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Abstract 

In this letter we extend the factorization procedure of the deep-inelastic hadron tensor, proposed by Qiu, to include 
non-zero quark masses. The manifest gauge invariance of both soft and hard parts is preserved. Using a so-called spurion 
to generate the quark-mass terms, the simple parton-model interpretation is also kept. The calculation of the deep-inelastic 
transverse-spin structure function g2 is used to illustrate the algorithm. 

The masses of the light quarks are small as com- 
pared to the typical hadronic mass scales. Therefore, 
in most calculations of deep-inelastic scattering (DIS) 
structure functions they are neglected. In some cases, 
however, this is not allowed. A notorious example is 
~2 of a free quark target at tree-level [ 11. In that case 
the twist-three quark-mass term exactly cancels the 
twist-two contribution, yielding g2 = 0. In general, if 
the ratio m/M is not negligible, one is forced to keep 
the quark-mass contributions. 

Let us recapitulate some historic facts. In Ref. [2] 
Politzer suggests a diagrammatical approach to un- 
ravel the power corrections in l/Q for a wide class 
of hard scattering processes. This method was fully 
employed for the deep-inelastic scattering process by 
Ellis, Furmsuiski, and Petronzio (EFP) in Ref. [ 31, 
in which they calculate the twist-four corrections to 
the unpolarized structure functions. Thereto they fac- 
torize the diagrams in hard, i.e. perturbative, and soft, 
i.e. non-perturbative, parts. An essential ingredient in 
their calculation is the expansion of the parton mo- 
menta around the target momentum direction, called 

the collinear expansion. Using low-energy Ward iden- 
tities they show that in all matrix elements the gluon 
field combines with a derivative to precisely the co- 
variant derivative. Color gauge invariance is then man- 
ifest upon inclusion of so-called link operators. Elec- 
tromagnetic gauge invariance of the hard scattering 
parts is not manifest in their approach. Matrix elements 
with a definite parton number contribute at different 
orders in 1 /Q. 

It was Qiu in Ref. [4] who showed that, if one 
uses the concept of the special propagator, one can 
factorize such that a complete separation of the hard 
parts between different orders in 1 /Q can be obtained. 
Hence, the electromagnetic gauge invariance of these 
hard parts is manifest. Moreover, only matrix elements 
with a fixed number of partons contribute to a particu- 
lar order in 1 /Q. This fact also enables a clear parton- 
model interpretation of the higher-twist terms. 

Both EFP and Qiu neglect quark masses. Our goal 
is to include them in such a fashion that both color 
and electromagnetic gauge invariance remain mani- 
fest. The basics of the method are as follows: in addi- 
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tion to the collinear expansion, employed by EFP, we 
include a quark-mass expansion. Qiu’s factorization 

can be extended as well. In order to preserve the parton 

interpretation we employ a spurion particle [ 51, which 
couples only to the fermions. The spurions will gen- 

erate the mass contributions. One maintains the three 
advantages of combining EFP and Qiu’s techniques, 

namely, ( 1) the use of color gauge invariant matrix 

elements only, (2) manifest electromagnetic gauge in- 

variance of the hard scattering parts, and (3) a clear 

parton interpretation at all times, also beyond leading 

order, i.e., each order of power suppression means tak- 
ing into account correlation functions with one parton 

more, where only the good fields [ 6 ] contribute. 

The algorithm is best explained by applying it to a 
particular case, therefore we look at polarized DIS up 

to and including order 1 /Q (see Ref. [ 71 and refer- 
ences therein). The EFP approach in this context was 

first applied by Efremov and Teryaev [ 81. 

The starting point is the familiar diagrammatic ex- 
pansion of the forward scattering amplitude T*” (we 
consider only quarks of one flavor for the moment) 

Tp” = 
I’ 

d4k Tr [Y’(k;,)I(k)] 

+ J d4kld4k2 Tr[S~(kl,k2;m)raA(kl,k2)1 

+..., (1) 

keeping only the terms contributing up to order l/Q. 

Here, S and I are the hard and soft scattering parts, 
respectively. We will not consider QCD corrections, 

so the hard parts consist of the forward parton- 
photon scattering tree graphs which are one-particle- 
irreducible after shrinking the two photon vertices 
to a point. We indicate explicitly their dependence 
on the parton momenta and masses, but not on the 
photon momentum 4 (q2 = -Q2). The soft parts are 

defined as 

Tij(k) = d4z J -e'k'"(ptSJT[~~~O)~~~z)] [ES), (27T)4 
(2) 

r”,ij(kl, kz) = J d4z d4z’ eikl.zei(k2-kl).i’ 

(277)4 (2,rr)4 

X (P, SIT ~jtO)gA”(Z’)@i(z)] IP, S). (3) 

Note that we have included a color identity and g 
times ta, respectively, from the hard into the soft parts. 

