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Kinetic theory of the evaporative cooling of a trapped gas
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We apply kinetic theory to the problem of evaporative cooling of a dilute collisional gas in a trap. Assuming
“sufficient ergodicity” (phase-space distribution only a function of energnd s-wave collisions with an
energy-independent cross section, an equation for the evolution of the energy distribution of trapped atoms is
derived for arbitrary trap shapes. Numerical integration of this kinetic equation demonstrates that during
evaporation the gas is accurately characterized by a Boltzmann distribution of atom energies, truncated at the
trap depth. Adopting the assumption of a truncated Boltzmann distribution, closed expressions are obtained for
the thermodynamic properties of the gas as well as for the particle and energy loss rates due to evaporation. We
give analytical expressions both for power-law traps and for a realistic trapping potgofial quadrupole
trap). As an application, we discuss the evaporative cooling of trapped atomic hydrogen gas.

PACS numbes): 32.80.Pj, 51.10+y, 67.65:+z

[. INTRODUCTION rative cooling has also been applied to magnetically trapped
alkali vapors[11,17.

Thermal escape, or evaporation, of particles from a In a very exciting development, Andersaet al. used
trapped gas has long been of interest in the astrophysic&vaporative cooling to achieve Bose-Einstein condensation
context of stars escaping from globular clustgts In the  in rubidium vapor[13]. This method was also used in the
laboratory, the realization of systems of electromagneticalyBEC experiments of Bradlegt al, with lithium [14].
confined ultracold atomic gasg2| has sparked new interest
in this process. Il. THEORY

Evaporative cooling of a trapped gas is based on the pref- ] o
erential removal of atoms with an energy higher than the In this paper we apply kinetic theory to the problem of
average energy and on thermalization by elastic collisionsEvaporative cooling. This approach provides a justification
For a gas confined in a trap with finite depth atoms with for the common use of a truncated Boltz_mann distribution of
energy e greater thane, can leave the trap by reaching a atom energies to describe an evaporating gas5,15-13

pumping surface or by passing over a potential barrier. Sinc nd Igadg to explicit expressions for the evaporation rate.
this reduces the average energy of the atoms remaining in ther am 13 0 understand the_evaporauvg cooling process,

i 4 o . rather than to provide a detailed analysis of any existing
trap, the gas will be driven by thermalizing interatomic col-

lisi q ibri tate at a | ¢ experiment. Consequently, we introduce a number of as-
Isions towards a new equilibrium state at a lower emper""'sumptions that, although reasonable in relation to ongoing

ture. These collisions also promote atoms to energies high%rxperiments, are not, of course, universally applicable. Our

thane;, thus keeping the evaporation going. As the temperapsic assumption is “sufficient ergodicity:” we assume that
ture of the trapped gas drops, the number of atoms that ak§e gistribution of atoms in phase spag®sition and mo-
able to leave the trap is exponentially suppressed, approxinentum depends only on their energy. This would be the
mately like exp(-€/kT). Eventually the cooling rate is bal- case, for example, in a trap with ergodic single-particle mo-
anced by a competing heating mechanism, or becomes negion. We suppose, however, that even if the trap does not
ligibly small. In order to force the cooling to proceed at a possess this property the phase-space distribution still obeys
constant rate, the evaporation threshgldhay be lowered as “sufficient ergodicity” to a good approximation as a conse-
the gas cools. Since evaporation leads, under suitable condjuence of the interatomic collisions.
tions, to efficient compression in phase space, it may be used Our model of evaporation is that every atom with a total
as a tool for realizing quantum degeneracy in a weakly inenergye greater than the trap dep#h is removed before it
teracting atomic system. collides with another atom. We will not investigate here the
Evaporative cooling was proposed as a means to attaiimfluence of restrictions on escape of energetic atoms, which
Bose-Einstein condensatiofBEC) in atomic hydrogen will reduce the evaporative cooling power. In this respect our
[3-5]. First observations of evaporative cooling were madetheory is one of “full-power evaporation,” evaporation lim-
by Hesset al. [6] with magnetically trapped atomic hydro- ited only by the rate at which elastic collisions promote at-
gen (H7); further experimentd7-9] improved this tech- oms to the escape energy.
nique. An optical version of forced evaporative cooling of  Efficient removal of atoms witle> €, can be realized in
H?1 was demonstrated by Seti al. [10]. Recently, evapo- practice by confining a dilute gas in a potential wel(r)
that gives rise to sufficiently ergodic motion of the atoms.
The motion is sufficiently ergodic if most trajectories of at-
“Present address: Space Research Organization Netherlands, Sers with a total energy greater thapleave the trap before
bonnelaan 2, 3584 CA Utrecht, The Netherlands. colliding with another atom. Clearly, the trapped gas should
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be well in the Knudsen regime—the collisional mean freeevaporation as a truncation of the distribution function fol-
path of the atoms should be much larger than the size of thiewed by relaxation to thermal equilibrium in an infinitely
gas cloud(this is the case in present-day experiments ordeep trap. The latter approach essentially treats evaporation
trapped gas¢sTo maximize the escape probability, we can as a throttling process, calculating the final state after the gas
arrange a perfect absorber coinciding with tbér)=¢,  has recovered thermal equilibrium. Our approach considers
equipotential surface. The absorber may be a material suthe nonequilibrium evaporating gas directly, which allows us
face or a thin shell in space where ligl#0,21] or micro- to calculate explicitly the rate of evaporation, determined by
waves|[20] resonantly pump trapped atoms to nontrappedhe collisions between the trapped atoms.

