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TRANSLATING THE HYPERGAME PARADOX: REMARKS ON 
THE SET OF FOUNDED ELEMENTS OF A RELATION 

ABSTRACT. In Zwicker (1987) the hypergame paradox is introduced and studied. In 
this paper we continue this investigation, comparing the hypergame argument with the 
diagonal one, in order to find a proof schema. In particular, in Thcorcms 9 and 10 we 
discuss the complexity of the set of founded elements in a recursively enumerable relation 
on the set JJ of natural numbers, in the framework of reduction between relations. We also 
find an application in the theory of diagonahzable algebras and construct an undecidable 
formula. 

1. INTRODUCTION 

One feature shared by the majority of logical and set-theoretical para- 
doxes is the liar’s symmetry ‘p is true iff p is not true’; as is well known, 
the same structure, translated into the diagonal schema, becomes a useful 
tool to produce proofs. 

A few years ago, Zwicker (1987) introduced an asymmetric paradox, 
the so-called hypergarne paradox, which also can be used as a schema 
to produce proofs by contradiction. Consider games between two play- 
ers A and B. We use the word ‘game’ in two different meanings, to 
denote both a game in general and any particular competition between A 
and B. Given a game G, we will say ‘a game of G’, to denote a single 
competition which proceeds according to the rules of G. Call a game G 
founded if every game of G must terminate after finitely many moves, 
that is, following the rules, it is impossible for a game of G to go on 
for ever, even if a priori there is no fixed bound on the lengths of games 
of G. 

Now, define the hypergame as follows: player A chooses a founded 
game G, then player B makes the first move in G and the game continues 
according to the rule of G. (Of course, there are simple winning strategies 
for 24, but we are not concerned with them - in fact, we only specify 
legal moves, while the result of the game, who wins and who loses, 
has no importance.) Does this game have an end? Since G is founded, 
the answer is obviously ‘yes’. In other words, hypergame is a founded 
game. As a consequence, in a game of hypergame, player A can choose 
the hypergame itself as a founded game, giving B the right to choose the 
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founded game. But, if B decides to be as bizarre as A and also chooses 
hypergame, and A in turn repeats ‘let’s play hypergame’, and so on, we 
get an unfounded game in which both players move according to the 
rules of a founded game. 

Note that here the argument which leads to the paradox has an asym- 
metric pattern which consists of two parts: (1) ‘p is true’ (hypergame is a 
founded game); (2) ‘if p is true then lp is true’ (if hypergame is found- 
ed, then it is not founded). In other words, we arrive to a contradiction 
by showing ‘p’ and ‘p + lp’, rather than ‘p H 1~‘. (The hypergame 
argument involves the classical inference rule ‘from p + up deduce up’ 
which was called cunseque&u ~~r&Ls in the Renaissance.) 

The structure of the hypergame paradox may be adapted and pro- 
posed in several contexts. Some earlier statements of the paradox (even 
if not completely clear) can be found in non-technical papers, as Gard- 
ner (1984), Smullyan (1983). A more interesting earlier version is due to 
Shen-Yuting and dates back to 1953 (Shen-Yuting, 1953): the argument 
is essentially the same, but it is only concerned with naive set theory. 
Here the notion of a grounded set is considered: a set z is grounded if 
there is no sequence (z~)~~N with ~0 = z and Z~+I E LI+~ for each nat- 
ural number n. Consider the set G of all grounded sets. It is easy to see 
that G is grounded, because if (z~) were a sequence such that zo = G 
and ~~+t E Z~ for each n, the sequence yn = ~~+t would show that ~1 
was ungrounded; but this is in contradiction with ~1 E ~0 = G. As G is 
grounded, we have G E G, and the constant sequence . . . E G E G E G 
proves that G is ungrounded, a contradiction. 

