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Abstract

The small sample properties of tests on long-run coefficients in cointegrated sys-
tems are still a matter of concern to applied econometricians. We compare the per-
formance of the Bartlett correction, the bootstrap and the fast double bootstrap for
tests on ccointegration parameters in the maximum likelihood framework. We show
by means of a theoretical result and simulations that all three procedures should be
based on the unrestricted estimate of the cointegration vectors. The fast double boot-
strap delivers superior size correction, whereas the Bartlett correction leads to the
least loss of power. However all three perform much better than the asymptotic tests
and difference between them are small.

1 Introduction

The small sample properties of tests on long-run coefficients in cointegrated systems are
still a matter of concern to applied econometricians. Since the asymptotic procedures pro-
posed by Johansen (1991) have been shown to suffer from severe size distortion (among
others, see Gonzalo, 1994; Bewley et al., 1994; Li and Maddala, 1997) two natural and
complementary solutions have been proposed: (i) applying Bartlett corrections to the test
statistics, in the hope that the corrected statistic will follow a small sample distribution
closer to the asymptotic one, and thus bring actual sizes closer to the nominal sizes (Jo-
hansen, 2000); (ii), trying to estimate the actual small sample distribution by the bootstrap,
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a computer-intensive technique strictly linked with the Edgeworth expansion and indeed
defined by Cribari-Neto and Cordeiro (1996) ‘a simulation based alternative to Bartlett
and Bartlett-type corrections’ (Li and Maddala, 1996, 1997; Fachin, 2000; Gredenhoff
and Jacobson, 2001).

For the time being, no definite solution has however appeared. Although the only
aim of both the Bootstrap and the Bartlett correction is to get the actual size closer to
the nominal size, the final aim of any testing procedure must be that of distinguishing
between valid and invalid hypotheses: the proportion of Type II errors of corrected tests
is therefore crucial. To the best of our knowledge no evidence on the power properties
of Bartlett corrected tests in the cointegrated VAR model has appeared in the literature;
the only available evidence on power for bootstrapped test statistics is in Fachin (2000)
and shows that the type of bootstrap test examined may have a rather high Type II error.
The aim of this paper is thus examining both the size and power properties of Bartlett-
corrected and bootstrap tests. With respect to the latter, we also evaluate the feasible
double bootstrap, recently proposed by Davidson and MacKinnon (2000). In either cases,
a key result of the paper is that the Bartlett correction and the bootstrap tests should both
be based on theunrestrictedestimate of the cointegration vectors.

The chapter is organised as follows: in section 2 we shall briefly review the model,
the structure of Bartlett-corrected and bootstrap tests, as well as a theoretical result, moti-
vating us to base both procedures on unrestricted estimates. In section 3 we shall discuss
the design of the Monte Carlo experiment and in section 4 present the results of the sim-
ulations.

Some conclusions, as well as tentative recommendations for applied work, are finally
drawn in section 5.

2 Bartlett-corrected and Bootstrap Tests on Cointegrat-
ing Coefficients

2.1 The model

The cointegratedp-dimensional VAR model withk lags in its autoregressive form is de-
fined as:

∆Xt = αβ′
(

Xt−1

Dt

)
+

k−1∑
i=1

Γi∆Xt−i + Ψdt + εt (1)

In this paper a linear trend is constrained to lie in the cointegration space and an unre-
stricted constant is included outside that space:Dt = t anddt = 1. We defineγ andρ
by β′ = (γ′, ρ′), whereγ includes the coefficients linking the stochastic variables of the
system andρ are the coefficients of the deterministic part.

Three assumptions are made to make sure this is a stable I(1) model:

Assumption (Rank) α andγ are two full rank matrices of dimensionp× r, p > r;
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Assumption (No I(2)) The matrixα′⊥
(
I −∑k−1

i=1 Γi

)
γ⊥ is of full rank;

Assumption (No other roots) The rootsz of the characteristic polynomial are either1:
z = 1 (p− r roots are equal to unity) or larger than1 in absolute value:|z| > 1.

The first two assumptions assure that the process is an I(1) process and not integrated
of lower or higher order, while the third assumption excludes explosive behaviour and
seasonal unit roots

The stationary, stochastic part of(1) can be written in a companion form1:




γ′Xt

∆Xt

∆Xt−1
...

∆Xt−k+2




=




Ir + γ′α γ′Γ1 · · · γ′Γk−2 γ′Γk−1

α Γ1 · · · Γk−2 Γk−1

0 I 0 0
...

. ..
...

0 0 I 0







γ′Xt−1

∆Xt−1

∆Xt−2
...

∆Xt−k+1




+




γ′

I
0
...
0




εt

or
Yt = PYt−1 + Fεt (2)

The Bartlett correction, which shall be discussed in the next section, depends crucially on
the matrixP .

2.2 The Bartlett correction

The idea behind the Bartlett correction Bartlett (1937) is both simple and appealing. Sup-
pose the aim is testing the following null hypothesis on the parametersΘ,H0 : Θ0 ⊂ Θ.
In regular cases, the LR test statistics has an expected value of

Eθ̂0
[−2 ln(LR (Θ0|Θ))] = Eθ̂0

[
lθ̂ − lθ̂0

]
= (3)

h

(
1 +

1

T
g (θ0)

)
+ O

(
1

T 2

)

whereh denotes the number of restrictions tested. Then dividing the test statisticS by(
1 + 1

T
g (θ0)

)
we may obtain the modified test statisticSB and expect the resulting dis-

tribution to be closer to aχ2 distribution. This division is called a Bartlett correction and
1
T
g (θ0) will be referred to as the Bartlett factor.

