, and d; so
as to minimise:

i 2 e ~ 12
_ - —|—[y(7r -7 —7')—,u —m5}+
Ve =g 0RO e reTe T He” ¢
t 2; ag [~ (L+ p) de_1 + 7¢ + de — (G +1,))"
where superscript “G;” indicates that losses are evaluated according to the

loss function of the party that is in power in period ¢. The first-order condi-
tions for 7; and d; are:

—vv(m =7 —T¢) = py — Te) + g [ge — (Gc +1,)] =0, (4)

0



g [(ge +mn;) — gl = B [aEt (Vﬁtl) /adt] ) (5)

g+ (1 +p)diy =7 + di, (6)

and the transversality condition that:

et
lim (ﬁ) des1 =0, (7)

§—o0
with probability 1. The complete system of equations to be used to solve for

the outcomes is (2), (4), (5), (6) and (7). We solve the system first for given
debt policies, after which we also solve for the debt policy.

A.1 Derivation of outcomes for given debt policies

We first derive the deterministic components of the outcomes (step 1). Then,
we derive the responses to the shocks (step 2).

Step 1: take as-of-the-start-of-period-t expectations of the system (2),
(4) and (6) to give:

Oé7rM7Tf - 07 (8)
V2 (15 + ) + ay (95 — G) =0, (9)
g5 + (1+p)diy =75 + df. (10)
The solution is:
™ =0, (11)
Fo—ap = (L] Ko+ (14 p)di — ) (12)
gi— g6 = L2 | 1K+ (L4 p) i — ), (13)

where, as defined in the main text,

P=1/v*+1/a,. (14)

Step 2: Subtract (8), (9) and (10) from (2), (4) and (6), respectively, to
obtain:



(ctmrs + V%) 7 — ey — V7 (78 + &) =0,

—v*r) + 2 (1] + &) + oy (g —my) =0,

ot =i+ il
Combine (15) and (16) to eliminate 7¢ and obtain:

T+ B = w4 (Vo +1/v%) ag (0, — gf)
which can be combined with (17) to give:

g =y = [Hex] w4 [Mee] [af — (% + )],

where, as defined in the main text,

Py =1/am + 1/ +1/ay.

Hence,
ri =y — e [ ad — (4]
Hence,
nl == | Meme] [+ - (B )]
and

ot = [42] st = (2 4]

Using (11), (12), (13), (18), (20) and (21) we obtain:

o=t = Yo () - df -]

(15)
(16)

(17)

(18)

(19)

fo—w = | Y K+ (L ) diy — i)+ [ 2] [( 4+ ) — df = i), (23)

(G n0) =0 = [ Y52 (Kot (1 ) dooy — ][22 ] (3 4 m) — ! -

*
7] .

(24)



A.2 Derivation of the solution for public debt

We are now in a position to characterize debt policy. From now on in Ap-
pendix A, we set 7} = 0. To evaluate OE, (V,5}) /dd;, forward (22), (23) and
(24) by one period and substitute the resulting expressions into government
Gy’s expected loss in period t + 1,

%Et |:a7l'7Tt2+1 + (Teg1 — 57#1)2 + g (ger1 — (Gev1 + ﬂt))Q} :

The derivative with respect to d; of the expression thus obtained is:

By | (@1 — @) (L4 0) | 2] + g G + = i) (L 0) | 22 |

Hence, combining this with (5), we obtain:

v

g (g: +np — g9¢) = BEq [(i‘tﬂ — Tty1) [%} + (Ger1 + 1 — Gry1) [%H :

Combine this with (24) and the one-period forwarded expressions of (23) and
(24), to give:

(B (Ko (Ut )iy — )+ || [(3 ) — ]
= B'E [(*%tJrl — Tyy1) [pr} + (Gt + My — Gr1) [%H -

Hence,

v

= { [Kt+1 + (L +p)d; — dfﬂ} + 77t} ) (25)

Ko+ (1 ) dos — )+ [2] (2 +9,) — ]

where we have used that E; [n,,,] = 0. We solve (25) in two steps.
Step 1: take expectations of (25) as of end of period ¢ — 1:
Ki+ (1 +p)diy —df = 0" Koo + (1+ p) df = Ey1dyi] - (26)
The solution is:
Ky + (14 p) din] — 8" [Ki1 — Eiy (dig)]
1+ 3" (1+p)

An explicit solution for df will be derived later on.

s = |

. (27)
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Step 2: Subtract (26) from (25):

[%} [(% + 77t> - df] = 5* (1 + P) df + ﬁ* (EtfldtJrl - EtdtH) + ﬁ*nt' (28)

Hence,

. B* (Pyr/P
df = [Hﬁ*(lﬂ})(fj&/l’)} (% + 77t)+ {1+,8*(1(+2)J(P;()4/P)} [E¢ (di1) — Eiq (dygr) — 1) -
(29)
We can find the final solution for d¢ as follows. Forward (27) by £ > 1
periods. Next, take expectations as of end-of-periods ¢ and t— 1 and subtract
the latter from the former, to obtain:

14p) | Bt (diye—1 ) —Et—1(deye—1) | +8" |Ee(diqet1 ) —Er—1(diqeq1
E; (dire) —Ei—1 (dise) = Gl CICRS)) 3 ﬁiﬁ%p)[ (direi) 1(deres )]
(30)
Guess that E; (die1) —Ei 1 (diper1) = @B (dive) — Er1 (diye)], V6 > 1,
where ¢ is a constant to be solved for. Substitute this into (30) and rewrite
the result to yield the following equation in ¢:

B —[1+8 (1+p)]e+1+p) =0

This equation yields two solutions: ¢ = 1 + p, which is excluded, because it
violates (7),! and ¢ = 1/3". Using this solution, for £ = 1 we can write (30)
as:

1
Ey (dt+1) —Ei (dt+1) = ﬁdf-

Substitute this back into expression (29) for d¢ and rewrite to give:

i = [ [+ 0 BidPynl. G

L'We have that Ey (deve) —E¢ 1 (dire) = (1+p)° [Eq(di) —E¢ 1 (dy)], so that the
effect of a shock in period ¢t on public debt “explodes” over time. Taking

13
lime o (755 ) (Bt (disern) = Bt (disesn)] = (14 p) [Be (d) — B (d)], which is gen-
erally non-zero.