states. The precise mechanism is unimportant for our model. Preliminary results of the investigations leading to the
Surkov, Walraven, and Shlyapnik$22] have discussed how present paper appeared|[it6,18,23.

nonergodic motion of the atoms can lead to suppression of

evaporative cooling. Ill. TRAP PROPERTIES

We restrict our discussion to evaporation of a classical ) o
gas: the motion of the atoms is classical, which means the AS @ consequence of the assumption of “sufficient ergod-

theory is restricted to temperatures much higher than théity,” all relevant information about the trapping potential
guantum level spacing of an atom in the trapping potentialY(r) is contained in the energy density of states

In addition, the gas is assumed to be statistically classical:

p(e)E(Zwﬁ)*Sf d3rd3ps(e—U(r)—p?/2m), (2)
nA3<1, 1)

_ _ ) 12 defined so thap(e)de is equal to the number of single-
wheren is the atom density and = (277/mkT)™“is the  particle eigenstates in the trapping potential having energies
thermal de Broglie wavelengtin(is the atom mass anflis  petweene and e+de. The momentum integral may be

the temperatune evaluated to give

The main interest in the theory is in the application to a .
dilute gas of elastically colliding bosons. Far>R,, the 2(2m)
range of the interatomic potential, the quantum mechanical ple)= (27T—ﬁ)3fu(r)gfd3r ve—U(r). )
scattering is solely wave. We work in the low-temperature
limit, for which the scattering iss wave with an energy- For our purposes we therefore classify traps according to
independent cross sectien=81a?, wherea is the scatter- their energy density of states. The simplest class of traps are
ing length. characterized by a power-law density of statek traps:

Strictly speaking, a thermal distribution of atom energies
is not possible in a trap of finite depth. For finitg the p(€)=Ap e, (4)

approach to thermal equilibrium is accompanied by the emp_-l_h_ ¢ | 540) h .
tying of the trap by evaporation. However, if the average, ' /;:oversd, (r)]f _eXIamp 3, Sqluare £0), ar:nomc
energy per trapped atom is much smaller than the evapordd—3/2), and spherical-quadrupolé< 3) traps. It also in-
tion threshold kT<¢,), then most interatomic collisions c[udes the Caas,ﬁe of spherically symmetric power-law traps,
lead to redistribution of the energy among the atoms and thu\é’Ith U(rl)m:r ’1,52and l‘,’gw‘?r"a‘”_ traps of the form
to a thermal quasiequilibrium of the trapped gas. U(n~[x| +|Y +|Z.| with =34 [24]. .

Our assumption that the phase-space density is only a. We are particularly interested in the trapping potential
function of the single-particle energy leads, as we show bed!Ven by
low, to a radical simplification of the Boltzmann equation for

_ 202 2 2\2
the trapped atoméSec. V). We find, through numerical in- U(n)=Va®(x*+y%) + (Uo+ B2~ Uo, ®)

tegration of the resulting kinetic equation, that the energy,nich describes to a good approximation the potential in an
distribution of an evaporating gas is, to a good approximajogte quadrupolg(IQ) trap[25], often used for magnetostatic
tion, a Boltzmann distribution truncated at the trap depthtrapping of neutral atoms,26,27. Near the origin, for en-
(Sec. V). This distribution is rather appealing, and has beerbrgies much smaller thall,, the potential is harmonic.

used in the past as a starting point for descriptions of evapQ-jearly, potential(5) does not give rise to ergodic motion
ration (e.9.,[15,17,19). Our calculations justify the use of gjnce it has axial symmetry. However, it is only an approxi-

this distribution. mation to a true 1Q trap. In reality there are small higher-

Once the truncated Boltzmann distribution is adopted, g qer contributions which break the axial symmetry and lead
thermodynamic description of the sample follows naturally.;, coupling of the degrees of freedom, as is discussed in
We state a number of useful results in Sec. VI. We also showat,il in [28].