We obviously do not knowθ0, the true value of the parameters,θ, and thus we substi-

tute a consistent estimate ofθ, θ̃, in expression(3) and thus get the Bartlett factorg
(
θ̃
)

.

The arguments in the following pages will revolve around which consistent estimate
should substituteθ0: θ̂0 the maximum likelihood estimate under the null hypothesis orθ̂
the unconstrained maximum likelihood estimate. We shall argue that we need to substi-
tute θ̂ and notθ̂0 in the problem at hand. Even though the size correction works better

1The deterministic part can be taken account of by adding an extra term indt andDt.
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with θ̂0 which is more efficient under the null, we find the power of the Bartlett corrected
test-statistic witĥθ extremely poor. We demonstrate this both by means of a theory and
simulations in section 3. To see the differences in practise between using these two es-
timates, we refer to page 19, where in figure 3 we have plotted power curves for both
estimates. (the DGP-value is 1 and the curves are drawn for the 5% significance level).

The problems of the Bartlett section and their solutions, carry over to the bootstrap
section as well.

Lawley (1956) and Barndorff-Nielsen and Hall (1988) proved that under certain regu-
larity conditions (which exclude cointegrated VAR models and thus the problem at hand)
for any real numberx

p (SB ≤ x) = p
(
χ2(h) ≤ x

)
+ O

(
1

T 2

)
(4)

So the wholeχ2 distribution is better approximated after the correction.
Jensen and Wood (1997) showed that for the Dickey Fuller distribution (4) does not

hold. This however does not mean that the size correction is not useful in practice. In
fact Nielsen (1997) showed that a Bartlett correction in an AR(1) process with a unit root,
does provide an improvement to the size of the test.

Under the assumption:

Assumption (Deterministics) there exist matricesK andM such thatdt = Mdt−1 and
∆Dt = Kdt where all the eigenvalues of the matrixM equal1 in absolute value

Johansen (2000) derived the Bartlett correction for three different kind of hypotheses
onβ in (1), namely:

1. β = β0, a simple hypothesis on all the cointegration vectors;

2. β1 = β0
1 whereβ0

1 are the firstr1 relations (1 ≤ r1 < r) and the other cointegration
relations are unrestricted;

3. γ = Hϕ whereH is a (p× r) matrix of full rank ands < r. This hypothesis
implies the same restriction on all relations inγ.

Corrections for other kinds of hypotheses, like restrictions of the kindβ1 = H1ϕ1 do
not yet exist.

We therefore limit ourselves to confronting the corrections 1 and 2 with the bootstrap
in this paper and do not put any dummy variables in our DGP.

The correction term itself, for which we refer to the aforementioned article, depends
crucially on the total number of parameters, the variance ofYt in (2) and a number of times
on

∑∞
i=0 P i. We do not have the true value of the parameters, so we substitute estimates.

Now under the null the matrixP only contains eigenvalues strictly smaller than unity in
absolute value asYt in (2) is a stationary process. Yet under the alternative, the restricted
estimate will contain at least one additional unit root, becasuse one of the relationsγ′Xt

is no longer stationary. Consequently the Bartlett correction is no longer defined as the
sum

∑∞
i=0 P i diverges. We prove this fact in the following theorem:
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Theorem 1 Under the false null hypothesisβ = b = (b1, b2) whereb1 ∈ sp (β0) , b2 /∈
sp (β0) (β0 is the true value ofβ), α̂ the restricted maximum likelihood estimate ofα, will
have reduced ranks < r in the limit. Consequently the matrixP contains additional unit
roots in the limit

Proof. Partition the maximum likelihood estimate ofα, α̂ = (α̂1, α̂2) conformably
with b. It is found by ordinary least squares:

α̂ = S01 (b1, b2)

(
b′1S11b1 b′1S11b2

b′2S11b1 b′2S11b2

)−1

whereS01 andS11 are defined in standard fashion (see Johansen 1995, page 90-91). From
Chan and Wei (1988) we find thatS01b1, b

′
1S11b1 ∈ O (1), S01b2, b

′
2S11b1 ∈ O (T ) and

b′2S11b2 ∈ O (T 2). Using standard inverse matrix formula, we find that

α̂2 =
(
S01b2 − S01b1 (b′1S11b1)

−1 b′1S11b2

)×(
(b′2S11b2)

−1 − (b′2S11b1) (b′1S11b1)
−1 (b′1S11b2)

)−1 ∈
O (T−1) which impliesα̂2

P→ 0
This means that if we use the restricted estimateθ̂0 and the null hypothesis is false, the

Bartlett correction is not defined. We shall see that in practice the absolute value the roots
is underestimated, such that the additional root is estimated to be close to 1. This means
that the estimated Bartlett factor can be calculated, but becomes extremely large and the
null hypothesis is then easily accepted.

