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Abstract

The paper presents an algorithm for computing the asymptotic Fisher information

matrix of a possibly seasonal single input single output (SISO) time series model.

That matrix is a block matrix whose elements are basically integrals over the oriented

unit circle of rational functions. The procedure makes use of the autocovariance

function of one or the cross-covariance function of two autoregressive processes based
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on the same noise. The algorithm also works when the input variable is omitted, the

case of a seasonal ARMA model.

AMS 1991 subject classification. Primary 62M10; secondary 62F15.

Key words. Fisher information matrix, SISO model.

1 Introduction

In this paper we consider the most general single input single output (SISO) model,

i.e. a 6-polynomial dynamic model, relating an explanatory or input variable and

a dependent or output variable. A justification for the 6-polynomial SISO model is

given in Section 2. We study the SISO model it in its seasonal flavor, where each

polynomial is factored into a regular polynomial, a polynomial in the lag operator L,

and a seasonal polynomial, a polynomial in Ls, where s is the seasonal period, 4 for

quarterly data and 12 for monthly data. That family of models is often useful with

economic or management variables. In engineering, it is the nonseasonal form of the

model which is the most popular. We assume either that the process is Gaussian or

that the assumptions of Drost et al. (1997) are fulfilled. Under these assumptions, we

obtain a simple and efficient algorithm for the asymptotic Fisher information matrix.

The efficiency of the computational algorithm is due to replacing circular integrals by

computation of the autocovariance function of a scalar AR process.

The asymptotic Fisher information matrix is an important tool for evaluating the
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accuracy of a parameter estimation technique. The inverse of the Fisher information

matrix yields the Cramér-Rao bound which provides asymptotically a lower bound

for the covariance matrix of unbiased estimators, and even the covariance matrix it-

self for efficient estimation methods. Furthermore, the asymptotic Fisher information

matrix has been used recently in an on-line estimation method of the parameters of

ARMA models, where the estimates are updated at each time by means of recurrence

equations. Zahaf (1998) has proposed such an approach but limited to nonseasonal

and seasonal ARMA models because of lack of availability of a computational pro-

cedure for the asymptotic information matrix of more general models. The present

work will thefore have an immediate application.

With respect to Klein and Mélard (1994a), there are four kinds of improvements:

(1) the parametrisation there was limited to nonseasonal models; (2) an intercept

is added to the model; (3) the details of the algorithm were just sketched; (4) the

result is not restricted to Gaussian processes. The algorithm described in this paper

avoids crude evaluation, i. e. computation by numerical integration or quadrature, of

circular integrals of rational functions in favour of a simple symbolic representation

of the integrands, the use of a generic polynomial multiplier and an Euclid algorithm.

An algorithm for seasonal models has been decribed by Klein and Mélard (1990) but

only for ARMA models. The algorithmic aspects detailed here were not necessary

because of the simplicity of the integrands found in that case.
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The paper is also related to Klein et al. (1998) but the exact information matrix

which is the main subject of that paper is not used here, mainly because the method

is too complex for the general seasonal model considered here. Generalisation to the

MISO model can be considered, see Klein and Mélard (1994b). Several authors have

given expressions in a more general framework, e.g. Zadrozny (1989, 1992), Zadrozny

and Mittnik (1994), and Terceiro (1990). See also Klein et al. (2000).

The article is organized as follows. In Section 2, we formulate the model. In

Section 3 a general expression for the asymptotic information matrix for SISO models

is given. Examples are provided in Section 4. The algorithm is described in the

Appendix.

2 The model

Let s denote the seasonal period, e.g. 12 for monthly data, 4 for quarterly data.

Consider the single-input single-output (SISO) model defined by the equation

a(L)A(Ls)

f(L)F (Ls)
y(t) = µ+ b0

b(L)B(Ls)

e(L)E(Ls)
x(t) +

c(L)C(Ls)

d(L)D(Ls)
u(t),(1)

where y(t) is the output variable, x(t) is the input variable, {u(t)} is a sequence

of identically and independently distributed (i. i. d.) random variables with zero

mean and standard deviation σ, µ is the intercept, a(L), b(L), c(L), d(L), e(L), and

f(L) are (regular) polynomials in the unit delay operator L, A(Ls), B(Ls), C(Ls),

D(Ls), E(Ls), and F (Ls) are (seasonal) polynomials in Ls. For example a(L) =
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1 + a1L+ a2L
2 + · · ·+ an1Ln1, for some n1. It is assumed that {u(t)} and {x(t)} are

independent for all leads and lags. A delay can be considered for the input variable

so that x(t) is replaced by x(t− l), for some (non necessarily positive) integer l. This

will have no effect on our derivations (see Example 5). The model depends on σ2 and

on d parameters which are the coefficients of the 12 polynomials plus b0 and µ.

The input variable can be stochastic or deterministic. In the former case, statis-

tical inference can be done conditionally on the value which is taken. See Klein et

al. (1998) for either the deterministic case or the stochastic and conditional case.

Their inconvenience is that they depend on the data, i. e. they are not suited at the

experimental design stage, see Dahran (1985). Also, that approach is not practical

when the information matrix is used within a recurrence estimation scheme, e. g.

Zahaf (1998). Here, we study the stochastic and unconditional case. This is because

we need to evaluate covariances involving x(t). Although, using the approach of this

paper, more modelling effort is required for the input series, it will be seen in some of

the examples that the results obtained using that approach are very similar to those

obtained from software that conditions upon the input values.

Let us suppose that the input variable x(t) is generated by a seasonal ARMA

model defined by the equation

x(t) =
h(L)H(Ls)

g(L)G(Ls)
v(t),(2)

where {v(t)} is a sequence of i. i. d. random variables with zero mean and standard
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deviation τ , g(L), and h(L) are polynomials in L, G(Ls) and H(Ls) are polynomials

in Ls.