(Sec. VI) how the particle and energy loss rates due to  sing approximatior(5) we find that the density of states
evaporation are described by simple expressions. Compark; 5 IQ trap is given by the sum of cubic and quadratic
son of the predictions of the truncated Boltzmann approXiygrms:

mation with results of the direct integration of the kinetic

equation is made in Sec. VIII. In Sec. IX we consider as a P(€)=A|Q(€3+ 2Uq€?), (6)
specific application the system of magnetically trapped spin-
polarized atomic hydrogen. where Aig= (2m=?)¥¥[ (27h)32a?BY?]. Both for e>U,

It is worth contrasting our kinetic approach with the ap-and fore<U, the density of states of an 1Q trap is equiva-
proach of Davis, Mewes, and Ketter[&9], which models lent to that of a PL trap.
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Another practical quantity is the potential-energy density IV. KINETIC EQUATION

of states In this section we derive an equation for the evolution of

the energy distribution of the trapped gas. Generally, a
p(U ')EJ d*rs(U’ —U(r)). (7)  trapped gas is described by its phase-space distribution func-
tion f(r,p). We normalize this so that the total number of
This function is useful when calculating sample propertiedrapped particled=(27#) =3[ d3rd>pf(r,p).
averaged over the confining potential. Integrals of the form The evolution of the phase-space distribution function of
fd3rF(U(r)) can be converted to the one-dimensional inte-a classical gas is described by the familiar Boltzmann equa-

gral fdUp(U)F(U). tion [29]
Note that a trap witthb~U?~! may be identified as a PL
trap with energy density of staté4). Using the approxima- p 9
tion (5) for the trapping potential, the potential-energy den- E-Vr—VrU-Ver r f(r,p)=7(r,p). 9

sity of states for an IQ trap is

) The collision integral.7, for s-wave collisions with an

47
~ ) — 3 12
p(V) a2,81;2(U FUoU™). energy-independent cross section, is given by

AP0 = g AP0 AP 2~ BT P} 10

Herep; andp, are the momenta of two atoms before colli- the occupation number for trap eigenstates with energy

sion; the relative momentum is the (ps—p4)/2. The mo-  The number of atoms with energy betweerand e+ de is

menta after collision arg,=P/2+q" and p,=P/2—q’,  p(e)f(€)de.

whereP=ps;+ps, q'=q and Q' specifies the direction of As in the case of a homogeneous @gf30—32,

q’ with respect tog. specialization to a distribution that depends only on
Our assumption of “sufficient ergodicity,” i.e., that the energy leads to a drastic simplification of the Boltzmann

phase-space distribution of particles is a function only of thesquation. We apply to both sides @®) the operation

single-particle energy, allows us to write (27h) 3 d®rd3ps(U(r)+ p¥2m—e). On the left-hand
side the gradient terms sum to zero, leaviifg) f(€), where
f(r,p)= f des(U(r)+p%2m—e)f(e). (1)  f=4f/4t. On the right-hand side we express the distributions

in the collision integral as functions of energy usifidl).
Quantum mechanically, we can interpret the functi¢e) as  The resulting equation may be written

. 2 4
mmnahﬁj deldezdeg{f(el)f(ez)—f(e3)f(e4)}J d*ra*Pdacidudu [T aU(r)+pf/zm-—e),
(12

whereu (u’) is the cosine of the angle betweBrandq (q'), p7,=P?/4+q?+Pqu, andp3 = P%4+qg?+Pqu’. We may
now easily perform the integrations overandu’ and, subsequently, overand the orientation oP, to give