We thus seek an estimator which

• Whenever the null hypothesis is true is consistent.

• Whenever the null hypothesis is false, the matrixP should have stable roots, such
that the Bartlett correction is defined. If possible these roots should in some sense
be as stable as possible, for when they are very close to unity, the Bartlett factor
explodes and a false hypothesis is accepted.

Solution 2 Use the unrestricted estimateŝβ of β in (1) and not the restricted estimates
in the Bartlett correction factor. The Bartlett correction factor forβ = β0 andγ = Hϕ
only depends on̂β , such that this defines the solution in these cases.
In case 2 (β1 = β0

1 , only some of the cointegration relations are restricted) we need
estimates for both the restricted and the unrestricted vectors. In this caseβ0

1 and the
associated restricted estimateβ2(β

0
1) should not be used, as this will lead to instability of

the P matrix whenH0 is false. Instead, we find a matrixb1 for whichsp(b1) ⊂ sp(β̂) and
as close toβ0

1 as possible. This means that we find a matrixξ such that

ξ =
(
β̂′β̂

)−1

β̂′β0
1 (5)

Then the estimatorsb1 = β̂ξ and b2 = β̂ξ⊥ are consistent when the null hypothesis is
true and the companion matrixP is stable when it is false.
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2.3 Bootstrap methods

In principle, the great advantage of the bootstrap2 is that it can offer immediate solutions
to new problems. However, in practice its ability to deliver good alternatives when reli-
able small sample parametric procedures are lacking must be accurately tested before its
use may be recommended. This is especially true for the problem we are trying to solve,
as the asymptotics of the bootstrap applied to integrated data is still largely unexplored:
Horowitz (2002) summarises his survey stating that ‘at present (...) there are no theoret-
ical results on the ability of the bootstrap to provide asymptotic refinements for tests or
confidence intervals when the data are integrated or cointegrated’. Recent developments
in this direction covering specific cases are Chang et al. (2001), Davidson (2001), Paparo-
ditis and Polititis (2001) and Inoue and Kilian (2002). At the opposite, a striking example
of how blind implementations of the bootstrap can deliver entirely wrong results is given
by Phillips (2001) for the case of spurious regression with integrated variables.

The general idea underlying bootstrap tests is to assess the value of the test statistic
s obtained from the empirical analysis on the basis of the distribution of a large number
of statisticss∗ computed from suitably constructed pseudodata, with the null hypothesis
of the former consistent with the data generating process (DGP) of the latter. To this
end,H0 may be imposed when generating the pseudodata (as in some examples in Efron
and Tibshirani, 1993), or, vice versa, the chosen DGP taken as the null hypothesis (as
recommended by Hall, 1992). In both cases,H0 is true for the pseudodata, and thus,
assuming for simplicity a one-sided test, the proportion ofs∗ more extreme thans in the
relevant direction is a natural estimate of thep-value of the test.

With cointegrated VARs and some hypothesis on the long-run coefficientsH0 : β =
β0, the two approaches entail respectively:

(a) estimating a VAR constrained underH0 : β = β0, generating the pseudodata on the
basis of the estimatedconstrainedestimateŝθ0 and a set of random noises (we will
discuss the choice of these below), and testingH0 : β = β0 both on the original
data and on the pseudodata;

(b) estimating an unconstrained VAR, generating the pseudodata on the basis of the
estimatedunconstrainedestimatreŝθ and a set of random noises, testingH0 : β =
β0 on the original data andH∗

0 : β = β̂ (whereβ̂ are the unconstrained estimates of
β) on the pseudodata.

So far, approach (a) has been favoured with no exception in the applications of interest
here. However, a point of crucial importance for testing in the maximum likelihood es-
timation of cointegrated VARs seems to have gone unnoticed: although both approaches
are valid and asymptotically equivalent underH0, this is not true any more when it is
false. To see this, consider the case of a testH0 : β = β0 in a model without lags and

2General introductions to the bootstrap are provided,inter alia, by Efron and Tibshirani (1993), Hall
(1995) and Horowitz (2002), while a recent review especially addressed at time series applications is
Berkowitz and Kilian (2000).
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just one cointegration vector. If this vector is misspecified, thenβ0′Xt−1 is clearly anI(1)
process, whereas∆Xt is I(0). The only congruent values for the loading factorsα are
therefore zero. Hence all the element of the matrixΠ̂ = α̂β0′ equal zero (asymptotically)
and the rank of such a matrix is0 not 1. If one were to use this matrix for the Bootstrap
DGP, one would generate just random walks without any cointegration (this is essentially
a different version of exactly the same issue already discussed in the previous subsection
with respect to the computation of the Bartlett factor whenH0 is false). Thus, we will
consider bootstrap tests of type (b).

With respect to the noise, there are again essentially two alternatives: either generat-
ing it under some parametric hypothesis (typically,MIIDN ) or by resampling from the
set of residuals of a VAR. In the latter case the natural choice are the residuals of the un-
constrained VAR, empiricallyMIIDN . Gredenhoff and Jacobson (2001) favoured the
parametric option, while Fachin (2000) and Li and Maddala (1997) the non-parametric
one3. Here we will consider both alternatives. Block-resampling methods, such as the
“Continuous-Path Block Bootstrap” proposed by Paparoditis and Polititis (2001), which
may be potentially powerful in dealing with the stochastic trends present in the system,
will the subject of future research.