For simplicity we suppose that each of the polynomials has a constant term equal

to 1, except possibly b(L) and B(Ls). The contemporary regression coefficient b0 is

generally different from 0 or 1. All the polynomials are assumed to have their roots

outside of the unit circle. Klein and Spreij (1996) have considered ARMAX models

of the form

a∗(L)y(t) = b∗(L)x(t) + c∗(L)u(t),

where a∗(L), b∗(L), and c∗(L) are polynomials. They have set forth conditions for

an ARMAX model to be identifiable by studying the kernel of the corresponding

Fisher information matrix and its relations with Sylvester matrices. They prove that

a necessary and sufficient condition is that the polynomials a∗(L), b∗(L), and c∗(L)

have no common root. It can be shown, by inspecting the ARMAX representation of

our model, see (6) below, that the following pairs of products of polynomials should

have no common root: a(L)A(L) and f(L)F (L), b(L)B(L) and e(L)E(L), c(L)C(L)

and d(L)D(L), d(L)D(L) and e(L)E(L), d(L)D(L) and f(L)F (L), e(L)E(L) and

f(L)F (L), and also that the following triplet should have no common root: a(L)A(L),

b(L)B(L), and c(L)C(L).

Note that the 3-rational operators SISO model (1) encompasses the Box-Jenkins

transfer function model, in which the operator on y(t) is omitted, and the ARMAX
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model in which the denominators of the operators on y(t) and x(t) are omitted.

It will sometimes be easier to refer to the polynomials a(L), b(L), ..., f(L), A(Ls),

B(Ls) , ..., F (Ls) in that order, as θ1(L), θ2(L), ..., θ6(L), θ7(Ls), θ8(Ls), ..., θ12(Ls).

The degree of θr(L) is denoted by nr. The number of coefficients of θr(L) or θr(Ls)

which are not identically equal to 0 is denoted by pr. The parameters included in

θr(L) will be stored in the order of increasing power in L in a pr × 1 vector denoted

by θr. We have pr = nr for r ≤ 6 and spr = nr for r > 6. We suppose that all

the parameters are functionally independent so that the total number of parameters,

including θ13 = b0 and θ14 = µ, is equal to p =
P12

r=1 pr +2. Let θ be the p× 1 vector

of these parameters in the same order as before and with b0 and µ in the last two

positions. θ will be considered as a 14× 1 block vector. Of course, the model doesn’t

need to be used with all the polynomials.

Let us consider the framework of Drost et al. (1997), which provides a generali-

sation to the time series context of the efficient estimation theory for semiparametric

models due to Bickel et al. (1993). We suppose that the assumptions needed for their

results hold. For the sake of simplicity, we omit the input variable x(t) at this stage.

Let yN = (y(1), ..., y(N))T be an observed series of length N assumed to satisfy the

stochastic difference equation (1), where {u(t)}, t = 0,±1,±2, ... is a i. i. d. sequence

of random variables with mean zero and probability density f . The latter is specified

up to a scale factor σ. Let f1 be the standard version of f : f(u) = f1(u/σ)/σ. Given
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the assumptions which have been made, there is a stationary solution to (1) and we

suppose that the observed series is such a stationary solution (this is not necessary,

see Hallin and Werker, 1998, for a discussion). The parameters θ are the coefficients

in (1).

Let L(θ; yN) be the likelihood function of the sample, the density of the vector

yN of observations considered as a function of the parameters, and E denotes the

expectation. The information bound which is the generalisation of the Cramér-Rao

(lower) bound (CRB) is the matrix

J(θ) = −E
µ
∂2logL(θ; yN )

∂θ∂θT

¶
(3)

where T denotes transposition, where the expectation is evaluated at the true unknown

value of θ = θ0 and with respect to the true law. If the estimation method yields

asymptotically efficient estimators, for instance the case of a maximum likelihood

estimator θ̂ of the parameter θ under the appropriate assumptions, a good estimate

of its asymptotic covariance matrix is J(θ̂)−1.

Omitting yN from the notation, the log-likelihood `(θ) = logL(θ) is written in the

form

`(θ) =
NX
t=1

`t(θ),

where `t(θ) = log(f(u(t; θ))) and u(t; θ) is the residual obtained from solving (1) for
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u(t). We ignore the effect of the initial conditions (see again the discussion in Hallin

and Werker, 1998; the initial conditions are handled in the so-called exact information

matrix of Klein et al., 1998, in the Gaussian case). Let us compute the first and second

derivatives of `t(θ):

∂ log f(u(t; θ))

∂θj
=

∂ log f(u(t; θ))

∂u(t; θ)

∂u(t; θ)

∂θj
,

∂2 log f(u(t; θ))

∂θi∂θj
=

∂2 log f(u(t; θ))

∂(u(t; θ))2
∂u(t; θ)

∂θi

∂u(t; θ)

∂θj
+

∂ log f(u(t; θ))

∂u(t; θ)

∂2u(t; θ)

∂θj∂θj
.

Hence

Jij(θ) = −
NX
t=1

E
µ
∂2 log f(u(t; θ))

∂(u(t; θ))2
∂u(t; θ)

∂θi

∂u(t; θ)

∂θj

¶
.(4)

for all i and j, since, in the case of our model, ∂2u(t; θ)/∂θj∂θj is measurable with

respect to the σ-algebra spanned by u(t− 1; θ), u(t− 2; θ), ..., and

E
µ
∂ log f(u(t; θ))

∂u(t; θ)

¶
= 0.

Let us denote φf = −∂ log f(u)/∂u = −(∂f(u)/∂u)/f(u), the score function of den-

sity f , and remark that

If
def
= −E∂

2 log f(u)

∂u2
= −

Z ∞

−∞

∂2 log f(u)

∂u2
f(u)du = E

µ
∂ log f(u)

∂u

¶2
=
If1
σ2
,

where If1 is the Fisher information quantity associated with µ in the location family

{f1(u − µ);µ ∈ R}. For standard normal, double exponential, and logistic laws, we

have respectively If1 = 1, If1 = 2, and If1 = π2/9. Hence, we have

Jij(θ) = IfE

Ã
NX
t=1

∂u(t; θ)

∂θi

∂u(t; θ)

∂θj

!
= If1

N

σ2
E
¡
uθi(t)uθj (t)

¢
,(5)
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where uθ(t) = ∂u(t)/∂θ. In the time series context, quasi-maximum likelihood esti-

mation is often used, generally by using the Gaussian likelihood or one of its approx-

imations (the least squares method, for example). In that case, if the true innovation

law f is known, the factor If determines the possible gain in efficiency provided by an

adaptative estimation method, see Drost et al. (1997). In the sequel we focus on the

calculation of the third factor which corresponds to the (standard, one-observation)

information bound or Cramér-Rao lower bound for the model in (1) in the Gaussian

case, and its inverse will provide the asymptotic covariance matrix of the Gaussian

quasi-maximum likelihood estimator or a least-squares estimator of θ for that model.