. 16720 m? 3 Pmax")
pleg)f(es)=—5—~5 | derderdes{f(e1)f(€) —f(e3)f(€s)} (€1t €2~ €3~ €4) d fJ apP, (13
(27Tﬁ) U(r)=<e€min Pmin(r)

wheree,,=Min(e; ,€,,€3,€,). The integration over is restricted to energetically accessible regions, the integrationPover
values possible given the momemidr) of the atoms of energy; at positionr. Assuming, without loss of generality, that
€min= €1 and, hencep,=min(p4,p,,P3,pP4) and using the fact that in that caBg,,=p,—p; andP,,,=p1+ p,, we easily
find that fdP=2{2m[ e;,—U(r)]}*2 Using definition(2) of the energy density of states we thus arrive at the following
kinetic equation for the evolution of the ergodic distribution functfde) in a trap:

P(€4)f(€4): ﬂ_inz%éf de;dexdesd(er+ e, €3— €4)p(Min[ €1, €2, €3,€4]){f(€1)f(€2) — F(€3)T(€4)} (14
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It is noteworthy that this expression is applicable to a homo+(€) of the evaporating gas may be accurately described by a
geneous gas as a special case. Then the energy is all kineBoltzmann distribution truncated at the depth of the trap:
and the density of statgs(e) €2 the kinetic equation in T

this case can be inferred from equations appearing in the f(e)=noA ™ O(&—¢). (16)

recent BEC literatur¢30,32. Here®(x) is the Heaviside step functiof (x) =0 for x<0

and®(x)=1 for x=0. The distribution(16) is specified by
V. NUMERICAL SOLUTION two (time-dependentparametersipA® (occupation number
To investigate the evolution of the distribution function of Of the low-energy states in the trapping potentaid kT
an evaporating trapped gas, we solve the kinetic equatiogp'haractenstlc energy for' variation 'of occupation number
(14) numerically. We suppose that atoms with eneegye; vv_|th energy. The physical interpretation afy andT will be
are efficiently removed, so thd(e)=0 for these energies. discussed below. , .y
Our initial condition is chosen such théte) is constant for In the following sections wassumehatf (e) is given by
e<e, corresponding to infinite temperature. the truncated Boltzmanriquasi-thermal distribution (16
The computational procedure is straightforward. We dis-2nd consider the consequences. In Sec. VIII we will compare

cretize the energy scale between zero apihto n bins of the rate of evaporative cooling prgdicted by this approxima—
width Ae= €, /n. Theith bin (i=1, . .. n) is represented by tion with the rate that we obtain directly by numerical solu-

the energy ¢;=(i—1/2)Ae. Then, with pj=p(¢) and tion of the kinetic equation.
fi="1(¢;), the discretized kinetic equation is
VI. THERMODYNAMICS

- mo . - . . .
Pifi:W(AE)ZKEJ prlfifi— fif ), (15) In this section we discuss the thermodynamic properties

of an ideal gas with a truncated Boltzmann energy distribu-
tion. This is important in connection with evaporative cool-
wherej=k+1—i andh=min(,j,kl). This equation is inte- ing, since the truncation resulting from the finite depth of the
grated using a Euler method. The number of bins is 64, altrap can lead to important modifications to quantities such as
though essentially the same result is obtained with32 or  the internal energy of the gas.
even 16. The truncated Boltzmann distributigth6) leads, via(11),
Figure 1 shows the distribution at several tim@enti-  to the phase-space distribution
fied by the number of collisions that have been experienced
by atoms in the trap It is clear from this simulation that the f(r,p)="fo(r.p)®(e—U(r)—p?2m), 17
calculated distribution is well fit at all times by a simple
exponential. We find this behavior for values of the PL ex-
ponents from zero (square well to three (linear confine- fo(r,p) =noA3exd — (U(r)+ pZ/2m)/KT] (18)
ment, e.g., by a spherical quadrupole jrap was also no-
ticed by Kochanski in computer simulations of trappedhas the form of the phase-space distribution of a classical
atomic hydrogen33]. ideal gas in thermal equilibrium in the potential fidl{r).
Thus, evaporation preserves, to a good approximation, thi an infinitely deep trap we could integrate over momentum
thermal nature of the distribution. The true distribution states to obtain the well-known thermal density distribution

where

N, (r)=ngexd —U(r)/kT]. (19
; ] In this caseng would be equal to the particle density at the
101§ E minimum of the trap.
o : ] For a trap of finite depthe, we find, integratingf(r,p)
= 100 {9 over momentum states, the density distribution
2 j 12
S qotle / ) < N(r)=n.(r)[erfyx— 2kl mexp — )], (20)
. v;fi;';l e 16
olo // NEZ with n.(r) given by (19) and «(r)=[e—U(r)]/kT. The
102 °-%.u.o \ 64 guantity in square brackets is the incomplete gamma func-
00 02 04 06 08 1.0 tion P(3/2,x) [34]. The change of the density distribution
ele, due to the truncation in phase space is illustrated in Fig. 2.