A not-too-different structure can be found in other known paradoxes, 
for instance in Girard’s one in A-calcuh~s. In any case, asymmetric para- 
doxes belonging to the hypergame family can be readily constructed. Let 
us see an example in topology. Call a topological space Noetherim if it 
contains no infinite strictly descending chain of closed sets (with respect 
to the relation of inclusion). Given a family (Xi)iE1 of Noetherian spaces, 
we introduce a topology on the disjoint union X of the spaces Xi: the 
open sets are the empty set and the subsets A of X such that A f~ Xi is 
open in Xi for each i E 1, and moreover A n Xi = Xi for almost all i. 
It is easy to show that X is in turn a Noetherian space. Consider now a 
family (Xi)ic~ of spaces that contains (a homeomorphic copy of) every 
Noetherian space, and let X be the space obtained as before. By hypoth- 
esis, there is an index ia such that Xi0 is homeomorphic to X by means 
of a function f: X -+ Xi”. We have f(X) = Xi0 c X, where the inclu- 
sion is strict and Xi0 is closed in X. It follows that Jnfl(X) c fn(X) 
for each natural n, a contradiction, because each fD(X) is closed. 
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In natural language, the most popular version of a symmetric paradox 
is obtained by considering a barber that shaves every man that does not 
shave himselfi but, if one consider a barber that shaves every man that 
does not shave himself, except for the barber himself, the paradox is 
avoided. Van Benthem (1978) showed that a similar construction is not 
enough to avoid Russell’s paradox in naive set theory: if we assume that a 
set d exists such that, for every set n different from d, (n E d H n $ n), 
we again arrive at a contradiction, just considering the set d - {d} if 
d E d, and the set d U {d} otherwise. The same observation applies to 
the Shen-Yuting paradox: if we assume the existence of a set i such that 
for every set n different from i (n E i H n is grounded), we again arrive 
at a contradiction. Indeed, starting from i, we can construct a set h that 
contains exactly all grounded sets, regardless of whether n = i or not; 
it is enough to define h = i U {i} if i is grounded or h. = i - {i} if i is 
not grounded. In both cases, we get a contradiction following the same 
argument as in Shen-Yuting’s paradox. 

In this paper we investigate the hypergame paradox, comparing it with 
diagonal paradoxes, and showing that also the hypergame paradox can 
be translated into a proof schema. Our aim, first of all, is to give insight 
into the situation; to this end, some related questions are discussed and 
some applications are provided. 

2. THE HYPERGAME SCHEMA 

The core of the diagonal method consists of a binary relation R on a 
set X, and the observation that there is no element d of X such that xRd 
iff not ZRCZ (otherwise, by replacing z by d we would have dRd iff not 
dRd, a symmetric contradiction). This proof schema, adapted to various 
situations by choosing appropriately a set X and a relation R, is used in 
different contexts of mathematical logic, such as recursion theory, proof 
theory, and set theory. 

Let us come to the task of extracting a proof schema from the hyper- 
game paradox. Again, the core of the method is a binary relation R on a 
set X; we say that an element z E X is founded if there is no sequence 
(cE~)~~N with Q = z and z~+~RcE~~ for each natural number n. The 
hypergume method consists of the following observation: there is no ele- 
ment i in X such that xRi iff z is founded (w.r.t. R). If there were such 
an i, it would be a founded element: every sequence (z~) contradict- 
ing the foundedness of i is such that zt is founded, while the sequence 
yn = zn+t shows that zt is not founded. But if i is founded, then iRi 
and i is not founded, a contradiction. 
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Let us compare the diagonal method with the hypergame method. 
First, remark that, while negation has a crucial r61e in the diagonal 
method, in the sentence ‘z9& iff 2: is founded’ negation does not appear 
(at least if ‘infinite’ is regarded as negation of ‘finite’, and not converse- 
ly). 

EXAMPLE 1. We can prove the uncountability of the set of real numbers 
both in the usual way, that fits the schema of a diagonal proof, and using a 
hypergame argument. In both cases X = N; if (u~)~~N is a sequence that 
contains all real numbers, for each n fix a decimal representation of ur&, 
and call u~,~ the mth digit of Us. Then define the binary relation R on iV 
as mRn iff u~,~ = 1. Up to this point, the diagonal and the hypergame 
proofs follow the same path. Now, the classical diagonal proof refers 
to the number z = O,brb..., where & = 1 if uw,n # 1, and & = 2 
otherwise, and gets a contradiction. 

