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Abstract.

Local dynamics in a neural network are described by a two-dimensional (backpropagation
or Hebbian) map of network activation and coupling strength. Adiabatic reduction leads to
a non-linear one-dimensional map of coupling strength, suggesting the presence of a
period-doubling route to chaos. It is shown that smooth variation of one of the parameters
of the original map, -learning rate-, gives rise to period-doubling bifurcations of total
coupling strength. Firstly, the associated bifurcation diagrams are given which indicate the
presence of chaotic regimes and periodic windows. Secondly, pseudo-phase space
diagrams and the Lyapunov exponents for alleged chaotic regimes are presented. Finally,
spectral plots associated with these regimes are shown.

Keywords:
Autoassociator, Backpropagation, Hebbian learning, Chaotic behavior, Non-linearity,
Periodic windows, Bifurcation, Deterministic chaos.



A note on chaotic behavior in simple neural networks. 3

1.Dynamics of the autoassociator.
A large part of neural network modelling is based on the one-layer autoassociator. In this
type of network  two kinds of processes can be distinguished. The first process, which is
described by the slow equation, represents the update of the synaptic weights on recursion
k+1. The second process, which is described by the fast equation, is nested within the
first. This process represents the way the activation values of the units develop within each
cycle. Update of the weights takes place after the activation values approach stable values.
Based on the above made distinction the autoassociator can be defined as follows:

The slow equation:

Backpropagation (e.g.McClelland & Rumelhart, 1986):
(1) Wij(k+1) = (1-Dw) Wij(k) + η aj(k) Ii(k) - η aj(k) Σal(k) Wil(k).

Hebbian (e.g. Hopfield, 1982):
(2) Wij(k+1) = (1-Dw) Wij(k) + η ai(k) aj(k).

where Wij is the weight constant modulating the activation of unit i by unit j, ai the
activation of unit i, Ii the external input of unit i, and k indexes the recursion step. Dw is a
decay parameter of the weights and η notates the learning rate.

The fast equation:

(3) ai(t+1)=(1-Da) ai(t) + E (Σ [al(t) Wil(t)] + Ii(t)) (1-ai(t)),
if Σl [al(t) Wil(t)] + Ii(t) > 0.

(4) ai(t+1)=(1-Da) ai(t) + E (Σ [al(t) Wil(t)] + Ii(t)) (1+ai(t)),
if Σl [al(t) Wil(t)] + Ii(t) ≤ 0.

where Da is the decay parameter of the activations, E is the excitation parameter and t
denotes the iteration step within each recursion.

The fast equation is repeated several times before the slow equation is updated.
Repeated application of equation (3) and (4) within each recursion k shows that ai is a
non-linear function of Wij, while Wij is a nonlinear function of all W. Specifically,
substitution in equation (1) and (2) of the equilibrium values of ai obtained after many

iterations yields schematically:
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(5) Wij(k+1) = (1-Dw) Wij(k) + η fe(Wij(k)p), p>1.

where fe(.) denotes the value of the second and third term of the right hand side of
equation (1) and (2) after substitution. η, the learning rate parameter, can be conceived of
as a control parameter of the non-linear effects of the autoassociator.

2.Bifurcation diagrams.
Investigation of the non-linear effects of the autoassociator occurred by registrating the
sum of absolute values of the weights  for different values of η. Absolute values have been
used in order to avoid redundant diagrams for sums of negative and positive weights
separately.
As an illustration , we used a simple case, a three unit system where the external input, I ,
was given by the values: +1, -1, +1. The values of the parameters Da, Dw, E were
respectively  0.15,  0.5,  0.15 (McClelland & Rumelhart, 1986).

Figure 1, obtained with the Hebbian-rule, is found by plotting the sum of weights for the
recursions 100 - 200; η was consecutively increased by .00666.

insert figure 1 about here.

Until η ♠ 5 the system reaches one state of equilibrium. Notice that the usual value of
η (usually determined by 1/ N, in which N denotes the number of units) is within this
stable range. Around η=5 a bifurcation appears: Between 5 and 6 the system is
characterized by two equilibrium states. Between 6.05 and 6.25 additional bifurcations
occur. At η= 6.25 a chaotic regime appears, followed by a periodic window  consisting of
6 equilibrium values. From 6.3 upwards the system remains in an unpredictable chaotic
regime. For η greater than 6.7 the activities, the weights and the sum of weights grow
exponentially.
Across the total range from 0 to 6.7 the representation-task is successfully performed, the
system produces the original prototype when solely the external input of the first unit is
given.

The system with the backpropagation rule gives us a much richer diagram. For this rule η
is consecutively updated with 0.01. Interestingly, in the periodic window between η=2.9
and η=3.2, the bifurcations visibly reappear.

insert figure 2 about here.
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Also in this case across the total range from 0 to 3.3 the representation-task is
successfully performed.

3.Chaotic regimes.
The bifurcation diagrams suggest chaotic behavior for certain intervals of the values of the
learning rate parameter η. As a further test we will present three additional indices of
chaotic behavior: the pseudo phase space diagrams, Lyapunov exponents and power
spectra.

Pseudo phase space:
The backpropagation rule, for η=2.9 (a chaotic regime), produces a pseudo phase space
diagram which is plotted in three dimensions. Figures 3A and 3B show two-dimensional
projections (frontal and perpendicular view). Figures 4A and 4B gives the projections for
the Hebbian rule.
These figures suggest  chaos (Moon,1987).

insert figure 3 about here.
insert figure 4 about here.

Lyapunov exponents:
The Lyapunov exponents indicate chaos when the largest exponent is positive.  These
exponents were computed for the 3-dimensional pseudo phase space trajectories (Wolf et
al., 1984). The results are given in table 1.:

insert table 1 about here.

Power spectra:
Power spectra for chaos regimes of both the backpropagation rule (η=2.9) and the
Hebbian rule (η=6.4) are shown in Figures 5 and Figure 6.

insert figure 5 about here.
insert figure 6 about here.

Both figures 5 and 6 show that power is distributed across all frequencies, indicating
chaos (Moon, 1987).

4.Discussion.
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The case described in the foregoing sections is a simple one, only one prototype is used
as external input in a system of three units. For more complex systems, the range between
equilibrium and the exponential growth of the sum of weights decreases. Whithin this
range, however, the same chaotic regimes have been found to accur. Yet, in the light of
recent publications on chaotic neural activity (Skarda & Freeman, 1987; Harth, 1983), it is
intriguing that a simple neural network already shows such complex behavior.
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figure 1:  Bifurcation diagram of the Hebbian rule.
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figure 2: Bifurcation diagram of the Backpropagation rule.
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figure 3A: Pseudo phase space figure 3B: Pseudo phase space
diagram for the backpropagation diagram for the backpropagation

    rule.  η=2.9 (frontal view).     rule.  η=2.9 (perpendicular view).

figure 4A: Pseudo phase space figure 4B: Pseudo phase space
 diagram for the Hebbian rule. diagram for the Hebbian rule.
η=6.4 (frontal view). η=6.4 (perpendicular view).
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table 1: Lyapunov exponents.

                                                                                                                    
        Backpropagation rule                        Hebbian rule
                                                                                                                    
  η       Lyap. exp. behavior   η           Lyap. exp. behavior
                                                                                                                    
 1.00 -1.354 equilibrium 1.00 -0.850 equilibrium
 2.28 -0.819 period 6.29 -0.478 period
 2.50 0.244 chaos 6.40 0.276 chaos
 2.90 0.300 chaos 6.90 0.339 chaos
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Figure 5:
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Figure 6:


