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Abstract

Limited-information methods are commonly used to estimate forward-looking mod-

els with rational expectations, such as the “New Keynesian Phillips Curve” of Gaĺı and

Gertler (1999). In this paper, we address the issues of identification, which have been

overlooked due to the incompleteness of the single-equation formulations. We show that

problems of weak instruments can arise in these models, depending on the properties of

the ‘exogenous’ variables, and that they are empirically relevant. We also uncover the link

between identification and dynamic mis-specification, and examine the (lack of) power of

the Hansen test to detect invalid over-identifying restrictions. Finally, with regards to

the New Phillips curve, we conclude that this equation is either weakly identified or mis-

specified, casting doubts on its utility as a model of inflation dynamics.
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1 Introduction

Forward-looking Rational Expectations (RE) models are common in the macroeconomic lit-

erature. These models are typically of the form:

yt = β E(yt+1|Ft) + γ yt−1 + xt (1)

where yt is a decision variable, xt is a ‘driving’ or ‘forcing’ variable, usually thought of as

‘exogenous’, and E(yt+1|Ft) is the expectation of yt+1 conditional on the information set Ft.

The popularity of such models derives from the fact that the make the notion of forward-

lookingness in economic decisions explicit and address the so-called Lucas (1976) critique.

The estimation of those models has been the subject of considerable research, see for in-

stance Pesaran (1987) and Hansen and Sargent (1991) for some reviews. The various methods

proposed in the literature can be divided into full and limited information methods, such as

Full Information Maximum Likelihood (FIML) and Generalized Method of Moments (GMM),

respectively. The former requires the specification of a model for the forcing variables xt in

addition to the structural equation (1), whereas the latter does not.

Traditionally, limited information methods have been more popular than the full infor-

mation alternatives for a number of reasons. They appear to obviate the need to model the

complete system (yt, xt), they are expected to work well under weaker conditions, and they

involve relatively little efficiency loss against full information alternatives, whose implemen-

tation is typically much more demanding.1

1Full information methods require that the RE system be solved to derive the (restricted) reduced form

or ‘observable structure’. The nature of the solution, whether ‘forward’ (unique) or ‘backward’ (non-unique),

requires a priori knowledge of the roots of the system, which depends on the actual values of the structural

parameters as well as the parameters of the completing model for xt. The resulting cross-equation restrictions,

which are typically highly non-linear, can then be used to derive estimates of the structural parameters. An

advantage of limited information methods, emphasized in Wickens (1993), is that they do not require the
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However, there is a substantive condition that must be satisfied for any estimation method

to provide consistent estimates and reliable inference on the parameters of interest β and γ.

Namely, these parameters must be identified on the available information. The question of

identifiability of such rational expectations models has been originally studied by Pesaran

(1981). A thorough analysis of the order and rank conditions for the identifiability of rational

expectations models, including (1), is given in Pesaran (1987). In that book, Pesaran warns

against the “indiscriminate application of the IV method to RE models”, stressing that the

necessity of the identification condition “is often overlooked in the literature”. Pesaran also

urges that the conditions for identification of the RE model under consideration must be

checked prior to estimation by limited information methods.

Unfortunately, this problem appears to have been overlooked in the recent monetary eco-

nomics literature, where it has become common practice to estimate forward-looking rational

expectations models by GMM. One example is the use of single-equation GMM for the esti-

mation of forward looking monetary policy rules, popularized by Clarida, Gaĺı, and Gertler

(1998), see also Batini and Haldane (1999). Another important example is the influential pa-

per of Gaĺı and Gertler (1999), which uses the same econometric methodology in estimating

the “New Phillips curve”, a forward-looking model for inflation dynamics, see also Batini,

Jackson, and Nickell (2000) and Gaĺı, Gertler, and López-Salido (2001).

These models provide the motivation for the present study. In particular, our analysis

will focus on the New Keynesian Phillips curve model of Gaĺı and Gertler (1999) (henceforth

GG). It is clear that the same methodology can be applied to any forward-looking structural

model.

However, this article is not intended merely as a reminder of the pitfalls of limited-

solution of the model prior to estimation.

3



information GMM estimation of under-identified forward-looking models. It makes a number

of novel contributions.

Partial identification in this context has often been dismissed as a special case that does

not merit particular attention.2 However, this conclusion has recently been challenged by a

growing literature which has come to be known under the name of ‘weak instruments’ or ‘weak

identification’, see Stock, Wright, and Yogo (2002) for a review of the relevant theoretical and

empirical contributions. Unlike under-identification, weak identification is not simply a special

case, which is unlikely to arise in practice. It is highly relevant empirically, and it has been

well-documented across the spectrum of applied econometrics. Thus, a main contribution of

this paper is to demonstrate the empirical relevance of weak identification in forward-looking

models and to alert researchers about the potential danger of weak instruments in monetary

economics.

To this end, we propose (a variant of) the ‘concentration parameter’, originally intro-

duced in the IV literature by Anderson (1977), as a measure of ‘empirical’ identification in

forward-looking RE models. This measure, which has not been used in this context before,

highlights that the strength of identification does not only depend on the dynamics of the

forcing variables, as it can be deduced from Pesaran (1987, Proposition 6.2), but also on other

features of the model that affect the degree of forecastability of future endogenous variables

on past information.

Next, we emphasize the connection between identification and dynamic mis-specification of

forward-looking models, which has implications for detecting lack of identification. Our results

warn against relying solely on tests of rank reduction in the covariance between endogenous

2Wickens analyzes a similar model and asserts that “[l]ack of identifiability is not [...] a general feature”,

(Wickens 1993, p. 322).
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regressors and the instruments, commonly advocated for structural equation models. We

show that, in forward-looking models, such tests conflate identification and mis-specification,

i.e. they have power also when the model is mis-specified.

Further, we discuss how identification of a (“pseudo-true”) forward-looking rational ex-

pectations model can be achieved by imposing mis-specifying restrictions, e.g., in the form

of omitted dynamics. We examine how detectable dynamic mis-specification is in that con-

text, using the Hansen-Sargan test of overidentifying restrictions, which is the main mis-

specification test under this methodology. The common practice in GMM estimation of

forward-looking models has been to use many instruments, most of which are potentially

irrelevant (‘over-instrumenting’), and to robustify inference by means of general corrections

for serial correlation (‘over-correction’). Here, we expose the pitfalls of such an econometric

practice.

Finally, all of this analysis is illustrated by applying it to the highly influential model of

Gaĺı and Gertler (1999), drawing some implications about its utility as an empirical model of

inflation dynamics.

The structure of the paper is as follows. Section 2 introduces the hybrid Phillips curve

model of GG and describes their baseline econometric formulation. Section 3 discusses the

issues of partial identification and weak instruments with reference to that model. Section

4 addresses the issue of mis-specification, and studies its implications for the Hansen-Sargan

test. Finally, section 5 concludes.
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2 The model

‘Phillips curve’ is the name economists use to refer to an equation that describes the evolution

of prices (or of the inflation rate) in a macroeconomic system. The New Keynesian Phillips

curve is a pure forward-looking model of inflation dynamics, which typically takes the form:

πt = λ xt + β E(πt+1|Ft) (2)

where xt is a forcing variable, usually a measure of the output gap or marginal costs. The set

Ft contains, in principle, all of the information that is available to the agents at time t, which

is usually more than a handful of macroeconomic variables that the econometrician may have

at their disposal.3

Model (2) can be seen as a limiting case of a more general model that accommodates both

forward- and backward-looking price-setting behaviour. Moreover, as it stands it is difficult

to reconcile with the data. These considerations prompted a number of researchers to put

forward a hybrid version of new and old Phillips curves, see, for example, Fuhrer and Moore

(1995) and Buiter and Jewitt (1985):

πt = δxt + γE(πt+1|Ft) + (1 − γ)πt−1 (3)

GG proposed a new hybrid version, which is motivated by the idea of combining both

3Following the convention in the literature, e.g. Binder and Pesaran (1995), we will assume that Ft

contains at least current and past values of the endogenous variable πt, and the forcing variable xt, namely

Ft = (πt, πt−1, . . . ; xt, xt−1, . . . ; . . .).
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forward- and backward-looking price-setting behaviour. This leads to:4,5

πt = λ st + γfE(πt+1|Ft) + γbπt−1 + εt (4)

where εt ∼ NID(0, σ2
ε ) is adapted to Ft, and it is an innovation with respect to Ft−1, and st

is a measure of real unit labour costs in deviations from their steady state, which is used as

a proxy for marginal costs following Sbordone (2002).6

The above model cannot be estimated directly due to the fact that E(πt+1|Ft) is a latent

variable. Therefore, we replace this expectation with the actual future realization in (4) in

order to derive the GMM estimating equation:

πt = λst + γfπt+1 + γbπt−1 + et (5)

where the ‘structural residual’ et is given by:

et = εt − γfηt+1 (6)

where ηt+1 ≡ πt+1 − πt+1|t is the forecast error in predicting future inflation, and hence a

mean innovation process with respect to Ft.
7 This process can be explicitly derived, given a

4Their model also provides a link between what they call the “reduced form” parameters (λ, γf , γb) in (4)

and some “deep” or structural parameters (β, θ, ω). The latter have appealing interpretations as the discount

factor, the degree of price inertia and the fraction of “backward-looking” agents, respectively. However, as

pointed out in Mavroeidis (2002), the parametrization (β, θ, ω) is non-unique, and hence the latter are not

globally identified, even when (λ, γf , γb) are. This poses an additional difficulty for direct GMM estimation

of (β, θ, ω), which we abstract from in this paper. For the implications of global but not local identification

failure, see Ma (2002).