Note that the density distribution as defined (@Q) is still

FIG. 1. Evolution of the distribution functiorf(e) during ~characterized by a “temperaturel and a “density” no.
evaporative cooling in a harmonic potential of fixed degthcom- ~ HOWever,ng is no longer the central density(0)<no, and

paring the calculated distributiofsolid) to the best-fit Boltzmann ~Strictly speakingT cannot be interpreted as the thermody-
form (dashedl For e>¢,, f(e)=0. Each curve is labeled at the Namic temperature of the system. In the case of a truncated

right by the total number of collisions per atofthe integral of the ~ distributionT andn, are convenient parameters characteriz-
instantaneous collision rate per atpriihe inset shows the energy ing an essentially nonequilibrium distribution. Nevertheless,
distributionp(€)f(€) (calculated distribution on)y noA° remains a proper measure of phase-space density, even
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FIG. 2_. Thg fu_II th_ermal density distributim(x) (dasheaignd FIG. 3. Incomplete gamma functioR(a,7) as a function of
the density distributiom(x)=n..(x)P(3/2,<) (solid), associated ,, to 5 series of relevand values. The truncation correction factor

with a Boltzmann distribution truncated &t, along thex axis as a ¢1¢.. for the reference volum¥, is P(3/2+ 8, 7). The thick curve,
function of coordinatex for kT=€,/3 in a potential well harmonic ;-4 corresponds to the harmonic trap.

in all directions. Also showitdot-dashejlis the potential along the

x axis, U(x). The coordinate, is defined byl (xo) = €. P(a, 7). Fora=3/2+ § this is the correction factaf/ /., for
. ) S the reference volume. For reasonable values &f
if € is comparable t&T. The density distributiori20) was (0<8<3) it is typically for <8 that truncation effects
used by Helmerson, Martin, and Pritch4®7] in their analy-  pecome important.
sis of experiments with magnetically trapped sodium atoms. Making use of the density of statéd), ¢ for an IQ trap is
readily obtained:
A. Reference volume and partition function

2U
It is useful to introduce the reference volurkg of the (=08\P(4n)+ = —OP(3,77) , (27)
sample, which relates the reference densigyto the total 3 KT
number of trapped particld85]: with
Ve=N/no. @ =6k, 9
The relationship . . o .
the partition function for an infinitely deep 1Q trap with
Ve=A3¢ 220 Uo=0.
follows immediately from the definition of the single-atom B. Internal energy and heat capacity

partition function{ for a trapped ideal gaee, €.9.[29]): The internal energ¥ of a trapped gas characterized by a

phase-space distribution functidke) is given by
g=(27ﬁ)*3f d3rd3pexd — (U(r) + p?/2m)/KT].

(23 E= f deep(e)f(e). (29

The integration is restricted to the volume in phase space o :
whereU(r) + p2/2m=e¢, . Using definition(2) of the energy For a truncated Boltzmann distribution the internal energy
density of states, we can write can be expressed in terms of the single-particle partition

function:

€t
= [ “dep(e)exp — elkT). 24 1o
(= | “deperexp— etk 24 e-nkrel % (30
7T
For a PL trap(4) we have One can easily show fror22) and (30) that the internal

{=(.P(3/2+ 6, 7), (25)  energy E= (3/2+ y)NKT, where y=(T/Vg)(dV/dT). In
the limit of a deep trap §— ) the position and momentum
where integrals in expressiof23) for the partition function may be
separated, allowing us to identify (3KRKT as the kinetic
L.=Ap I'(3/2+ 8)(kT)%?° (26)  energy andyNkT as the potential energy. For finitg how-

. N _ o ever, the two terms cannot be identified as pure kinetic en-
is the partition function for an infinitely deep trap, ergy and potential-energy contributions even though their
n=¢/kT, and P(a, ) is the incomplete gamma function sum is the total energy.