See e.g. Godolphin and Unwin (1983) and Friedlander (1984). Let ur(t) be the

sub-vector of uθ(t) associated to θr. J(θ) is computed block by block in the next

section.

3 The asymptotic information matrix

Write (1) under the form

a(L)A(Ls)d(L)D(Ls)e(L)E(Ls)y(t) = d(L)D(Ls)e(L)E(Ls)f(L)F (Ls)µ

+b0b(L)B(L
s)d(L)D(Ls)f(L)F (Ls)x(t)

+c(L)C(Ls)e(L)E(Ls)f(L)F (Ls)u(t).(6)

10



Differentiating (1), for equations 10-12, 16-18 and 20 below, or (6), for equations 7-9,

13-15 and 19 below, successively with respect to θr, r = 1, ..., 14 gives :

c(L)C(Ls)e(L)E(Ls)f(L)F (Ls)u1(t) = ã(L)A(L
s)d(L)D(Ls)e(L)E(Ls)y(t)(7)

c(L)C(Ls)e(L)E(Ls)f(L)F (Ls)u2(t) = −b0b̃(L)B(Ls)d(L)D(Ls)f(L)F (Ls)x(t)(8)

c(L)C(Ls)e(L)E(Ls)f(L)F (Ls)u3(t) = −c̃(L)C(Ls)e(L)E(Ls)f(L)F (Ls)u(t)(9)

c(L)C(Ls)

d(L)D(Ls)
u4(t) =

d̃(L)c(L)C(Ls)

d2(L)D(Ls)
u(t)(10)

c(L)C(Ls)

d(L)D(Ls)
u5(t) = b0

ẽ(L)b(L)B(Ls)

e2(L)E(Ls)
x(t)(11)

c(L)C(Ls)

d(L)D(Ls)
u6(t) = − f̃(L)a(L)A(L

s)

f 2(L)F (Ls)
y(t)(12)

c(L)C̃(Ls)e(L)E(Ls)f(L)F (Ls)u7(t) = a(L)Ã(L
s)d(L)D(Ls)e(L)E(Ls)y(t)(13)

c(L)C(Ls)e(L)E(Ls)f(L)F (Ls)u8(t) =

−b0b(L)B̃(Ls)d(L)D(Ls)f(L)F (Ls)x(t)(14)

c(L)C(Ls)e(L)E(Ls)f(L)F (Ls)u9(t) = −c(L)C̃(Ls)e(L)E(Ls)f(L)F (Ls)u(t)(15)

c(L)C(Ls)

d(L)D(Ls)
u10(t) =

D̃(Ls)c(L)C(Ls)

d(L)D2(Ls)
u(t)(16)
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c(L)C(Ls)

d(L)D(Ls)
u11(t) = b0

Ẽ(Ls)b(L)B(Ls)

e(L)E2(Ls)
x(t)(17)

c(L)C(Ls)

d(L)D(Ls)
u12(t) = −

eF (Ls)a(L)A(Ls)
f(L)F 2(Ls)

y(t)(18)

c(L)C(Ls)e(L)E(Ls)f(L)F (Ls)u13(t) =

−b(L)B(Ls)d(L)D(Ls)f(L)F (Ls)x(t)(19)

c(L)C(Ls)

d(L)D(Ls)
u14(t) = 1,(20)
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where θ̃r(L) = (L, ..., Lpr)T for r = 1 to 12. If we omit the arguments L and Ls,

equations (7-20) can be written in block matrix form

uθ(t) = 

ãAdD/cCfF 0 0 0

0 −b0b̃BdD/cCeE 0 0

0 0 −c̃/c 0

0 0 d̃/d 0

0 b0ẽbBdD/cCe
2E 0 0

−f̃aAdD/cCf2F 0 0 0

ÃadD/cCfF 0 0 0

0 −b0B̃bdD/cCeE 0 0

0 0 −C̃/C 0

0 0 D̃/D 0

0 b0ẼbBdD/cCeE
2 0 0

−F̃ aAdD/cCfF 2 0 0 0

0 −bBdD/cCeE 0 0

0 0 0 −dD/cC



.



y(t)

x(t)

u(t)

1


(21)
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Using (1), we have

uθ(t) =



b0ãbBdD/acCeE ã/a 0

−b0b̃BdD/cCeE 0 0

0 −c̃/c 0

0 d̃/d 0

b0ẽbBdD/cCe
2E 0 0

−b0f̃ bBdD/cCeEf − ef/f 0

b0ÃbBdD/AcCeE eA/A 0

−b0B̃bdD/cCeE 0 0

0 −C̃/C 0

0 D̃/D 0

b0ẼbBdD/cCeE
2 0 0

−b0F̃ bBdD/cCeEF − eF/F 0

−bBdD/cCeE 0 0

0 0 −dD/cC



.


x(t)

u(t)

1

 .(22)
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Replacing (2) in (22), we have

uθ(t) =



b0ãbBdDhH/acCeEgG ã/a 0

−b0b̃BdDhH/cCeEgG 0 0

0 −c̃/c 0

0 d̃/d 0

b0ẽbBdDhH/cCe
2EgG 0 0

−b0f̃ bBdDhH/cCeEfgG − ef/f 0

b0ÃbBdDhH/AcCeEgG eA/A 0

−b0B̃bdDhH/cCeEgG 0 0

0 −C̃/C 0

0 D̃/D 0

b0ẼbBdDhH/cCeE
2gG 0 0

−b0F̃ bBdDhH/cCeEFgG − eF/F 0

−bBdDhH/cCeEgG 0 0

0 0 −dD/cC



.


v(t)

u(t)

1

 .(23)

Denote λ(m)(L) be the m-th column of the matrix in (23), m = 1, 2, 3. It is

composed of block columns λ(m)r (L), r = 1, ..., 14, with elements λ(m)ir (L), i = 1, ..., pr.