5This is a slightly generalized (and more realistic) version of the GG new hybrid Phillips curve model,

see Gaĺı and Gertler (1999, equation 26), where εt is absent. Whenever a unique solution to the rational

expectations model exists (see section 3), that restriction, namely εt = 0, would imply that the joint distribution

of πt and st is singular, with all the stochastic variation being driven by the latter. This is unnecessary for the

validity of the model and need not be imposed. It would also imply that the structural residuals are serially

uncorrelated, see (6), which is at odds with the data.

6In RE terminology, st, εt are the forcing variables, the latter being unobserved, and πt is the endogenous

or decision variable.

7πt+1|t is used synonymously with E(πt+1|Ft), by convention.
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solution to the model. For example, define the 1-step forecast error vt+1 = st+1 −E(st+1|Ft).

Then, under the solution (14) that we derive below:

ηt+1 ≡ πt+1 − πt+1|t = αst+1 + δπt +
1

1 − γfδ
εt+1 − αE(st+1|Ft) − δπt

= αvt+1 +
1

1 − γfδ
εt+1. (7)

Hence, the structural residual et becomes

et = εt − γfαvt+1 −
γf

1 − γfδ
εt+1.

We note that the et may exhibit negative serial correlation at lag 1 (if σ2
ε 6= 0), without

invalidating the model.

Equation (5) is an IV regression, with valid moment conditions of the form:

E [(πt − λst − γfπt+1 − γbπt−1)Zt] = 0 (8)

for any Zt ∈ Ft\{πt}.8 It appears that the parameters of interest (λ, γf , γb) could be estimated

by IV, or any other multi-step GMM procedure to take account of the serial correlation (and

any potential heteroscedasticity) in the residuals, et. GG use a 2-step-2SLS estimator with

a 12-lag Newey-West estimate of the covariance matrix of the moment conditions. However,

any serial correlation beyond lag 1 is sufficient to invalidate their methodology, as we discuss

in section 4.1 below.

3 Identification analysis

The identification analysis of the structural model requires knowledge of the reduced form

of the system. This can be estimated directly from the data, or it can be derived from the

8πt cannot be an admissible instrument for model (4), except in the special case σε = 0, since πt is not

orthogonal to εt, by construction.
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structural model by postulating a distribution for the forcing variables and solving the system,

as in Pesaran (1987). The latter approach assumes the structural model to be correctly

specified, whereas the former does not.

Here, we use the latter approach for two reasons. First, simple structural equations

such as the New Keynesian Phillips curve usually have considerable intuitive appeal, and

this grants them some degree of immunity to criticisms of mis-specification. Nevertheless,

even in such cases, it is important to examine whether the equation of interest is identified

and hence empirically estimable, and whether inference based on it is reliable. Secondly, by

assuming that the structural model is correctly specified, we can separate the analysis of

identification from mis-specification issues, which are usually conflated. Thus, we can focus

entirely on detecting pathological situations in which a correctly specified model becomes

weakly identified.

For the sake of clarity, we will consider the following alternative distributions for st and

discuss their implications for the identification of the parameters of interest, (λ, γf , γb):

Case 1 : st = ρst−1 + vt (9)

Case 2 : st = ρst−1 + ϕπt−1 + vt (10)

Case 3 : st = ρ1st−1 + ρ2st−2 + vt (11)

where vt ∼ NID(0, σ2
v) is an innovation w.r.t. Ft−1 and it is orthogonal to εt in (4).9 Also,

Ft contains at least current and past values of the endogenous variable πt, and the forcing

variables (st, εt) (see footnote 3).10

9Normality is assumed for the purposes of simulation.

10GG use additional variables as instruments, as we discuss in section 3.3 below. However, whether this

extra information is relevant (in predicting future inflation or the labour share) depends on the local DGP for

(πt, st), which has not been specified yet. Given the above 3 specifications of the completing process for st,
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Case 1 is the benchmark under-identified case. It is a typical example of the simplest

possible dynamic, stationary specification for an exogenous variable. The second and third

cases are straightforward extensions of the first one, which introduce richer dynamics in the

exogenous process. Case 2 introduces Granger causality of πt for st, an extension that is not

sufficient to yield identification.

In the third case, identification is achieved, but the ‘strength’ of the instruments crucially

depends on the size of the second-order dynamics,11 as well as on the variance ratio σε/σv,

see below. Also, since it nests the unidentified case, case 3 is suitable as a basis for discussion

of weak instruments or lack of empirical identification. That is, we can study the behaviour

of the estimators when the key identification parameter, ρ2, becomes insignificant.

The completed model will consist of a pair of equations, one for inflation and the other for

the conditioning variable, labour share. In other words, it will contain equation (4) together

with one of (9) - (11).

3.1 Lack of identification

3.1.1 Case 1: st ∼ AR(1)

The complete structural model under the leading case 1 would be:

πt = λst + γfE(πt+1|Ft) + γbπt−1 + εt

st = ρst−1 + vt, εt⊥vt

(12)

The total structural parameters are:

θ = (λ, γf , γb, σ
2
ε , ρ, σ2

v)

we will show below that the implied solution for inflation is such that no other variable should be relevant in

predicting future inflation.

11This point goes back to Abel and Mishkin (1983), but appears to have been overlooked in the recent

monetary economics literature. However, it is worth re-emphasizing it here.
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of which θ1 = (λ, γf , γb, σ
2
ε ) are the parameters of interest and θ2 = (ρ, σ2

v) are the nuisance

parameters.

Assuming model-consistent expectations, the solution to this model will depend on the

roots µi of the polynomial

γ(L) = 1 − γfL−1 − γbL (13)

A necessary condition for the existence of a solution is that at most one of those roots is

explosive, i.e., at least µ1, say, is not explosive |µ1| ≥ 1. When there is exactly one explosive

root (|µ2| < 1), the solution is unique.12 These conditions in turn impose restrictions on

the set of admissible structural parameters (γf , γb) ∈ (Γf , Γb). There are, of course, several

different possibilities, but we shall only consider the range of values implicit in the estimates

from GG, which are also plausible in many other contexts, namely:

γb, γf ≥ 0 and γb + γf ≤ 1

Both conditions are implied by the underlying model of GG.13 These restrictions conveniently

ensure (i) that the roots are real (and hence, rules out complex solutions), (ii) that a solution

always exists, and, (iii) when the inequality is strict, that it is also unique.14

The possibility of non-uniqueness γf + γb = 1 is dealt in section 3.1.3 below. Hence, we

12The conditions for existence and uniqueness of solutions to rational expectations models are well-known,

see Blanchard and Kahn (1980).

13This follows from the equation relating the ‘deep’ parameters (β, θ, ω) to (γb, γf , λ), Gaĺı and Gertler (1999,

equation 25), and the requirement that the former lie between 0 and 1. These restrictions also hold in general

for models of the form (4) that arise from a target-seeking decision problem under quadratic adjustment costs

and uncertainty, see Pesaran (1987, example 7.2).