[34], which increases monotonically from zero at=0 to Using (25) we easily obtain the internal energyin a PL

unity asnp—ce. trap with evaporation threshol :
In view of its importance for truncated distributions in PL

traps, we plot in Fig. 3 the incomplete gamma function E=E.R(3/2+6,7)<E.., (3D
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1.0 : * ;
| Ner= - | desptea)ien). @)
€t
0'8: a=3/2 |
=06} o/2 ] For_ €4> €>€1,€ _the _minimum energy of a particle partici-
s | ] pating in a collision isez=¢€;+ €,— €, (the energy of the
To4l ] particle left in the trapand thus
0.2 1 . mo
] as9/201/2)9/2 Ney= — 253 dede desp(es)f(er)f(er).  (36)
072 3 4 5 6 7 8
n The domain of integration is determined by the requirement

that energiese; and e, are less thane, while €, is not
FIG. 4. Ratio of incomplete gamma functions (e;+ e,— €3> €;). In this domainf(e) is a simple exponen-
R(a,7)=P(a+1,9)/P(a,n) as a function ofy for a series of tial and the integral may be easily evaluated to give
relevanta values. The truncation correction factB/E., for the
internal energy of a gas in a PL trap E_s(3/2+ 4,m). The thick Ney= —n(z)che_ Ny, (37)
curve,a=3, corresponds to the harmonic trap.
wherev=(8kT/7m)'2 and the effective volume for elastic
whereE.,=(3/2+ §)NkT is the internal energy of a sample cqjjisions leading to evaporation
of N atoms in thermal equilibrium in an infinitely deep trap
andR(a,n)=P(a+1,n7)/P(a,n). Note that the internal en- A3 [«
ergy per atom depends only on the temperafuréhe expo- Vev=ﬁj dep(e)[(e—e—kT)e “KT+kTe 7].
nentd, and the truncation parametsgri.e., it is independent 0
of the size and the exact shape of the trap. In Fig. 4 the
correction factorlE/E,, associated with truncation is plotted
as a function ofy for several values 086.
Using (27) we find that the internal energy in an 1Q trap
with evaporation thresholé; is given by

(39

The rate of change of the internal energy of the gas due to
evaporation is found from the energy carried away by the
evaporated atoms:

_ 12P(5,7)+6(Uo/kT)P(4,7)

_ Eev=— f “deseap(eni(ey) (39
3P(4,7)+2(Uy/kT)P(3,7) “

NKT. (32

d After some manipulation, similar to the calculation Iﬂg\,,

. S . .
The internal energ¥., for a deep trap §,>KkT) is obtaine we find

by setting theP to unity. Then, forkT<U, the average
energy E..~3NKT, reflecting the fact that folJo>0 the W
potential is harmonic near its minimum. The internal energy Eoy=No €+ —eva], (40)
per particle, even for a trap of finite depth, is independent of Vev
Aiq and hence ofx and 8. The temperature dependence is _
completely determined by the trap parameigrand the trap ~ where the voluméN,,= Ve, — Xe,, With
depthe; .

The heat capacity is another useful quantity:

A3 (e
Xe":ﬁjo tdep(e)[kTefelkT—(et— e+kT)e 7].

3 T Nk 33
2 YT TN (33

(42)

JE
aT

N The volumeX,, is positive; thus, the mean energy carried
away by an evaporating atom is betwegrand e; + kT.

For a PL trap, the heat capacit . .
P pacty Equations(37), (38), (40), and(41) describe the evapora-

C=C..R(3/2+ 8, 7){(5/2+ 5)R(5/2+ 8, 7) tion dynamics in a relatively simple closed form for an arbi-
* ’ ' trary potential.
—(3/2+ 8)R(3/12+ 6, 1)}, (39 For a PL trap we find characteristic volumes
whereC.,.= (3/2+ §)Nk. Vey=A3L[ 7P (3/2+ 8,7) = (5/2+ 8)P(5/2+ 5, n)% )
42

VII. EVAPORATION XeV=A3§mP(7/2+ sm), (420

To calculate the evaporation rate in the truncated Boltz-
mann approximation we simply substitute the truncated diswith ¢, given by (26).
tribution (16) into the kinetic equatior(14) and integrate For an 1Q trap of the form{5) V., and W, may be ex-
over untrapped energy states to find the rate of change of th@essed as linear combinations of incomplete gamma func-
number of trapped atoms: tions. Here we write the volumes out in full:
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Vo= A3 n—5+¢&n(27/3-8/3)+e 7 12 : 1.0
X[ n*24+ n°13+37%2+47+5 10} 10.9
+ (73194 27213+ 27+ 813)]}, (439 8| w 108 _
W= A3 n—6+¢n(27/3—10/3)+e 7 = '°'7§
X[ %1120+ p*12+ %12+ 27°+59+6 : - 2:
+ En(n*36+25%9+ »°+87/3+10/3)]}, 0 ) ‘ 04
100 101 102 108

(430 t/to

with €=U, /e, and 2 given by (29).

