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Probability Distribution of Multiple Scattered Light Measured in Total Transmission
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We report the first measurement of the distribution function of the fluctuations on the total

transmission of multiple scattered light.

The shape of the distribution is predominantly Gaussian.

A non-Gaussian contribution to the distribution function is found, caused by correlation in the cubed
intensity. The scattering diagrams responsible for this new correlation are calculated without free
parameters, and a good agreement is found between experiment and theory.

PACS numbers: 42.25.Bs, 72.15.—v, 78.20.Dj

Multiple scattering of waves in disordered systems is
a field of wide interest and is studied with light, sound
waves, and electrons. Interference between waves in the
multiple scattering regime can play an important role and
leads to a variety of effects such as enhanced backscat-
tering [1], short-range and long-range correlation in the
intensity fluctuations [2—6], universal conductance fluctu-
ations (UCF) [7], and ultimately to Anderson localization.

Recently the full distribution function of these fluctu-
ations has received a lot of attention [8-11]. Experi-
ments with light form an excellent way to measure these
fluctuations. Genack and Garcia [8] showed experimen-
tally that in the multiple scattering regime the intensity
statistics of the speckle changes from Rayleigh for small
intensity speckles to a stretched exponential for large inten-
sity speckles. This was confirmed theoretically by Kogan
et al. [9], who also predicted a Gaussian distribution for
the fluctuations on the total transmission of light. In com-
puter simulations Edrei, Kaveh, and Shapiro [10] found
a Gaussian distribution of the total transmission in two
dimensions in the diffusive regime, which changed to a
log-normal distribution for increasing disorder. The same
behavior is predicted for the conductance of electronic sys-
tems as one approaches the Anderson transition [11].

In this Letter we present the experimental distribution
function of the fluctuating light intensity in total transmis-
sion through a disordered slab. The data show a distri-
bution that is almost Gaussian but contains a small but
significant non-Gaussian contribution due to the presence
of a third cumulant. It expresses a correlation in the
cubed total transmission, which is different from the well-
established optical short-range and long-range correlations.

Let us first describe the different configurations to ob-
serve fluctuations with the help of the following model.
The sample consists of a static arrangement of scatterers,
with L > € > A, L is the sample thickness, € is the mean
free path, and A is the wavelength of the light. The ran-
dom sample can be considered as a waveguide supporting
N modes or channels, where the disorder couples all in-
going to all outgoing modes. The average transmission
coefficient (T,,) ~ €/NL gives the average fraction of the
intensity that is coupled from incoming mode a into out-
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going mode b. Angular brackets denote averaging over
disorder. Varying the wavelength of the incoming light
plays the role of changing the realization of the disor-
der, and the fluctuations are observed as a function of the
wavelength. Fluctuations can be observed on the transmis-
sion (one-mode-in—one-mode-out), the total transmission
(one-mode-in—all-modes-out), and the “conductance” (all-
modes-in—all-modes-out).

The transmission coefficient 7,, follows initially
an exponential (Rayleigh) distribution [12], while for
large transmission coefficients a stretched exponential
occurs [8,9]. The distribution has a relative variance
(8Tap)/(Tap)? = 1, with 8Tap = Tap — (Tap).

The total transmission is obtained by summing over all
outgoing modes, T, = >, Tap, ~ €/L. Naively one would
expect for the distribution function P(T,) a convolution
of N independent Rayleigh distributions which for large
N becomes a Gaussian distribution with relative variance
1/N. However, the interference between two light paths
inside the sample correlates outgoing modes [13]. This
results in an increase of the relative variance by a factor
L/¢, and leads to [9,10]

L (Ta — <Ta>)2
2 (1)

with relative variance (8T2)/(T,)* ~ L/N¥.

The conductance is given by g =Y ,, Tu ~ N€/L
with relative variance (6g2)/(g)*> ~ (g)~% [13,14]. In
electronic systems Altshuler, Kravtsov, and Lerner [11]
predicted a distribution of the conductance P(g), with the
nth normalized cumulant ({g")) (i.e., the nth cumulant
over (g)") proportional to {(g)*~2". In the metallic regime
(i.e., for large values of the average conductance) the dis-
tribution is predominantly Gaussian. To our knowledge,
neither the measurement of the conductance distribution
in the metallic regime nor of the total transmission distri-
bution of optical systems has been reported.

We measured the fluctuations in the total transmission
using the setup described in detail in Ref. [17]. The
samples consisted of TiO, particles in air, with an
absorption length €, = 70 um. The mean free path €
for all samples was = 0.8 um. In the experiment the

P(T,) ~ exp

, M
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thickness of the samples and the width of the incident
Gaussian beam were varied to measure the fluctuations
for different values of g. Table I lists the thickness of
the samples, the width of the beam, and the number of
scans over which was averaged to obtain the probability
distribution and the second and third cumulant.