A.2.1 Derivation of an explicit solution for E; ;d,

Using (12), we have that:

32)
T — B mipe = [pr} (Kive + 1+ p) B 1dipe 1 — Eiq1dige] =

(33)
]

Ty — Bioa®ipen = [Lpﬂ [Kiverr + (14 p) Eirdige — Ei1diieqn]

where £ > 0. Note that

Kive + (1 +p)Eimrdiye1 — Eio1dige

[14+8* (14p)] [Kt+g+(1+p)Et—1dt+g—1] — [Kt+§+(1+P)Et—1dt+§—1] +5* (Kt+§+1 *Et—ldt+g+1)
146 (1+p)

(4 p) [Kive + (14 p) By adie 1] + (Kirerr — Er1dieqn)
1+ 53" (1+p)

= B

where we have used (27) (with forwarding) for E;_;d;¢. Again using (27),

Kiver1 + 1+ p)Einadire — Eioqdige

(148" (140)) [Kir g1 —Eem1dire i1 |+ (140) [Ki e+ (14+9)Er—1diye—1]—B" (14p) (Krye 11 —Er—1diyet)
1+8*(14p)

(14 p) [Kige + (14 p) Ei1dige 1] + (Kiverr — Eio1digeqn)
1+ 3" (1+p)
= ,gL [Kt+£ +(1+p) Ei_1diye1 — Et—ldt+g] .

Hence, combining this with (32) and (33), one has:

Tryer1 — B 1@ien = ,gL [Zere — Er12e4e] - (34)

Similarly, we find that

Girer1 — Er1giien = gL [Gtre — Et—1Gise] - (35)

Taking expectations of the intertemporal government financing require-
ment as of the end of period ¢ — 1 and combining the result with (34) and
(35), one obtains:



(1+ P)iﬁ [(Zere — Be1zoye) /v + (Gire — Ee1give)]  (36)

S
[
M8

£=0

|| 1@~ By /v + (3~ Biag)].

I
]38

£=0
Hence,
= (% — Eeamy) [v+ (g — Beoagr) = ngFtu
where
B (1t
g = EiAesL, (37)

Using (12) and (13), we have that (mt —Eim) Jv = (ay/V?) (G: — Bt 191)
and, hence,

(5= Bpam) fv = [LE]wlF, (39)
~Eoag = [4e]fR. (39)
We use (38) and (39) to obtain an explicit solution for E;_; (d;). Take

expectations of the government financing requirement to give

Ko+ (1+p)diy = Erady = [( — Eeame) /v] + (90 — Eicage) . (40)
Hence, using (38) and (39) and the definition of F; one has:

Kt + (1 + p) dt—l — Et—ldt = ’lpg [(1 + p) dt—l + Gt] .

Hence, using the definition of Gy:

Brady = Fdig+ Ko =00 (1+p) VK,

=t
_ | ~le~(t+1)
= Floa+ Kt [ — 1 w5 2 (1+0) Ke
E=t+1
= ﬂ* Fde1+ e, Gt — 1+th+1
Gi—Gy 1-8*)Gy



Using (38), (39), (22), (23), (24) and the solution (31) for d¢, one ob-
tains the complete solutions for inflation, the output shortfall, the spending
shortfall and public debt:

m= [z [ga (B + ) +agm] (42)
7w = L] 0 R+ 2] [ (% +m0) +aom] (13)
(Ge+ 1) — g = [1/;9} o F + [1@9} @2 (B +m,) +asn,], (44)
o= ooy + 9050 g [ (1= )] (9
where
(P3/P)15" (1+p) 1] _ B (Py./P)

761251 q3 =

_ 1
D= Py /P) (6 (1) -1) +(P3/P)[B* (1+p) 1] 1+(Py,/P) (B (14p)—1)

B Solutions for the two-period model with
commitment

B.1 The case of no targets
B.1.1 Outcomes conditional on debt

Setting 7} = 75 = 0 and realizing that d§ = d = 0, we obtain the first- and
second period outcomes for inflation and the output and spending shortfalls
directly from (22), (23) and (24):

m= ] [ ) — ] (46)

T1— 1 = [qu (K1 + (L +p)do — di] + [gﬂﬂ (5 +m) —di], (47)

(G1+m)—91= [1/39} [K1+ (14 p)do — de[%} (& +1ny) —df], (48)

and



my = | gz ] (% 4 ny), (49)
= Y|+ (o) d]+ B (2 4m),  (50)
G2+ 1) — 92 = [H2 ] o+ (L p) di] + 2] (B2 ). (5D)

B.1.2 Solution for debt

The first-order condition for public debt is given by (25) for t = 1 with d§ =0
imposed:

[K1+ (14 p)do —di] + [P];CJ [(% + 771) N dﬂ
B {[Kat (14 p)di] 4} )

We solve (52) in two steps. In the first step, we take expectations Eq[.] on
both sides of (52) and solve to give:

e _ [Ki+(1+4p)do]—B*K
d = Bt Ky (53)

In the second step we take difference of (52) and its expectation and solve to
give:

1= L m 14 (Py/P)
dy = L—i—,@*(l-kp)(P&/P)} s T [1+ﬁ*(1+p)(PXI/P):| M- (54)

B.1.3 Final solution and society’s expected loss

We substitute the solutions for the public debt components d§ and df back
into (46)-(51), to obtain the final solutions for inflation and the output and
spending gaps in the two periods:

T = |:1/3£Mi| ¢1 (%) + |:1/;1T7:[Mi| (%ﬁ) ¢17717 (55)

1= ] i) B[] 0 29+ [] (89 o 0

@1 +771) — 01 = |:1/]‘Dlgi| |:1fﬂ(*1(—;i)p)i| Fy + [llé?/[g} ¢1 (%) + [%} (%) ¢1n1,
(57)



mo = | Mgz | (% 4 my), (58)

~ 1/v 1 1/v 1
Ty -1y = [%} [ﬁ(fﬁm} £+ [%} [ij/p)} v () +

[i;} {%} Y1 + [}D/;ﬂ (52 +m), (59)
(G2+m2) —g2 = [l/lgg} [1+ﬁljzf+p)} Fy + [1/;39} {ﬂ*(Pl* /P)] (U0 (%) +

] [y o+ [ @ e, @

where, as defined in the main text,

_ B 0+n)(Py/P)
V1= 144" (1+p) (P}, /P)” (61)
We can now use (55)-(60) to compute society’s expected loss:
Eo [Vi¥] = 3Eo [anm] + (21— 31)" + oy (91 — 51)]
+%5E0 [owr% + (29 — 9772)2 +ay (92 — §2)2]
- T1+T2+T3+T4+T5, (62)
where T1,.., Ty are defined in the main text.
B.2 Debt target combined with inflation targets
Substituting
ﬂ': = )\Ot (%) + )‘17577157 t= ]_,2, (63)
di =7+ N5+ e (64)

into (22), (23) and (24) yield the following outcomes in periods 1 and 2:

m = [ () + A + {Ug—;ﬂ (1= = o) 2+ (1 =75 — M) mi ]



