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We apply kinetic theory to the problem of evaporative cooling of a dilute collisional gas in a trap. Assuming
‘‘sufficient ergodicity’’ ~phase-space distribution only a function of energy! and s-wave collisions with an
energy-independent cross section, an equation for the evolution of the energy distribution of trapped atoms is
derived for arbitrary trap shapes. Numerical integration of this kinetic equation demonstrates that during
evaporation the gas is accurately characterized by a Boltzmann distribution of atom energies, truncated at the
trap depth. Adopting the assumption of a truncated Boltzmann distribution, closed expressions are obtained for
the thermodynamic properties of the gas as well as for the particle and energy loss rates due to evaporation. We
give analytical expressions both for power-law traps and for a realistic trapping potential~Ioffe quadrupole
trap!. As an application, we discuss the evaporative cooling of trapped atomic hydrogen gas.

PACS number~s!: 32.80.Pj, 51.10.1y, 67.65.1z

I. INTRODUCTION

Thermal escape, or evaporation, of particles from a
trapped gas has long been of interest in the astrophysical
context of stars escaping from globular clusters@1#. In the
laboratory, the realization of systems of electromagnetically
confined ultracold atomic gases@2# has sparked new interest
in this process.

Evaporative cooling of a trapped gas is based on the pref-
erential removal of atoms with an energy higher than the
average energy and on thermalization by elastic collisions.
For a gas confined in a trap with finite depthe t , atoms with
energye greater thane t can leave the trap by reaching a
pumping surface or by passing over a potential barrier. Since
this reduces the average energy of the atoms remaining in the
trap, the gas will be driven by thermalizing interatomic col-
lisions towards a new equilibrium state at a lower tempera-
ture. These collisions also promote atoms to energies higher
thane t , thus keeping the evaporation going. As the tempera-
ture of the trapped gas drops, the number of atoms that are
able to leave the trap is exponentially suppressed, approxi-
mately like exp(2et /kT). Eventually the cooling rate is bal-
anced by a competing heating mechanism, or becomes neg-
ligibly small. In order to force the cooling to proceed at a
constant rate, the evaporation thresholde t may be lowered as
the gas cools. Since evaporation leads, under suitable condi-
tions, to efficient compression in phase space, it may be used
as a tool for realizing quantum degeneracy in a weakly in-
teracting atomic system.

Evaporative cooling was proposed as a means to attain
Bose-Einstein condensation~BEC! in atomic hydrogen
@3–5#. First observations of evaporative cooling were made
by Hesset al. @6# with magnetically trapped atomic hydro-
gen ~H↑); further experiments@7–9# improved this tech-
nique. An optical version of forced evaporative cooling of
H↑ was demonstrated by Setijaet al. @10#. Recently, evapo-

rative cooling has also been applied to magnetically trapped
alkali vapors@11,12#.

In a very exciting development, Andersonet al. used
evaporative cooling to achieve Bose-Einstein condensation
in rubidium vapor@13#. This method was also used in the
BEC experiments of Bradleyet al., with lithium @14#.

II. THEORY

In this paper we apply kinetic theory to the problem of
evaporative cooling. This approach provides a justification
for the common use of a truncated Boltzmann distribution of
atom energies to describe an evaporating gas@3–5,15–19#
and leads to explicit expressions for the evaporation rate.
Our aim is to understand the evaporative cooling process,
rather than to provide a detailed analysis of any existing
experiment. Consequently, we introduce a number of as-
sumptions that, although reasonable in relation to ongoing
experiments, are not, of course, universally applicable. Our
basic assumption is ‘‘sufficient ergodicity:’’ we assume that
the distribution of atoms in phase space~position and mo-
mentum! depends only on their energy. This would be the
case, for example, in a trap with ergodic single-particle mo-
tion. We suppose, however, that even if the trap does not
possess this property the phase-space distribution still obeys
‘‘sufficient ergodicity’’ to a good approximation as a conse-
quence of the interatomic collisions.

Our model of evaporation is that every atom with a total
energye greater than the trap depthe t is removed before it
collides with another atom. We will not investigate here the
influence of restrictions on escape of energetic atoms, which
will reduce the evaporative cooling power. In this respect our
theory is one of ‘‘full-power evaporation,’’ evaporation lim-
ited only by the rate at which elastic collisions promote at-
oms to the escape energy.