For an IQ trap(or PL trap with 1/2- § an integey both the FIG. 5. Truncation parametey (circle§ and fraction of atoms
particle and the energy loss rate can be written as the sum e#maining in trapN/N, (squarep as a function of reduced time
an algebraic term i timese™ 7, which is the leading term, t/to after initiating evaporation from infinite temperature. Curves
and an algebraic term ip timese ™27, which is a correction ~are obtained by integration of the differential equations resulting
due to the truncated nature of the evaporating distribution. 1ffom the truncated Boltzmann approximation, symbols by fitting to
previous descriptions of evaporatiofsee, for example, the distribution obtained by numerical solution of the kinetic equa-
[15,17)) the e 27 terms were not taken into account. In the O™
present context, neglect of these terms corresponds to calcu- o
lating the rate of population of the high-energy tail of the N=Ngy, 47
Boltzmann distribution including collisions involving the at-
oms that would be present in this tail in thermal equilibrium. . . .

It is noteworthy that the volumes,, and X,, character- Where N, and E,, are the known functions of and N
izing the evaporation dynamics may be calculated directlyobtained in Sec. VII. We consider a harmonic ti@t. trap
from the trap potential (r), without reference to the density With 6=3/2). In Fig. 5 the number of atoms in the trab
of states. Since evaporation is a local phenomenon, we magnd the truncation parameter (inverse temperatuyeare
consider each volume elemetitr as a square wePL trap plqttgd as a function of time after initiating evaporation from
with =0, well depthe,—U(r), andA3¢,,=d3]. Thenitis infinite temperature. The characteristic timgis given by
straightforward to derive o= (12/7)(No/V)(2€,/m)¥?e, where N, is the initial
number of trapped atoms andis the volume enclosed by
the U(r) = ¢, surface. The curves are obtained by numerical
integration of the differential equations, and the points are
obtained by fitting an exponential to the evolving energy

Vo= f d3re < [ kP(3/2,x)— (5/2)P(5/2,x)] (448

B 3. ken distribution given by the kinetic equation. The good agree-
Xev_f d°re” "P(7/2,x) (44D ment justifies the assumption of a truncated Boltzmann dis-
tribution during evaporation.
where k(r)=[€,—U(r)]/KT. The integrals in(44) are one It is worth emphasizing the difference between evapora-
dimensional if the potential-energy density of sta(@sis tion and thermalization. We have found that evaporation does
known. not lead to large deviations of the distribution from a Boltz-
mann form. This is in contrast to the recovery of thermal
VIll. COMPARISON OF RESULTS equilibrium in an infinitely deep trap after the atoms in the

) ) . high-energy tail are removed. Using the kinetic equation we
In this section we compare the predictions of the resultg;nq that in this case restoration of the truncated tail leads to
based on the assumption of a truncated Boltzmann approxignificant deviations that persist even after tta@proxi-
mation (Secs. VI and VIJ with the direct integration of the  \5tely four atomic collision times required for thermaliza-
kinetic equation(Sec. V. tion [30].
With the gas characterized by its “temperatufieand the
total number of trapped atonh the evolution of the state of

the gas follows from IX. COOLING ATOMIC HYDROGEN

E=CT+ ,uN, (45) In magnetically trapped atomic hydrogéd6], evapora-
tive cooling must compete with heating due to magnetic re-
whereC is the heat capacit{83) andu=(JE/JN)t=E/Nis laxation; this gives rise to fundamental limits on the tempera-
akin to a chemical potential. The differential equations detures attainable by evaporative cooling. In this section we

scribing the evolution off andN are address the problem of calculating the evolution of the tem-
: : perature and density of the trapped gas and will discuss the
- Eey—uNey temperatures that may be obtained. We employ the truncated
L C (46) Boltzmann approximation.