Defining Θ the entire parameter set of the VAR and assuming we are interested in
the testH0 : β = β0 we thus implement the following bootstrap procedure, which is
graphically represented in figure 1

• Bootstrap test

1. Estimate VAR on dataX; for given cointegrating rank obtain unrestricted estimates
θ̂, unrestricted residualŝε , restricted estimateŝθ0, restricted residualŝε0 and test
statistics for the hypothesisH0 : β = β0;

2. Construct pseudodata:X∗ = φ(θ̂, ε∗), ε∗ drawn at random with replacement from̂ε
or NID.

3. Estimate VAR on pseudodataX∗; obtain θ̂∗, ε̂ ∗, θ̂∗0, ε̂
∗
0 and test statistics∗ for the

hypothesisH∗
0 : β = β̂;

Repeat (2)-(3) a large number of times

(4) Compute bootstrapp-value:p∗ = prop(s∗ > s).

The test statistic is the likelihood ratio test (which is the only one allowing a Bartlett
correction).

3Note that there is a possible source of confusion here, as the terms ‘parametric’ and ‘non-parametric’
have been used in the bootstrap literature with different meanings. We define procedures based on re-
sampling from estimated residuals as ‘non parametric’, and that involving drawings from a theoretical
distribution as ‘parametric’.
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ObservationsX

??

�-

Restricted Estimation
H0 : β = β0

Estimates:̂θ0, ε̂0

Unrestricted Estimation

Estimates:̂θ, ε̂ (e.g. β̂)

LR-test

s = 2
(
lθ̂ − lθ̂0

)

500 bootstraps ε∗

Either draw fromε̂

or M.I.I.D.N(0, Ω̂)

Generate bootstrap sample

X∗ = f
(
θ̂, ε∗

)

??

�-

?

�

Restricted Estimation
H0 : β = β̂

Estimates:̂θ∗0 , ε̂∗0

Unrestricted Estimation

Estimates:̂θ∗, ε̂∗ (e.g. β̂∗)

LR-test

s∗ = 2
(
lθ̂∗ − lθ̂∗0

)

Calculate bootstrap p-value
p∗ = prop(s∗ > s)

Figure 1: Bootstrap procedure for tests on the cointegration parameters
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If we have a simple hypothesis on only part of the cointegration space,β1 = β0
1 , we

take the following null hypothesis in step 3:

β1 = β̂′(β̂′β̂)−1β̂′β0
1 (6)

which is easily seen to converge toβ0
1 if H0 is true.

As mentioned in the introduction, Davidson and MacKinnon (2000) recently put forth
a computationally cheap double bootstrap procedure which may deliver results superior
to the standard bootstrap just outlined4. The idea behind the double bootstrap, proposed
by Beran (1988) is that of correcting the possible bias in the bootstrap procedure imple-
mented by a second application of the bootstrap. For instance, in the case of a test the
aim of the second-level application of the bootstrap would be to estimate, and thus correct
for, the bias(pi − i), wherepi is thep-value of thei-level bootstrap test. Although the
principle is certainly attractive, it is also very expensive, as it involves the construction of
a bootstrap pseudo-population for each bootstrap redraw. It is thus practically impossible
to evaluate by means of Monte Carlo experiments with the currently available computing
power. On the contrary, in Davidson and MacKinnon’s method there is only one second
level bootstrap redraw for each first level one, so that the computing time is of the same
order of magnitude of the standard bootstrap. Monte Carlo experiments are thus feasible.
Going into the details of the method is clearly beyond the scope of this paper. However,
the basic intuition is very simple: if the bootstrap estimatep∗ = prop(s∗ > s) of true
p-value of the test is distorted, we may get a better estimate by replacings with somes̃
chosen so to counterbalance the distortion. Now,s is by definition thep∗ − th quantile
of the distribution of thes∗; hence, an obvious candidate fors̃ is the same quantile of the
distribution of asecond-levelbootstrap distribution. Ifp∗ is distorted downwards, such a
quantile will tend to be larger than the true quantiles, and viceversa, thus delivering the
desired effect.

The general structure of the fast double bootstrap test we shall implement is the fol-
lowing: (see figure 2 for a graphical representation)

• Fast Double Bootstrap test

1. Estimate VAR on dataX; for given cointegrating rank obtain estimatesθ̂, ε̂, θ̂0, ε̂0

and test statistics for the hypothesisH0 : β = β0;

2. Construct pseudodata:X∗ = φ(θ̂, ε∗), ε∗ drawn at random with replacement from̂ε
or NID;

3. Estimate VAR on pseudodataX∗; obtain θ̂∗, ε̂ ∗, θ̂∗0, ε̂
∗
0 and test statistics∗ for the

hypothesisH∗
0 : β = β̂;

4Although Davidson and MacKinnon’s analytical results are valid only for one-sided tests with asymp-
totic N(0,1) distributions, some simulation evidence suggests that the properties may extend to the asymp-
totic χ2 of interest here.
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ObservationsX

??