Figure 1 shows the measured distribution function
summed over all samples and beamwidths to improve the
statistics. Before summing the probability distributions
of the scans the second cumulant of each scan was scaled
to unity (FWHM is 2v/21n2). The upper part of Fig. 1
shows the full distribution function, the solid line is
the Gaussian of Eq. (1). The lower half of the graph
shows the difference between the measured distribution
and the Gaussian distribution, smoothed over half a unit
of the x axis. The predicted effect of a third cumulant
is shown by the solid line. Scaling the second cumulant
to unity fixes its zero crossings, its vertical scale relates
to the magnitude of the third cumulant. The shape of the
S8 P(T,) curve clearly demonstrates the presence of a third
cumulant in the measured distribution.

So the distribution is characterized by a second cumulant
and a small but significant third cumulant, both of which
need to be calculated. The normalized second cumulant is

T - (TR L
(T2 NE

Double brackets define normalized cumulants. The sec-
ond moment of the intensity distribution contains a discon-
nected [Fig. 2(a)] and a connected part [Fig. 2(b)]. The
connected part [Fig. 2(b)] contains the interference be-
tween two diffusons (at a Hikami vertex [15]) and is pro-
portional to L/N¢ [13], which is the leading contribution
to the second cumulant. The contribution to the second
cumulant of the disconnected part is proportional to 1/N,
the naively predicted variance on the total transmission.
The diagrams contributing to the third moment are
given in Fig. 3. From their structure the contribution to
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FIG. 1. Probability distribution of the fluctuations in total
transmission, summed over all samples after scaling the second
cumulant to unity. Upper graph: Full distribution. The solid
line is a Gaussian. Lower graph presents the difference
between the measured distribution and the Gaussian. The solid
line shows the contribution expected from a third cumulant.

the third cumulant of the diagrams in Figs. 3(a), 3(b), and
3(c) are seen to be proportional to, respectively, 1/N2.
L/N%*¢, and L?/N%*€?. The leading contribution to the
third cumulant of the intensity distribution comes from
the connected diagrams [Fig. 3(c)]. The factor L?/N?%¢?
can be interpreted as the probability that three light paths
will interfere twice, just as L/N<{ gives the probability
that two light paths will interfere once. As an important
result a quadratic relation between the second and the
third normalized cumulant is found: (T3)) = (T2))?.

To verify this predicted quadratic relation between the
second and third cumulant, we plot in Fig. 4 the third
cumulant versus the second cumulant for each value of the
conductance, i.e., for each value of the sample thickness
and beam diameter (the mean free path was the same
for all samples). The error bars were obtained from the
variance in the second and third cumulant within a set
of scans with the same sample thickness and beamwidth.
The second and third cumulant are averaged over sets of
16, 32, 48, or 64 scans. The resulting values and their

TABLE I. Sample parameters in the experiment.

Sample Second Third Number
thickness Beamwidth Number cumulant cumulant of modes

L (um) po (um) of scans (X107%) (x1077) N*
30 77 16 0.36 = 0.01 0.014 = 0.035 193 000
12 26 32 0.97 = 0.03 —0.03 = 0.25 23300
22 32 48 1.24 = 0.04 0.68 = 0.28 43500
30 33 16 1.57 = 0.04 1.30 = 0.46 57300
53 35 32 1.80 = 0.03 091 = 0.53 112000
30 26 32 1.90 = 0.03 0.92 = 0.56 45000
45 33 32 1.90 = 0.05 1.33 = 043 87600
53 26 32 2.18 = 0.03 1.77 = 0.59 94500
170 27 32 2.69 = 0.06 2.02 = 0.82 632000
78 28 64 2.74 = 0.03 2.43 += 0.62 177 000
30 17 16 4.82 = 0.10 9.1 £33 33000
30 10 32 8.01 = 0.36 53 64 26700
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FIG. 2. Diagrams contributing to the second moment of
the fluctuations on the total transmission. Diffusons (diffuse
propagating intensities) are depicted by close parallel lines.
(a) Two disconnected diffusons. (b) Two diffusons interfering
inside the sample. This is the leading contribution to the second
cumulant.

standard error are given in Table I. The expected standard
error of a third cumulant due to finite sampling can be
estimated to be (15/N,)/2(T2))*/2, with N, the number
of points in a scan (1024) times the number of scans. The
experimental error bars on the third cumulant are in good
agreement with the expected magnitude of the standard
error. The solid line is a weighted nonlinear least squares
fit of ((T2)) = a({T?))? to the data. The minimum of the
x? merit function is 9.0 for @ = 0.7 and 8 = 1.83, and
the 68% confidence region is given by the contour y? =
11.5, shown in the inset in Fig. 4. This yields a prefactor
a = 0.7%89 and a power B = 1.83 + 0.26, which is in
good agreement with the predicted quadratic relation. The
probability to have measured our data set given a linear or
a quadratic parent function is, respectively, 0.035% and
53%. A fit of the quadratic behavior (8 = 2) yields a
prefactor « = 2.9 * 0.6.