Then, omitting argument θ,

(Nσ2)−1J = (Nσ2)−1(J (1) + J (2) + J (3)),(24)
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where

(Nσ2)−1J (1) = E[{λ(1)(L)v(t)}{λ(1)(L)v(t)}T ]

(Nσ2)−1J (2) = E[{λ(2)(L)u(t)}{λ(2)(L)u(t)}T ]

(Nσ2)−1J (3) = λ(3)(1)
n
λ(3)(1)

oT
.(25)

Note that (J (1) + J (2)) has zeros on the last row and the last column and that J (3)

has a single non zero element located on the last row and the last column. Hence the

maximum likelihood estimator of the intercept µ will be asymptotically independent

on the estimators of the other parameters. Let us introduce the matrices α and β

with the polynomials, respectively, on the numerator and denominator of the first
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two columns of the matrix in (23):

α =



b0bBdDhH 1

−b0BdDhH 0

0 −1

0 1

b0bBdDhH 0

−b0bBdDhH −1

b0bBdDhH 1

−b0bdDhH 0

0 −1

0 1

b0bBdDhH 0

−b0bBdDhH −1

−bBdDhH 0



, β =



acCeEgG a

cCeEgG 1

1 c

1 d

cCe2EgG 1

cCeEfgG f

AcCeEgG A

cCeEgG 1

1 C

1 D

cCeE2gG 1

cCeEFgG F

cCeEgG 1



.(26)

For the computation of the expectations in (25), the traditional way (Åström, 1970)

was to evaluate a circular integral. Motivated by the comparisons of Klein and Mélard

(1989),we have prefered to follow the idea suggested by Pham(1989) to rely on the

computation of a covariance of two autoregressive processes built on the same white

noise process. Klein and Mélard (1990) have used the Tunnicliffe Wilson (1979)

algorithm. Here, we refer to the Euclid algorithm of Demeure and Mullis (1989) as
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follows.

More precisely, denoting v1(t) = v(t) and v2(t) = u(t), for the element (i, j) of

the block (r, k) of the m-th term of (25), m = 1, 2, r, k = 1, ..., 13, i = 1, ..., pr,

j = 1, ..., pk, we have to compute the expectation

(Nσ2)−1(Jrk)
(m)
ij = E[{λ(m)ir (L)vm(t)}{λ(m)jk (L)vm(t)}]

= E

"(
Lisrα(m)r (L)

β(m)r (L)
vm(t)

)(
Ljskα(m)k (L)

β
(m)
k (L)

vm(t)

)#
,(27)

where sr = 1 if r ≤ 6 or r = 13, and sr = s if r > 6, taking the chosen ordering of the

nonseasonal and seasonal polynomials. This is the covariance between two ARMA

processes {z(m)ir (t)} and {z(m)jk (t)} built using the same white noise process {vm(t)}

and defined by

β(m)r (L)z
(m)
ir (t) = L

isrα(m)r (L)vm(t), β
(m)
k (L)z

(m)
jk (t) = L

jskα
(m)
k (L)vm(t).

The Åström circular integral approach consists in computing (27) by

σ2m
2πi

I
γ

z−isr+jsk
α
(m)
r (z−1)α(m)k (z)

β(m)r (z−1)β(m)k (z)

dz

z
,

where σ2m is the variance of {vm(t)}, and γ is the positively oriented unit circle.

Given that the polynomials in α and β are often products of similar polynomials

among the θr(L) or θr(L
s), and in order to avoid unnecessary computations, let

β∗(m)rk (L) = β∗(m)kr (L) be the least common multiple (LCM) of the polynomials β(m)r (L)

and β
(m)
k (L), a polynomial of degree δ

∗(m)
rk , say. Define the polynomials β∗(m)r(k) (L) =
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β
∗(m)
rk (L)/β(m)r (L), and β

∗(m)
r(k) (L) = β

∗(m)
rk (L)/β

(m)
k (L), and let the polynomials

α
∗(m)
r(k) (L) = α(m)r (L)β

∗(m)
r(k) (L), α

∗(m)
(r)k (L) = α

(m)
k (L)β

∗(m)
(r)k (L),

of respective degrees δ∗(m)r(k) and δ
∗(m)
(r)k . We shall use the coefficients of these polynomials

defined by

α
∗(m)
r(k) (L) =

δ
∗(m)
r(k)X
l=0

α
∗(m)
r(k),lL

l, α
∗(m)
(r)k (L) =

δ
∗(m)
k(r)X
l=0

α
∗(m)
(r)k,lL

l.

Then, let us consider an autoregressive process {z∗(m)rk (t)} (or {z∗(m)kr (t)}) of order δ∗(m)rk

built using {vm(t)} again and satisfying

β
∗(m)
rk (L)z

∗(m)
rk (t) = vm(t),(28)

and denote R∗(m)rk (l) its lag l autocovariance. Then

z
(m)
ir (t) = L

isrα
∗(m)
r(k) (L)z

∗(m)
rk (t), z

(m)
jk (t) = L

jskα
∗(m)
k(r) (L)z

∗(m)
rk (t),
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and (27) can be written

(Nσ2)−1(Jrk)
(m)
ij = E

hn
Lisrα∗(m)r(k) (L)z

∗(m)
rk (t)

on
Ljskα∗(m)(r)k (L)z

∗(m)
rk (t)

oi
= E




δ
∗(m)
r(k)X
l=0

α
∗(m)
r(k),lz

∗(m)
rk (t− l − isr)




δ
∗(m)
(r)kX
l=0

α
∗(m)
(r)k,lz

∗(m)
rk (t− l − jsk)




=

δ
∗(m)
r(k)X
l=0

δ
∗(m)
(r)kX
q=0

α
∗(m)
r(k),lα

∗(m)
(r)k,qE

h
z
∗(m)
rk (t− l − isr)z∗(m)rk (t− q − jsk)

i

=

δ
∗(m)
r(k)X
l=0

δ
∗(m)
(r)kX
q=0

α
∗(m)
r(k),lα

∗(m)
(r)k,qR

∗(m)
rk (l + isr − q − jsk)

=

δ
∗(m)
r(k)X

p=−δ∗(m)
(r)k

min(δ
∗(m)
(r)k

,δ
∗(m)
r(k)

−p)X
q=max(0,−p)

α
∗(m)
r(k),p+qα

∗(m)
(r)k,q

R∗(m)rk (p+ isr − jsk)

=

δ
∗(m)
r(k)X

p=−δ∗(m)
(r)k

ε
(m)
rkpR

∗(m)
rk (p+ isr − jsk),(29)

where

ε
(m)
rkp =

min(δ
∗(m)
(r)k

,δ
∗(m)
r(k)

−p)X
q=max(0,−p)

α
∗(m)
r(k),p+qα

∗(m)
(r)k,q.(30)

A large part of the procedure described above still holds in the case of multiple

input variables, the MISO (multiple input single output) model, with q variables, say.