�-

Restricted Estimation
H0 : β = β0

Estimates:̂θ0, ε̂0

Unrestricted Estimation

Estimates:̂θ, ε̂ (e.g. β̂)

LR-test

s = 2
(
lθ̂ − lθ̂0

)

500 double bootstraps ε∗

Either draw fromε̂

or M.I.I.D.N(0, Ω̂)

Generate bootstrap sample

X∗ = f
(
θ̂, ε∗

)

??

�-

?

�

Restricted Estimation
H0 : β = β̂

Estimates:̂θ∗0 , ε̂∗0

Unrestricted Estimation

Estimates:̂θ∗, ε̂∗ (e.g. β̂∗)

LR-test

s∗ = 2
(
lθ̂∗ − lθ̂∗0

)
ε∗∗

Either draw fromε̂∗

or M.I.I.D.N(0, Ω̂∗)
Generate 2nd level bootstrap
sample

X∗∗ = f
(
θ̂∗, ε∗∗

)

??

�-

?

�

Restricted Estimation
H0 : β = β̂∗

Estimates:̂θ∗∗0 , ε̂∗∗0

Unrestricted Estimation

Estimates:̂θ∗∗, ε̂∗∗ (e.g. β̂∗∗)

LR-test

s∗∗ = 2
(
lθ̂∗∗ − lθ̂∗∗0

)

Calculate fast double bootstrap p-values
p∗∗1 = prop(s∗ > Q∗∗

p∗)
p∗∗2 = 2p∗ − prop(s∗∗ > s)

Figure 2: Fast Double Bootstrap procedure for tests on the cointegration parameters
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4. Construct second-level pseudodataX∗∗ = φ(θ̂∗, ε∗∗), ε∗∗ drawn at random with re-
placement from̂ε∗ or NID;

5. Estimate VAR on second-level pseudodataX∗∗; obtain θ̂∗∗, ε̂ ∗∗, θ̂∗∗0 , ε̂∗∗0 and test
statistics∗∗ for the hypothesisH∗∗

0 : β = β̂∗;

Repeat (2)-(5) a large number of times

(6) Compute bootstrapp-value:p∗ = prop(s∗ > s).

(7) Compute fast double bootstrapp-value type 1:p∗∗1 = prop(s∗ > Q∗∗
p∗),whereQ∗∗

p∗ is
thep∗ quantile of thes∗∗’s.

A (costless) further step is advisable:

(8) Compute fast double bootstrapp-value type 2:p∗∗2 = 2p∗ − prop(s∗∗ > s).

Again, the intuition here is that if for instancep∗ > p, we can expectprop(s∗∗ > s) >
p∗, so thatp∗∗2 will be closer top thanp∗. However,p∗∗2 may not be greater than2p∗ and
it may be negative, two undesirable features that suggest limiting its use to a reliability
check: if the difference between the twop-values is sizebale neither of them should be
trusted.

3 Design of the Monte Carlo Experiment

On the basis of the simulation results reported by Gredenhoff and Jacobson (2001) and
Fachin (2000), the key characteristics of the DGP to be controlled in the experiments are
the dimension of the system, i.e. number of variables and lags, and its long-run structure,
i.e. number of the cointegrating relationships and the speed at which the system adjusts
to them. Estimation of systems of higher dimension (both in terms of number of variables
and lags) demand more from the data, and thus it is (ex-post) not surprising to see that both
the asymptotic test and the bootstrap test proposed by Gredenhoff and Jacobson (2001)
perform better in smaller systems. A crucial remark here is that the simple bivariate
DGPs employed in virtually all simulation studies do suffer from loss of generality, a
fact not suspected so far. The experimental design adopted here will thus generalize to a
multivariate system the classical DGP used by a number of studies starting with Engle
and Granger (1987), which allows an easy control of the speed of adjustment. We shall
consider systems includingp = 5 random variables and withr = 1 or 2 cointegrating
relationships. Letxt = [x1t . . . x5t]

′ be the column vector of the realizations of the random
variables of interest at timet = 1, . . . , T , ut = [u1t . . . u5t]

′ the errors,εt = [ε1t . . . ε5t]
′

the noise, whose stochastic structure will be discussed in detail below, andt a time trend.
Our DGP is then given by
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


β′1
...

β′5




[
xt

t

]
= ut (7)

Φut = εt (8)

with
Φ = diag(φ), φ =

[
φ1(L) φ2(L) φ3(L) φ4(L) φ5(L)

]
.

Although the Bartlett corrections do depend on the parameters of the system, in order
to keep the size of the experiment within manageable dimensions in the size simulations
the cointegrating coefficients will be kept fixed across trials to either zero or1, with the
vectors resembling quite closely those used by Haug (1996), while in the power simu-
lations we shall consider a few values in the range[0.5, 1.5]. Given that we are using a
full-information method we do not need to worry about endogeneity; we shall thus con-
sider a very simple structure, with one stochastic trend (Xp) transmitted to the firstr
variables of the system, while the remainingp− r− 1 follow independent random walks.
The details in the two cases are as follows:

(a) r = 1

β1 =
[

1 0 0 0 β15 0.01
]

is the cointegration vector.
All the other relations are non-stationary:
β2 =

[
0 1 0 0 0 0

]
; β3 =

[
0 0 1 0 0 0

]
;

β4 =
[

0 0 0 1 0 0
]
; β5 =

[
0 0 0 0 1 0

]
;

φ1(L) = (1, ϕ1L, . . . , ϕkL
k);

φ2(L) = φ3(L) = φ4(L) = φ5(L) = (1,−L).

