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Absbact. In this paper we study truncated finite dimensional models of the 
infinite-dimensional equation describing the evolution of even, space-periodic solutions 
ofthe Ginzburg-Landau equation. We derive estimates on the position of the global 
attractor of the flow, which yield that the magnitude of the Mth mode of the global 
attractor decays faster than any algebraic power of M-'. The estimates are independent 
of the dimension of the model. In a numerical section we simulate the Row for three 
radical low-dimensional models (of two, three and four complex modes); we analyse the 
inhence oi ihe number oi modes on the giabai dynamics. Tie iour-dimensionai modei 
exhibits the same intricate flow-characteristics as the 32-dimensional model studied by 
Keefe. 

AMS classification scheme numbers: 34DO5, 3SA40. 35020.58F12,65M60 

i. inirodudion 

The starting point of the investigations in this paper is the so-called Ginzburg- 
Landau equation: 

with a, b, y E C and a((, r )  : R x R + C. This equation appears as modulation 
equation describing the nonlinear evolution of disturbances of a basic pattern of a 
physical system, which are linear unstable. Problems of practical interest, such as 
Poiseuille flow, Rayleigh-Btnard convection and reaction-diffusion systems, can be 
modelled into one general description for which one can derive a modulation 
equation which governs the nonlinear evolution of patterns (for control parameter R 
close to the critical linear stability bound R,) (see DiPrima et al [2], Newell [ l l]  or 
Doelman [3]). The Ginzburg-Landau equation can be considered as a model 
equation describing this nonlinear evolution: coefficients a; P. y can be computed 
for a given practical problem (see (31). The derivation process yields that Re a> 0 
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and Re y > 0; to balance the linear growth we choose Re fi  < 0. Hence we find as 
rescaled Ginzburg-Landau equation: 

_- '*-(I - (1 +i6) lqlz)q + (1 +ia), 'V 
at '2 

with a, 6 E R. The equation can be used to study the stability of periodic solutions of 

Stuart and DiPrima [16] established that all periodic solutions are unstable if 
the basic equation, which are solutions of the type $(z ,  t) = of (1.1). 

l + a b < O  

(see also Ioos et al [6]). Instability of 'all periodic solutions suggests the presence of 
chaotic behaviour. To investigate (1.1) more thoroughly one can restrict oneself to a 
special class of solutions: the space-periodic, even solutions, i.e. one sets 

x 

for some q > 0, with Z, : R --* C and Z.(t) = Z_,(t) for all n. 

Remark 1.1. This spectral expansion is physically quite natural; it corresponds to 
the zero flux, i.e. homogeneous Neumann, boundary conditions, a q / a z  = 0, at the 
ends of the interval [0,2n/q]. Expression (1.2) is, from this point of view, the 
Fourier expansion of q ( z ,  t) with respect to the natural base. 

Substituting (1.2) into (1.1) yields 

2, = (1 - n2qz(1 + ia))Z, - (1 + ib) 2 ZkZIZL (1.3) 
k+l+m=n 

with 2: the complex conjugate of Z,. This equation, and also equation (1.1) for 
other boundary conditions, has been studied by Ghidaglia and Heron [5 ] .  They 
derived upper and lower bounds on the dimension of the global attractor; see also 
Doering et al [4]. It appears that the infinite-dimensional system (1.3) has a 
finite-dimensional attractor of (low) dimension DJa, 6)(Dq(a,  6 ) + m  as q LO). 
Equation (1.3) has also been studied numerically: Kuramoto and Koga [ 8 ] ,  who 
studied (1.3) as a model for chemical turbulence, fixed q, and took b, a measure for 
the nonlinear coupling between the reactants, as the bifurcation parameter. Moon er 
ol [IO] and Keefe [8] fixed the coefficients of the Ginzburg-Landau equation and 
used q as bifurcation parameter. Keefe [8] considered a = 4 ,  6 = -4 (thus 
1 + a6 < 0) and q E [0.6, 1.41, and found a global attractor of maximal (Lyapunov) 
dimension 3.05 (at q -0.950). Computations of the wavenumber spectra ([SI, [lo]) 
show that the relative energy content of a mode Z., P,(n) (see (3.19)), is a rapidly 
exponentially decaying function of n (for a fixed) and PJn)  < for n - =- 4 for all 
q>O.6. 