.i'l—.iL'l = |:1 Ui| K1+ 1+P)d0 70]

P
)

(G1+m) — l/ﬁ} (K1 + (14 p) do — 7]

} [(1 - Y~ )\01)% + (1 — Y2 — )\11)771} )

1/

*
M

gl

and

To = [Aoz (£2) + Aiamy) + [1/;—;”} [(1=Xo2) &2 + (1= Ai2) ]

Tog— 1Ty = } [KQ + (1 +p) (70 + 72 +72771)}
1/v

(1= Do) 22 4 (1= D) o]

1

\

Qg

} [KQ + (1+p) (70‘1“’71”_,,1 +72771)}

[1/%} (1= Xo2) &2 + (1= Ai2) my]

where we realize that d§ = d4 = 0. Substitute these outcomes into the
expected social loss, to yield:

Eo [VS] = 1Eo[ann? + (21— 81)* + ay (g1 — §1)7]
+30E0 [0 + (w2 — 22)° + g (92 — §2)°]
= C1+Cy+C5+Cy+ (Cs1 + Csz) + Cs + (Cry + Cra) , (65)

where

10



G = b [ )
2 o2
Oy, = —Oéw [)\01 + l/a”M (1= — AOl)} 2 (67)
1 1=y, — Aot)’ %
+3 (P* ) 5 ( Y1 — Aot) R
Cy = 10°(1+p) L73%. (68)
2 o2 o2
G = doc ot (1= don)]| B4 3t (- a B (69)
M
2
Cs1 = % Qr [)‘11 + l/aWM (L=, — All)} 0727 (70)
—I—% (P]*D)z (1 — Yo — )\11)2 07277
M
Cy = la, {1—2(1/;9) (1—72—)\11)} o2, (71)
Cs = 38" (1+p) $7i00, (72)
2
Cn = j0x [/\12 + % (1- )\12)} ont 3 (Pf)Q (L= Ai)’ oy, (73)
M
072 = —Oég |:]_ -2 (1/1(\:;9) (]_ — )\12):| 0',,27. (74)

Here, (] is the expected loss associated with the deterministic component
of the intertemporal government financing requirement,?> Cy and Cs are the
expected losses in the first, respectively second, period from imperfect sta-
bilization of p,, Cy is the expected loss from imperfect stabilization of p.,,
Cs1 4+ Cso and Cjy are, respectively, the first- and second-period expected
losses from suboptimal stabilization of n,, and C7; + Crs is the expected loss
from imperfect stabilization of 7,.

B.3 Inflation targets only

Substituting (63) into (22), (23) and (24) yield the following outcomes in
periods 1 and 2:

m = Por () +dum] + [l/g—;w} (1= Aor) B2+ (1 = M) g — ]

#i—ay = | Y| [Ky (L4 ) do — diTo | ] [(1 = Do) B4 (1= Ay — o]

2Here, we have already made use of the fact that society’s optimal 7, is (53).

11



(G +m)—g1 = L2 | [+ 1+ p)do — i)+ | B2 | [(1 = hon) & + (1= M)y — ]

and

mr = Aoz (82) + Awamo] + [ 2522 ) (1= Aoa) & + (1= dz) o]

To — Iy = [LPV} [Ky+ (14 p)di] + [}D/Xﬂ [(1=Xo2) &2 + (1= Ai2)my]

(G2 +1m2)—g2 = [1/,?9} (K2 + (14 p) di]+ [%} (1= Xo2) B2 + (1 = M) 1] -

As in the case without targets, the first-order condition for public debt
can be written as:

ag (G1+m —g1) =B [$] [Ka+ (1+p)di+my].

Hence,

[+ (L p)do — ]+ [2] [(1 = hon) & + (1= M)y — ]
= B [Ka+ (1+p)ds +7y].

As before, taking expectations of this equation, we can solve for df. Next,
subtracting from this equation its expected version, we can solve for d¢. The
complete solution for public debt is:

_ [K1+(1+p)do]—B Ko 1-Ao1 oy 1= 8" (P;,/P)
= TG Lw*(wp)(PmP)] 2 [uﬂ*(up)(zﬂmzﬂ) m- (75)

Using this expression for d; in the above expressions for inflation, the output
shortfall and the spending shortfall, we obtain:

mo= Do (8) + ] + [Yez| (1= dor) ot

(O
L+p
3Substituting the optimal values for Ag; and A;; that we find in Appendix C below, we
obtain expression (4.3) in the main text.

+ [Hez] 14+ (1= aa) (14 ) o,

12



Ty -1 = 1_;} l—ﬁ&-*ﬁ("l(—;i)p)Fl + [I/V} (1= Aor) vy 5t
v (U
+ [He] 1+ (=) (14 ) o,
(Gi+m)—g = {1/1;19} 1+g(*1(ﬁ)p)F + [1/%} (1—Xo1) ¥y x
ay (0
] n e a-a el
and
= Do (%) + Moamo] + [ | (1= 2ow) 22 (1= Nz ]
~ 1/v 1 1/v
Ty — X2 = [% [1+,8*sz+/))} i+ [ / } W}J/p) (1= Aor) ¥, 5
+ _1 V} W}ﬂp) (1= Aux) = B85 (P /P oym
+ 1XZ:| [(1—A02)M—I/2+(1_)\12)772:|,
(G2+m2) —92 = _ fal } [HﬂHﬁp)} F+ [1/%} W}ﬂp) (1= Xor) o B2

/g } m (1= A1) — B (Py/P)]¥ymy

* [1141’\?;9} [(1 —Ao2) 2 + (1 = Ai2) ?72] .

As before, substitute these outcomes into the expected social loss, to

yield:
EO [Vf} = Cl + 02 + é3 + 04 + (051 + 052) + C'4(6 + (071 + C'72) 9 (76)

where Cy, Cy, C7; and Cry are given by (66), (69), (73) and (74), respectively,
and

13



U 0'2

Cy = [A01+1/Q’FM (1—>\01)@/J1} %+ %(P]*D)Q (1—/\01)2@/1%;5‘7
M
2
A 1gl 1 )2 2%
C’3 - Qﬂp |:/G*(PJT4/P):| (]- )‘01) 1,/57
Con = doe [+ Hgp (U050, | o2 4 4 (Reliinl) gt
O = dou[1=2 () () v o)
2

5~ _ 151 (12 (Py/P) 2 9
Ce = 555( 5 (Py,/P) ) ¢1%

The components of (76) stand for: C} is the expected loss associated with
the deterministic component of the intertemporal government financing re-
quirement, C5 and Cjs are the expected losses in the first, respectively sec-
ond, period from imperfect stabilization of y,, Cy is the expected loss from
imperfect stabilization of p., Cs; + Csy and Cg are, respectively, the first-
and second-period expected losses from suboptimal stabilization of 7,, and
Cr + Cry is the expected loss from imperfect stabilization of 7,.