Efficient removal of atoms withe.e t can be realized in
practice by confining a dilute gas in a potential wellU(r )
that gives rise to sufficiently ergodic motion of the atoms.
The motion is sufficiently ergodic if most trajectories of at-
oms with a total energy greater thane t leave the trap before
colliding with another atom. Clearly, the trapped gas should
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be well in the Knudsen regime—the collisional mean free
path of the atoms should be much larger than the size of the
gas cloud~this is the case in present-day experiments on
trapped gases!. To maximize the escape probability, we can
arrange a perfect absorber coinciding with theU(r )5e t
equipotential surface. The absorber may be a material sur-
face or a thin shell in space where light@20,21# or micro-
waves @20# resonantly pump trapped atoms to nontrapped
states. The precise mechanism is unimportant for our model.
Surkov, Walraven, and Shlyapnikov@22# have discussed how
nonergodic motion of the atoms can lead to suppression of
evaporative cooling.

We restrict our discussion to evaporation of a classical
gas: the motion of the atoms is classical, which means the
theory is restricted to temperatures much higher than the
quantum level spacing of an atom in the trapping potential.
In addition, the gas is assumed to be statistically classical:

nL3!1, ~1!

wheren is the atom density andL5(2p\2/mkT)1/2 is the
thermal de Broglie wavelength (m is the atom mass andT is
the temperature!.

The main interest in the theory is in the application to a
dilute gas of elastically colliding bosons. ForL@R0 , the
range of the interatomic potential, the quantum mechanical
scattering is solelys wave. We work in the low-temperature
limit, for which the scattering iss wave with an energy-
independent cross sections58pa2, wherea is the scatter-
ing length.

Strictly speaking, a thermal distribution of atom energies
is not possible in a trap of finite depth. For finitee t the
approach to thermal equilibrium is accompanied by the emp-
tying of the trap by evaporation. However, if the average
energy per trapped atom is much smaller than the evapora-
tion threshold (kT!e t), then most interatomic collisions
lead to redistribution of the energy among the atoms and thus
to a thermal quasiequilibrium of the trapped gas.

Our assumption that the phase-space density is only a
function of the single-particle energy leads, as we show be-
low, to a radical simplification of the Boltzmann equation for
the trapped atoms~Sec. IV!. We find, through numerical in-
tegration of the resulting kinetic equation, that the energy
distribution of an evaporating gas is, to a good approxima-
tion, a Boltzmann distribution truncated at the trap depth
~Sec. V!. This distribution is rather appealing, and has been
used in the past as a starting point for descriptions of evapo-
ration ~e.g., @15,17,19#!. Our calculations justify the use of
this distribution.

Once the truncated Boltzmann distribution is adopted, a
thermodynamic description of the sample follows naturally.
We state a number of useful results in Sec. VI. We also show
~Sec. VII! how the particle and energy loss rates due to
evaporation are described by simple expressions. Compari-
son of the predictions of the truncated Boltzmann approxi-
mation with results of the direct integration of the kinetic
equation is made in Sec. VIII. In Sec. IX we consider as a
specific application the system of magnetically trapped spin-
polarized atomic hydrogen.

It is worth contrasting our kinetic approach with the ap-
proach of Davis, Mewes, and Ketterle@19#, which models

evaporation as a truncation of the distribution function fol-
lowed by relaxation to thermal equilibrium in an infinitely
deep trap. The latter approach essentially treats evaporation
as a throttling process, calculating the final state after the gas
has recovered thermal equilibrium. Our approach considers
the nonequilibrium evaporating gas directly, which allows us
to calculate explicitly the rate of evaporation, determined by
the collisions between the trapped atoms.

Preliminary results of the investigations leading to the
present paper appeared in@16,18,23#.

III. TRAP PROPERTIES

As a consequence of the assumption of ‘‘sufficient ergod-
icity,’’ all relevant information about the trapping potential
U(r ) is contained in the energy density of states

r~e![~2p\!23E d3rd3pd„e2U~r !2p2/2m…, ~2!

defined so thatr(e)de is equal to the number of single-
particle eigenstates in the trapping potential having energies
betweene and e1de. The momentum integral may be
evaluated to give

r~e!5
2p~2m!3/2

~2p\!3
E
U~r !<e

d3rAe2U~r !. ~3!

For our purposes we therefore classify traps according to
their energy density of states. The simplest class of traps are
characterized by a power-law density of states~PL traps!:

r~e!5APLe
1/21d. ~4!

This covers, for example, square (d50), harmonic
(d53/2), and spherical-quadrupole (d53) traps. It also in-
cludes the case of spherically symmetric power-law traps,
with U(r );r 3/d, and power-law traps of the form
U(r );uxu1/d11uyu1/d21uzu1/d3 with d5( id i @24#.