If we prefer a hypergame proof, instead, we define the number t = 
O,l$b2 . . . as the real number such that bn = I iff n is founded w.r.t. R, 
bi = 2 otherwise. Let i be such that ui = t. We conclude that nRi iff 
qn = 1, iff bn = 1 iff n is founded, reaching in this way a contradiction. 

EXAMPLE 2. A classical application of the diagonal method is Can- 
tor’s proof of the non-existence of a surjective function from X to the 
power set of X. Let us compare diagonal and hypergame methods in 
this context. Suppose that there is such a function /L; then define a rela- 
tion R on X as zRy iff z E h(y). When using a diagonal argument, 
we consider an element d such that b,(d) = {z c X/ not zfi}; if we 
choose the hypergame method, the set of non-reflexive elements of the 
relation J! is replaced by the set of founded elements of R. If i is such 
that h(r) = { / n n is founded w.r.t. R}, then mRi iff m E h(i) iff m is 
founded, and we get a contradiction. 

EXAMPLE 3. Here we work in recursion theory. Let z,?Zy iff z E lVY for 
natural numbers z and y, where (lVz&~ is the standard enumeration 
of recursively enumerable sets. The diagonal method on E gives us 
a proof that the set x = {z e N/z $!! lVz} is not r.e. By using a 
hypergame argument, we show that the set F = {n/n is E-founded} is 
not r.e. Indeed, if this were not the case, there would be an i such that 
F = Wi, and again we would have nEi iff n E Wi iff n is founded, a 
contradiction. 

For any binary relation R on a set X, the set FR = {n/n is founded} 
is a subset of the set D = {n/ not nRn}, even if these sets can differ 
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from each other. In fact, FJ$ and n present some analogies, but do not 
share a11 properties. Let us compare, in particular, the sets FE and r of 
Example 3. They are both productive in a very natural way: if Wz G FE, 
then z is founded, and therefore cannot belong to Wz. However, Fb; is 
much more complicated than K: in fact, ?? is co-r.e. and q-complete, 
while we will show that FF; is Hi-complete. 

In general, we may appreciate the difference between FR and D by 
considering the operator dam: P(X) + P(X) that maps the set A to 
dom A = {z E X/{y/y&} 2 A} (this definition is from recursion the- 
ory - see for instance (Rogers, 1967)). It can be shown that FR is the least 
fixed point of the operator dom. Moreover, if I== {A E P(X)/domA g 
A and A n D = D }, the set FR is the least element in 1, with regard 
to the inclusion relation, while D is the greatest element. Note that the 
hypergame argument works for every A in 1: there exists no i in X such 
that xRi iff z E A. Indeed, if {x/xRi} s A, then i E domA z A 
but i +! {x/xRi} b ecause A n D = 0. Adapted to the relation EJ of 
Example 3, this argument proves that every set in 1 is productive, with 
the identity map as a productive function. Actually, in recursion theory 
it is not hard to prove more: every set A containing all indices of the 
empty set and no index of A4r is productive*. 

For instance, call a number z $&e if there exists an n that bounds 
the length of any descending &chain starting from x: the set of finite 
numbers is productive, but does not belong to the family 1 (that means 
that the hypergame argument does not work for this set). 

We end this section by fitting into the hypergame schema a paradox 
and a proof already known in set theory. 

As usual, consider an ordinal number o as the set of all the ordinal 
numbers that are less than cz. Now, for every ordinal number Q we can 
construct a founded game as follows: player A chooses an ordinal 0 
in cr, that is, a 0 less than a, then B chooses a 7 in p and so on (as 
before, we are not concerned in winning strategies). For every a the 
game is founded because the ordinal number Q is a well-ordered set. If 
only these games are considered, the hypergame is started by choosing 
an element of the ‘set’ C? of all ordinal numbers. In some sense, we can 
think of $2 as the set of all well-ordered sets. But since 0 is in turn a 
well-ordered set (we are in the realm of naive-set theory), we can write 
fl l Q and we conclude that C2 is not well ordered. From this point of 
view, the hypergame paradox is closely related to Burali-Forti’s paradox 
(cf. (Burali-Forti, J 897)). 