14The two roots are:

µ1,2 =
1 ±√

1 − 4γfγb

2γb

so that the discriminant ∆ = 1 − 4γfγb ≥ (1 − 2γb)
2 is always positive. Hence 1 − 2γb +

√
∆ ≥ 1 − 2γb +

√
(1 − 2γb)2 = 0 and 1 − 2γb −

√
∆ ≤ 1 − 2γb −

√
(1 − 2γb)2 = 0, showing that µ1 ≥ 1 and µ2 ≤ 1. The last

inequality is strict when γf + γb < 1, yielding a unique solution to the RE model.
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can focus only on the unique solution to the structural model (12) which will be of the form:

πt = αst + δπt−1 + ut

α = λ
1−γf (δ+ρ) , δ =

1−
√

1−4γf γb

2γf
, ut = 1

1−γf δ εt

(14)

with φ = (α, δ, σ2
u, ρ, σ2

v) being the reduced-form parameters. The solution is the mapping

from θ to φ and the latter characterize completely the DGP. Clearly, when no further restric-

tions are imposed on θ, it is of higher dimension than φ, so the mapping is not invertible and

there is a multiplicity of θs that correspond to the same DGP. Hence, the structural param-

eters cannot be jointly determined given knowledge of the reduced form, and the structural

model (12) is under -identified. Since (ρ, σ2
v) are in common, the under-identification affects

(λ, γf , γb, σε).

To see this differently, let us derive from the DGP (14) the conditional model for πt+1

given the variables that can be used as instruments, namely, (st, st−1, . . . , πt−1, πt−2, . . .). This

is essentially the first-stage regression of the endogenous regressor πt+1 on the instruments:

πt+1 = α(ρ + δ) st + δ2 πt−1 + ut+1 + α vt+1 + δ ut. (15)

Now, subtract γf times (15) from the reduced form of inflation (14), and rearrange to get:

πt = γf πt+1+α[1 − (δ + ρ)γf ]︸ ︷︷ ︸
λ

st+δ(1 − γf δ)︸ ︷︷ ︸
γb

πt−1+(1 − δ γf ) ut − γf ut+1 − γf α vt+1︸ ︷︷ ︸
et

. (16)

Viewing this as a GMM regression model with known (α, δ, ρ), clearly (λ, γf , γb) are not jointly

estimable from (16) with instruments (st, st−1, . . . , πt−1, πt−2, . . .). Intuitively, the forward-

looking parameter is un-identified because there are no relevant additional instruments in

the forecasting regression (15) (beyond st and πt−1 which are already used as exogenous

regressors) available to estimate it. Also, the other two parameters are functions involving

the un-identifiable parameter γf , so they, too, will be un-identified. The degree of under-

identification is only 1, but it spills over to all of the parameters of interest.
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In general, to the extent that the reduced form model (solution) is nested within the

structural model (as is the case here), there is trivially more than one observationally equiv-

alent parameterization of the structural model.15 Therefore, the issue here cannot be how to

distinguish between a forward- and a backward-looking specification, which is impossible in

this setting.16

3.1.2 Distributions of estimators under partial identification

The behaviour of GMM estimators under partial identification has been studied extensively

in recent years. In linear models, with homoscedastic and uncorrelated errors Phillips (1989)

and Choi and Phillips (1992) derived the asymptotic distribution of the IV estimator in par-

tially identified models. They showed that the IV estimator of a completely un-identified

parameter is Op(1) and its asymptotic distribution is ‘Limiting Mixed Gaussian’, centered on

the probability limit of the respective least squares estimator. In contrast, the estimators of

any identified parameters are
√

T -consistent, but their distribution is non-standard. When

the parameters of interest are function of the unidentified parameters, their estimators will

be inconsistent in general. These conclusions generalize to cases where the errors are het-

eroscedastic and/or autocorrelated, as well as to non-linear models estimated by GMM, see

Stock and Wright (2000).

In addition, the distribution of GMM estimators and test statistics under partial iden-

tification depends on nuisance parameters which are not consistently estimable, such as the

15That is, setting γf = 0 in (12) yields (14), or simply, the solution to a backward-looking model is the

model itself.

16This may become testable via tests for super-exogeneity, when we allow for the possibility of breaks in the

parameters, see Hendry (1988) and Ericsson and Hendry (1999). We will not be concerned with this possibility

here.
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correlation of the endogenous regressors with the structural errors (a measure of ‘endogeneity’

of the regressors), or the structural error variance, see e.g. Nelson and Startz (1990), Staiger

and Stock (1997). Conventional tests such as Wald, Likelihood Ratio or Score-type tests are

not asymptotically similar and thus become unreliable, since their distribution can deviate

arbitrarily from the assumed χ2 asymptotic approximation, see Dufour (1997) and Wang and

Zivot (1998).

When applied to the GG model under case 1, the above theoretical findings suggest that

all of the GMM estimators of (λ, γf , γb) should exhibit a ‘double inconsistency’, being both

Op(1), and exhibiting a large bias in the direction of OLS. We investigate this by means of a

Monte Carlo experiment.17

The Monte Carlo setting requires the specification of values for all the model’s parameters.

The parameters of interest are set to the values reported by Gaĺı and Gertler (1999, Table

2), reproduced in table 1.18 The first unrestricted parameterization is the one used for all

the simulation experiments reported below. The restricted parameterization relates to the

analysis of identifying restrictions that we discuss in this section. The remaining nuisance

parameters (σε, ρ, σv) are estimated from the GG data.

Table 1: Parameter values for simulation (i) and discussion of identifying restrictions (ii).

ω θ β γb γf λ σε ρ σv

(i) 0.486 0.834 0.909 0.378 0.591 0.015 0.18 0.9 0.10

(ii) 0.522 0.838 1.000 0.384 0.616 0.009 - - -

The different parameterizations are taken from Gaĺı and Gertler (1999, table 2).

Next, we consider a 2-step GMM estimator, using the Newey and West (1987) Het-

17Some Monte Carlo evidence on the implication of IV estimation with “inadequate” instruments is also

given in Wickens (1993).

18These estimates are based on a US GDP deflator-based measure of inflation, which is GG’s preferred

measure and the one we used for our data analysis later on.
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eroscedasticity and Autocorrelation Consistent (HAC) estimator for the variance of the mo-

ment conditions (8).19 The instrument set includes four lags of πt and st, and a constant is

included in the estimated equation. In order to replicate the GG analysis exactly, we are not

using st as an instrument, which essentially means treating st as endogenous.20

We simulate both the GMM estimators and the respective OLS estimators of the param-

eters of interest (γb, γf , λ). The results are given in table 2, and figure 1.

Table 2: Monte Carlo experiment of 2-step GMM - HAC(1) estimators of (λ, γf , γb) in (12)

under st ∼ AR(1).

γb γf λ

Sample mean st. dev. bias mean st. dev. bias mean st. dev. bias

50 0.409 0.118 0.031 0.428 0.335 -0.163 0.053 0.273 0.038

100 0.423 0.102 0.045 0.426 0.319 -0.165 0.046 0.150 0.031

150 0.428 0.100 0.050 0.420 0.319 -0.171 0.045 0.113 0.030

300 0.430 0.094 0.052 0.423 0.302 -0.168 0.044 0.078 0.029

500 0.433 0.096 0.055 0.419 0.305 -0.172 0.045 0.069 0.030

1000 0.433 0.095 0.055 0.419 0.299 -0.172 0.044 0.060 0.029

The Monte Carlo Standard Errors (MCSE) are (decreasing in T )

γb: 0.0012 - 0.0009, γf : 0.0033 - 0.0030, λ: 0.0027 - 0.0006.

Parameter values for simulation: table 1, row (i).

plims of OLS estimators: γb,ols = 0.43, γf,ols = 0.43, λols = 0.042.

The following observations stand out from the reported results. First, all the parameter

estimates appear to be inconsistent, as anticipated. λ and γb are biased upwards relative

to the ‘true’ values used for the simulation, whereas the forward coefficient γf is by far the

19This will be denoted HAC(i), where i refers to the lag truncation parameter.

20 Strictly speaking, this is equivalent to estimating:

πt = λE(st|Ft−1) + γfE(πt+1|Ft−1) + γbπt−1 + εt

where st is endogenous. This is justified by an ‘error-in-variables’ interpretation of st, when the latter is a

proxy for the true relationship being driven by marginal costs, which is thus measured with ‘error’. Note also

that the above model is implied by (4), since it entails a weaker condition for the process of πt. In other words,

it is a weaker model that does not pin down the contemporaneous correlation between st and πt.

15



0.0 0.2 0.4 0.6 0.8 1.0

2.5

5.0

7.5
γb

γb,0

γf,0

2−step GMM − HAC(1)
T=50 
T=150 
T=300 
T=1000 

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

10

20

30

γb.ols

γb*  = 0.43

OLS

−0.5 0.0 0.5 1.0 1.5

1

2
γf

0.0 0.1 0.2 0.3 0.4 0.5 0.6

10

20

30

γf,ols

γf*  = 0.43

−0.5 0.0 0.5 1.0 1.5

5

10

15 λ

λ0

−0.5 0.0 0.5 1.0

10

20

λ.ols

λ*=0.042

Figure 1: Simulated distributions of GMM and OLS estimators.

most affected parameter exhibiting a severe downward bias. More importantly, the coefficient

estimators exhibit a bias that is almost identical to the OLS bias, in line with the asymptotic

results outlined above.