(b) r = 2

β2 =
[

0 1 0 0 1 0.01
]

becomes a cointegration vector.
All the otherβ′s are as in case(a).
φ1(L) = φ2(L) = (1, ϕ1L, . . . , ϕkL

k);
φ3(L) = φ4(L) = φ5(L) = (1,−L).

Some simple considerations will allow great simplification of the design as far as the
ε′s are concerned. First of all, in previous work on the related topic of stationary VARs
Fachin and Bravetti (1996) found that the shape of the distribution of the shocks does
not appear to have a significant impact on the performances of asymptotic procedures.
Further, the expectation that with a full-information method, their covariance structure
should not matter either has been confirmed in the case of a simple bivariate DGP by
Fachin (2000). We shall thus assumeε= [ε1 . . . εp] ∼ MIIDN(0, I).
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Finally, the number of both Monte Carlo replications and bootstrap redrawings has
been fixed to 500: on the basis of previous work and some pilot experiments we concluded
that the gain in precision deliver by higher numbers of either was not worth the higher
computing costs and longer calendar time required. At 0.05 the Monte Carlo standard
error will thus be about 0.010.

In table 1 we give an overview of the parameter values in the various experiments. In
the benchmark case we have 1 cointegration vector and test that the cointegration param-
eters is known. Furthermore the model has (case (a)), 2 lags, and fairly slow adjustment
(ϕ1 = ϕ2 = −0.35) We have 100 observations(T = 100), and for the bootstrap algo-
rithm, we resample with replacement from the estimated errorsε̂ (and in the second level
bootstrap from̂ε∗ ).

Furthermoreβ15 = 1 and we thus testH0 : β0
1 = β1 =

[
1 0 0 0 1 0.01

]
. For

the benchmark case and each of the other cases we also execute a power experiment in
which we setβ15 = 0.5 and testβ0

1 = β1 =
[

1 0 0 0 1 0.01
]
.

The complexity of the DGP is such that we are unable to execute a full factorial
designo over all variations, we consider relevant. We thus provide

Each time we only deviate in one respect from our benchmark DGP, which is the first
experiment. In the second we test case (b), that is two cointegration vectors and test that
either one or both vectors are known. Next we increase the sample size to find out whether
the corrections are working with 400 observations: we do not regularly find such large
samples in time series analysis, but find that even with that many observations, the asymp-
totic tests do not work well. In the fourth experiment we increase the lag length of the
VAR to four. The sum of the adjustment coefficients is kept constant at0.7. Subsequently
we test the effect of an increase in the speed of adjustment to equilibrium. This increases
the signal to noise ratio and the performance of the asymptotic test (remember that the
Bartlett correction depends on

∑∞
i=0 P i). In the last experiment we try the parametric

bootstrap.

Finally we compute a power curve for the benchmark case andβ15 in (0.5, 1.50), with

Benchmark Variation Table Page
Cointegration rank r = 1 r = 2 2 20
Number of vectors testeds = 1 s = 1, 2 2 20
Sample size T = 100 T = 400 3 20
VAR lag length k = 2 k = 4 4 21

ϕ1 = ϕ2 = −0.7
2

ϕ1 = −0.7
2

, ϕ2 = −0.7
3

,
ϕ3 = ϕ4 = −0.7

16

Speed of adjustment ϕ1 = ϕ2 = −0.7
2

ϕ1 = ϕ2 = −0.4
2

5 21
Resampling of errors parametric resample fromε̂ andε̂ ∗ 6 21
Power curve based on̂θ 7 22
Power curve based on̂θ0 8 23

Table 1: Design of Monte Carlo Experiment for small sample corrections
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β0
15 = 1 as usual, both for the bootstrap and Bartlett correction we propose, that is those

based on the estimates under the alternative and one based on estimates under the null.

4 Results

Although the results of the simulations amount to a considerable mass, their essence is
quite simple, and summarised in Table 2; in the following tables a few details are high-
lighted, with baseline results repeated in different tables in order to facilitate comparisons.
In all the cases reported and discussed in this section the nominal significance level of the
tests is always 5%, with results for different values available on request.

First of all, in the sample sizes we typically encounter in applied econometric work
(100 observations) the asymptotic tests deliver disastrous performance as far as type I er-
rors are concerned: at times they exceed 50% at the nominal 5% level. All the alternative
procedures (Bartlett correction, simple and fast double bootstrap) are able to reduce sub-
stantially the size distortion in all our experiments, but are unable to eliminate it: in the
case of rank=1 the minimum rejection rate, delivered by the fast double bootstrap type
1, is 26%, while in the case of rank=2 and test on one vector the rejection rate of all
bootstrap procedures and the Bartlett corrected test is 15%. The two types of fast double
bootstrapp-values are always very close, confirming that the procedure is reliable in our
context. The power loss from using the procedures with lower size distortion is accept-
able, with the rejection rates always over 70%. This finding will be confirmed by the
power curve reported in table 7. To understand the point of basing both the bootstrap and
Bartlett correction on the unrestricted estimates, a glance at the power curves in table 8
suffices: whereas the size performance is indeed slightly better than in table 7, the level of
type II errors is unacceptably high, such that the power curves are almost flat. In the last
row we report the number of cases where the highest estimated root is explosive: when
the discrepancy between DGP and model becomes large, this percentage rises rapidly and
corroborates theorem 1 of this paper5.