We are particularly interested in the trapping potential
given by

U~r !5Aa2~x21y2!1~U01bz2!22U0 , ~5!

which describes to a good approximation the potential in an
Ioffe quadrupole~IQ! trap @25#, often used for magnetostatic
trapping of neutral atoms@6,26,27#. Near the origin, for en-
ergies much smaller thanU0 , the potential is harmonic.
Clearly, potential~5! does not give rise to ergodic motion
since it has axial symmetry. However, it is only an approxi-
mation to a true IQ trap. In reality there are small higher-
order contributions which break the axial symmetry and lead
to coupling of the degrees of freedom, as is discussed in
detail in @28#.

Using approximation~5! we find that the density of states
of an IQ trap is given by the sum of cubic and quadratic
terms:

r~e!5AIQ~e312U0e
2!, ~6!

whereAIQ5(2mp2)3/2/@(2p\)32a2b1/2#. Both for e@U0
and fore!U0 the density of states of an IQ trap is equiva-
lent to that of a PL trap.
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Another practical quantity is the potential-energy density
of states

r̃~U8![E d3rd„U82U~r !…. ~7!

This function is useful when calculating sample properties
averaged over the confining potential. Integrals of the form
*d3rF „U(r )… can be converted to the one-dimensional inte-
gral *dUr̃(U)F(U).

Note that a trap withr̃;Ud21 may be identified as a PL
trap with energy density of states~4!. Using the approxima-
tion ~5! for the trapping potential, the potential-energy den-
sity of states for an IQ trap is

r̃~U !5
4p

a2b1/2~U3/21U0U
1/2!. ~8!

IV. KINETIC EQUATION

In this section we derive an equation for the evolution of
the energy distribution of the trapped gas. Generally, a
trapped gas is described by its phase-space distribution func-
tion f (r ,p). We normalize this so that the total number of
trapped particlesN5(2p\)23*d3rd3p f(r ,p).

The evolution of the phase-space distribution function of
a classical gas is described by the familiar Boltzmann equa-
tion @29#

S pm•“ r2“ rU•“p1
]

]t D f ~r ,p!5I ~r ,p!. ~9!

The collision integralI , for s-wave collisions with an
energy-independent cross section, is given by

I ~r ,p4!5
s

~2p\!32pmE d3p3dV8q$ f ~r ,p1! f ~r ,p2!2 f ~r ,p3! f ~r ,p4!%. ~10!

Herep3 andp4 are the momenta of two atoms before colli-
sion; the relative momentum is thenq5(p32p4)/2. The mo-
menta after collision arep15P/21q8 and p25P/22q8,
whereP5p31p4 , q85q andV8 specifies the direction of
q8 with respect toq.

Our assumption of ‘‘sufficient ergodicity,’’ i.e., that the
phase-space distribution of particles is a function only of the
single-particle energye, allows us to write

f ~r ,p!5E ded„U~r !1p2/2m2e…f ~e!. ~11!

Quantum mechanically, we can interpret the functionf (e) as

the occupation number for trap eigenstates with energye.
The number of atoms with energy betweene and e1de is
r(e) f (e)de.

As in the case of a homogeneous gas@30–32#,
specialization to a distribution that depends only on
energy leads to a drastic simplification of the Boltzmann
equation. We apply to both sides of~9! the operation
(2p\)23*d3rd3pd„U(r )1p2/2m2e…. On the left-hand
side the gradient terms sum to zero, leavingr(e) ḟ (e), where
ḟ[] f /]t. On the right-hand side we express the distributions
in the collision integral as functions of energy using~11!.
The resulting equation may be written

r~e4! ḟ ~e4!5
2ps

~2p\!6mE de1de2de3$ f ~e1! f ~e2!2 f ~e3! f ~e4!%E d3rd3Pdqq3dudu8)
i51

4

d„U~r !1pi
2/2m2e i…,

~12!

whereu (u8) is the cosine of the angle betweenP andq (q8), p1,2
2 5P2/41q26Pqu, andp3,4

2 5P2/41q26Pqu8. We may
now easily perform the integrations overu andu8 and, subsequently, overq and the orientation ofP, to give

r~e4! ḟ ~e4!5
16p2sm2

~2p\!6
E de1de2de3$ f ~e1! f ~e2!2 f ~e3! f ~e4!%d~e11e22e32e4!E

U~r !<emin

d3r E
Pmin~r !