Second, the variance of the estimator distributions falls very slowly with the sample

size (compared to OLS), demonstrating that the estimators are of order Op(1) rather than

Op(T
−1/2). Even though the distribution of λ̂ seems to be imploding, the latter converges

to the wrong value, the plim of the OLS estimator. Moreover, this implosion is misleading,

since λ̂ = Op(1) (indeed, increasing the sample T > 1000 doesn’t reduce the variance of the

estimator) and it simply indicates the prevalence of higher-order terms in small samples.21

21See Mavroeidis (2002).
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3.1.3 Potentially identifying restrictions

Next, we discuss two theoretically motivated restrictions in terms of their implications for

identification, and the extent to which they are testable.

The first restriction of particular interest is the following:

Hβ : β = 1 ⇔ γf + γb = 1 (17)

Gaĺı and Gertler emphasize this case because it links their model to the prototype hybrid

Phillips curve of Buiter and Jewitt (1985). Also, since it reduces the number of structural

parameters, we are interested in knowing whether it is sufficient for identification.

Imposing restriction (17) on (12) yields (letting γ = γf ):

πt = λst + γE(πt+1|Ft) + (1 − γ)πt−1 + εt

st = ρst−1 + vt. (18)

The analysis of section 3.1 showed that this restriction, together with γ > 0, guarantees exis-

tence of a solution of the form (14), but may also imply non-uniqueness. The lag polynomial

(13) together with its roots now simplifies to:

γ(L) = 1 − γL−1 − (1 − γ)L, with roots µ1 = 1 and µ2 =
γ

1 − γ
(19)

As far as uniqueness is concerned, we distinguish the following two interesting cases: γ < 1/2

and γ ≥ 1/2.

Case γ < 1
2 : This implies µ2 < 1, and hence the solution is unique. The economic inter-

pretation of this would be that the fraction of forward-looking agents-firms is smaller than

the backward-looking ones. Or alternatively, partial adjustment (friction) dominates forward-

looking behaviour.
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The implied solution is:

πt = αst + δπt−1 + ut with α =
λ

1 − γ − γρ
, δ = 1, ut =

εt

1 − γ
(20)

Note that the coefficient on lagged inflation in the reduced form is 1, and independent of the

structural parameters. This immediately implies that inflation has a unit root, which makes

the restriction testable upon estimating the system (or the reduced form for inflation and

performing a unit-root test). However, the structural model is still under -identified, since

there are now 5 structural parameters (λ, γ, σε, ρ, σv) and only 4 reduced form parameters

(α, σu, ρ, σv).

Case γ ≥ 1
2 : This is the case that best fits the GG data (see bottom line of table 1). This

time the solution is non-unique, since none of the roots of the γ(L) polynomial is explosive,

and there is one non-predetermined variable. However, we can still solve the system forward

using the unitary root of the (19) polynomial, since |ρ| < 1.22 That solution would again be

of the form (14)

πt = αst + δπt−1 + ut with α =
λ

γ(1 − ρ)
, δ =

1 − γ

γ
, ut =

εt

γ
(21)

Now the structural parameters become just-identified, although the strength of the identifying

restriction remains an issue. To investigate it, consider following the re-parameterization of

the structural equation (18):

∆πt = λst + γ∆2πt+1|t + εt (22)

where ∆2 = 1 − L2. Obviously, the strength of identification depends on the correlation

between ∆2πt+1 and the extra instrument πt−1. To study this, we derive the forecasting

22Note that the usual ‘no bubbles’ transversality condition is satisfied, by virtue of the fact that the resulting

process for inflation will be stationary.
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equation for ∆2πt+1 given st and (t − 1)-dated information, based on the solution (14):

∆2πt+1|t = α(ρ + δ)st + (δ2 − 1)πt−1

Clearly, the identifying power of πt−1 for γ depends on δ. As δ gets closer to 1 (equivalently,

γ gets closer to 1/2) identification weakens.

As we emphasized earlier, the under-identification of the unrestricted model implies that

there is a set of values Θ0 ⊂ Θ for the structural parameters θ that are consistent with the

same reduced form (DGP), φ0. Conceptually, only one of those values, say θ0 ∈ Θ0, will

be ‘true’ in the sense that it corresponds to the true underlying behavioural relationship.

However, we have no way of distinguishing between θ0 and other values in Θ0 in a statistical

sense. Given that the degree of under-identification here is 1, imposing just one identifying

restriction will yield identification (provided it is informative), and will thus ensure that the

restricted estimators converge to a particular point θR
0 ∈ Θ0. However, in general, θR

0 need

not correspond to the ‘true’ θ0.

To illustrate the above point, let θ0 = (0.378, 0.591, 0.015) from the top line of table 1,

and consider the restriction (17), γf +γb = 1.23 The mean, standard deviation and mean bias

of the restricted (2-step) estimators of (γ, λ) are estimated by simulation and are reported in

table 3. The implied probability limits (θR
0 ) of the restricted GMM estimators can be derived

using equation (16) together with the restriction γb = 1 − γf = 1 − γ:

1 − γ = δ − δ2 γ ⇒ γ =
1

1 + δ
and λ = α [1 − (δ + ρ)γ].

Given the values (α0 = 0.11, δ0 = 0.57, ρ0 = 0.9) implied by substituting θ0 into (14), we

obtain γR
0 = 0.634 and λR

0 = 0.007.

23To confirm that this restriction is identifying, we derive the concentration parameter (see section 3.2)

which is 1.94 × T , revealing strong identification.
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The results reported in table 2 reveal convergence of the restricted GMM estimators to

those implied true values. Since these are not the values that we used to simulate the data, the

identifying restriction leads to inconsistency as we argued above. In this case, the imposition

of the restriction tends to raise the forward-looking parameter (in line with the actual evidence

reported by Gaĺı and Gertler, compare the top and bottom lines in table 1).

Table 3: Monte Carlo experiment of GMM estimators of (λ, γ) in (18), under st ∼ AR(1).

γ λ

Sample mean st. dev. bias mean st. dev. bias

50 0.609 0.093 0.018 0.012 0.150 -0.003

100 0.620 0.063 0.029 0.010 0.064 -0.005

150 0.624 0.050 0.033 0.008 0.043 -0.007

300 0.630 0.035 0.039 0.008 0.024 -0.007

500 0.632 0.027 0.041 0.008 0.016 -0.007

1000 0.635 0.019 0.044 0.007 0.010 -0.008

Parameter values for simulation: top line of table 1.

Implied plims of estimators γR
0

= 0.634, λR
0

= 0.007.

MCSE γ: 0.0013 - 0.0003, λ: 0.0021 - 0.0001.

This was not an exhaustive account of what happens in the case γ ≥ 1/2. As we pointed

out at the beginning, the solution is non-unique and this indeterminacy gives rise to the

possibility of effective over-identification.24 However, this indeterminacy is particularly prob-

lematic, because the complete specification of the structural system (12) is insufficient to

determine the local DGP (reduced form). Since different specifications of the reduced form

have different implications for the identification of the structural model (4), the above identifi-

cation analysis cannot be carried out without additional information, which could be obtained

only by modelling the reduced form directly.

24See Mavroeidis (2002) for a detailed discussion of this case. This is an example of what Pesaran (1987)

calls the ‘irregular’ case, discussed in section 6.4.2 of that book.
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A second restriction of interest is the pure forward-looking specification:

Hω : ω = 0 ⇒ γb = 0

Provided γf < 1, the unique solution will involve setting δ = 0 in (14), i.e.,25

πt = αst + ut

Then, the number of structural parameters (λ, γf , σε, ρ, σv) will still be in excess of the reduced

form ones (α, σε, ρ, σv), leaving the system un-identified. However, note that this is only true

under the assumption that the model is correctly specified, i.e., when the null hypothesis Hω

is correct. If we imposed γb = 0 incorrectly, i.e., when the correct model was (4) with unique

solution (14), the restricted model would be just-identified. In that case, the implied estimate

for the forward-looking coefficient can be derived from (16), by setting γb = 0, and it would

be greater than 1.