Another key point from Table 2, is that the size performance of all test procedures of
H0 : β1 = β0

1 in a model with 2 vectors is markedly better than the hypothesisH0 : β =
β0 in a model with one cointegrating vector.

ForT = 400 all corrected tests achieve correct size and 100% power while the Type I
error of the asymptotic test is still higher than the nominal size (cf. Table 3).

Increasing the length of the VAR also has large adverse effects on the test (cf. Table
4): thus, contrary to somehow common wisdom and in accord with Abadir et al. (1999),
parsimony in the estimation of the VAR seems to be a rather important virtue.

5tr(
∑∞

i=0 P i) does not converge ifP contains an explosive root. However computationally we use the
standard formula(

∑∞
i=0 λi) = 1

1−λ to calculate the Bartlett correction both in the convergent case (when
it is valid) and the non-convergent case.

There is nothing, which prevents the Bartlett correction factor from being smaller than -1: this is a known
problem in the literature. We assign a p-value of 1 to these cases. In all the published and unpublished
simulations we did, this only happened in those of table 8.

14



How sensitive are the performances of the tests to the speed of adjustment to equi-
librium? Unsurprisingly, the answer is, a lot. Cuttingφ (the sum of the coefficients of
the autoregressive polynomial describing the dynamics of the errors in the cointegrating
relationships) from 0.7 to 0.4 causes generally a more than proportional fall of the Type
I error (for instance, that of the fast double bootstrap type 1 falls from 26% to 10%, see
table 5).

Given the good results delivered by the bootstrapped tests, it is of some interest to
check if using resampled or parametrically generated errors makes any difference. The
results reported in Table 6 suggest that it does not, and thus the parametric bootstrap
(easier to implement) may be adopted in practice. However, some caution is needed
here, as in our experiments the same parametric hypothesis (normality) is used both in
the generation of the Monte Carlo and bootstrap errors. Further research with different
error processes for the Monte Carlo and bootstrap DGPs (for instance a leptocurtic error
distribution in the DPG and resampling for a normal distribution) is needed.

Finally, a noteworthy finding is that the power curves of the all the variants of boot-
strap tests are rather steep (table 7 and figure 3(b)). Although these results are specific to
a single signal/noise ratio, they do suggest that the risk of unacceptable power losses from
using some type of bootstrap test rather than the asymptotic or Bartlett corrected tests is
likely to be remote.

5 Conclusions

We have compared different variants of bootstrap and Bartlett-corrected tests in a DGP
which is relatively unfavourable, but reproduces some features of real life empirical appli-
cations: a relatively large system (5 variables and 2 or 4 lags), and rather slow adjustment
to long-run equilibrium. With such a complex DGP the caveats common to all simulation
studies are even more important than usual. Our design depends on over 120 parameters,
the vast majority of which had to be kept fixed across all experiments, and thus we must
be extremely cautious in reaching any conclusion.

Further, the type of tests examined assumes full knowledge of the tested cointegrating
vectors, a rare event in practice: however, they are the only tests for which the Bartlett
correction is available. Indeed, the Bartlett correction has not been derived yet for many
cases of strong empirical interest (e.g., hypotheses of the kindβi = Hiϕi and in general
models with impulse dummies) and hence the bootstrap may in fact be the only alter-
native to the asymptoticp-values. With all these caveats, our recommendations are the
following:

(i) Asymptotic tests should be used in no circumstance;

(ii) Bartlett-corrected tests may be used provided considerable caution is exercised, as
their Type I error is often much larger than the nominal size;

(iii) Bootstrap tests, with a somehow lower size distortion than the Bartlett corrected
tests accompanied by limited power losses, may also be used; the fast double boot-
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strap of Davidson and MacKinnon (2000) delivers the best performance, and thus it
appears to be a powerful tool for applied work, especially in the many cases when
the Bartlett correction is not available.

We stress that both the Bartlett correction and the bootstrap should always be based
on the unrestricted estimate ofβ.

Among the many points that remain open, two are especially important: (a) the devel-
opment of equivalent hypothesis, like (6) forH0 : β1 = β0

1 for more general restrictions
onβ, like βi = Hiϕi with an accurate Monte Carlo study of their properties and (b) theo-
retical results on the asymptotics of the (fast double) bootstrap in cointegrated systems.
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Appendix: Figures and tables
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(a) power curves based on restricted estimatesθ̂0
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(b) power curves based on unrestricted estimatesθ̂

Figure 3: Power curves for test on cointegration coefficients
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1 to 2 cointegration vectors, test on 1 to 2 vectors
φ = 0.7, T = 100, k = 2

rank, tested vectors
Test

1,1
size power

2,1
size power

2,2
size power

Asymptotic
Bartlett

Bootstrap
FDB1

FDB2

66.0 99.0
35.8 92.2
32.0 86.0
26.2 76.0
27.8 81.8

39.2 97.6
15.8 79.2
15.2 77.2
13.4 68.0
14.2 71.4

68.6 98.2
33.2 82.2
28.2 74.6
20.0 62.2
23.6 68.2

nominal significance level: 5%;FDBi : Fast Double Bootstrap typei
power simulations:
case (1,1)H0 : β0