Pmax~r !
dP, ~13!

whereemin5min(e1,e2,e3,e4). The integration overr is restricted to energetically accessible regions, the integration overP to
values possible given the momentapi(r ) of the atoms of energye i at positionr . Assuming, without loss of generality, that
emin5e1 and, hence,p15min(p1 ,p2 ,p3 ,p4) and using the fact that in that casePmin5p22p1 andPmax5p11p2 , we easily
find that *dP52$2m@emin2U(r )#%1/2. Using definition~2! of the energy density of states we thus arrive at the following
kinetic equation for the evolution of the ergodic distribution functionf (e) in a trap:

r~e4! ḟ ~e4!5
ms

p2\3E de1de2de3d~e11e22e32e4!r~min@e1 ,e2 ,e3 ,e4# !$ f ~e1! f ~e2!2 f ~e3! f ~e4!%. ~14!

53 383KINETIC THEORY OF THE EVAPORATIVE COOLING OF A . . .



It is noteworthy that this expression is applicable to a homo-
geneous gas as a special case. Then the energy is all kinetic
and the density of statesr(e)}e1/2; the kinetic equation in
this case can be inferred from equations appearing in the
recent BEC literature@30,32#.

V. NUMERICAL SOLUTION

To investigate the evolution of the distribution function of
an evaporating trapped gas, we solve the kinetic equation
~14! numerically. We suppose that atoms with energye.e t
are efficiently removed, so thatf (e)50 for these energies.
Our initial condition is chosen such thatf (e) is constant for
e,e t , corresponding to infinite temperature.

The computational procedure is straightforward. We dis-
cretize the energy scale between zero ande t into n bins of
width De5e t /n. The i th bin (i51, . . . ,n) is represented by
the energy e i5( i21/2)De. Then, with r i[r(e i) and
f i[ f (e i), the discretized kinetic equation is

r i ḟ i5
ms

p2\3 ~De!2(
k,l

rh$ f kf l2 f i f j%, ~15!

where j5k1 l2 i andh5min(i,j,k,l). This equation is inte-
grated using a Euler method. The number of bins is 64, al-
though essentially the same result is obtained withn532 or
even 16.

Figure 1 shows the distribution at several times~identi-
fied by the number of collisions that have been experienced
by atoms in the trap!. It is clear from this simulation that the
calculated distribution is well fit at all times by a simple
exponential. We find this behavior for values of the PL ex-
ponentd from zero ~square well! to three ~linear confine-
ment, e.g., by a spherical quadrupole trap!. It was also no-
ticed by Kochanski in computer simulations of trapped
atomic hydrogen@33#.

Thus, evaporation preserves, to a good approximation, the
thermal nature of the distribution. The true distribution

f (e) of the evaporating gas may be accurately described by a
Boltzmann distribution truncated at the depth of the trap:

f ~e!5n0L
3e2e/kTQ~e t2e!. ~16!

HereQ(x) is the Heaviside step function:Q(x)50 for x,0
andQ(x)51 for x>0. The distribution~16! is specified by
two ~time-dependent! parametersn0L

3 ~occupation number
of the low-energy states in the trapping potential! and kT
~characteristic energy for variation of occupation number
with energy!. The physical interpretation ofn0 andT will be
discussed below.

In the following sections weassumethat f (e) is given by
the truncated Boltzmann~quasi-thermal! distribution ~16!
and consider the consequences. In Sec. VIII we will compare
the rate of evaporative cooling predicted by this approxima-
tion with the rate that we obtain directly by numerical solu-
tion of the kinetic equation.

VI. THERMODYNAMICS

In this section we discuss the thermodynamic properties
of an ideal gas with a truncated Boltzmann energy distribu-
tion. This is important in connection with evaporative cool-
ing, since the truncation resulting from the finite depth of the
trap can lead to important modifications to quantities such as
the internal energy of the gas.

The truncated Boltzmann distribution~16! leads, via~11!,
to the phase-space distribution

f ~r ,p!5 f 0~r ,p!Q„e t2U~r !2p2/2m…, ~17!

where

f 0~r ,p!5n0L
3exp@2„U~r !1p2/2m…/kT# ~18!

has the form of the phase-space distribution of a classical
ideal gas in thermal equilibrium in the potential fieldU(r ).
In an infinitely deep trap we could integrate over momentum
states to obtain the well-known thermal density distribution

n`~r !5n0exp@2U~r !/kT#. ~19!

In this casen0 would be equal to the particle density at the
minimum of the trap.