The notation should be modified by using a superscript l = 1, ..., q to x(t), v(t), b0

and polynomials b(L), B(L), e(L), E(L). Then (24) can easily be adapted to reflect

that there are more than one input variable. Let us assume that (x(1), ..., x(q))0 is

a VARMA process with autoregressive matrix polynomial g(L) and moving average
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matrix polynomial h(L), and innovations (u(1), ..., u(q)) with covariance matrix Σ. If

the variables x(1), ..., x(q) are uncorrelated, then the q × q matrices g(L), h(L) and Σ

are diagonal and the method described above can be used. Otherwise, the blocks of

the information matrix which correpond to pairs (x(l1), x(l2)) with l1 6= l2 should be

computed using an algorithm for evaluating the autocovariance function of a VARMA

process, e. g. Ansley(1980), Kohn and Ansley(1982). In the following algorithm only

SISO models are treated.

4 Numerical examples

4.1 Example 1

The univariate model for the machine-tool shipments (U.S., from January 1968 to

December 1974) is taken from Pankratz (1983, p. 502):

∇∇12y(t) = (1− c1L− c2L2 − c6L6)(1− C1L12)u(t),

using the Box-Jenkins notation, and where ∇ and ∇12 denote the regular differencing

and the seasonal differencing operators, respectively. Note that the regular moving

average polynomial is lacunary, which is easily handled by our program. Using the

estimates provided, we obtain the following table, where the last column is ours.

Table 4.1. Comparison between the standard errors obtained using the algorithm

of the paper and those obtained as a by-product of an optimisation procedure.
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standard error

parameter estimate optimisation algorithm

c1 0.812 0.104 0.105

c2 -0.224 0.103 0.091

c6 -0.401 0.075 0.059

C1 -0.808 0.107 0.071

4.2 Example 2

Our final univariate example is based on Enders (1995, Model 3, p. 115) and will

emphasize performance results. Three of the univariate models for tourism in Spain

(from January 1970 to March 1989, 218 observations) were estimated as follows:

∇∇12y(t) =
¡
1− 0.640L− 0.306L12¢ u(t),(31)

∇∇12y(t) = (1− 0.740L) ¡1− 0.671L12¢u(t),(32)

∇∇12y(t) =
£
1− 0.640L+ ε(L2 + ...+ L11)− 0.306L12¤ u(t),(33)

where ε is a small number so that the corresponding parameter is different from zero

but the model is nearly equivalent to the first one. The latter was not considered by

Enders but will be used to show the performance of the algorithm for dealing with

a 12 × 12 information matrix. All the computing time evaluations were done on a

computer with a 133 MHz Pentium processor, as a mean over 10000 replications. In
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each case, we have computed the variance by dividing the sum of squares of residuals

SSR by the number of degrees of freedom, for example, for the first model 3.367 is

divided by 216.

Table 4.2. Computation times required for computing the information matrix and

the covariance matrix (see text for details)

Computing time

Model information matrix covariance matrix

(31) 0.109 0.005

(32) 0.249 0.005

(33) 0.164 0.312

4.3 Example 3

This is the open loop model of Gevers and Ljung (1986). It is defined by the equation

(1− a1L− a2L2)y(t) = (b00 − b01L)x(t) + (1− c1L− c2L2)u(t),(34)

where x(t) is a Gaussian white noise. The value of the parameters are a1 = 1.5,

a2 = −0.7, b00 = 1, b01 = −0.5, c1 = 1, c2 = −0.2, σ1 = 1, and σ2 = 10 or 1. Note that

the alternative polynomial expansion (a) b0(L)B(Ls), discussed in the Appendix, is

used. The simulation results of Gevers and Ljung (1986) performed over 10 runs of

500 data each have shown that the accuracy is good when the signal to noise ratio is
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equal to 1, but is worse when the noise dominates the signal, except for the moving

average coefficients which do not seem to be influenced.

Table 4.3. Comparison between the standard errors (SE) of the estimated values

obtained by Gevers and Ljung, over 10 runs of 500 data each, with the asymptotic

values.

Parameters

σ2 Method a1 a2 b00 b01 c1 c2

10 Gevers-Ljung 0.001 0.005 0.035

asymptotic SE 0.0044 0.0037 0.0140 0.0186 0.0441 0.0440

1 Gevers-Ljung 0.009 0.058 0.031

asymptotic SE 0.0136 0.0114 0.0443 0.0584 0.0463 0.0453

4.4 Example 4

Solbrand et al. (1985) have considered simulations for another simple ARMAXmodels

of the form (34), where a1 = −0.9, a2 = −0.95, b00 = 1, b01 = 0, c1 = −1.5, c2 =

−0.75, and have compared several on line recursive methods with an off-line maximum

likelihood method. Using N = 100, 200 and 500, like the authors, we obtain the

following standard errors.

Table 4.4. Comparison between the standard errors obtained using the algorithm

of the paper for several lengths.
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N a1 a2 b00 b01 c1 c2

100 0.02633 0.02596 0.13496 0.13748 0.06799 0.06794

200 0.01862 0.01836 0.09543 0.09721 0.04808 0.04804

500 0.01177 0.01161 0.06036 0.06148 0.03041 0.03039

4.5 Example 5

Box et al. ( 1994, p. 410) have analysed the differences of the sales data (y(t)) in

terms of the differences of a leading indicator (x(t)) using the following model

y(t) = 0.035 + 4.82
1

1− 0.72Lx(t− 3) + (1− 0.54L)u(t),

x(t) = (1− 0.32L)v(t).

fitted on their data (Series M). Since the standard errors of the estimates were not

provided (and also some ambiguity on the sample really used, see the footnote of p.

410, confirmed by the fact that the obtained estimates are different), we have fitted

the model using SCA (Liu and Hudak, 1994). The estimates are as follows, in our

ordering, c1 = −0.6284, e1 = −0.7256, b0 = 4.7024, µ = 0.0341, and σ2 = 0.046468.

The information matrix is therefore of dimension 4. After reestimation we have also

h1 = −0.440, and τ 2 = 0.080962.