It is of course impossible to study numerically an infinite-dimensional system. 
Moon et a1 [lo] investigated a truncated model of (1.3) with 64 modes. They 
checked that increasing the number of modes does not alter the dynamics of the 
flow. 

The outcome of the research in [4] and [5] and the numerical simulations carried 
into execution in [8] and [lo] justify an exploration of the properties of the 



N-dimensional models of the OL equation 233 

truncation of (1.3): 

ZAN) = (1 - n2q2(1 + ia))ZANfY) - (1 + ib) Z ~ N ’ Z $ N ’ Z ~ , ” ’ *  (1.4) 
k+l+m=n 

1k1,111,lm16N 

for n = 0, 1, . . . , N and ZiN)= Z<z for all m, N .  
In this paper, we study these finite-dimensional models of the Ginzburg-Landau 

equation. Note that system (1.4) can be considered as a (modified) Galerkin 
approximation of the Ginzburg-Landau equation with homogeneous Neumann 
boundary conditions. 

As in [4, 5 ,  8, 101 we are mainly interested in the global attractor of the flow 
induced by (1.4): we want to determine its position in the (N + 1)-dimensional 
phase space. Moreover, we would like to investigate the influence of N on the global 
attractor (the numerical results of Moon er a[ [lo] and Keefe [8] suggest that this 
influence is negligible). 

Our first result is that there exists (for all N) a region R,,, which attracts the flow 
induced by (1.4): 

‘ I  

N 

Rat,= r ~ @ ~ + ~ : 1 2 ~ 1 * + 2  lzn12sl}. i “ = I  

Using this we derive our main result: for all a> 0 there exist constants K(a) and 
M ( m ) ,  independenf o f N ,  such that for M 3 M ( e )  

ThES the maxima! magnitude of a mode. zy of the g!oba! a!traQar decays f.s!er 
than any algebraic power of M-’  and we have estimated the position of the global 
attractor in phase space by bounds independent of N .  Therefore, as was suggested 
by the numerical simulations, we may conclude that the influence of N o n  the global 
attractor is small. As a corollary of the analysis we can prove that there is a 
Qo= Qo(b) ,  independent of N ,  such that the Stokes solution (i.e. ZlN’ = eCibi, 
ZjN) = 0 j = 1: . . . N )  is a global attractor of system (1.4) for q > Q!!. Numerical 
simulations (see section 4, figure 1) show that the Stokes wave is a global attractor 
as long as it is linear stable (see section 2). 

The results mentioned above are derived in section 3 (section 2 consists of some 
basic observations). In section 4 we investigate numerically the dynamics of (1.4) in 
cases of radical low-dimensional truncation: N = 1 , 2  and 3. We study these systems 
by . .  a projection of a Poincark map into the plane spanned by Re ZiN)  and Re  Z!”’ 
(see section 4). We compare in detail between these projected sections of the global 
attractor for N = 1, 2, 3 and N = 31 (the case studied by Keefe [8]). It should be 
remarked that the conclusions on the similarities between the global attractors are 
all based on the comparisons between the projected sections. 

The outcome of the numerical simulations is summarized in figure 1 (section 4). 
There is a good agreement between the numerics and the analysis of section 3: 
system (1.4) exhibits for N = 3 the same qualitative and quantitative features as the 

etc, do not significantly influence the asymptotic dynamics of the flow of (1.4). The 
behaviour (for f + m) of the solutions of the three-dimensional system (N = 2) 
differs only slightly from the N = 3 system for values of q close to a chaotic region. 

32-dimensional complex system studied by Keefe [8], i.e. the modes Z!jN),, ZgN) , . . . ,  
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For N = 1 system (1.4) exhibits already remarkable similarities with the higher 
dimensional systems. 

Remark 1.2. In section 3 we do not use the symmetry Z c ) ( t )  = Z<Z(r), hence the 
estimates on the position of the global attractor are also valid in situations where 
one considers the same Galerkin truncation as (1.4) with homogeneous Dirichlet or 
periodic boundary conditions. 