3.1.4 Case 2: st ∼ ARDL(1, 1)

In the second leading case (10), where πt Granger-causes st, the complete structural model

becomes:

πt = λst + γfE(πt+1|Ft) + γbπt−1 + εt

st = ρst−1 + ϕπt−1 + vt (23)

25When γf = 1, we have the indeterminacy problem mentioned above. The model πt = λ st + πt+1|t + εt

does not admit a unique solution, since both πt = λ
1−ρ

st + εt as well as ∆πt = −λ st−1 − εt−1 + ξt satisfy it,

with ξt being any MDS w.r.t. Ft−1.
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This time, the solution of the model no longer depends on the roots of the polynomial (13),

but rather on the roots of the matrix polynomial

Γ(L) =




1 −λ

0 1


 +




γf 0

0 0


L−1 +




γb 0

ϕ ρ


 L

So, the nuisance parameters (ϕ, ρ) come into play in determining the solution to the model.

The possibility now arises that a solution may not exist (too many explosive roots, when

ϕ is ‘too big’). However, when ϕ is not too big, the conclusions of the simple AR(1) case

hold, i.e., the model has a unique solution of the form (14) and hence the structural model

remains un-identified. Thus adding a feedback from inflation to st is not sufficient to yield

identification.

We also see another reason why st need not be weakly exogenous for the parameters of

interest (λ, γf , γb), in the sense of Engle, Hendry, and Richard (1983): the range of values

these parameters can take is not independent of parameters of the marginal process (ϕ, ρ). In

other words, the parameters of interest (λ, γf , γb) are not variation free with respect to the

parameter of the marginal process, if the system is to have a non-explosive solution. It seems

that weak exogeneity of a forcing variable such as st, for the parameters of a forward-looking

RE model, requires both Granger non-causality of the decision variable πt for st, as well as

sufficient dynamics in the forcing variable st.

In fact, by empirically estimating an ARDL(1,1) model for st on the GG data we notice

that it is parsimoniously encompassed by the previous AR(1) specification (F(1, 149) = 1.33

with p-value 0.25). Also, the estimated feedback from lagged inflation is very small (ϕ̂ = 0.05)

and insignificant. Therefore, this case is not empirically relevant.
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3.2 Case 3: a weakly identified system

We now proceed to the third leading case (11). This time the completed structural model is:

πt = λst + γfE(πt+1|Ft) + γbπt−1 + εt

st = ρ1st−1 + ρ2st−2 + vt, εt⊥vt

(24)

Since st again receives no feedback from lagged inflation, the solution to this model will

be determined by the roots of the polynomial (13), and will be of the form:26

πt = α1st + α2st−1 + δπt−1 + ut. (25)

Now the number of reduced form parameters is the same as the number of structural ones,

so the model is identified on the order condition. In fact, it is also identified on the rank

condition when ρ2 6= 0, through the instrument st−1, as is verified by the forecasting equation

for πt+1:

πt+1 = (α1ρ1 + α2 + δα1)st + (α1ρ2 + δ α2)st−1 + δ2πt−1 + ut+1 + δ ut + α1 vt+1︸ ︷︷ ︸
ζt

(26)

(contrast this with (15) in the previous un-identified cases).

The main issue is the strength of the identification. In line with the theoretical literature,

this can be measured by the (eigenvalues of the) so-called concentration parameter, µ2
T . This

can be thought of as a multivariate signal-noise ratio in the first stage regression of the

endogenous regressors on the instruments, and can be computed upon knowledge of the second

moments in the data.27 Using the parameter estimates from table 1 (i), the concentration

26 δ and ut are as in (14), whereas

α1 =
λ(1 − δγf )

[1 − γf (δ + ρ1)](1 − γfδ) − ρ2γ2
f

, α2 =
λγfρ2

[1 − γf (δ + ρ1)](1 − γfδ) − ρ2γ2
f

which simplify to (14), when ρ2 = 0.

27See, e.g. Stock, Wright, and Yogo (2002) for a simple definition, or Mavroeidis (2002), for the more general

case of serially correlated and heteroscedastic structural residuals.
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parameter is of the order of 10−3 for a sample size of 100. This is remarkably small, in the

light of the results in the IV literature, where it is found that a concentration parameter with

at least two digits is required for the conventional asymptotic theory to work.

3.2.1 Simulation results

We repeat the experiments of section 3.1, in order to compare the behaviour of the estima-

tors in the two settings. We would also like to see how sensitive the results might be to the

magnitude of the nuisance parameters, and how fast the asymptotic results are attained. The

results are reported in table 4. The experiment in the top panel is based on the actual param-

eter values estimated from the data, and reveals weak identification, whereas the lower panel

contrasts the results with an artificial situation of strong identification. Figure 2 compares

the simulated distributions under weak and strong identification.
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Figure 2: Simulated distributions of GMM estimators and weak and strong identification.
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Table 4: Monte Carlo experiment of 2-step GMM – HAC(1) estimators of (λ, γf , γb) in (24)

under st ∼ AR(2).

(a) Weak identification: ρ1 = 0.9, ρ2 = −0.05, σε = 0.18, σv = 0.1.

Concentration parameter µ2

T = 10−5 × T .

γb γf λ

Sample mean st. dev. bias mean st. dev. bias mean st. dev. bias

50 0.410 0.120 0.032 0.421 0.330 -0.170 0.044 0.297 0.029

100 0.421 0.099 0.043 0.429 0.322 -0.162 0.039 0.164 0.024

150 0.425 0.093 0.047 0.428 0.298 -0.163 0.038 0.119 0.023

300 0.428 0.094 0.050 0.426 0.305 -0.165 0.039 0.084 0.024

500 0.430 0.092 0.052 0.425 0.291 -0.166 0.037 0.063 0.022

1000 0.429 0.094 0.051 0.429 0.293 -0.162 0.036 0.052 0.021

MCSE: γb: 0.0017-0.0013, γf : 0.0047-0.0041, λ: 0.0042-0.0001

(b) Strong identification: ρ1 = 0.9, ρ2 = −0.8, σε = 0.057, σv = 1.

Concentration parameter µ2

T = 0.459 × T .

γb γf λ

Sample mean st. dev. bias mean st. dev. bias mean st. dev. bias

50 0.378 0.094 0.000 0.513 0.206 -0.078 0.017 0.008 0.002

100 0.380 0.056 0.002 0.556 0.129 -0.035 0.016 0.005 0.001

150 0.379 0.044 0.001 0.570 0.103 -0.021 0.016 0.004 0.001

300 0.378 0.029 0.000 0.581 0.066 -0.010 0.015 0.002 0.000

500 0.378 0.022 0.000 0.586 0.049 -0.005 0.015 0.002 0.000

1000 0.378 0.015 0.000 0.588 0.034 -0.003 0.015 0.001 0.000

MCSE: γb: 0.0013-0.0002, γf : 0.0029-0.0005, λ: 0.0001-0.00001

For both panels: Values for structural parameters (γb, γf , λ) taken from top line of table 1.

plims of OLS estimators γb,ols = 0.43, γf,ols = 0.43, λols = 0.042.

It is not surprising to see that the baseline experiment results do not differ substantially

from the previous unidentified case, given the weakness of the additional instrument st−2.

Comparing table 4 (a) for case 3 with table 2 for the un-identified case 1, we observe only

a small reduction in the mean bias of estimators and their standard deviation as a result of

ρ2 6= 0. Similarly, comparing the left columns of figures 1 and 2 we see almost no difference

in the shape of the estimator distributions.

Panel (b) of table 4 presents simulation results for a case in which the concentration

parameter is high, giving rise to strong identification. To achieve a high value of the con-
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centration parameter, we set ρ2 = −0.8 (16 times bigger than the estimated value), and also

make σ2
v 100 times bigger and σ2

ε 10 times smaller than their estimates from the data (none of

these changes alone was sufficient). These values differ sharply from the empirical estimates

based on the GG data.

The concentration parameter is a highly non-linear function of the nuisance parameters,

whose exact analytical expression seems beyond reach. However, some intuition can be gained

by thinking of it as a signal-noise ratio in the first stage regression (26), where the signal due

to the instruments is (α1ρ2 + δ α2)st−1 and the noise is ζt = ut+1 + δ ut + α1 vt+1. It can be

shown that the variance of the signal is increasing in |ρ2|, when ρ1 is kept fixed. Also, since

ut is proportional to εt (see footnote 26), the variance of the noise is increasing in σ2
ε . The

effect of σ2
v is ambiguous, since it contributes both to the variance of the noise and to that of

the signal, but apparently the latter effect dominates.

This discussion helps explain why identification based on the actual parameter estimates

of ρ2 = −0.05, σv = 0.1 and σε = 0.18 is weak (top panel of table 4). This is not only due

to the second order dynamics in the forcing variable being weak (ρ2 being small), but also

because the standard error in the structural equation σε is high relative to the variability of

st.