Here are the vector of the standard errors and the covariance matrix of the es-

timators obtained by inverting the Fisher information matrix computed using our
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method. 

0.0635

0.0034

0.0459

0.0065


,



1.00

0.00 1.00

0.00 −0.69 1.00

0.00 0.00 0.00 1.00


and here are the equivalent values obtained using the optimisation algorithm in SCA:

0.0658

0.0034

0.0496

0.0078


,



1.00

0.04 1.00

−0.07 −0.74 1.00

0.01 −0.28 −0.04 1.00


.

The results are very similar. We have fitted the model using Autobox (Automatic

Forecasting Systems, 1998). Their estimates are c1 = −0.588, e1 = −0.725, b0 =

4.71, µ = 0.0107, and σ2 = 0.047471. The vector of the standard errors and the

covariance matrix of the estimators obtained by inverting the Fisher information

matrix computed using our method are

0.06604

0.00364

0.04807

0.00733


,



1.00

0.00 1.00

0.00 −0.67 1.00

0.00 0.00 0.00 1.00


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whereas equivalent values obtained using the optimisation algorithm in AFS Autobox

are 

0.06600

0.00368

0.05051

0.00235


,



1.00

0.00 1.00

−0.04 0.00 1.00

0.00 0.00 0.00 1.00


.

The results are not longer similar because two problems arise: the constant and its

standard error are different, and the large correlation between the estimates of e1 and

b0 doesn’t appear. We suspect a program error.

4.6 Example 6

De Gooijer and Klein (1989) have analysed the relation between the incoming and

the outgoing maritime steel traffic at the port of Antwerp. In a related work, Klein

(1986, p. 6.15-6.16) has used the following transfer function model for explaining the

incoming traffic, between January 1971 and March 1981. Let y(t) be the difference

of the 0.325 power of the incoming steel traffic and x(t) the difference of natural

logarithm of the outgoing maritime steel traffic. The model used was

y(t) = b0
1

1− e1Lx(t− 1) +
1

(1− d1L− d2L2 − d3L3)(1−D1L12)u(t)
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The vector of parameters is (d1, d2, d3, e1, D1, b0)0. The standard deviation of u(t) is

estimated as 3.806. The model for the input x(t) (Klein, 1986, p. D2) was as follows

(1− g1L− g2L2 − g3L3)x(t) = (1− h1L)v(t),

with the following estimates g1 = −1.09, g2 = −0.74, g3 = −0.48, h1 = −0.54, and

τ = 0.235 (an intervention had been applied in February 1975, but it will be ignored

here).

The following table shows the standard errors obtained (i) during the course of

parameter estimation using an optimisation algorithm and a least squares criterion,

(ii) using the algorithm described above.

Table 4.5. Comparison between the standard errors obtained using the algorithm

of the paper and those obtained as a by-product of an optimisation procedure.

standard error

parameter estimate optimisation algorithm

d1 -0.78 0.09 0.08

d2 -0.48 0.11 0.10

d3 -0.34 0.09 0.08

e1 0.91 0.05 0.04

D1 0.39 0.10 0.08

b0 -2.16 0.69 0.64

It is clear that the algorithm produces adequate results.
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4.7 Example 7

Our next example is a transfer function model for housing starts as a function of

housing sales (U.S., from January 1965 to December 1975). It is based on Pankratz

(1991, p. 518). This time we needed to change the specifications for two reasons.

First, the model fitted by Pankratz for the input variable is not invertible (the seasonal

moving average has all its roots inside the unit circle). Second, the transfer function

model relates the series in seasonal differences whereas the univariate model for the

housing sales also makes use of a regular difference in order to obtain stationarity.

This is not acceptable in our approach which is unconditional with respect to the

observations of the input variable. We have fitted an alternative model described by

∇12x(t) = 1− 0.99963L12
1− 0.93338L v(t),

with 11.49786 as variance of the input innovation. The transfer function model is

defined by equation (C4.3.4) in Pankratz (1991), more precisely

∇12y(t) = (b00 + b01L)∇12x(t) +
(1 + c1L)(1 + C1L

12)

1 + d1L
u(t),

and the results are presented in the following table, this time with t Student statistics

instead of standard errors. Note that we have used the engineering notation, contrarily

to Pankratz.

Table 4.6. Comparison between the Student t-statistics obtained using the algo-

rithm of the paper and those obtained as a by-product of an optimisation procedure.
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|Student t statistic|

parameter estimate optimisation algorithm

b00 0.6639 4.59 4.65

b01 0.8720 6.02 6.10

c1 -0.6208 5.32 5.31

d1 -0.9046 14.26 14.22

C1 -0.9540 15.94 32.93

The disagreement for C1 is not surprising since we are close to the invertibility bor-

derline. Because Pankratz (1991) has also given the asymptotic correlation matrix,

1.00

−0.59 1.00

0.00 0.00 1.00

0.00 0.00 0.74 1.00

0.00 0.00 0.00 0.00 1.00


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we provide our own estimate

1.00

−0.66 1.00

0.00 0.00 1.00

0.00 0.00 0.76 1.00

0.00 0.00 0.07 0.09 1.00


which is very close indeed.

Appendix : the algorithm

The algorithm for computing the (asymptotic) Fisher information matrix of the pa-

rameters of the 12-polynomial seasonal SISO model is described now. The Fortran 90

code (tested using the free Essential Lahey Fortran 90 compiler) can be obtained at

the site mentioned with the author’s addresses, as well as detailed instructions. We

mention here the additional capabilities and some aspects of program organization.