For a trap of finite depthe t we find, integratingf (r ,p)
over momentum states, the density distribution

n~r !5n`~r !@erfAk22Ak/pexp~2k!#, ~20!

with n`(r ) given by ~19! and k(r )[@e t2U(r )#/kT. The
quantity in square brackets is the incomplete gamma func-
tion P(3/2,k) @34#. The change of the density distribution
due to the truncation in phase space is illustrated in Fig. 2.
Note that the density distribution as defined by~20! is still
characterized by a ‘‘temperature’’T and a ‘‘density’’ n0 .
However,n0 is no longer the central density,n(0),n0 , and
strictly speakingT cannot be interpreted as the thermody-
namic temperature of the system. In the case of a truncated
distributionT andn0 are convenient parameters characteriz-
ing an essentially nonequilibrium distribution. Nevertheless,
n0L

3 remains a proper measure of phase-space density, even

FIG. 1. Evolution of the distribution functionf (e) during
evaporative cooling in a harmonic potential of fixed depthe t , com-
paring the calculated distribution~solid! to the best-fit Boltzmann
form ~dashed!. For e.e t , f (e)50. Each curve is labeled at the
right by the total number of collisions per atom~the integral of the
instantaneous collision rate per atom!. The inset shows the energy
distributionr(e) f (e) ~calculated distribution only!.
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if e t is comparable tokT. The density distribution~20! was
used by Helmerson, Martin, and Pritchard@27# in their analy-
sis of experiments with magnetically trapped sodium atoms.

A. Reference volume and partition function

It is useful to introduce the reference volumeVe of the
sample, which relates the reference densityn0 to the total
number of trapped particles@35#:

Ve[N/n0 . ~21!

The relationship

Ve5L3z ~22!

follows immediately from the definition of the single-atom
partition functionz for a trapped ideal gas~see, e.g.,@29#!:

z5~2p\!23E d3rd3pexp@2„U~r !1p2/2m…/kT#.

~23!

The integration is restricted to the volume in phase space
whereU(r )1p2/2m<e t . Using definition~2! of the energy
density of states, we can write

z5E
0

e t
der~e!exp~2e/kT!. ~24!

For a PL trap~4! we have

z5z`P~3/21d,h!, ~25!

where

z`5APLG~3/21d!~kT!3/21d ~26!

is the partition function for an infinitely deep trap,
h[e t /kT, and P(a,h) is the incomplete gamma function
@34#, which increases monotonically from zero ath50 to
unity ash→`.

In view of its importance for truncated distributions in PL
traps, we plot in Fig. 3 the incomplete gamma function

P(a,h). Fora53/21d this is the correction factorz/z` for
the reference volume. For reasonable values ofd
(0,d,3) it is typically for h,8 that truncation effects
become important.

Making use of the density of states~6!, z for an IQ trap is
readily obtained:

z5z`
0 FP~4,h!1

2

3

U0

kT
P~3,h!G , ~27!

with

z`
0[6AIQ~kT!4, ~28!

the partition function for an infinitely deep IQ trap with
U050.

B. Internal energy and heat capacity

The internal energyE of a trapped gas characterized by a
phase-space distribution functionf (e) is given by

E5E deer~e! f ~e!. ~29!

For a truncated Boltzmann distribution the internal energy
can be expressed in terms of the single-particle partition
function:

E5NkT2
1

z

]z

]T
. ~30!

One can easily show from~22! and ~30! that the internal
energy E5(3/21g)NkT, where g[(T/Ve)(]Ve /]T). In
the limit of a deep trap (h→`) the position and momentum
integrals in expression~23! for the partition function may be
separated, allowing us to identify (3/2)NkT as the kinetic
energy andgNkT as the potential energy. For finiteh, how-
ever, the two terms cannot be identified as pure kinetic en-
ergy and potential-energy contributions even though their
sum is the total energy.

Using ~25! we easily obtain the internal energyE in a PL
trap with evaporation thresholde t :

E5E`R~3/21d,h!,E` , ~31!

FIG. 2. The full thermal density distributionn`(x) ~dashed! and
the density distributionn(x)5n`(x)P(3/2,k) ~solid!, associated
with a Boltzmann distribution truncated ate t , along thex axis as a
function of coordinatex for kT5e t/3 in a potential well harmonic
in all directions. Also shown~dot-dashed! is the potential along the
x axis,U(x). The coordinatex0 is defined byU(x0)5e t .