Thereby the hard parts effectively become QED graphs 

with unit charge [ 31. 
The nucleon is characterized by its momentum, sat- 

isfying P2 = M2, and its spin vector, satisfying S. P = 
0 and S2 = -1. We make a Sudakov decomposition 

of the relevant vectors with respect to two light-like 

vectors p and II, satisfying p . n = 1, 

2 

q = -xF@ + $, 
B 

k2 - k; 
k = xp + Fn + kT. 

(4) 

(6) 

(7) 

Here, xn = Q2/(2P . q) is the Bjorken variable, A is 

the nucleon’s helicity, ST its transverse spin. Also, x is 

the quark’s longitudinal momentum, kT its transverse 
momentum. Since target mass corrections are l/Q2 

suppressed, we ignore them. 
The next step is performing a collinear and mass 

expansion of the hard parts (keeping only relevant 

terms) : 

Y”(k;m) = Y’(xp;O) 
alV’(k;m) 

+(k-xp)a ak” k=xp + m 
at?‘” (k; m) 

am 
k=xp 

m=o m=o 

+..., (8) 

Sr(kl,kz;m) =Sr(xlp,x2p;O) +.... (9) 

We use the following Ward identities to rewrite the 
partial derivatives: 

aSp’(k;m) 
ak” 

=Sr(k,k;m), 

dV’ (k; m) 
am 

= S&( k, k; m) , 

(10) 

(11) 

where the right-hand side of Eq. (10) is effectively 
obtained from S‘“( k; m) by insertion of a zero- 
momentum gluon, with coupling $ to the fermions. 
The right-hand side of Eq. ( 1 I) follows from the 
insertion of a zero-momentum (scalar) spurion [5] 
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(denoted by a dashed line) which couples to the 
fermions through the vertex -ilij. Inserting the Ward 

identities, one arrives at 

T+’ = 
s 

dx Tr [SP”(xp;O)I(x)l 

+ J dxldx2 Tr [S~(X~p,X2p;O)w”pr~(X~,X2)] 

+ J dmdx2 Tr[S~Y,,(x1p,x2~;O)rm(x,,x2)] 

+..., (12) 
where the projector wOp = @p-~an~. Note that A” = 

wapAP if one uses the light-cone gauge n. A = 0. The 

soft parts read (iD = ia + gA) 

T‘ij(X) = J 
r~ij(xi,"2) = 

J 

d17ei**lei”(X2-xj dA 

2lr 2lr 
) 

IP, S), 

x (P,SIT &(O)Wi(W] IES) 
= WZS(X2 - Xl) lYij(X1). 

One can restore color gauge invariance of these defini- 

tions by introducing path-ordered exponentials called 
1 ink operators. In the gauge nA = 0, these links become 

unity, if the paths are chosen along the n-direction. In 
Ref. [ 91 it is shown that the gluons in the p-direction, 

~.e., of the form (12. A) p, can be pulled into the two- 
parton amplitude, generating a link operator, showing 
that the gauge n. A = 0 is inessential and color gauge 
invariance can always be achieved. 

The first term in Rq. (12) contributes to order 
( l/Q)’ and higher, whereas the latter terms con- 

tribute to order (l/Q)’ and higher. The new ingre- 
dient due to Qiu [4] is basically the splitting of the 
different terms into parts which contribute at a spe- 
cific order in l/Q. Let us illustrate how this can be 
done. The Dirac trace in the first term in Eq. (12) 
can be Fierz decomposed according to 

= 

II-6 

/t 

$ 

P- 

L 

r(x) 

Fig. 1. The leading axial-vector projection of r(x) 

Tr [P(xp;O)I’(x)] 

= t Tr [Y(xp;O)y,] Tr [yPr(x)] 

+ i Tr [Spv(.wOhy,l Tr Wd’W 1 , (16) 

where we used the fact that in the hard part m = 0, such 

that chirality is conserved. The vector term contributes 

to the unpolarized scattering only, so we discard it. 
We make a Sudakov decomposition of the axial-vector 
projection of the soft part, 