This example also shows why it is dangerous to rely solely on the rank condition of

identification, before proceeding with conventional estimation and inference. Even when the

forcing variables have enough dynamics which would guarantee generic identification, e.g., a

non-zero concentration parameter, the DGP may be such that the strength of identification

remains a serious issue.

The analysis of this section showed that if we assume the Gaĺı-Gertler model (4) to be

correctly specified, and under a data coherent representation of the distribution of the forcing
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variable st, the model is weakly identified on past information of πt and st. Even at T = 1000

the estimators fail to converge to their true values. This situation is similar to other instances

of weak identification, such as the Fuhrer, Moore, and Schuh (1995) linear-quadratic inventory

model, where the authors report one case in which 30000 observations are needed for the GMM

estimators to converge to the true value.

To corroborate this finding, we next conduct a formal test of identifiability.

3.3 Testing identifiability in the GG model

Partial identification of the structural model (4) corresponds to a rank reduction in the

covariance matrix of the endogenous regressors with the instruments.28 We test this using a

Quasi-Minimum-Distance (QMD) statistic, which is a modification of the standard likelihood

ratio (trace) test of Anderson and Rubin (1950) for reduced rank in the coefficients of the

first-stage regression, to account for serial correlation and possible heteroscedasticity of the

residuals. The former arises naturally in this model since the endogenous regressor πt+1 is

projected on t − 1 dated information.29

We give two versions of the test, one using only lags of st and πt as instruments, and the

other using additional variables that GG used. Those extra variables are commodity price

and wage inflation, a measure of output gap and a long-short interest rate spread. Four lags

of each of those variables are used as instruments. The results of the QMD test are given

in table 5. Identification rank refers to the identifiability of the endogenous parameters, λ

28Which regressors are treated as endogenous by GG depends on their choice of instruments. Following GG,

we exclude contemporaneous variables from the instrument set, hence leaving (πt+1, st) as the endogenous

variables in the model 5.

29The QMD test is developed in Mavroeidis (2002), and can be seen as a simple, reliable alternative to the

more computationally demanding and potentially unstable procedures proposed in Cragg and Donald (1997).
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Table 5: Identifiability Tests.

Small Instrument Set, k = 8 Large Instrument Set, k = 24

Rank (r) QMD LR QMD LR

0 418.31 [0.000] 227.44 [0.000] 612.17 [0.000] 365.80 [0.000]

1 23.55 [0.001] 22.046 [0.001] 144.50 [0.000] 129.24 [0.000]

The p-values are given in square brackets, and they are based on the χ2 distribution

with degrees of freedom (k − 1 − r)(2 − r).

and γf . Rank 0 corresponds to no identification, rank 1 to partial identification (a linear

combination of (γb, γf , λ) is identifiable) and finally rank 2 implies full identification. We also

report the uncorrected (invalid) Likelihood Ratio reduced rank (LR) test for comparison.

We see that both reduced rank hypotheses 0 and 1 are strongly rejected in favour of

complete identification. This is true for both the smaller and the larger instrument set. It is

also evident that the additional instruments (gap, dc, dw, spr) reinforce the identification of

the structural parameters.

In the light of these tests, we see that the evidence on identifiability seems to conflict

with the theoretical analysis. On the one hand, by looking at the assumed completing model

for st we concluded that the structural model must be under-identified. On the other hand,

the test on the strength of the empirical instruments reveals strong evidence in favour of

identification. How can we reconcile these two contradictory findings?

The answer seems to lie in the fact that the original structural model may be mis-specified

because of omitted dynamics, or other omitted variables, which are then incorrectly used as

instruments. These possibilities are explored in the next section.30

30This contradiction could also be due to mis-specification of the completing process for st. However, it

turns out that the AR(1) specification for st parsimoniously encompasses all models containing up to four lags

of any of the other variables in the GG data set. Therefore, this is unlikely to be the source of the problem.
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4 Mis-specification analysis

We will be concerned with one particular type of mis-specification, namely the violation of the

moment restrictions. This may come about due to: either (a) lags of the dependent variable

being incorrectly omitted from the structural equation and used as instruments; or (b) other

variables in the information set being used as instruments incorrectly.

The first cause of mis-specification is likely to show up as higher-order serial correlation

in the estimated structural residuals. The second need not have that side effect (although

it might, if the omitted variables are themselves autocorrelated), and can be investigated by

modelling the reduced form of the complete system.

This type of mis-specification admits two interpretations. It could be seen as a failure of ra-

tionality, when the model is assumed to be correctly specified; or as dynamic mis-specification

of the model, i.e., the omission of some lagged exogenous variables, which are then used as

instruments, incorrectly. If the latter interpretation is adopted, the model can be potentially

extended to incorporate the extra dynamics, and satisfy the rational expectations condition.

Indeed, that is exactly the approach followed in the literature when moving from the pure

forward-looking Phillips curve (2) to a more general partial adjustment model (4). However,

this flexibility comes at the cost of creating too many observationally equivalent models, as

we show in the final section of the paper.

4.1 Omitted dynamics

To investigate these possibilities, we first examine the serial correlation pattern of the residuals

from the GG model, noting that up to first-order is acceptable. Figure 3 displays the auto-

correlogram and the partial autocorrelogram for the residuals from three different versions
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Figure 3: Autocorrelation of GG residuals.

of the GG model. The negative first-order autocorrelation is evident, and very significant.

There is also some evidence of residual autocorrelation at further lags, albeit not very strong.

Both the correlogram and the partial correlogram show that the MA(1) part of the series

dominates.

The presence of any serial correlation beyond lag 1 may have two implications for the

proposed model (4). If it is due to omitted dynamics from that model, it will immediately

imply that the latter is mis-specified, and hence the resulting estimation and inference will

be misleading. Otherwise, if the structural error εt in the model (4) is itself assumed to be

autocorrelated, it will mean that some of the instruments used to estimate it may be invalid,

i.e., those that lie within the autocorrelation horizon of the error. Suppose, for instance, that

εt follows a MA(q) process. Then, πt−2 to πt−q and possibly other variables up to lag q, would

not be valid instruments.
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In this analysis, we will focus on the first interpretation of serial correlation which is symp-

tomatic of mis-specification. The reason is that the other interpretation could be dealt with in

this framework by selecting the instruments appropriately. Yet, it has to be emphasized that

it is methodologically incorrect to assume qth order serial correlation in the structural errors

εt, say, and still use lags 1 to q of the dependent variable(s) as instruments.31 Moreover, even

if such an interpretation is given to the observed serial correlation and the instrument set is

adapted accordingly (removing the appropriate lags of yt), then the “excess serial correlation”

which is symptomatic of mis-specification, will refer to the serial correlation beyond what is

implicitly allowed for in the selection of instruments.

To analyse the implications of excess serial correlation, we need to generalize the DGP,

so that the structural model (4) becomes dynamically mis-specified relative to it. Given the

specificity of Monte Carlo experiments, rather than arbitrarily introducing further dynamics

in the DGP, we estimate them from the data. Namely, we model the reduced form as a

parsimonious ARDL(p,q) for πt given st and then ‘invert’ this to find a forward-looking

specification that has this reduced form as its solution.

The estimated reduced-form equation for inflation on the GG data is

π̂t = 0.68

(0.0631)

πt−1 + 0.241

(0.0617)

πt−3 + 0.554

(0.161)

st − 0.476

(0.162)

st−2
(27)

with σ̂u = 0.26 and standard errors given in the parentheses (the omitted lags were insignifi-

cant). Symbolically, the reduced form can be written as:

πt = α st + α2 st−2 + δ1 πt−1 + δ3 πt−3 + ut. (28)

31In particular, if the serial correlation of the structural errors is assumed to be potentially infinite, no lag

of the dependent variable could be used as an instrument.
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Equation (28) together with an AR(1) specification for st enable us to derive E(πt+1|Ft):

πt+1|t = α ρ st + α2st−1 + δ1πt + δ3πt−2. (29)

Given some value for the forward-looking parameter γf , we can subtract
γf

1−γf δ1
times (29)

from both sides of equation (28) to get an isomorphic forward-looking specification:

πt = λst + λ1st−1 + λ2st−2 + γfE(πt+1|Ft) + γ1πt−1 + γ2πt−2 + γ3πt−3 + εt (30)

where the structural parameters (λ, λ1, λ2, γ1, γ2, γ3) are functions of the reduced form pa-

rameters.32 When γf is set such that the lag polynomial 1 − γfL−1 − γ1L − γ2L
2 − γ3L

3

has exactly one explosive root, (28) is the unique solution to the rational expectations model

(30).