FIG. 3. Incomplete gamma functionP(a,h) as a function of
h for a series of relevanta values. The truncation correction factor
z/z` for the reference volumeVe is P(3/21d,h). The thick curve,
a53, corresponds to the harmonic trap.
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whereE`5(3/21d)NkT is the internal energy of a sample
of N atoms in thermal equilibrium in an infinitely deep trap
andR(a,h)[P(a11,h)/P(a,h). Note that the internal en-
ergy per atom depends only on the temperatureT, the expo-
nentd, and the truncation parameterh; i.e., it is independent
of the size and the exact shape of the trap. In Fig. 4 the
correction factorE/E` associated with truncation is plotted
as a function ofh for several values ofd.

Using ~27! we find that the internal energy in an IQ trap
with evaporation thresholde t is given by

E5
12P~5,h!16~U0 /kT!P~4,h!

3P~4,h!12~U0 /kT!P~3,h!
NkT. ~32!

The internal energyE` for a deep trap (e t@kT) is obtained
by setting theP to unity. Then, forkT!U0 the average
energyE`'3NkT, reflecting the fact that forU0.0 the
potential is harmonic near its minimum. The internal energy
per particle, even for a trap of finite depth, is independent of
AIQ and hence ofa andb. The temperature dependence is
completely determined by the trap parameterU0 and the trap
depthe t .

The heat capacity is another useful quantity:

C[S ]E

]TD
N

5S 321g1T
]g

]TDNk. ~33!

For a PL trap, the heat capacity

C5C`R~3/21d,h!$~5/21d!R~5/21d,h!

2~3/21d!R~3/21d,h!%, ~34!

whereC`5(3/21d)Nk.

VII. EVAPORATION

To calculate the evaporation rate in the truncated Boltz-
mann approximation we simply substitute the truncated dis-
tribution ~16! into the kinetic equation~14! and integrate
over untrapped energy states to find the rate of change of the
number of trapped atoms:

Ṅev52E
e t

`

de4r~e4! ḟ ~e4!. ~35!

For e4.e t.e1 ,e2 the minimum energy of a particle partici-
pating in a collision ise35e11e22e4 ~the energy of the
particle left in the trap! and thus

Ṅev52
ms

p2\3E de1de2de3r~e3! f ~e1! f ~e2!. ~36!

The domain of integration is determined by the requirement
that energiese1 and e2 are less thane t while e4 is not
(e11e22e3.e t). In this domainf (e) is a simple exponen-
tial and the integral may be easily evaluated to give

Ṅev52n0
2s v̄e2hVev, ~37!

wherev̄[(8kT/pm)1/2 and the effective volume for elastic
collisions leading to evaporation

Vev5
L3

kTE0
e t
der~e!@~e t2e2kT!e2e/kT1kTe2h#.

~38!

The rate of change of the internal energy of the gas due to
evaporation is found from the energy carried away by the
evaporated atoms:

Ėev52E
e t

`

de4e4r~e4! ḟ ~e4!. ~39!

After some manipulation, similar to the calculation ofṄev,
we find

Ėev5ṄevH e t1
Wev

Vev
kTJ , ~40!

where the volumeWev5Vev2Xev, with

Xev5
L3

kTE0
e t
der~e!@kTe2e/kT2~e t2e1kT!e2h#.

~41!

The volumeXev is positive; thus, the mean energy carried
away by an evaporating atom is betweene t ande t1kT.

Equations~37!, ~38!, ~40!, and~41! describe the evapora-
tion dynamics in a relatively simple closed form for an arbi-
trary potential.

For a PL trap we find characteristic volumes

Vev5L3z`@hP~3/21d,h!2~5/21d!P~5/21d,h!#
~42a!

Xev5L3z`P~7/21d,h!, ~42b!

with z` given by ~26!.
For an IQ trap of the form~5! Vev andWev may be ex-

pressed as linear combinations of incomplete gamma func-
tions. Here we write the volumes out in full:

FIG. 4. Ratio of incomplete gamma functions
R(a,h)[P(a11,h)/P(a,h) as a function ofh for a series of
relevanta values. The truncation correction factorE/E` for the
internal energy of a gas in a PL trap isR(3/21d,h). The thick
curve,a53, corresponds to the harmonic trap.
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Vev5L3z`
0 $h251jh~2h/328/3!1e2h

3@h4/241h3/313h2/214h15

1jh~h3/912h2/312h18/3!#%, ~43a!

Wev5L3z`
0 $h261jh~2h/3210/3!1e2h

3@h5/1201h4/121h3/212h215h16

1jh~h4/3612h3/91h218h/3110/3!#%,

~43b!

with j[U0 /e t andz`
0 given by ~28!.