Tr [r%I(x) 1 = pp Tr [~MYx)] 

+ Tr ~$ww i + np Tr [b md] , (17) 

where 7; = fly, = ( gPa - pPn” - npp”) y,. The 
only dimensionful quantity in the hard part is Q, 
whereas the soft parts are assumed not to contain 

large scales. This, in combination with the fact that 
p has dimension 1, and n dimension - 1, leads to the 

observation that the first term is the leading one, while 
the second and third are I/Q and l/Q* suppressed, 

respectively, so we discard the last one. 
Consider the leading # ys trace first. Introducing the 

projectors P+ = # fi /2 and P_ = $# /2, which project 
on ‘good’ and ‘bad’ quark fields, respectively [ 61, and 
using the relations 

h = P-C ={P+, (18) 

it can be diagrammatically represented as in Fig. 1. 
Consider next the trace of I(x) with yrys, which 

we write as (d yr& + #y& )/2. Again, we can 
multiply the d with a P+ on the right, or with a P_ 
on the left. For the 4 we use the following relations, 
which follow from the equations of motion i&b = 

m$ [217 

iJ1 
+r,(x,X2)(-il)l zd, (19) 
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‘-/T-f5 -YT’yS 

7T75 7T75 

Fig. 2. The sub-leading axial-vector projection of T(n). 

I dx2 [GY&~&(x~~) 

+(-il)r,,(x2,x)l. 

Finally, we use 

(20) 

wapY& = p-$pYJ 7 (21) 

+yawaa = JIYCMpP+, (22) 

along with Eq. ( 18), to project out the good quark 
and good (transverse) gluon fields. Putting the pieces 
together, we can write the trace diagrammatically as 

a sum of four diagrams; two gluon and two spurion 
diagrams. They are depicted in Fig. 2. We have used 

the special propagator [ 6,4] 

k 
_ 

2k.n’ 
(23) 

The essence of the above derivation is that an 4 pulls 
out a good quark (or anti-quark) from the soft part, 
whereas a # pulls out a special propagator, a good 
quark, along with a good gluon or (for non-zero quark 
mass) spurion. Note that for the last trace in Eq. ( 17) 
this implies the inclusion of four-parton amplitudes, 
leading to 1 /Q* suppression. 

In order to undo the Fierz decomposition, Eq. ( 16), 
we use the following relations: 

P_pPk P+ = P_ yPP+, (24) 

P-h y;p+ = P-6 yPP+, (25) 

P-y@ P+ = P_yPfi P+. (26) 

Returning to the second and third terms in Eq. ( 12), 
from dimensional arguments one can again infer that 

only good fields contributeat leading order. So we may 
include projectors in between the hard and soft parts. 

The crucial step in the Qiu factorization is to absorb 

everything above the projectors into the upper, hard, 
part (see Figs. 1 and 2). For the leading order this has 

no consequences. At sub-leading order, however, the 
modified hard gluonic and spurionic parts read 

qy(qA x2p; 0) = y(xIp, x2p; 0) 

irll i$ 
+iy,~Y(x~p;O) +Yy(x2p;O)-zya, 

1 2x7 
(27) 

q&,r(XlPv x2p; 0) = q&(.w n2p; 0) 

i ri iri +(-il)~~~Y(Xlp;O)+~~“(X2P;0)~(-i1). 

(28) 

The treatment of the spurionic part is the new result 
of this paper. The leading and sub-leading forward 
scattering amplitudes become 

TI”Y twst-2 = 
s 

dx Tr [P_Y’(xp;O)P+T(x)] , (29) 
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Fig. 3. Uncrossed twist-three gluonic [ (a)-(d) J and spurionic [ (e)-(h) ] diagrams. 

T? = 
tvmt-3 

.I 
dxl dx:! Tr [P-H$f’ (XIP, xzp; O)p+map 

xrp,(x,,x2)] 

+ 
s 

dxl dx2 Tr [P- H&(x~p, XZP; O)F’+ 

X~“,(XI~X2)1, (30) 

which are of a specific order in l/Q. That is, ‘twist-t’ 

contributes only at order Q2-‘. Also, t always equals 

the number of partons connecting the hard and soft 
parts. To arrive at the DIS hadronic tensor, Wp” = 
Disc [ Tfi”] / (4M7ri), one has to cut the hard diagrams. 