Remark 1.3. Although the higher-order modes appear to he very small (see section 
3 , 4  and [E, 101) they do not become zero, i.e. they do not disappear as r-m. Thus, 
the higher modes have no (significant) influence on the low-order (ZhN), Z(”), . . .) 
modes of the attractor, but the attractor is on a manifold which has to  he described 
by all N + 1 axes of the ( N  + 1)-dimensional phase space. One could try to find a 
transformation of the base of the spectral expansion {e”“);=-- to  determine a base 
such that the global attractor can be spanned by the first N vectors of the new base 
(for some N’). This has been done by Rodriguez and Sirovich by applying the 
Karhunen-Loeve expansion ([14,15]): they determined a linear transformation by 
integrating (1.4) for N =  15 with q fixed at 0.950, the most chaotic case, and solving 
(numerically) an eigenvalue problem. System (1.4) written down along this new base 
still excites al modes; however, truncated to a (complex) three-dimensional system, 
it exhibits the same dynamic behaviour as thc system studied by Keefe [E]. It should 
be noted that it still takes a serious numerical effort to obtain good approximations 
of the coefficients of the terms of this truncation and that the truncation still excites 
eight modes of the standard base. 

Another method to control the high-order modes is to construct an aproximation 
of the inertial manifold. In [4] is shown that the Ginzburg-Landau equation has a 
finite-dimensional inertial manifold (see [l] for recent estimates on the dimension). 
A method to approximate the inertial manifold is developed in [17] and [7] (for the 
Navier-Stokes equations, respectively the Kuramoto-Sivashinsky equation). It 
should he possible to apply this approximation method to the Ginzburg-Landau 
equation. The Ginzburg-Landau equation can be a useful and important model 
problem to make a comparison, both analytical and numerical, between these three 
methods (i.e. constructing an inertial manifold, the Karhunen-Loeve expansion 
[14, 151 and the (modified) classical Galerkin truncation of this paper). 

Remark 1.4. Ghidaglia and Heron [5] proved that the dimension 0, of the global 
attractor of untruncated system (1.4) becomes as q L O .  The estimate of the 
constant K(a) (see. 1.5)) also tends to  infinity as q IO. Moon er al [lo] studied the 
dynamics of (1.4) for q C0.6; they observed that the influence of ZiN) , ,  ZiN”,, etc, 
grows as q decreases. Hence we expect that system (1.4) will not exhibit the ‘correct’ 
asymptotic dynamics as q decreases below 0.6. 

2. Some basic observations 

In this section we derive some elementary results which are useful in the remainder 
of this paper. 
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2.1. The stabilily of the Stokes wave 

Equation (l.l),  with the zero-flux boundary conditions, has a simple time-periodic 
solution: Q(z, t)=e-jb', the so-called Stokes wave. This solution can also be 
regarded as a solution of finite-dimensional systems (1.4): 

(ZhN), . . . , Z r ) )  = (e-ib', 0, , , . , 0). (2.1) 
The Stokes wave is a solution of (1.4) for any N (also N =CO). 

Properly 2.1. The Stokes solution (2.1) of N-dimensional systems (1.4) is stable for 

q > qu(a, b) = d E  l + 2 '  

Thus, the critical (bifurcation) value of q does not depend on N. Remark that (2.1) 
is stable for all q if 1 + ab > 0. It appears in the numerical simulations that (2.1) is 
the only attractor for the flow induced by (1.4) for q >qo, it is the global attractor. 
In corollary 3.5 we prove a weaker result. Equation (2.1) is a global attractor for 
q > Q, > qo, Q, independent of N. 

Proof. We linearize along the Stokes wave: 

ZiN)(t) = e-'b'+ % ( I )  ZiN)(t) = + ( I )  k = 1, . . . , N 

The equations of (1.4) decouple; setting z, = e-'b'wk yields 

w k = - [ ( l + k Z q Z ) + i ( b + a k Z q Z ) ] w , - [ I + i b ] w ~  

for k = 0, 1, . , . , N. The zero solution of this system is stable if 

1 -2(1+ ab) 
q 2 > -  k = l , .  .. , N 

-k2 l + a z  

(wo = 0 is stable for all 4). We remark that Z(,") is the first mode which becomes 
unstable. 