For an IQ trap~or PL trap with 1/21d an integer! both the
particle and the energy loss rate can be written as the sum of
an algebraic term inh timese2h, which is the leading term,
and an algebraic term inh timese22h, which is a correction
due to the truncated nature of the evaporating distribution. In
previous descriptions of evaporation~see, for example,
@15,17#! the e22h terms were not taken into account. In the
present context, neglect of these terms corresponds to calcu-
lating the rate of population of the high-energy tail of the
Boltzmann distribution including collisions involving the at-
oms that would be present in this tail in thermal equilibrium.

It is noteworthy that the volumesVev andXev character-
izing the evaporation dynamics may be calculated directly
from the trap potentialU(r ), without reference to the density
of states. Since evaporation is a local phenomenon, we may
consider each volume elementd3r as a square well@PL trap
with d50, well depthe t2U(r ), andL3z`5d3r #. Then it is
straightforward to derive

Vev5E d3rek2h@kP~3/2,k!2~5/2!P~5/2,k!# ~44a!

Xev5E d3rek2hP~7/2,k! ~44b!

wherek(r )[@e t2U(r )#/kT. The integrals in~44! are one
dimensional if the potential-energy density of states~7! is
known.

VIII. COMPARISON OF RESULTS

In this section we compare the predictions of the results
based on the assumption of a truncated Boltzmann approxi-
mation ~Secs. VI and VII! with the direct integration of the
kinetic equation~Sec. V!.

With the gas characterized by its ‘‘temperature’’T and the
total number of trapped atomsN, the evolution of the state of
the gas follows from

Ė5CṪ1mṄ, ~45!

whereC is the heat capacity~33! andm[(]E/]N)T5E/N is
akin to a chemical potential. The differential equations de-
scribing the evolution ofT andN are

Ṫ5
Ėev2mṄev

C
~46!

and

Ṅ5Ṅev, ~47!

where Ṅev and Ėev are the known functions ofT and N
obtained in Sec. VII. We consider a harmonic trap~PL trap
with d53/2). In Fig. 5 the number of atoms in the trapN
and the truncation parameterh ~inverse temperature! are
plotted as a function of time after initiating evaporation from
infinite temperature. The characteristic timet0 is given by
1/t05(12/p)(N0 /V)(2e t /m)

1/2s, where N0 is the initial
number of trapped atoms andV is the volume enclosed by
theU(r )5e t surface. The curves are obtained by numerical
integration of the differential equations, and the points are
obtained by fitting an exponential to the evolving energy
distribution given by the kinetic equation. The good agree-
ment justifies the assumption of a truncated Boltzmann dis-
tribution during evaporation.

It is worth emphasizing the difference between evapora-
tion and thermalization. We have found that evaporation does
not lead to large deviations of the distribution from a Boltz-
mann form. This is in contrast to the recovery of thermal
equilibrium in an infinitely deep trap after the atoms in the
high-energy tail are removed. Using the kinetic equation we
find that in this case restoration of the truncated tail leads to
significant deviations that persist even after the~approxi-
mately! four atomic collision times required for thermaliza-
tion @30#.

IX. COOLING ATOMIC HYDROGEN

In magnetically trapped atomic hydrogen@36#, evapora-
tive cooling must compete with heating due to magnetic re-
laxation; this gives rise to fundamental limits on the tempera-
tures attainable by evaporative cooling. In this section we
address the problem of calculating the evolution of the tem-
perature and density of the trapped gas and will discuss the
temperatures that may be obtained. We employ the truncated
Boltzmann approximation.

Relaxation events can produce atoms both in trapped and
in untrapped spin states. We assume here thatall products

FIG. 5. Truncation parameterh ~circles! and fraction of atoms
remaining in trapN/N0 ~squares! as a function of reduced time
t/t0 after initiating evaporation from infinite temperature. Curves
are obtained by integration of the differential equations resulting
from the truncated Boltzmann approximation, symbols by fitting to
the distribution obtained by numerical solution of the kinetic equa-
tion.
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leave the gas cloud: the atoms in untrapped spin states ac-
cording to their nature and the atoms in trapped spin states
because they are too energetic. Even so, relaxation leads to
heating. Because it is a two-body process, with rate propor-
tional to the square of the gas density, relaxation occurs pref-
erentially at the high-density center of the gas cloud, remov-
ing atoms with lower-than-average potential energy.