Obviously, the generalized forward-looking specification (30), which is consistent with

the GG data, implies that the baseline equation (4) is dynamically mis-specified due to the

omission of (πt−2, πt−3, st−1, st−2). Moreover, the structural equation (30) is unidentified,

since there is an infinity of observationally equivalent models of the form (30) for different

arbitrary choices of γf . On the other hand, the restricted equation (4) is now well-identified

through the instruments (πt−2, πt−3, st−1, st−2), although this identification is achieved via

mis-specification.

The question that naturally arises is: how detectable is that mis-specification through a

test of over-identifying restrictions? We address this question by means of a small Monte

Carlo experiment on the power of the Hansen-Sargan test with particular emphasis on the

implications of ‘over-instrumenting’ and ‘over-correction’ for serial correlation.

32Matching coefficients yields: λ = α[1 − γf (δ1 + ρ)], λ1 = −α2 γf , λ2 = α2(1 − γfδ1), γ1 = δ1(1 − γfδ1),

γ2 = −δ3 γf , γ3 = δ3(1 − γfδ1) and εt = (1 − γfδ1) ut.

32



4.2 The Hansen-Sargan test

The Hansen-Sargan test (also referred to as the J-test) is well-known to have a χ2(k − p)

distribution asymptotically under the null, with degrees of freedom equal to the degree of

over-identification k − p. In the presence of mis-specification, the distribution of the statistic

can be approximated by a non-central χ2(k − p, ν2), in large samples. Its non-centrality

parameter, ν2, which can be computed exactly when the DGP is known, will be referred to

as the ‘mis-specification parameter’, since it measures the extent to which mis-specification

is detectable.33 Therefore, the power of the J-test can be characterized approximately by ν2

and its degrees of freedom.

We consider four different versions of the J-test using different numbers of instruments

(k= 8 and 24);34 and two different types of serial correlation corrections: HAC(1) refers to

the parametric West (1997) MA-l estimator allowing only up to first-order residual autocor-

relation, and HAC(12) refers to the nonparametric Newey and West (1987) estimator with

lag-truncation parameter 12. The DGP is given by equations (27) and (9) and the estimated

model is (5).

Table 6 reports the rejection frequencies of the test statistic at the 5% level, under this

fixed alternative. Notably, the concentration and mis-specification parameters are increasing

(linearly) with the sample size, reflecting stronger identification and mis-specification of the

model.

Several conclusions stand out from those results. First, we see that the identification and

mis-specification issues in this model are conflated. This is generally true in forward-looking

33Similarly to the concentration parameter, which measures the strength of identification.
34The small set contains only four lags of the variables in the model st and πt, whereas the larger set

resembles the instruments that GG used.
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Table 6: Rejection frequencies for the Hansen-Sargan test of over-identifying restrictions, 5%

level (3 estimated parameters and k instruments).

k= 8 k=24

T µ2
T ν2

T HAC(12) HAC(1) χ2(5, ν2
T ) HAC(12) HAC(1) χ2(21, ν2

T )

50 4.5 1.444 0.000 0.091 0.124 0.000 0.020 0.081

150 13.5 4.333 0.000 0.349 0.315 0.000 0.142 0.166

300 27.0 8.667 0.308 0.637 0.604 0.000 0.411 0.335

1000 90.0 28.888 0.988 0.994 0.994 0.602 0.947 0.928

The DGP consists of equations (27) and (9) with ρ = 0.9 and σv = 0.1, and the estimated

model is equation (5). 105 Monte Carlo replications used (MCSE = 0.0007).

models when leads of the regressand appear on the right hand side. This is because any

variables that are incorrectly omitted from the structural model (compare (4) with (30)) will

also serve as relevant instruments in predicting the endogenous regressors. In a sense, the

endogenous lead regressor ‘mops up’ part of the mis-specification.35 In the case of the GG

model, we see that the omitted dynamics contribute more towards the identification than

towards the mis-specifiability of the model.

Secondly, the addition of a large number of irrelevant instruments reduces the rejection

frequencies of the test, as anticipated. Intuitively, the same degree of mis-specification is

diluted over many instruments, thus reducing the test’s power to detect it. In other words,

‘over-instrumenting’ unambiguously reduces power.

Thirdly, we notice a marked difference in the behaviour of the test using different auto-

correlation corrections. It is well-known that the J-test statistic is non-pivotal with respect

to the concentration parameter under weak instruments, see e.g. Stock and Wright (1997).

Thus, we would expect some deviation from the asymptotic χ2(k− p, ν2
T ) distribution for low

values of µ2
T . However, the HAC(1)-based test exhibits relatively small deviations from its

asymptotic power, even at small samples. In contrast, the HAC(12)-based version suffers a

35A similar argument was made independently by Rudd and Whelan (2001) with reference to the GG model.
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severe downward bias in all cases. This is in line with extensive Monte Carlo evidence on the

small sample properties of the various HAC estimators, and points out the potentially serious

costs of ‘over-correction’ for serial correlation.36

The above results help explain why GG failed to detect any mis-specification with the

J-test using 24 instruments and correcting for 12th-order autocorrelation. The p-value of

this test for the GG data is 0.97, well within the acceptance region of no mis-specification.37

4.3 Anything goes...

In this final section we show how the un-detectability of mis-specification of structural mod-

els can give rise to several, apparently over-identified but almost observationally equivalent

models, with significantly different estimates for the parameters of interest.

The most important parameter in this model is arguably the coefficient on the inflation

lead in the structural equation, γf . This is interpreted as a measure of ‘forward-lookingness’

in the determination of inflation, as we discussed above. Table 7 reports the different point

estimates and associated t-values obtained for γf using various generalizations of the baseline

structural equation (4), in the spirit of the analysis in the previous section. In the third

column we give a list of the variables that are included as exogenous regressors in the estimated

structural equation. It is assumed that all remaining variables in the instrument set should

36See, e.g., den Haan and Levin (1997) and Mavroeidis (2002). A partial explanation of the poor performance

of the HAC(12)-based test arises from the fact that the nonparametric HAC(12) estimator converges at a

slower rate to the true asymptotic variance of the moment conditions than the parametric HAC(1), since

HAC(12) = Op(T−1/3) versus HAC(1) = Op(T−1/2), see West (1997).

37Another example comes from the estimation of forward-looking monetary policy rules by Clarida, Gaĺı,

and Gertler (1998), where the authors estimate the same model for six different industrialized countries and

report p-values for the J-test of 0.999 in all cases. Even though the different data sets may be correlated, the

likelihood of this event happening under the null of no mis-specification is implausibly small when the test is

correctly sized, suggesting that it may actually be biased in that case too.
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be used as instruments. The last two columns give the results of identification (QMD) and

mis-specification (J) tests. These results are based on a 2-step GMM estimator allowing only

for first-order residual serial correlation (HAC(1)).

Table 7: Alternative estimates of γf using different models.

γ̂f t-prob Exogenous regressors Identif. Mis-spec.

0.19 [0.244]
πt−1, πt−4, st−1 . . . st−3, gapt−1

. . . gapt−3
,

dwt−2, dwt−3, dct−1 . . . dct−4

[0.002] [0.764]

0.25 [0.047]
πt−1, πt−4, st−1 . . . st−3, gapt−1

. . . gapt−3
,

dwt−2, dwt−3, dct−2, dct−4

[0.087] [0.823]

0.31 [0.005]
πt−1, πt−4, st−1, st−2, gapt−1

. . . gapt−3
,

dwt−2, dwt−3, dct−2, dct−4

[0.000] [0.889]

0.41 [0.000] πt−1, πt−4, st−1, st−2, gapt−1
, gapt−2

, dwt−3, dct−4 [0.000] [0.771]

0.56 [0.000] πt−1, πt−4, dwt−3, dct−4 [0.000] [0.860]

0.61 [0.000] πt−1 [0.000] [0.884]

As it is shown in the table, the point estimate and inference on the parameter of interest

is very sensitive to the way we choose to use our information, i.e. the choice of identifying re-

strictions. Also, in none of those models does the J-test reject the validity of the instruments,

which are also found to be strongly identifying.