C Proofs of Propositions 1, 2 and 3:

C.1 Proof of Proposition 1

We have to minimize (65) with respect to axar, Ao1, 71, A1, Yo, Aoz and
A12. Hold agps constant until further notice. All expressions in the other
parameters are quadratic and the second-order derivative of (65) in each of
these other parameters is always strictly positive. Hence, by solving the
first-order conditions, we obtain the optimum.

Taking the first-order condition with respect to Ag;, and rewriting, yields:

ar [PAor + (1/azar) (1 —71)] = (1 =71 — A1) (77)

= (1—|—Oé7rp) )\01 = (1—Oé7r/Ckﬂ—A[) (1—’}/1) (78)

Next, take the first-order condition with respect to v, and rewrite to yield:

2
e (1+P)(p) = ac:w P>‘01+$(1_71) +P(1—7 = Aor)-

14



Combine this expression with (77) and solve to give:

vy = (arn/axy)+ox PAo1
1 (a‘rr/aﬂlﬂ)—i_ﬂ*(l—i_p) (PIT/I/P) ’

Next, combine this expression with (78) and solve to give the solution for
)\012

— (2 1 B*(1+p)/P
Aoy = (a_ﬁ o a.,rM) [1+,@*(1+p)(P*/P)} : (79)

Substitute this back into the expression of v, and solve to give:

Qg _Qx *(+p
QM ( — aTrM) [1+ﬁ*(1+ﬂ)(1’* /P)}
(an /atmas)+B (14p) (P / P)

O Qg

148" (149 o |+ (1- 525 B (140)

— 1 O
[1+ﬂ*(1+P)(P*/P)} 5% (14+p) (14+-LF M)

Y1 =

Qg

* * oy
oy O (14p)+B" (14+p)=—F

1
[Hﬂ* (1+p)(P*/P)} 5% (14+p) (1415

_ 1
= TFEGAE (80)

Further, note that if oy = a,, then Ay = 0.
Take the first-order condition with respect to A1, and rewrite to give:

PAy = (a% - ajM) (1—7,) — L5 (81)

Next, take the first-order condition with respect to v,, and rewrite to give:

[0 [e3 * Py ?
e (o) (R o) Frr s B

an ar 1 1 P 1 Py *
= (e r)+ (e ) (& o) & -] -
Working out the coefficient of 7, as well as its right-hand side, this expression
reduces to:

é (a_lw B a: M ) PP
V2 = TRF AP (82)

Substituting this into (81), we can solve for Aj;. Finally, we observe that, if

Qrpr = O, then A = —a—{r% and v, = 0.

Taking the first-order condition with respect to Ag2, and rewriting, yields:

re= (£ -2k ) & (83)




Next, take the first-order condition with respect to A15 and rewrite to give:
A1g = —ﬁﬁ (84)
Finally, we solve for the optimal value of a,,,. To this end, we inspect

each of the terms C1, .., C7, that together form (65). The term C; does not
depend on o yy.

As regards to the term Cy, we observe from (78) that we can write:

L= — o1 = [71 aw/awlv[:| Pzt[)\m

Hence, we can write:

q

1 1 202 1 202
Ca = fou | (vt ) M| 3447 (=) o] 4

2
2 9
2 * T
awP |:(1 a,r/awM) } V2

2

©w

* * 2 o
B (4p)(P /P))} % (85)

N |=

N[

1
BT | THA (11p)(P7/P

where we have used (79). This expression does not depend on a ;.
Next, we observe that C'5 does not depend on o, because v; does not
depend on o yy.

We turn now to the term C,. With the help of (83) we can write this
term as:

5 )] o Pl |
C — lOé X M + amr  %xM _H‘i‘l P ar  arM Ty
4 20T | TPy, P*P;, v2 T2 (Pfh)z P* 2
2
1o (1 41
= 1y O‘wM(a +P)+P(a7r %M) 7 + 1_P 3121
7r P*P3, 2 2 (P*)2 V2

which does not depend on ;.
Now, turn to the terms C5; and Css. First, using (81), work out:

L=vy—An = (1_72)_(%#_L)%(1_72)+a—1§%




Also, using (81),

A1+ (1/3—;”) (L= — Ann)
= PIEJ A1+ (1/;1»\3;”) (1—12)
- g (- a) 0o - () 00

1/ax 1/orn
= fa* (1—72) — fa*

1/ax
T p Ya-

Hence, the first component of C5; is minimized by setting a.y; = a,, because
in that case 7, = 0, by (82). Next, take the sum of the second term of Cs;
and Csa:

2 .
1i_p (Py) (e o2 4ly o2 4 LY Py 52
2( )2( L) (7 —12) Tp T 30, + B2 P (v2 = F) o,
P

. 1 * 2 1 2 1 P 2
T 2(p)? (5 —72) Ty + 3090 T P (72~ %) 7
- [%%_%’YzJF%(Pf)”gjLPl*%_H 7+ 307

_ [_i1,1p 2,1, 2
= |: 2P+2(P*)2'72:| Un‘f‘QOégO'n.

This is minimized by setting o,y = a,, so that v, = 0, by (82).

The term Cg is minimized by setting a;a = o, so that v, = 0.

Finally, we turn to minimizing C7; and Cry. Substituting (84) into the
expression for C'71, we obtain:

2 2
=1 P 1/anm 2,1_pr (Py 2 _ 11,2
071—20‘W[(P;;4))‘12+( 7, )} Un+2(P* Ik (P Oy =2P%
which does not depend on a; ;. Finally,
1, 2 1 2 1. .2 1.2
C72: 504907]—@(1—)\12)07’— 20490'7] PO-7I’

which also does not depend on o y,.

To summarize, we have shown that each component of (65) does not
depend on ay )y, after the other parameters have been chosen optimally, or
is minimized at o, = o
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C.2 Proof of Proposition 2

We have to minimize (76) with respect to axar, Ao1, A1, Aoz and 2. The
optimal values for A\gs and A1, follow directly from the proof of Proposition 1
and are thus given by (83) and (84). Hold a;ps constant until further notice.
The expressions in A\g; and A\{; are quadratic and the second-order derivative
of (76) in either of these two parameters is always strictly positive. Hence,
by solving the first-order conditions, we obtain the optimum.

Differentiating (76) with respect to A¢g; and using a substantial amount
of straightforward algebra yields, as before, the solution (79) for Ag;. One
can check that this must be the optimal value, because (as we show below)
it implies that Cs and Cs equal, respectively, Cy given by (85) and Cj given
by (68) with (80) substituted. Because the latter two are the corresponding
expressions obtained with both optimal debt and inflation targets, they must
lead to the lowest stabilization loss associated with p,.