550 CLAUDIO BERNARD1 AND GIOVANNA D’AGOSTINO 

An example of a proof that follows a schema not too different from 
the hypergame paradox occurs in (axiomatic) set theory when proving, 
without the axiom of choice, that there are uncountably many ordinal 
numbers. One proves that the collection I’(U) of all ordinals which are 
embeddable in w is in turn an ordinal number, called the Hartogs number 
of w (this is the affirmative part of the hypergame schema); then that if 
I’(w) were countable one would have I’(w) E I’(w), a contradiction (this 
is the part ‘p + up’ of the hypergame). 

3. THE COMPLEXITY OF THE SET OF FOUNDED ELEMENTS 

Let us restrict ourselves to relations on natural numbers. If a relation R 
is r.e., the set D of non-reflexive elements of R is co-r.e., while the set 
FR is II;. In fact, FR is II: also if R is an arithmetical relation: let A(z) 
be a formula that defines the relation R in the set N, and let 

V = {u/ there is a number n such that u = (~1, . . . , z,J 
and x,Rx2~~22x,J 

where (-,..., -) denotes a code for finite sequences. V is still an arith- 
rnytical set, and z E FR iff Vf (j(0) = x + %(f(n), . . . , j(0)) 6 

At the end of this section we will find a global property of r.e. relations 
that implies the II; -completeness of the set of founded elements of R. For 
the moment, let us consider the case where the relation is the membership 
relation of Example 3. In this case the set FE of founded elements is 
recursively isomorphic to the domain 0 of Kleene’s ordinal notation. This 
fact is not surprising: an effective version of Burah-Forti construction 
moves from the ‘set’ 0 of all ordinal numbers to the set 0. At the same 
time, FE is related to the set T of indices of founded recursive trees, 
and it is known that this set is II;-complete. 

Remark 4. A direct proof of the II!-completeness of FE may be 
obtained as follows. Let A be a II: set and let Q be a recursive relation 
such that 

x c A ifi W ~YQ(x, W% f(l), . . . , f(y))) 

(we are applying the normal form for II; sets, cf. for example (Odifreddi, 
1989)). 

Let g be a recursive function such that 

y7(cc,u) = MxA/ u is a sequence number, 

i = u * (Ii), k E IV, lQ(x, t)}. 
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If we define h as h(z) = CJ(~ (0)), one can prove that 

for each n e N. It is easy to show that the function h reduces the set A 
to the set FE and this proves that FE is III-complete. 

ObviousIy, the same argument applies to the case in which a relation 
,!3’ is defined referring to an acceptable system of indices for partial 
recursive functions ($J~)~~A~ as ZE’ZJ iff z c dornuin~&,. In fact, it 
is enough that the system satisfies the pm-anzmizurh property: there 
is a recursive function f such that q& * @lx, for each number z. If 
this is the case, let i!(z, r~) be a recursive injective function such that 
W(z:z) = .MJG~ b the G -Theorem in the standard system of indices, 
there exists a recursive function h(z) such that C&X = t(,z, z). Let u be 
a number that verifies 41~~ m &. We have: 

b?4dyJ = W(cw/) = &4,,&/) = w$&/) = dfJ~~Wf&&/). 

It follows that ~23~ implies ~c$J~(zz)J~‘J&(~), and that if tiE’fq&(r.~), 
there is a number z such that z,?3~ and j$=(z) = U. Thus we have 
czz cz FE iff f&(x) E FE!, and FE? is rI;-complete. 

Going back to the general case of a binary relation R, we note that the 
arithmetical complexity of the set of founded elements does not reflect the 
complexity of the relation itself. Indeed, R may be arbitrarily complex 
but have FR = 0 (it suffices to add a minimum reflexive element to 
a relation of the needed complexity), while the following relation R is 
recursive and the set of founded elements is II;-complete. 

EXAMPLE 5. Let A be a II;-complete set, and let Q be a recursive 
relation such that 

(w%... ,Q+,JWV~,.-,~~~-~) iff ~Q(+Q,...,GJ). 
We have 

x E A iff (x) is founded w.r.t. the relation R 

Thus A reduces to FR via the recursive function h(x) = (x). 