The rate of change of the number of trapped atoms due to
spin relaxation,

Ṅrel52n0
2GV2e , ~48!

where the rate constantG is assumed to be independent of
temperature, and the effective volume for binary collisions

V2e~T!5E d3r @n~r !/n0#
2, ~49!

with n(r ) given by ~20!. The associated rate of change of
internal energy,

Ėrel5Ṅrel~3/21g2!kT, ~50!

where g2(T)5(T/2V2e)]V2e /]T. The evolution of the
trapped gas is given by differential equations obtained from
~46! and~47! by replacingṄev by Ṅtot5Ṅev1Ṅrel andĖev by
Ėtot5Ėev1Ėrel .

Since bothṄev and Ṅrel are quadratic in the densityn0 ,
the effect of scalingn0 ~or, equivalently,N! is merely to
change the time scale. It is also useful to define the charac-
teristic temperatureT* at which an atom has equal probabil-
ity to experience an inelastic or an elastic collision~in a full
thermal distribution!, given by

kT*5
pmG2

16s2 . ~51!

In this paper we will consider H↑ in low magnetic fields, for
which the relaxation rate constantG.10215cm3s21. The
scattering lengtha.0.072 nm and henceT*.1.4 nK. The
results apply equally well, however, to situations with other
values ofG or even to other atoms with differents andm.
Only the temperatureT* is different and the temperatures
quoted below should simply be rescaled.

Rather than presenting the time evolution of the gas, we
will discuss a few characteristics of such evolutions. One
such characteristic is the minimum temperature, attained in
the long-time limit. SettingṪ50, this is given as a function
of h by

S T

T*
D 1/25 A2~g2g21x!V2ee

h

~h23/22g2x!Vev1Wev
, ~52!

evaluated withx50. Another characteristic is the tempera-
ture at which the phase-space densityn0L

3 reaches its maxi-
mum value. This is given by the same formula but with
x5(3/21g1T]g/]T)/(3/21g). At lower temperatures
evaporative cooling will be accompanied by decreasing
phase-space density. A final characteristic of interest is the
temperature at which the densityn0 reaches its maximum
value. This temperature is found by setting
x5(3/21g1T]g/]T)/g.

We consider here H↑ in a harmonic trap. Unfortunately, it
appears that even in this case the important quantitiesV2e
and g2 are not expressible in a simple form and must, for
strongly truncated distributions, be evaluated numerically
from ~20!. Figure 6 showsV2e /Ve andg2g2 as functions
of h. The characteristic temperatures given by~52! are plot-
ted in Fig. 7 as functions ofh. Also plotted forh.7 are the
same functions calculated without correcting any quantity for
truncation effects~i.e., with incomplete gamma functions ev-
erywhere set to unity!. Note that it is possible to cool with
increasingn0L

3 even at very lowT, although at the cost of
a strongly truncated distribution. Cooling with increasing
densityn0 is only possible forT.2 mK. Our treatment of
evaporative cooling based on kinetic theory supports the
conclusion drawn in previous works@3–5,15# that BEC can
be attained in magnetically trapped atomic hydrogen. We
find that, interestingly, this conclusion remains valid even for
smallh values.

FIG. 7. Characteristic temperatures for evaporative cooling with
dipolar decay of H↑ in a harmonic trap, as functions ofh. Curvea:
asymptotic temperature. Curveb: lowest temperature for cooling
with increasing phase-space densityn0L

3. Curve c: lowest tem-
perature for cooling with increasing reference densityn0 . Also
shown ~dashed! are the same curves without corrections due to
truncation of the distribution. The horizontal dashed line is the scale
temperatureT* .

FIG. 6. Quantities characterizing two-body decay in a harmonic
trap: Ve /V2e andg2g2 as a function of the truncation parameter
h. For largeh these approach 1/2A2 and 3/4, respectively.
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X. CONCLUSION

We have presented a detailed kinetic treatment of evapo-
rative cooling of a dilute trapped gas. From the Boltzmann
equation an expression is derived for the evolution of the
energy distribution function of the gas. Numerical integration
of this kinetic equation lends support to the common as-
sumption of quasiequilibrium during evaporative cooling.
Subject to this assumption, we obtain useful expressions de-
scribing the thermodynamics and evaporation of a gas in a
trap of finite depth. Closed expressions are obtained for a
variety of important trap geometries. Our theory is directly
applicable to the design and analysis of experiments aiming
at Bose-Einstein condensation of atomic hydrogen or other

ultracold gases. A useful direction for future work would be
to include stimulated emission factors in the kinetic equation
and study how the gas evaporatively cools into the quantum
degeneracy regime, thereby generalizing the calculations of
@30–32# to the case of an inhomogeneous, trapped gas.
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