The first-order condition for Ay is:

[}\11 + 1/a7rM (1+(1*1/\J1r1p)(1+P)) 77[}1} [1 _ I/SXZM@ZJI} _

P 1+(1-M1)(A+p) _pl 1’)‘11*/8*(PX/1/P) 2
(P&)Z [ 14+p }Qpl PXJ¢1 ﬂp { (ﬁ*(Pz’\%/P))Q 1
= 0

S Qg [1 — —1/an @/11} A1+ [—%/XM} B_Jrg} ¥y [1 - l/zng@/Jl}

o |:a7r/a7rMi| Qpl |: 1/a7TM77/}1i| A1 — ( f)2 fiz@bl P}&Qpl

B {1ﬂ*(PX4/P)] ¢2+ 1 )2
P R 3 (Py,/P)

(67 (P31/P))
)|+ (o) (322) v -

Q 2 16 (P /P) | o 14+8*(1+
. (Jﬁ) Wi+ P =) — 5 {TMz 1t (Pg)'z ﬂ*(1(+pp)¢ A1l

+ % YA

(Pir)”

_ Qr /Ot Q P 1 2
S A |‘Oé7r 2 ( Pz, ) ¢1 + ((P};I)Q + (PJT/[)Q ﬁ*(l—i—p)) ¢1:|

_3*(p* aa?w f_iﬁ 1
- e [




With quite a bit of straightforward algebra, we can write:

aw/aw P 1 2 _ ox[148"(1+p)][1+8* (1+p)(P*/P)]
_2( M)¢1 ((PXJ) + (P]’\K/I)Qﬁ*(l""p)) Lbl_ p p 5 .

[14+8*(P3,/P) (1+p)]
Hence,
1-8*(P:, /P . 2 [-2x (22)4 . .
{(234)2(1 )48 EEA (( 71)))) (5 ae) {—”M S;;) (v )| [ St 14|

ax [14+8" (1+p)][1+8* (1+p)(P*/ P)]

Some algebra shows that the numerator of this expression can be written as

—[8°@2+p) /P 7= 1+ 3" (1+p) (P*/P)],
so that

A= L 1 8@+ (86)

azy P 145" (14p)
Finally, we solve for the optimal value of a,,,. To this end, we inspect
each of the terms that together form (76). The term C; does not depend on
arpr- As regards to the terms Cy and C’g, we observe that:

B*(1+p)(P;,/P)
(1= 2Xo1) ¥y = Tamrgie 7o)
and
1/a7T _ pr(4p)iex
Aot + 25 (L= 2o) ¥y = a7
so that
2 2
G — 11 [_ s 1Poh a1 p | EO(PL/P) | o
2 = 2% [TEaerTR] o Ty | e | v
_ ;P*[ 5" (14+p)/P rzﬁ
- 2 1+6*(14p)(P*/P) | v2°
and

¥ |:qw

] 2
Cy=1(8"(1+p)/P] [W} v

both of which do not depend on ;.
The optimal value of A\yps is the same as in the proof of Proposition 2.
Hence, C4 does not depend on o yy.
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Next, we turn to Cs; and substitute (86) and (61) for A;; and v;, respec-
tively:

Cs1

2
1 Vany (24p ﬁ*(l-&-ﬂ)(PX/f/P) 2
20 {A“ TR (1+P ’\“) B (1) (P /P) |

2 . . 2
1_pP 24p B (1+p)(P;,/P) 2
T2y (1+p A“) Lw*(up)(ﬂwlﬂ) 7

2
- 1 24p (/anp)B*(1+p)/P 2
= 20 {All + ( )‘11) 1+ﬂ*(1+p)(P;4/P)] Ty

2 2
11 (24p _ B (1+p) 2
+2P( ’\“> {1+ﬂ*(1+p)(PX4/P)} Tn

o P1iB (tp T+p 8" (+0) 146 (1+9)(P;,/P)
2 * * 2 2
TR o | RREATECIG 01 WO e
2P \ T+p 1+8*(1+p) 1+ﬂ*(1+P)(PJT/1/P) K

2 2
_ 1 1 (2+4p) B (+p)/P 2+p\ (/arm)B"(1+p)/P 2, 11 | _B*(2+p) 2
= 30 [_aﬁM (1+p) 1+8* (1+p) + (1+p> 1fﬂ*(1+p) } Ty +37 |:1+,@*(1+p)} T

2
aw{ 11 ,@*(2+p)) i (%_p) 145" (1+p) (P, /P) (1/aﬁM)ﬁ*(1+p)/P] o2

_ 11 |_B"(2+p) 202
2P | 14+6*(1+p) Uk

which is independent of .
Now, we consider Cjq, which we can write, after substituting (86) and
(61) for Aj; and 1), respectively:

5 1 2 (1 24p\ 148" (+0)(Pi,/P) B (14p)(Pi/F) o
Csa = 2%y (P;;I) (H—p) 1+8*(1+p) 1+ﬂ*(1+p)(P;4/P)an
— 1, g2 _ B@ip)/P 2
= %0y T T (14p) O

which is independgnt of arar.
Next, turn to Cs. We observe that

* [ D _ 1 1_B(2+p) *Ptl/an
L= =B (Py/P) = 1+a,rMF1+ﬂ*(1ip)_ﬂ P
. 1 1 g% 21+ *
= l+50% [1+,@*(f+p> - 1} -
_ * 1 1_p*(1+p)
= (1-79) [1+mﬁl+ﬁ*(l+p)}
B e | 148" (140 (P}, /P)
- (1 -3 ) [ 1+ﬂ*(1+2§ } ’
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Substitute this into the expression for Cg and rewrite, using (61) for 1, to
yield:

2 2
% 1p1 2 1 148°(1+p)(P;,/P) B (1+p)(P;,/ P) 9
Co = 3fp(1=F) [,@*(PJQ/P) 87 (1+) ] L+,@*(1+p)(Pj(4/P) Tn
2
_ 11 *) 2 14 2
= 18:0-8) [t |

which does not depend on ), either.

The optimal value of A5 is the same as in the proof of Proposition 2.
Hence, C'7; and Crs do not depend on a;py.

To summarize, we have shown that none of the components of (76) de-
pends on a; s, after the other parameters have been chosen optimally.