Let us now look for a property of relations that implies the II;-comple- 
teness of Ftz. 



552 CLAUDIO BERNARD1 AND GIOVANNA D’AGOSTINO 

DEFINITION 6 (cf. for instance (Bemardi and Sorbi, 1983)). A relation 
S is said to be ~e&.~&/e to a relation R if there exists a recursive func- 
tion f such that zS’y iff f(z)Rf(y). We say that the function f re&ces S 
to R. 

An r.e. relation R is said to be m,-complete (respectively, l-complete) 
if, for each r.e. relation S, there exists a recursive function (respectively, 
injective) f that reduces S to R. 

LEMMA 7. An m-complete relation is l-complete. 
ProoJ Let R be m-complete, and let S be an arbitrary r.e. relation. 

Embed N in N x {O, l}, by sending z to (z,O); define S’ on N x N 
as: (z,O)S’(y,O) iff xSy, and (x,O)S’(z, 1), for each x,y E N. By 
codifying N x {O, 1 } in N, we may look at S’ as a relation on N. If f’ is 
the recursive function that reduces S’ to R, the function f(z) = f/(x, 0) 
must be injective and reduces S to R. cl 

Since m-completeness and l-completeness coincide, we will use only 
the term completeness. 

DEFINITION 8. An r.e. relation S is said to be strongly reducihZe to an 
r.e. relation R if there is a recursive function f such that f reduces S 
to R, and moreover zRj(x) implies ,z E 1rnf. An r.e. relation R is 
said to be strongLy complete if for each r.e. relation S there exists a 
recursive function f that strongly reduces S to R (as before, we may 
require that the function f is injective without affecting the generality of 
the definition). 

THEOREM 9. IfR is strongly complete, then the set offounded elements 
of R is II i -complete. 

ProoJ If f is a recursive function that strongly reduces the relation 
E to R, then FE is reducible, via f, to the set FR of founded elements 
of R. Since FE is Hi-complete, we conclude that FR is Hi-complete 
too. cl 

THEOREM 10. The reZation E = {(x, y)/x G I$,} is strong/y compfete. 
Proo$ Given an r.e. relation S, let $(x, y) be a recursive function 

such that lVti(z,gl = {&@)/~5’y}. By the Sk-Theorem we may assume 
that r,6 is injective. By the Recursion Theorem, there exists a number n 
such that the partial recursive functions $~(n, -) and &(-) are equal. 
Note that 4% is in turn total and injective, since so is $; thus l,~V~~t~) = 
{&(t)/tSy}, and the function C& strongly reduces the relation S to E. 
Since this holds for each r.e. relation S, we conclude that E is strongly 
complete. 0 
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EXAMPLE 11. There exists a complete relation that is not strongly com- 
plete. 

Let R be the relation 

I3 = (S + 1) u {(O, n,)/rz E Iv}> 

where S is a complete relation, for example I3, and S + 1 is {(z + 1, y + 
Wb>Y) E 3). t3. mce O&I for each n e N, the set of founded elements 
in I2 is empty, and the relation I? cannot be strongly complete. On the 
other hand, if a recursive injective function f reduces an r.e. relation 
to S, the recursive injective function j’(x) = f(x) + 1 reduces the same 
relation to II. 

Retnurk 12. Theorem 10 allows us to embed any r.e. relation I? into ,3. 
We can get a more precise statement: if J2 is an r.e. relation on IV, then 
there is a transitive element z (that is, an element z such that z,!~.z and 
y,!k implies ~23~) such that I2 is recursively isomorphic to ,?3]wZ xwZ; 
moreover, z E FE iff I3 is founded. The proof follows along the same 
line as in Theorem 10. 

Finally, we note that Myhill’s Theorem does not hold for strong reduction 
between relations; there are relations which are strongly complete but 
not isomorphic. Indeed, we define a relation Ku as (z, ~).Ke(y,z) iff 
(z, y) E 14TZ; it is readily seen that Ku is strongly complete. On the other 
hand, I3 and I& are not recursively isomorphic: if z is an index for the 
empty set, {y/(x: ,~)Koy} = 0, while for each z E IV the set {IJ/z,!$~} 
is not empty. 