1 =
[

1 0 0 0 1
]
, DGP:β1 =

[
1 0 0 0 0.5

]
case (2,1): as case (1,1) with DGP:β2 =

[
0 1 0 0 1

]
case (2,2): as case (2,1) withH0 : β0

2 =
[

0 1 0 0 1
]

Table 2: Benchmark case small sample correction for tests on cointegration vectors

1 cointegrating vector, test on 1 vector
φ = 0.7, T = 100 and400, k = 2

T
Test

100
size power

400
size power

Asymptotic
Bartlett

Bootstrap
FDB1

FDB2

66.0 99.0
35.8 92.2
32.0 86.0
26.2 76.0
27.8 81.8

11.0 100.0
5.6 100.0
6.2 100.0
5.6 100.0
5.8 100.0

nominal significance level: 5%
power simulations: see Table 2

Table 3: Sample size and small sample corrections
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1 cointegrating vector, test on 1 vector
φ = 0.7, T = 100, k = 2 and4

lags
Test

2
size power

4
size power

Asymptotic
Bartlett

Bootstrap
FDB1

FDB2

66.0 99.0
35.8 92.2
32.0 86.0
26.2 76.0
27.8 81.8

85.4 99.4
53.2 91.0
39.2 82.0
32.4 68.8
35.6 74.4

nominal significance level: 5%
power simulations: see Table 2

Table 4: Lag length and small sample corrections

1 cointegrating vector, test on 1 vector
φ = 0.7 and0.4, T = 100, k = 2

φ
Test

0.7
size power

0.4
size power

Asymptotic
Bartlett

Bootstrap
FDB1

FDB2

66.0 99.0
35.8 92.2
32.0 86.0
26.2 76.0
27.8 81.8

33.0 99.6
17.0 97.6
14.2 96.8
10.8 94.4
11.8 95.6

nominal significance level: 5%
power simulations: see Table 2

Table 5: Speed of adjustment and small sample corrections

1 cointegrating vector, test on 1 vector
φ = 0.7, T = 100, k = 2

Type of bootstrap
Test

Non-Parametric
size power

Parametric
size power

Asymptotic
Bartlett

Bootstrap
FDB1

FDB2

66.0 99.0
35.8 92.2
32.0 86.0
26.2 76.0
27.8 81.8

66.0 99.0
35.8 92.2
32.0 86.4
25.0 76.2
27.0 80.2

nominal significance level: 5%
power simulations: see Table 2

Table 6: Non-parametric bootstrap and small sample corrections
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φ = 0.7, T = 100, k = 2
Test
β15

Asymptotic Bartlett Bootstrap FDB1 FDB2

0.5 99.0 92.2 86.0 76.9 81.8
0.6 99.0 91.8 85.8 76.6 81.8
0.7 99.0 91.2 86.6 76.6 81.6
0.8 99.0 91.4 86.4 76.0 81.6
0.9 98.8 88.8 83.6 73.8 78.0
0.92 98.8 86.4 80.8 72.0 75.6
0.94 98.0 83.2 75.6 65.2 70.2
0.96 93.8 72.2 66.4 54.6 58.6
0.98 81.4 50.6 43.4 35.2 37.8
1.0 66.0 35.8 32.0 26.2 27.8
1.02 81.6 50.6 45.4 38.0 41.8
1.04 94.4 71.6 63.6 56.6 58.8
1.06 98.6 81.2 76.0 65.6 69.0
1.08 99.2 84.6 79.6 70.4 74.2
1.1 99.0 86.6 81.8 72.2 77.4
1.2 99.4 89.6 85.8 76.8 80.4
1.3 99.4 90.6 86.8 77.8 81.4
1.4 99.6 91.0 87.6 77.4 82.2
1.5 99.6 91.0 88.0 78.6 82.2
nominal significance level: 5%

Table 7: Power curve based on unrestricted estimates
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φ = 0.7, T = 100, k = 2

Test
β15

Asymptotic Bartlett Bootstrap FDB1 FDB2

Explosive
Roots

(% of simulations)
0.5 99.0 11.4 15.8 10.2 12.2 34.8
0.6 99.0 14.0 17.8 9.6 12.6 30.4
0.7 99.0 20.2 18.0 10.0 12.2 23.4
0.8 99.0 23.2 18.4 10.6 14.0 12.6
0.9 98.8 15.8 22.2 12.2 14.4 0.2
1.0 66.0 18.0 8.6 5.4 6.6 0
1.1 99.0 16.4 21.4 12.8 14.6 0.6
1.2 99.4 23.0 18.4 10.4 13.8 9.2
1.3 99.4 21.6 18.4 9.2 13.2 20.4
1.4 99.6 18.4 16.6 9.8 12.0 28.8
1.5 99.6 15.4 16.8 8.8 12.0 32.2
nominal significance level: 5%

Table 8: Power curve based on restricted estimates
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