C.3 Proof of Proposition 3

The term T does not depend on a.;p;. We can write the term 75 as:

1| _Qu 1 P 2 (95 2
2 [(PX/[)Q + B*(1+p) (PJTl)Z:| ¢1 (l/g +0W)
2
Qum 11 B*(1+p) o2 2
Pt Fa P} [Hﬂ*(PXI/P)(Hp)} (7% * U”)

1 % o2 2) P+5*(1+p)Qum
— 15 (+p) (3 DB (0
20" (L+p) (3% + oy [P+8* (1+p)Py]”

We only need to consider the final factor. The sign of its derivative with
respect to a;js is given by the expression:

[P+ (1+p) Pig] =2 (&= )+ 5" (1+p) -
ﬂP+ﬂ%1+MQMHﬂWl+m*_(éy)

- @) iRy

O M

- (F)Fapi+sa+pl[t-22]n

QM

which is negative if a;p; < o, zero if agp = o and positive if o > ag.
The sign of the derivative of the term T5 is given by:
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Pir (o) — 20w ()
- o fou (25) )
= 24-Pl1-2x),

1
2
QM

M QM

which is negative if a;p; < o, zero if agp = o and positive if o > ag.
We write the term T} as follows:

Ty = § (Taa + Tuz + Tus) ¢%0727,

where
T :a:M(a:rvzfl T, — Qum T :ﬂl
41 (1+P)(PJT4)2 y 442 (1‘*‘/))2(1);1)2’ 43 P
Hence,

0n _ 1 ( 0T OTw 4 OTis ) 102+ (T + Tz + Taz) ¥y ( 2l )05-

Oaq 2 \ Oaqnm Oaq Oaq Qo
(87)

We observe that 0v,/0ay < 0 and that 0Ty3/0ap = 0. In addition,

0Ty _ _1 (1_2;:»1)PXI+O‘:M(a(:lrw_l) — _1 1 [_ 1 _‘_(1_204_77) P}
Oy pr aer (1+P)(Pj(/[)3 @ )

el (14p) (PI’\‘/I)3 M QM

which is negative for o,y < a,. Further,

2
0Ty _ m(l_a_iﬁﬁ)]j
8a7rM (1+P)2(PX4)2 ’

which is negative if oy < o, zero if agy = o, and positive if agy > ag.
Hence, T; is minimized by making ., > a.
Let us now turn to the term 75. We have that

Os . _ 1 [ﬂ*(l/P)]2(1+ﬂ)(2+p)2 2 .
Bar Gem (146 (P /P)(14p)] 7

Further, we have that:

sy _ 1 1
Ocr o o (PX/[)

20727 < 0.
This confirms Lemma 3.
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D Derivation of infinite-horizon discretionary
equilibrium.

D.1 General part of the derivation

In period t the CB minimizes over m:

VO = Hopumi + v (m — 7y —70) — py — i’t]Q} + BE, [VST] -

Because E; [V;Jcrﬂ does not depend on 7; (the state variables are the coun-
tries’ debt levels), the CB’s first-order condition is:

Ay + v (m —m — 1) — py — T = 0. (88)

The government selects 7; and d; so as to minimize (3). Again, the first-order
conditions are (4), (5), (6) and (7).

We solve first for the intratemporal allocation. That is, we solve for
inflation, taxes and spending as functions of public debt. The system to be
solved at this stage is thus (88), (4) and (6).

D.1.1 Derivation of outcomes for given debt policies

We first derive the deterministic components of the outcomes (step 1). Then,
we derive the responses to the shocks (step 2).

Step 1: Take as-of-the-start-of-period-t expectations of the system (88)
(4) and (6) to give:

Y

Qe — U (Tf + @) =0, (89)

v

(9) and (10). The solution of the resulting system is:

me = (M58 | 1K+ (14 p) doy — d] (90)

(12) and (13).
Step 2: Subtract (89), (9) and (10) from (88), (4) and (6), respectively, to
give (15), (16) and (17). The solution of this system has been computed be-

fore and is given by (18), (20) and (21). Combining these last three equations
with (90), (12) and (13), we obtain:

mo= |5 Ko+ (Ut ) dioy — i)+ 2] (5 4m) —df] . (O)
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Fy— oy = [% [Ki+ (14 p)dy 1 — df] + [%} (5 +ne) = i), (92)

Ge+m) = g0 = [22e] (Ko (1 p) oy — )+ [H2e] [( ) — ).
' (93)

D.1.2 Derivation of solution for public debt

We are now in a position to characterize debt policy. To evaluate OE; (th’i) /ody,
we forward (91), (92) and (93) by one period and substitute the resulting ex-
pressions into:

-2 ~ 2
%Et [OZWW?H + (@41 — Te1)” + g (41 — (Ger +1¢)) ] :

The derivative with respect to d; of the expression thus obtained is:

armi1 (14 p) [WT”M} + (Ze1 — 241) (1 + p) [1/7”} -

t ~ o
g (Ger1 + 1 — ge1) (14 p) F/ g}

Hence, combining this with (5), the first-order condition for d; is:

} + (Te41 — Tey1) [i;:| +

(Ft41 + 1 — go11) [%]

a‘rr/awM

- % T
ag (G +n: —g¢) = B°Ey t“[

Combine this with the expressions for w1, Tr11 — Ter1 and Ger1 — g1 Ob-
tained from (91), (92) and (93) to give,

(5] 5+ (1 p) dioy — 5]+ [ [(% +m,) — ]
= ﬁ*{[ }(Kt+1+(1+ﬂ)dt dt+1>+[% }’

because E; [n,,,] = 0. Here (as in the main text):

Q]V[:Oéﬂ/Oéi]V[—f-l/l/Q—f-]_/Oég, (94)

Hence,
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B [(4) (K + (L4 p) dy — d5 ) + 1] - (95)

We can solve for public debt in two steps.
Step 1: take expectations of (95) as of (end of) ¢ — 1:

[Ki+ (1+p)diy — di] + [%} [(& + 77t> - dﬂ =

Ki+(1+p)di1—di =
B (%) (Ko + (L4 p)de — diy) +e] - (96)
The solution is:

Ei_1dy = [Ki+(1+p)di—1] -6 (Qns / P)(Keq1—Er—1de41) (97)

1+6"(1+p)(Qu / P)
Step 2: Subtract (96) from (95):

T ) — ] =57 (L) (%) i+ (99)
B (4) [Bemy (diga) — Ex (diga)] + B,

and solve this to yield:

d_ 1 e _ B (/)

%= L+ﬂ*(1+p)(PX4/P)(QM/P)] (5 +m) Lw*(wm(%/p)(@,w/p) e
B*(P3;/P)(Qu/P)

{Hﬂ*(Hp)(P&/P)(QM/P)] (e (dir1) = Bra (den)]- (99)

Through the final term the shock will be spread out over the entire future
horizon.