Relaxation events can produce atoms both in trapped and
and in untrapped spin states. We assume here alaproducts
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leave the gas cloud: the atoms in untrapped spin states ac- 0.8

cording to their nature and the atoms in trapped spin states
because they are too energetic. Even so, relaxation leads to 0.7¢
heating. Because it is a two-body process, with rate propor- 06|
tional to the square of the gas density, relaxation occurs pref- 05!
erentially at the high-density center of the gas cloud, remov- )
ing atoms with lower-than-average potential energy. 0.4¢

The rate of change of the number of trapped atoms due to 0.3+
spin relaxation, 0ol

Nrei= — N3G Vze, (48) 01y
where the rate consta@ is assumed to be independent of %% 7 23 4567 8910
temperature, and the effective volume for binary collisions ]
Voo T) = f d3r[n(r)/ng]?, (49 FIG. 6. Quantities characterizing two-body decay in a harmonic
trap: V/V,e and y— v, as a function of the truncation parameter

with n(r) given by (20). The associated rate of change of 7' For large these approach 12 and 3/4, respectively.

internal energy, We consider here Hin a harmonic trap. Unfortunately, it
SN appears that even in this case the important quantitigs
Erer=Nrei( 3/2+ v2)KT, G0 and v, are not expressible in a simple form and must, for
where y,(T)=(T/2V,)dV,./JT. The evolution of the Strongly truncated distributions, be evaluated numerically
trapped gas is given by differential equations obtained fronfrom (20). Figure 6 shows/,./V, and y— v, as functions
(46) and(47) by replacingN, by Nio= Ng,+ N,o andEs, by of ». The characteristic temperatures given(bg) are plot-
E —E.+E ted in Fig. 7 as functions of. Also plotted fornp>7 are the
tOtS' v b t’;'N dN dratic in the densi same functions calculated without correcting any quantity for
the Sf?:ct %f sggl?nnm ?:)rariqqul;\?alreiltfyllr\]l) ise meer:zllyot,o truncation effectsi.e., with incomplete gamma functions ev-
0 ’ ’ H HE H H
change the time scale. It is also useful to define the chara erywhere set fo unity Note that it is possible to cool with

AN . 4G creasingngA® even at very lowT, although at th f
teristic temperaturé, at which an atom has equal probabil- creasingnoA” even at very lowr, ajthough at the cost o

ity to experience an inelastic or an elastic collisigma full a strongly truncated distribution. Cooling with increasing
thermal distributiol, given by densityng is only possible forT>2 wK. Our treatment of

evaporative cooling based on kinetic theory supports the

conclusion drawn in previous work8-5,15 that BEC can
(51 be attained in magnetically trapped atomic hydrogen. We
find that, interestingly, this conclusion remains valid even for
small  values.

TmG?

In this paper we will consider Hin low magnetic fields, for
which the relaxation rate consta@=10 '°cm’s™%. The

scattering lengttla=0.072 nm and henc&, =1.4 nK. The 10'3;
results apply equally well, however, to situations with other » -
values ofG or even to other atoms with different andm. 10
Only the temperaturd , is different and the temperatures _5? : :
guoted below should simply be rescaled. . 10 2
Rather than presenting the time evolution of the gas, we v Fo
- e . — 106}
will discuss a few characteristics of such evolutions. One — g
such characteristic is the minimum temperature, attained in 10_73
the long-time limit. Settingl =0, this is given as a function
of n by 108
( T )1/2_ V2(y= 72+ X)Voe€” (52) 10-9:
Te (7=3/12= y=X)Vey+ We,’

evaluated withx=0. Another characteristic is the tempera-

ture at which the_ phase_-space denm@/s?’ reaches its maxi- FIG. 7. Characteristic temperatures for evaporative cooling with
mum value. This is given by the same formula but with yi,o\ar decay of H in a harmonic trap, as functions af Curvea:
x=(3/2+ y+TayldT)/(3/2+ y). At lower temperatures asymptotic temperature. Cunte lowest temperature for cooling
evaporative cooling will be accompanied by decreasingyith increasing phase-space densityA®. Curvec: lowest tem-
phase-space denSity. A final characteristic of interest is thserature for Coo“ng with increasing reference dens]'by Also
temperature at which the density, reaches its maximum shown (dashedl are the same curves without corrections due to
value. This temperature is found by setting truncation of the distribution. The horizontal dashed line is the scale
X=(3/2+ y+TdyldT)!y. temperatureT, .
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X. CONCLUSION ultracold gases. A useful direction for future work would be
to include stimulated emission factors in the kinetic equation

We have presented a detailed kinetic treatment of evapog study how the gas evaporatively cools into the quantum

ratlve.coolmg of a d'I.Ute .trapp(_ad gas. From the E§Oltzmanndegeneracy regime, thereby generalizing the calculations of
equation an expression is derived for the evolution of th

energy distribution function of the gas. Numerical integratior(:\[so_32 to the case of an inhomogeneous, trapped gas.

of this kinetic equation lends support to the common as- ACKNOWLEDGMENTS
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