First, the program has been organised with several applications in mind. The

most demanding application is probably recursive estimation using the Zahaf (1998)

method, currently implemented only for ARMA models. That method is an improve-

ment with respect to the classic Recursive Maximum Likelihood (RML) method. Let

us denote yt = {y(1), . . . , y(t)}, the time series available at time t. Suppose that it

can be represented by an ARMA(p3, p4) defined by (1), by taking all other pr’s equal
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to zero. Then the recursive estimator bθ(t) at time t, of the vector of parameters θ, is
a function of yt defined by

bu(t) = y(t)− bθT (t− 1)ϕ(t),
bθ(t) = bθ(t− 1) +R−1(t)ψ(t)bu(t),

ψ(t+ 1) =

p4X
k=1

θ̂p3+k (t)ψ(t− k + 1) + ϕ(t+ 1),

R(t+ 1) = R(t) + ψ(t+ 1)ψT (t+ 1),

where ϕ(t) = (y(t), · · · , y(t− p3 + 1),−bu(t), · · · ,−bu(t− p4 + 1)), ψ(t) estimates−uθ(t)
and σ2R

−1
(t) represents an approximation of the asymptotic covariance matrix of the

estimator. For more details, see e.g. Ljung and Söderström (1983). The improvement

introduced by Zahaf (1998) consists in replacing R
−1
(t) by the inverse of the Gaussian

Fisher information matrix J−1(bθ(t − 1)) evaluated at θ = bθ(t − 1), so that line 2 of
the recursion is replaced by:

bθ(t) = bθ(t− 1) + bσ2t J−1(bθ(t− 1))ψ(t)bu(t),
where bσ2t is the updated estimate of the innovation variance. In this case, the algo-
rithm described here is needed at each time t. Furthermore, it is often useful to run

several models in parallel. We have taken care of that fact in the computer program

GFIMS_SISO. Four main subroutines are delivered. All of them are written for running

several models. One, GFIMS_INIT_READ performs data structure initialisations after

having read the parameter set for a given model. Another one, GFIMS_INIT_STOR,
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stores a parameter set into the data structures. GFIMS_ADJ adjusts the size of the

working storage needed for the computations. Finally, GFIMS_COMP performs the com-

putations. Note that GFIMS_INIT_READ and GFIMS_INIT_STOR should be called once

for each model at the beginning. In the generalisation of the Zahaf (1998) method,

GFIMS_ADJ and GFIMS_COMP should be called at each time t, and for each model. If

timing of the computations is requested, only GFIMS_ADJ and GFIMS_COMP needs to

be replicated a large number of time. In a simpler context, the four subprograms are

simply called one after the other, in the given order.

For each model, the input information consists in the seasonal period s (which

can be equal to 1), the number of observations, the model orders (the degrees of the

16 polynomials, including the 4 polynomials of the input process), the value of the

parameters (the coefficients of these 16 polynomials plus the value of the regression

constant b0 and that of µ (although it is not used in the computations), and the

variances σ2 and τ 2. ARMA models are covered as a special case where τ 2 = 0.

Some coefficients can be omitted in the polynomials. For example, let us consider

the polynomial 1 − 0.6L − 0.8L4 + 0.48L5, where the coefficients of L2 and L3 are

omitted. Their value is considered to be 0 and they are not considered as parameters.

This leaves the coefficients of L, L4, and L5 as parameters, whose values are −0.6,

−0.8, and 0.48, respectively. In that example, as well as in the preceding sections, the

usual notation in engineering has been used for polynomial coefficients. However, the
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altenative notation often used by statisticians and econometricians is also available

in the program so that the value of the parameters can be 0.6, 0.8, and −0.48,

respectively.

The parametrization chosen for the numerator of the input part of the model is

b0b(L)B(L
s), where b(L) = (1+ b1L+...+bp2L

p2) and B(Ls) = (1+B1Ls+...+Bp8L
sp8)

have 1 as a constant term. This is not the mostly used notation but we have preferred

it because it gives symmetric roles to b(L) and B(Ls). Two other notations are

however available in the program, using the alternative polynomial expansions as

follows: (a) b0(L)B(Ls) where b0(L) = b00+ b01L + ... + b
0
p2
Lp2 ; (b) b(L)B0(L) where

B0(L) = B00 + B
0
1L

s + ... + B0p8L
sp8. Of course, b0 cannot be used as a parameter

when theses alternative notations are used and its value should be taken as 1. Let us

consider the changes for case (a). They are limited to the use ofeb0(L) = (1, L, ..., Lp2)T
instead ofeb(L) = (L, ..., Lp2)T . Note that p2+1 is the number of parameters associated
with b0(L), which equals the number of parameters associated with b0b(L). The other

case (b) can be treated in a similar way.

The instructions which allow timing of the algorithm are provided. We don’t dis-

cuss this in the following description. Let us just mention that a number of repetitions

of each computation can be set so that timings are evaluated as averages over a loop,

in order that times be accurate enough.

The organisational aspects are worth to be mentioned. Indeed, straightforward
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application of the formulae (29) and (30) would result in lengthy code prone to errors.

It suffices to mention that, for the computation of some elements of the information

matrix, products of up to 12 polynomials are involved. We have adopted the following

strategy, already sketched by Klein and Mélard (1994a) but detailed here and suitably

generalized for the case of seasonal models. The coefficients of all the polynomials

are entered in a long vector. For each polynomial, a pointer to the first coefficient is

maintained as well as the degree and an indication for the power (1 for 1, for a regular

polynomial, 2 for s, for a seasonal polynomial). Strings of characters specifying the

elements of α and β are hard-coded in the program. For instance, the element (12, 1)

of α which is −b0bBdDhH is represented by ”-rbBdDhH”. The only notational change

with respect to (26) is that the regression constant b0 is represented by ”r”. Note that

”+1”, ”-1” and ”0” are represented as such. Note that only the upper left 13 × 13

blocks are considered now.

The algorithm can then be written as follows.

J← 0

For r = 1 to 13

For k = 1 to 13

If prpk > 0 then

If r ≤ k then

For m = 1 to 2
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[LCM, R1, R2] ←REDPSI(α(m)r (L), α
(m)
k (L), β(m)r (L), β

(m)
k (L))

If R1 6= 0 or R2 6= 0 then

β
∗(m)
rk (L)←EVAPSI(LCM)

α
∗(m)
r(k) (L)←EVAPSI(R1)

α
∗(m)
(r)k (L)←EVAPSI(R2)

R
∗(m)
rk (l)←DMACF(β∗(m)rk (L))

Jrk ← Jrk+FIBKSI(α
∗(m)
r(k) (L), α

∗(m)
(r)k (L), R

∗(m)
rk (l))

endif

endfor

else

Jrk← Jkr

endif

endif

endfor

endfor

Here are some explanations. The information matrix is initially set to 0. Each

block of the information matrix is computed separately, except by taking care that

the matrix is symmetric and that some blocks can be empty because of omitted

polynomials in the model. It is also taken into account that some blocks are identically

equal to zero.
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In the algorithm, REDPSI determines the factors θh(L), h = 1, ..., 17, of β(m)r (L)

and β
(m)
k (L) in order to determine the lowest common multiple (LCM) polynomial