The above discussion demonstrated the dangers of ‘over-instrumenting’ and ‘over-corrections’

in the estimation of forward-looking models. When mis-specification is difficult to detect by

standard tests of over-identifying restrictions, the estimators may become biased in unknown

directions. In that case, structural models of this form may almost become just-identifying

re-parameterizations of the reduced form. That in itself is not a criticism of structural econo-

metric modelling. Indeed, such re-parameterizations are desirable whenever they add useful

economic intuition to a model. However, the use of invalid inferential procedures to provide

evidence in favour of a just-identified model seems to be methodologically unjustifiable.
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5 Conclusions

In this study, we have been concerned with the problem of weak or partial identification of the

parameters of a single equation structural econometric model with forward-looking rational

expectations. In particular, in the first part we presented an economic-theoretic identification

analysis, and compared it with a statistical testing procedure. In the second part, we discussed

how identification may be achieved through mis-specification. In this setting, we examined

the power of the standard mis-specification J-test when too many instruments and general

autocorrelation corrections are used. Our conclusions point to potential dangers of this type

of econometric practice.

First, when the model is weakly identified, the use of apparently valid moment restrictions

may obscure the poor identification of the parameters. Namely, adding irrelevant instruments

on the basis of rational expectations restrictions, say, would result in an apparent ‘over-

identification’ when the model may in fact be un-identified. Weak identification will lead to

inconsistent estimates of the parameters of interest, and the addition of extra instruments

will merely induce bias in the direction of OLS estimates.

Second, modelling the ‘exogenous’ driving process in the rational expectation model may

prove highly informative in uncovering pathological situations in which the parameters of

interest are poorly identified. In the case of the New-Keynesian Phillips curve, these patho-

logical situations appear to be relevant empirically. However, identification could be achieved

indirectly through mis-specification.

Third, when the model is mis-specified due to omitted dynamics, the use of too many

lagged instruments as well as too general autocorrelation corrections is likely to reduce the

power of mis-specification tests, and obscure the inadequacies of the structural model. In that

37



sense, looking at the reduced form of the complete system may prove a valuable alternative

to the single-equation approach, as it may help uncover that mis-specification.

Forth, the presence of undetectable mis-specification may result in a multiplicity of almost

observationally equivalent models, giving rise to the possibility of choosing a desirable model

within this class. As a result, tests of over-identification lose their strength as evidence in

favor of the proposed structure, (and therefore as evidence of forward-looking behaviour).

In practice, careful selection of instruments may help avoid the problem of over-instrumenting

that we analyzed here. Instead of that, a popular alternative is to include a large number of

potentially relevant instruments, so as to maximize the chances of getting identification. We

hope that the evidence presented here will deter researchers from following that route.

Finally, with regards to the estimation of the New Phillips curve of Gaĺı and Gertler

(1999), our analysis reveals that it is either weakly identified, or more probably mis-specified,

casting doubts about its utility as a model of inflation dynamics.
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A Supplementary notes

The concentration parameter

Consider the prototype linear IV model:

yt = θ′ Yt + ut (31)

Yt = Π′Zt + vt, (32)

where Yt is a p-vector of endogenous regressors, Zt is a k-vector of instruments, ut ∼ iid(0, σ2

u), and for

a sample of random vectors {at, bt} define the notation Σab = plim
T→∞

T−1
∑T

t=1
atb

′

t. The concentration

parameter is a matrix of dimension p which is given by:38

µT = T Σ−1/2

vv Π′ ΣZZ ΠΣ−1/2

vv . (33)

When the structural error ut is serially correlated and/or heteroscedastic (which is the case for

the model analyzed here), a generalization of the above quantity is

µT = T σ2

u Σ−1/2

vv Π′ ΣZZ V (θ0)
−1 ΣZZ ΠΣ−1/2

vv (34)

where V (θ0) = Avar
(
T−1/2

∑
Zt ut

)
is the asymptotic variance matrix of the moment conditions, and

the scaling factor σ2

u is applied to correct for the units of measurement in yt (see Mavroeidis 2002 for a

justification). Note that in the special case of no heterescedasticity or serial correlation, (34) reduces

to (33).

As argued by several authors, e.g., Stock and Yogo (2003), the minimum eigenvalue of the con-

centration parameter can serve as an index of identification. In this paper, the structural equation

of interest contains two endogenous regressors (πt, st), and the value of the concentration parameter

reported in the text is the minimum eigenvalue of (34). This depends on the reduced-form parame-

ters (α1, α2, δ, ρ1, ρ2, σu, σv), which characterize the local DGP, and hence the second moments of the

38When the instruments are strongly exogenous, and interest centers on the distribution of θ̂IV conditional

on Zt, T ΣZZ can be replaced by Z ′Z. Also, when the structural equation (31) contains exogenous regressors,

the formula is corrected for those regressors (e.g., re-interpret Yt and Zt as being corrected for the exogenous

regressors Xt, by orthogonal projection).
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data. The latter, in turn, depend on the structural parameters (λ, γf , γb) and the nuisance parameters

(ρ1, ρ2, σv, σε). Fixing (λ, γf , γb) and ρ1 to the values reported in table 1, we may write µ2

T as:

µ2

T ≡ argmin
λ

(
|T σ2

u Π′ ΣZZ V (θ0)
−1 ΣZZ Π − λΣvv|

)
= T f(ρ2,

σv

σε
, σε) (35)

The above expression is a highly non-linear function of the nuisance parameters, whose exact analytical

expression seems beyond reach. This implicit formulation emphasizes the dependence of µ2

T on the

nuisance parameters (ρ2, σε, σv) and its linearity in T . It can also be shown that f() is increasing in

|ρ2| and σv, decreasing in σε, and that it is homogeneous in (σv, σε). The following table illustrates:

µ2
T for various values of ρ2 and σv/σε

ρ2 σv/σε: 1/2 1 2 4 8 16

-0.05 0.0000 0.0000 0.0001 0.0002 0.0006 0.0009

-0.18 0.0004 0.0018 0.0069 0.0259 0.0826 0.1673

-0.30 0.0038 0.0153 0.0603 0.2296 0.7674 1.7459

-0.43 0.0150 0.0599 0.2374 0.9135 3.1572 7.8451

-0.55 0.0329 0.1313 0.5218 2.0350 7.3811 20.856

-0.68 0.0510 0.2037 0.8119 3.2015 12.097 38.872

-0.80 0.0783 0.3128 1.2485 4.9486 19.083 66.005

T = 150, (γb, γf , λ) = (0.37, 0.59, 0.015), ρ1 = 0.9 and σε = 0.18.

In bold is the value based on the actual parameter estimates.

The mis-specification parameter

Suppose the structural equation (31) is mis-specified, and the DGP is given by:

yt = θ′0Yt + b′Zt + ut

When the mis-specified model (31) is asymptotically identified, let θp denote the pseudo-true

value for a particular GMM estimator (its probability limit). For instance, the pseudo-true

value for the efficient 2-step estimator is:

θ(2)
p =

(
Σ′

ZY V (θ(1)
p )−1ΣZY

)−1
Σ′

ZY V (θ(1)
p )−1ΣZy

which depends on the plim of the 1-step estimator θ
(1)
p . The latter is conventionally based on

the non-robust weighting matrix Σ−1
ZZ , so that θ

(1)
p =

(
Σ′

ZY Σ−1
ZZΣZY

)−1
Σ′

ZY Σ−1
ZZΣZy. When
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we consider local alternatives of the form b = b̄/
√

T , all GMM estimators of θ, under the usual

Hansen (1982) regularity conditions, converge to the true value, θ0 = (Σ′
ZY ΣZY )−1 Σ′

ZY ΣZy.

Given θp, the mis-specification parameter is:

ν2 = T b′
[
V (θp)

−1 − V (θp)
−1ΣZY

(
Σ′

ZY V (θp)
−1 ΣZY

)−1
Σ′

ZY V (θp)
−1

]
b. (36)

Description of the GG data

The empirical results of this paper are based on the original data set of Gaĺı and Gertler

(1999).39 The data is quarterly, and the sample size is from 1960:Q1 to 1997:Q4. The

variable definitions and measurement are given in table 8.

Table 8: GG data description.

Mnemonic Description Definition

πt Quarterly inflation rate 100 ∆ log(GDP deflator).

st Labour share (in deviation from steady state) c × 100 log unit labour cost
unit price .a

gapt Output gap Quadratically detrended real GDP.

sprt Long-short interest rate spread 1y bond rate – 3m Fed funds rate.

dwt Quarterly wage growth 100 ∆ log (unit labour costs).

dct Quarterly commodity price inflation 100 ∆ log(commodity prices).

ac is a correction factor due to Sbordone (2002): c = n(m−1)

m2−n
, where n is the share of labour in the

Cobb Douglas production function Y = A K1−n Ln, and m is the average markup of prices over unit

costs. GG set n = 2/3 and m = 1.1, so c = 0.12.
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