4. AN APl’LICATIOh’ TO DIAGONALIZABLE ALGEBRAS 

We shall see how the strong completeness of a relation I2 may be used 
to construct a generic Magari algebra. Recall that a Mugat-i ulgebru 
(formerly called diagonahzable algebra) is a pair (D, C), where D is a 
Boolean algebra with operations 0, 1, A, 1, V, and C is a map from II 
to D satisfying the following identities: 

(11 q l= 1; 

m q (uAb) = LuACb; 

(31 q (Cu + d) = Cu (where, as usual, a + b is mu V b). 

The main example of a Magari algebra is the Lindenbaum algebra 
Dy- of an r.e. theory T extending Peano Arithmetic PA, where the 
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•l is defined as q I~] = [Z%eorT@)] (here b] denotes the equivalence 
class of the sentence TJ with respect to provable equivalence in T, while 
TheoTT is the standard provability predicate of 7’). It has been proved 
that this algebra is generic in the class of Magari algebras, in the sense 
that every identity true in DT holds in all Magari algebras (cf. (Smoryn- 
ski, 1982) for a general introduction to Magari algebras). 

Given any binary relation R on a non empty set X, we may endow 
the power set P(FR) with a structure of Magari algebra by defining 
the Cl operator on P(J’R) as the operator dom of the transitive closure 
of R: 

domEA = {x/{y/Zlxt . . - X~ with yRxnR-. . RqRx} c A}. 

The structure (J’E, domE) is generic in the class of Magari algebras. 
More generally: 

THEOREM 13. If R is sfrongly cowzplete, then the Magari aZgebra 
(P(F12), domz) is generic in the class of Magari aLgebras. 

ProoJ For the sake of brevity, we only sketch the proof. It is known 
that the class of finite Magari algebras is generic. Moreover, one can 
obtain any finite Magari algebra from a finite set X and from an irreflex- 
ive and transitive relation S on X, by considering P(X) endowed with 
the operator durns as Cl. Thus to conchrde that the algebra 
(P(FR), domx) is generic, we only have to show that, for each finite 
subset X of natural numbers and for each h-reflexive and transitive rela- 
tion S on X, there is an injective function f from X to FIN, such that: 

(11 

m 

xSy implies f(x)Zf(y); 

,zEf(y) implies the existence of an x cz X such that zSy 
and z = f(x). Indeed, if this is the case, the function 
f*: P(FR) + P(X) defined as f*(A) = j-‘(A) is a surjec- 
tive homomorphism of Magari algebras. 

Being finite, the relation S is recursive. We may then apply Definition 8 to 
obtain an injective recursive function h, such that xSy iff h(x)Rh(g) and 
{I/%%} & Imh,. This implies xSy iff /~(x)?&(y), and, by consider- 
ing the restriction of h to X, we obtain points (1) and (2) above. q 

5. UNDECIDABLE FORMULAS BASED ON THE HYt’ERGAME 

In this section we use the hypergame method to build undecidable formu- 
las in ZF and in PA. In the proofs, we will refer to the standard models 
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of these theories that we denote respectively by U and N, assuming in 
both cases the soundness hypothesis. 

We identify natural numbers with formulas of .ZJ’ in one free variable, 
and we define R c N x N by 

(where ,$ represents the natural number /3 in ZF). 
The relation R is r.e. and can be represented in the universe U by 

means of a formula R(q y): 

Following the diagonal method, let D = {cK/ZP Y o(h)}. The for- 
mulad = lR( x 9’ re ,.,) p resents n in U, and ,ZF Y 6(z) iff U b d(8). It 
follows that the formula 6(s) is undecidable: if ZF I- 6(z) then U b b(8) 
and ZF Y 6(z); if .ZF E 16(z), then U b d(8), and ZF t- C?(J), In 
other words, assuming the completeness of ZF, we have a symmetric 
contradiction of type p H up. 