β
∗(m)
rk (L) = β

∗(m)
kr (L) of β(m)r (L) and β

(m)
k (L). This is only valid under the assump-

tion that all the roots of all the polynomials θh(L) are distinct, an assumption that

has been done. This avoids us to consider the possible factorisation of these polyno-

mials. The factors are represented in a 1 × 18 vector of positive integers, with the

sign S (0, −1 or +1) as first entry, and the power of the factor θh(L), h = 1, ..., 17,

according to the order (S; a, b, c, d, e, f ;A,B,C,D,E, F ; r; g, h;G,H). For example,

for m = 1, r = 1 and k = 11, the polynomials are β
(1)
1 (L) = acCeEgG, hence

”acCeEgG”, and β
(1)
11 (L) = cCeE2gG or ”cCeEEgG”, so that the LCM β

∗(1)
1,11(L) =

acCeE2gG is ”acCeEEgG”. Figure 1 shows how that example is handled in terms

of vector representations. For example, the vector representation of the LCM is

(1;1,0,1,0,1,0;0,0,1,0,2,0;0;1,0;1,0). Hence β
∗(1)
1(11)(L): ”E” and β

∗(1)
(1)11: ”a”. REDPSI

also determines the polynomials α∗(m)r(k) (L) and α
∗(m)
(r)k (L) using the same vector rep-

resentation. In the same example as before, we have α
(1)
1 (L) = α

(1)
11 (L) are ”rbBd-

DhH” so that α∗(1)1(11)(L) and α
∗(1)
(1)11(L) are respectively ”rbBdDEhH” and ”rabBdDhH”

and are therefore represented by the vectors (1;0,1,0,1,0,0;0,1,0,1,1,0;1;0,1;0,1) and

(1;1,1,0,1,0,0;0,1,0,1,0,0;1;0,1;0,1).

Three calls of procedure EVAPSI are used to evaluate numerically the coefficients

of the polynomials β
∗(m)
rk (L), α∗(m)r(k) (L) and α

∗(m)
(r)k (L). This is done using a general
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"acCeEgG" "cCeEEgG"

Sa b c d e f ABCDEF r g h GH Sa b c d e f ABCDEF r g h GH
1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 2 0 0 1 0 1 0

"acCeEEgG

Sa b c d e f ABCDEF r g h GH
1 1 0 1 0 1 0 0 0 1 0 2 0 0 1 0 1 0

"E" "a"

Sa b c d e f ABCDEF r g h GH Sa b c d e f ABCDEF r g h GH
1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

''rbBdDhH'' ''rbBdDhH''

Sa b c d e f ABCDEF r g h GH Sa b c d e f ABCDEF r g h GH
1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1

'rbBdDEhH'' 'rabBdDhH''

Sa b c d e f ABCDEF r g h GH Sa b c d e f ABCDEF r g h GH
1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1

�1
(1 ) ( ):L � 11

(1 ) ( ):L

� 1 1,
*(1 ) ( ):L

� 1
(1 ) ( ):L � 1

(1 ) ( ):L

� � �1 1 1(11)
*(1) (1)

(11)
*(1)( ) ( ) ( ):L L L� � � �(1)11

*(1) (1)
(1)11
*(1)( ) ( ) ( ):L L L� 1

� � �1 111 1(11)
*(1)

,
*(1) (1)( ) ( ) / ( ):L L L� � � �(1)11

*(1 )
,
*(1 ) (1)( ) ( ) / ( ):L L L� 1 1 1 1 1

Figure 1: Diagram showing how the polynomials are handled
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purpose product of polynomials routine MLTPOLS which, given n polynomials θh(L),

h = 1, ..., n, and a 1× (n+1) vector (i0, i1, ..., in) of integers (positive except the first

entry which can be 0, −1 or +1), evaluates the coefficients of

i0

nY
h=1

[θh(L)]
ih .

More precisely, this is done in two steps in order to take advantage of the fact that

most coefficients of the seasonal polynomials (e.g. A, B, ...) are equal to zero. First

the nonseasonal factors are multiplied together giving a polynomial p(L) in L and

the seasonal factors are multiplied together giving a polynomial P (Ls) in Ls. Then,

P (Ls) is converted into a lacunary polynomial in L, which is multiplied by p(L). Only

the last operation possibly involves a high degree polynomial.

DMACF makes use of the Demeure and Mullis (1989, 1990) algorithm for comput-

ing the lag-l autocovariances R∗(m)rk (l), l = 0, ...,max(δ∗(m)r(k) + prsr − sk, δ∗(m)(r)k + pksk −

sr) of the autoregressive process of order δ
∗(m)
rk defined by (28). This is the most

computationally-intensive part of the algorithm since the number of operations is

O(5
h
δ
∗(m)
rk

i2
/2). Of course, we could have implemented these computations in an-

other way by avoiding LCM of pairs of polynomials, and considering instead, for each

m, an autoregressive polynomial being the LCM of all the β(m)r (L), r = 1, ..., 12. In

that case, DMACF would have been called once for each m. We have already tried that

alternative computational approach in the pure ARMA seasonal case (see Klein and

Mélard, 1990). The results were not favorable but that doesn’t mean it cannot be
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better for some models. A finer evaluation of operation numbers should be needed to

substanciate a conclusion.

Thereafter, each element (Jrk)
(m)
ij of (Jrk)(m) is computed using (29). This is

done in procedure FIBKSI. First the ε
(m)
rkp defined by (30) are computed. Then the

block (Jrk)(m) is treated, in order to take care of the possible Toeplitz behaviour of

that matrix. For two nonseasonal (respectively seasonal) polynomials, provided the

two polynomials are not lacunary as polynomials in L (respectively Ls), the block is

Toeplitz. Otherwise it is not Toeplitz but that doesn’t mean that every element needs

to be computed. In fact, according to (29) all elements (i, j) of the (r, k) block for

which isr−jsk is the same will have the same value for (Jrk)(m)ij . From the algorithmic

point of view, this is done using a lookup table with two entries, isr−jsk and (Jrk)(m)ij

which is initialized, loaded and searched within FIBKSI. For each (i, j), whatever the

element is computed or taken from the table, (Jrk)
(m)
ij is accumulated in order to form

(Jrk)ij.
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