The uncrossed twist-three cut diagrams are depicted 
in Fig. 3. Explicitly, one finds for the (projected) dis- 

continuities (displaying only the antisymmetric parts 
in p H Y): 

Disc [P_9”(xp;O)P+] = ke26(x-xB) z+pCLY$~5, 

(31) 

Disc [P_H~(xlp,x2p;O)P+gTap] = gi&“” 

x qp{&r& [&xl - xB) - 8(x2 - xB)l 

+&pIfYS [ml - xB) +8(x2 - xB)l}, (32) 

Disc [P_H~uLpYUr(x~~,~2p;O)P+] = $i, WPfl 

x qpfb%yS [&xl - xB) +6(x2 - xB)1 . (33) 

where ET = l “puppna. The calculation of these dis- 

continuities is especially simple since the partons are 
massless, the effects of non-zero m being already taken 

into account. At this point the electromagnetic gauge 
invariance is manifest. That is, contraction of the mod- 

ified hard parts with q gives zero identically. Compare 
this with the much more elaborate demonstration of 

gauge invariance in Ref. [ 7, App. C 1. 

For the soft parts we use the parametrizations [ lo] 

+ $&2(x) r& +. . . , (34) 

$(X1,X2) = 94G(X*,X2) i@s,,+ 

+ ~M~‘(x, 9 x2) $ys# + . . . , (35) 

rm(xlVx2) = $~(x~,x~) r&d +. . . , (36) 

where we listed only the distribution functions relevant 
for the process under consideration. The functions (? 
and HI are symmetric, G is antisymmetric under ex- 
change of the two arguments. The functions are not 
all independent. One has the relations 

2WT(Xl> = J dx2 [Gh, x2) - G(x2, x1 1 

+&x1,x2) +&x2,x1) 

+Hl(xltX:!) +wx2,x1)]. 

ffl(XI9X2) = 3x2 -xl)hl(Xl), 

(37) 

(38) 
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where the first equation follows from the equations 
of motion, the second from Eq. (15). Contracting 

the hard parts, Eqs. (31)-( 33)) with the soft parts, 

Eqs. (34) -( 36)) gives for the antisymmetric hadron 

tensor 

where we used Eq. (37) to eliminate the two-argument 

functions. Comparing with the standard expression in 
terms of structure functions 

(41) 

we identify the tree-level structure functions 

gl(xe.Q’) = x,(&2) k$(xB> +&(--xB)] and 

gl (a Q2> + a,(a, Q2) = ~a(&2> [&(xB) 

+& ( -xR) 1, where we reinstalled the flavor sum and 

added the crossed (anti-quark) diagrams. These re- 
sults are in agreement with the standard EFP-type of 

calculations [ 8,11,7]. It is the way they are derived 
that makes the difference. The algorithm can be sum- 

marized as follows. To obtain the regular contribu- 
tions to the order Q2-’ DIS hadron tensor, following 

Qiu [4], one has to ( 1) write down all possible for- 
ward 2-photon t-parton cut diagrams, where partons 

can be quarks, antiquarks or gluons; (2) replace all 
propagators that do not lie between the photon ver- 

tices by special propagators; (3) project out the good 
fields ’ and couple them with t-parton soft matrix 
elements. The quark-mass terms follow in the same 
way, except that one (or more) of the gluon legs that 
connect hard and soft parts is replaced by a spurion. 
In the hard parts the partons are kept massless. 

We have also applied the method to one-hadron- 
production in efe--annihilation, which essentially 
only differs from the above by the fact that the pho- 
ton momentum is now time-like and the distribution 
functions have to be replaced by fragmentation func- 
tions (indicated with a hat, e.g., FT). We can again 

’ These projections pick out one specific order in l/Q. They 
were not used in Ref. [4]. 

express the sub-leading structure function (denoted 
by 21 + &) in terms of & only, that is, without ex- 
plicit mass terms. This result differs from Eq. (38) 

of Ref. [ 121, in which Qiu’s factorization is also 
applied, by quark-mass terms (accompanied by the 
fragmentation function hf). Our claim is that these 
terms should not be present. 

In this letter we have extended the formalism by 

Qiu, leading to a factorization of hard and soft scat- 

tering parts in a manifestly gauge-invariant way, to in- 
clude non-zero quark masses. We have illustrated the 
method for polarized DIS at sub-leading order. An- 
other interesting application would be the calculation 
of the quark-mass contributions at twist-four in unpo- 

larized DIS [ 131. Also, one shouldinvestigate whether 

the formalism can be extended to include QCD cor- 
rections. Work in this direction is in progress. 
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