We can find the final solution for d? as follows. Use (97) forwarded by
£ —t (£ >1t+1) periods to obtain:

(140)|Et (deye—1)—Er—1(deye—1) |[+8*(Qnr/P)|Ee(diter1)—Fi1(direqn
By (dise)—Fu 1 (dye) = L) P (o )l @l Do) Froa (sen)],
(100)

The non-explosive solution is found in the same way as before and is given
by:
E; (dt+1) —Ei (dt+1) = mdf-

25



Substitute this back into (99) and rewrite to give:

d __ 1 M % *
%= | P @ P o+ =5 P/ P (101)

D.1.3 Derivation deterministic components of z,; —x;, §;: — g;x and
Tte

The derivation is similar to that in the case of the second best. Using (92),
one has

Tere — By qaxie = [i;} [Kive + (14 p) Eradiye 1 — Errdige] =
v
P

Tryer1 — Bioa®ipen = [ } [Kiverr + (14 p) Eirdige — Ei1diieia]

where £ > t. Note that

KtJFf + (1 + P) Etfldt+§71 — Etfldprg
(148" (14+0)(Qut / P)[Kiy e +(14P)Ee—1ds g1 | = [Kiy e+ (1+9)Er—1di -1 |+87 (Qui/P) (Kiye 41 —Be—1diye 1)
146" (14+p)(@m/ P)

. (H—P)[Kt+g+(1+P)Et—1dt+g_1]+(Kt+§+1—Et—1dt+g+1)
= 0(Qu/P) T8 (L) (@ /) )

where we have used (97) (with forwarding) for E; 1d;;¢. Further,

Kiver1 + 1+ p)Einidire — Eioqdige
[1+/@*(1+P)(QM/P)][Kt+§+1*Et—1dt+g+1]+(1+p) [Kt+§+(1+P)Et—1dt+§—1]*ﬂ*(1+p)(QM/P)(Kt+5+17Et_1dt+€+1:

148" (14p)(Qm/P)

(140)[Ki e+ (14+p)Ee—1diye 1|+ (Kiyer1—Ee—1die 1)
146" (1+p)(Qns / P) '

Hence,

Tiperr — B 1Tppe1 = [m} [Tire — Eio12i4e] -

For public spending we derive similarly:

Grre+1 — B 1gten1 = [m} [Gt+e — Et-1911¢] -

Having derived these recursions, we use (36) to obtain the deterministic
components of the final outcomes:
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Z (14 p) ™ [(Frse — Eimaore) /v + (Grse — Eimrgire)] = Fy
£=0

[e.°] &. ~ R
= Z [ “(14p) (QM/P (@ — Ee1ze) /v + (g — Evage)] = F
0

3
= (& —Eiqz) v+ (G — Eiage) = [ﬁ*(l(i_i);)((gélﬂfll/jj)ﬂl} F.

Hence,

- 2 * Py

(F — Byazi) v = [%} [%ﬁﬁ_’;ﬁfﬁg}jjj}f} F, (102)
-  [1/ag] [8*Q40)(Qar/P)—1
G —Bg = [ S } [ E T }Ft. (103)

D.1.4 Computation of E; ; (d;)

We compute now E; ; (d;). Combining the expectation of the government
financing requirement, (40), with (102) and (103) and replacing F;, one has:

Ki+(1+p)diq —Ei1dy = ['@*ﬂ(*lgi);)?gﬂf;l)%l} (14 p)dir + Gyl

Hence,

1
Eidy = B*(Qu/P)

“(140)(Qu/P) e
de—1 + Ky — [ B ) (@u [P } > (1+p) YK
et

1 1
T 41+ Faan e e T

1 1 1 —[€—(+1)]
F )@ P) 1} 0 D, (1+9) Ke
e=t+1

1 1
FanPh1 + FEm @R Ot~ TG
= 1 4 + (Ge= Gt+1)+[1 B* (QM/P)]Gt+1
B (@Qu/P) 1 5 (1+9)(@Qu / P)

D.1.5 The complete outcomes

Using (91), (92), (93), (102), (103) and (101), we have:
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(105)

(107)

M o= WT“M} PF,+ [”““M} (1 (B +n,) + pany] » (104)
o-w = B wbF o 5] [l (5 n) +pan]
(Ge+m)—g = ”T“} Vo By + [”‘ﬂ [ (B +n,) +pamy] ., (106)
di F@urm e “ Gt?i)(lip)gf%?/)m]aw *
[ ()]
where
W = ﬂ(l(—;i)};)((gg/l;l)) L yP = (P;l*/P)[ <*1+p><QM/P> 1]
w L+(P3y/P) 1B (14+9)(Qur/ P)~1]
P = ! o (Fi/ )

5Py, /P) 5 (o) @ /P)—1) P2 = 13

(P;/P)1B*(14p)(Que/P)—1]

E Derivation of expected social loss in infinite-

horizon model

E.1 Commitment

Using (45) and its lags, we can write:

Ft:

+(1+pa [£+(1— *

v

= (1+p) (%)Zdtg—i-%(l“‘ﬂ)(h[

+(1+p) @ [“t,fl +(1—5*P )77t 1

_ (,G_l,f)t‘1 (14 p) do + G] + (1 + p)
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Ht,,_Q + (1 - ﬁ*PTgCI) 7715—2}

— 1

6ra,, [m_ﬁ(l_ H)ro

Gacpf oy +q [Mt_f + (1 — Bt )77t 2}}



We can now combine this with (42), (43) and (44) to give:

meo= [ [ (5 4
- vl C = 1)\¢! Hig x Py
fomn = [0 (6) [ (-0
¢=1

] fan (4 4 m) +am] + [%] 06 ()7 10+ 0 do + Gl
g-o = []ugarn Y () a [ s (-5 n ]
e=1
42 o (2 4 m) +am] + [Mae) 0§ (&) [0+ ) do +G1)
-

Let us now compute society’s expected loss:

$©)? (173420t —1) o2 LPr\2
o [ g (o) o+

0'2 (67
{ s } [qgg‘% + (g2 + q3)? 03,} + oy [1 —2 (ﬂé};) (g2 + qa)} o2

Hence,
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3 ZﬁtilEo [OéwW? + (2 — 3)* + g (g — gt)2]

_ ¥§ 2 o [1-_(1/8%)2(—=1) o2 . P* 2
1o [ oo [t [+ (1)

[ a* 2 1/)02 a? * Py 2
= 1, [ {(;) ]q% L—H(l—ﬂ ) ffﬂ

- 20-17 [ (v§)? 2 L) 2
13 [(1//3) } {( }l) } (14 p)? ¢ {V_H (1_ Pfa”) 05}

1-(1/p%)?
t=1

0'2 (6%

+315 [(QM)z} [qu‘% +5 (et Q3)203,} +375% [1 —2 (1/ ") (g2 + qa)}
where“” is used to denote that terms not containing o, have been dropped.
Note that