Now with the hypergame: the set FJ~ of founded elements of the 
relation R is representable in U by the formula 

$3;) = Vf(f: w + w A f(0) = z$ 

+ 3n[n E w A lR(f(n + l), f(n))]. 

THEOREM 14. The formufu $7) is cmdeciddde in ZF. 
Proox If aRy, then ZF !- y(&) and U k $6). From the definition 

of 7 it follows that cx is a founded formula with respect to R. We have 
{a/aRy} c FR and so 7 is founded. Thus U k ~(7) and ZF Y 17(T). 
On the other hand, if ZF /- 7(q), then TRY, contradicting the founded- 
ness of *f, We conclude that the formula $7) is undecidable in ZF. •I 

Remurk 15. A similar construction is not allowed in PA. Identify 
formulas with one free variable with the corresponding Godel numbers, 
and denote with p the numeral of (the Godel number of) ,6’. Now define 
the relation R as follows: ,0& iff PA I- c@). The relations R and ,!3 
are recursively isomorphic: if Va = {p/PA k a(,@}, then (I&) is an 
acceptable numbering and, by a Theorem of Blum (see (Odifreddi, 1989), 
Th.II.5.8), there exists a recursive permutation /L such that z E kVY iff 
hx E Vhy. In particular, it follows that the set of founded elements with 
respect to R = {@,u)/PA I- a@)} . 1s not representable in U, being 
II; -complete. 
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A not completely satisfactory way out is to require a kind of uniformity 
on descending sequences, in such a way to obtain an arithmetical set. 

More precisely, we define the set of uni$ormly founded formulas UF: 

a g UF iff there is no formula c$(z, y) such that 
PA k Vy @(O, y) +-+ o(y) and, for each natural k, 

Pii t- 4(k 46 + 1, Y)) 

(where the formula + has at most two free variables, and we omitted signs 
for numerals). In other words, in the definition of founded elements we 
consider only the sequences (ok)kC~ of kind ok(z) = c$(~,x), for a 
suitable formula 4. 

UF is an arithmetical set; thus there exists a formula y(z) such that 

a E UF iff N b $6). 

THEOREM 16. The formula -y(T) is undecidabze in PA. 
I+ooj We only sketch the proof. First one proves easily that the 

formula Y(X) is uniformly founded; thus ~(7) is a true formula, and 
since we supposed PA to be sound, the formula ~$7) is not provable 
in PA. From 7 E UF it follows PA Y $7): if PA I- y(T), the formula 
4(x, y) = T(X) would prove that 7 $ UF. 0 

In spite of the use of uniformity in the last proof, we followed the 
hypergame method in a genuine way. The schema of the proof, indeed, 
is not symmetric: assuming the completeness of PA, the implication 
PA I- ~(7) + PA t- ~$7) is still a part of the proof, but we do not 
have PA I- ~$7) =+ PA t- $7). In other words, PA I- 17(T) has to 
be excluded not because it implies PA I- 7(T), but because from it we 
deduce that y(z) is a non uniformly-founded formula, contradicting the 
first part of the proof. 

6. A FINAL REMARK 

Referring to the concept of ungrounded sentence, suggested by Krip- 
ke (1973, we can try to avoid paradoxes in natural languages in the 
following way. Given a sentence u, consider all the sentences b whose 
truth is mentioned in u, then the sentences c whose truth is mentioned in 
some sentence b, and so on; call the initial sentence u ‘grounded’ if this 
process terminates. Now, ‘we can assign a truth value only to ground- 
ed sentences’. And, of course, since this last statement refers only to 
grounded sentences, it is in turn grounded, . . . is it? 
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NOTES 

* Indeed, A is contraproductivc with respect to a total recursive function 9. To see this, 
for cvcry n define the set WfZ to be the empty set if z $ Wn, or N if z E M,‘,,. Choose 
an u such that We = ltlrfa ‘and put gn = a. Now, suppose A c Wn. From gn +! Wn 
we deduce Wg,, = @ and gn E A g W,,. Therefore gn E Wn; we conclude Wg,, = N 
and gn # A. 
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