To determine the prefactor of the quadratic relation
between the second and the third cumulant an explicit
calculation of the diagrams in Figs. 2(b) and 3(c) has

e
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FIG. 3. The diagrams contributing to the third moment of the
fluctuations on the total transmission. (a) Three disconnected
diffusons. (b) Two interfering diffusons and a disconnected
diffuson. (c) Three interfering diffusons, the first through two
Hikami vertices, the second through a six-point vertex. The
latter are the leading contributions to the third cumulant.

to be done that includes the incident Gaussian beam
profile, Iinc(r.) ~ exp(—2r? /pé). Since the number of
modes in transmission and reflection is loosely defined
for a Gaussian intensity profile on a transverse infinite
slab, a definition of N is used where 1/N is equal to
the contribution of the diagram in Fig. 2(a) to the second
cumulant. Taking into account the diffuse broadening of
the beam inside the sample this leads to

k*I*(g = 0)
N=2 ,
[o 2q1(q)I(—q)dq

with & the wave vector of the light and /(g) the Fourier
transform of the intensity profile at the exit interface of the
sample. The factor 2 distinguishes the vector wave (2 =
2) from the scalar wave (2 = 1) results [17]. In the limit
po > L the number of modes N is not influenced by the
diffuse broadening of the incident profile, N = 22p}/4.
In this limit the conductance g = 4N€/3L is now given
by

3

2%2pde
= = ot 4
8 3L “4)

The results for the second cumulant [Fig. 2(b)] are well
known [13,14,16] and give (po > L)

(2 = —2k_ = 20 5)

adrp3e 35

In Fig. 3(c) we present the third cumulant, the first
diagram contains two Hikami four-point vertices, the
second a six-point vertex. In the calculation the six-point
vertex is found to cancel against the extra contribution of
the first diagram that arises when the distance between the
two Hikami vertices is of the order of one mean free path.
The third cumulant depends in a nontrivial manner on the
beam profile. For the incident Gaussian profile we find
(po > L)
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FIG. 4. The third cumulant as a function of the second
cumulant of the intensity distribution. Solid line is weighted
least squares fit to the data of (T32)) = a{(T2))?. The inset
shows the 68% confidence region of the fit parameters a
and B, yielding a = 0.77§9, B = 1.83 = 0.26. Dashed line is
theoretical prediction ((T2)) = 3.2((T?))*>. Dots show the upper
bound of the contribution of the mundane diagram in Fig. 3(b)
to the third cumulant.
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(For a square profile the result would be 16/15g2.) This
gives the following simple relation between the second
and third cumulant,

(T = AT ™

The experimentally observed prefactor of 2.9 = 0.6 is in
good agreement with the theoretical value of 16/5.

Let us now estimate higher order effects and the
influence of the experimental beamwidth py ~ L. The
contribution to the second cumulant of the diagram in
Fig. 2(a) yielded 1/N [Eq. (3)] and can be neglected. The
leading correction to Eq. (6) comes from the diagram in
Fig. 3(b), which gives A(T2)) = 6((T2))/N*. The factor
of 6 is of combinatorial origin and the effective number
of modes N* differs from N because it is the product of a
single diffuson with the second cumulant diagram. N* is
given by

., k(g =0)
f52q1(9)dg

Table I gives the number of modes N* for each sample
and each incident beamwidth (2 = 2). The resulting
upper bound of the magnitude of the diagram in Fig. 3(b)
is shown in Fig. 4 by the dots.

The magnitudes of the second cumulant as calculated
with the experimental parameters as input are larger than
the measured values by maximally 25%. This difference
was addressed in Ref. [17], where it was shown to be
caused by the finite range over which the wavelength
was varied in the experiment. For the same reason the
experimental values of the third cumulant are also lower
than predicted. By plotting the second versus the third
cumulant (Fig. 4) the effects of the finite scan length
largely cancel, as do effects of inaccuracies in the exact
beamwidth, mean free path, and sample thickness.

The influence of the beamwidth was numerically evalu-
ated for the diagrams of Figs. 2(b) and 3(c). The resulting
relation between the second and third cumulant remained
quadratic, only the prefactor of 16/5 was reduced by at
most 14% for the smallest value of po/L. If this reduction
were included in the theory, it would make the agreement
with the observed prefactor even better.

In conclusion, we showed experimentally that the prob-
ability distribution of the fluctuations in total transmission
is predominantly Gaussian. The data clearly demonstrate
a skewness of the probability distribution, caused by cor-
relation in the cubed intensity. These correlations were
calculated within a diagrammatic approach, and a good
agreement is found between the experiment and the the-

®)
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ory. The skewness in the experimental distribution is the
first sign of a possible change from a Gaussian to a log-
normal distribution, as is predicted to occur for the elec-
tronic conductance fluctuations [11].
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