NS e [0 1 1y I AR 0
300 [ 1-(1/7) } ~21E) ) |:,3*(1+p)} =2@ypaye  (108)
= t=1

1 g o2 <P\ 2
ety (] | [+ (1) o)

* * _ 0.2 % * 2
_%[ﬁ (1+€[)-1]*[§2£11+p) 1] [%] q% |:_H + (1 -3 Py 0_2}

o? 1/«
—i—%Lg { S } [q%;‘% + (g2 + ¢3)° Uﬂ + %ﬁo‘g [1 —2 ( p;;lg) (g2 + %)} 4

(Pir)”



which equals

F) [ (1) o] Ittt e
+3125 (g*M)z GL + (g + qS)QUﬂ + 3125 % [1 —2 (W‘") (g2 + qa)} o
— S [F (1- ) | e
ke (87 + @+ 0ol + ke [1 -2 () (0 + a0
— bt | T g
+51557, atp (1 ﬂ*P%I)QQf iy (@t a) ]
"‘%ﬁ% 12 (114?9) (g2 +QS)} Ty
= AR [ R (1) - 1]
+i0? '—ﬂ*@;m*l 1— gL )qu g (%)2 (3" 2+ p) — 1] ]
—i—%ﬁag 1 -2 (1/%) (qo —|—q3)} o,
— %ﬁi—g (Hp) )1y, 4 ——02U +12 ﬁoz 02U3
where
Ur = g {1+ [ 18 (4 0) - 1} = o e
U = g {—ﬂ*“;’”‘l 15 ()] + (] 19 2+ 9) - 1]2}
_ P )11 (Pyy/P)] HB* 24017 Qu
B P2[14(Py,/P)(B* (140)-D)] ’
Vs = 1-2 (1/%) (g2 +q3) =1 -2 (114;“,) 151(3%11/31)3%(*2;2)”1]

B*(24p)—1

1 (Yas) {H(

P /P)B* (14p)—1]

31

.

We will now investigate each of the terms U;, Uy and Us. For Uy, we have:



P*
— 53 (BB (+p) -1 |+
sgn (a_iZL) = sgn Ghl P[ |+

A1+ 5 (1)1

1+(Py, /P)(B* (14p)- 1))

- { L+ (P/P) (5 (14 9) - 1)13} /

where sgn () stands for the sign of expression x. Hence, U; is decreasing in
oy for aqy < ag, increasing in gy for agy > an and reaches its strict
global minimum at o, = «,. For Us, we find, after quite a substantial
amount of straightforward algebra, that:

o0Us
sgn (_B(XWM )

"

paamy] T B A U= (8 (14 p) P
B 2 ' +P<w—;—;)ﬁ*(1+p)[ﬁ*(2+p)—1]
= s a2, [1+(P3,/P) (8" (1+0) D)

Hence, U, is strictly decreasing for o, < a,. Finally, we see immediately
that Us is decreasing in ;.

E.2 Discretion

Using (107) and its lags, we can write:

F, = di—1 + Gy
Gy 1—B"(Qu/P)Gy o P
{Famdis + SR B +p1[ il (RS IS B
t— * Py
L+0) Famrmyde-2 + (L+ ) by [Hul + (1 - ) - 1} + F@um Gt
1 Gi— 2 —B"(Qum/P)Gi—1 Hi_o o by
ﬂ*(QM/P){ (QM/P)dt 3T T F U @up) TP [ v (1 )m 2}}

+(1+p)p1 [”t—;l + (1 — *TM) 771:71} + mGt—l
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2 . « P*
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t—1

t—1
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We can now combine this with (104), (105) and (106) to give:

t—1
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. a SRR 7 « P
g—g = l/pg} v (1+p) (m) P {M_f + (1 - TM> 771:—5}

[ 14 )+ pond + [0 0 (gimn) 10+ )+ G

Let us now compute society’s expected loss:
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1 (B*Qum /P)?

Lt (L4 p) do+ G [] | Sttt U

where we have used that:
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1-(1/(B"Qn/P))

_ . 2(t—1) o2 .« P 2
gy [V_H (1- 5 5) Uﬂ N

+ (2 — 20)° + ag (90— 3u)°]

2
SFC 5 (14 p) do + G1)? [%—2} |:('6((1+p)QM/P 1) } n

14p)(Qm/P)*—1
2 —(1/(B*Qu/P)*" V] 2 | o} P\ o
p) (LDO ) |: 1— (1/(ﬂ*ﬂg2A1/P))2 i| pl |:7 + 1 — /8 gf O'77

)%+ (wF +p2) 02| + A0, [1-2 (%52) (0F + )| o

+

B*(14p)(Qu /P)*—1
2 o « P 2
9] (1 o) ()52 |2+ (1- ) o)

)5+ F 4 ) o] e [1-2 (2) 01 +m)] ol

34



2

P I () 1+ o Gl
i|2(t—1)

N =

S %] ()" [+ p) o + G [5gim

O 0 00 O 911 52 o]

=

P\2 27Qu] _B"(14+p)(Qu/P)?
(@Z’o ) [(1+ p) do + G1] [P_Jg] ﬁ*(1+p)[)(QM17P)2—1

21Qu] [ 1] B Gtn)@Qu/P) 1P
[(1+p)do+ )" [ 3] [,@*mp)} (o) @Qu /PP

N =

=

and

1 i1 [1- (1/(8*Qu /P))**~ ”}
5> 0 { /(5 Gt /)

t=1
- t—1

_ l 1 1
o2 =P/ Q) ] 2{ [ﬁ*(1+p)(QM/P>2} }
BT S B L_[ *(140)(Qu /P)* ”

2 [1-(P/(B*Qm))* | \1-B [ B*(1+p)(Qu/P)*~1
1 1 1 [8* A+p)(@Qn/P)*~1]—8* (14p)(Qn /P)* (1)
T2 [1-(P/(B Q) | (1-8)[8* (14+p)(Qn /P)*—1]
_ 1 1 | (8 Qu/P)*—1

2 [1-(P/(B*Qm))* | (1-B)[B* (1+p)(Qu/P)*~1]
_ 1] B Qu/P) } (8*Qu/P)*—1

2 | (8*Qum/P)*~1] (1-B)[B*(1+p)(Qum/P)*—1]
_ 1.1 _ (5Qu/P)

21-B 8" (1+p)(Qm/P)*—1"

We can rewrite the expression for society’s expected loss further as:

D=

* 132
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where we have used that:

= o

N =
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(8*Qum/P)* Qu 2/, P\2 9
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Hence, society’s expected loss can be written as:
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These expressions are programmed, so that we can explore society’s expected
loss as a function of apy.
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