2.2. Symmetries 

There are two transformations T* and S, which carry over solutions of (1.4) to other 
solutions 

@ E [O, 2 4  (2.3) 

U = 0, 1. (2.4) 

T&&~), . . . , zr)) = (e'*Z{P, . . . , e'"Zr') 

S,(Zl;"), . . . , Z C ) )  = ((-l)U+"Z$"', . . . , (-1) N+o (N )  
Z N  ) 

We remark that, in a sense, we have already used T* in the proof of property 2.1. 
Using T, one derives the following. 

Properly 2.2. Isolated, periodic solutions of (1.4) have to be of the form 
T ( t )  = A ' ~ e ' "  for some w E W and some complex vector A(" E CN+'. 

Although this result is quite classical we give a short proof. 
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Proof Let r(t) he a general isolated periodic solution of (1.4); T+ generates a 
surface of solutions: 

{ e ' q t ) ,  t E w, + E io, 2 4 ) .  

Thus, r(t) has to  he invariant under '&. Using the Fourier decomposition of r(t) 

an E CN+I, w E W. One easily derives that the only periodic solutions, invariant 
under T+ are r(t) = Aeiw' for w E R, A E CNf'. 

Property 2.2 yields that isolated, periodic solutions of (1.4) can be found by 
solving the (N + 1)-dimensional complex system 

iwAk = (1 - k2qZ(1 + ia))Ak - (1 + ib) AfA,A,*. (2.5) 
f+m+n=k 

Using T+ we can reduce (1.4) to  a ( 2 N +  1)-dimensional real system, by setting 
Zk = Rkeiek and replacing Go, . . . , eN by Go - GN, . . . , - +w The isolated 
periodic solutions of (1.4), solutions of ( 2 . 5 ) ,  are stationary points of this system. 
The stability of the periodic solutions can now he computed by direct linear analysis. 

Remark. The above results are also true for the untruncated (N = m) system 

3. Estimates on the position of the global attractor 

In this section we study the asymptotic dynamics of the flow induced by the 
(N+ 1)-dimensional system (1.4). It is our goal to derive estimates on 
lim sup,, lZ$")l for general N, and independent of N. The disappearance of the N 
in the constants of the estimates is achieved by a limit process of successive 
estimates. To start this process we need an estimate like 

lim sup IZg)I s 1 for all M 

This result is a direct consequence of proposition 3.1 

Proposition 3.1. Let (Zh", Z(,"), . . . , Z c ) )  be a solution of system (1.4). Then, for 
all N 0, 

,-- 

Thus the region R,,, = (z E CN+I: lz,,12 + 2 Cfi, Izjlz 6 1) is a domain of attraction for 
the flow induced by (1.4). 

Proof. Set 

(3.1) 
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It is natural to expect that Y(" is an approximation of Y, a solution of (1.1). Since 
ZiN) satisfies (1.4). Y'" is a solution of a partial differential equation resembling 
(1.1): 

(3.2) 
a w "  -- - (1 - (1 + ib) IYcm12)YycN, + (1 + ia) 

a@" + R'" at az 
with 

RI" = (1 + ib) 2 ( 2 ZiN)Z!N)Zz)*b.4z. (3.3) 
N+lSlnlS3N \ k+l+m=n 1- 

lkl . l l l~lml~N 

In corollary 3.9 we will prove that IR('I = O(l/NA)Vp > 1. 

(spatial) period we obtain 
We now derive an equation for (Y(N)12; by integrating this equation over one 

(we remark that Jp'q l?(N)YIIo* dz = 0). Since 

%*I -212 
dt (3.5) 

which proves the proposition 

Remark. A similar result, for the untruncated system ( R ( N )  = 0 has been obtained 
by DiPrima et a1 [2] and Newton and Sirovich [12]. 

We want to derive upper bounds on IZi",(t)l for I + - ,  i.e. we are interested in 
the position of the w-limit set of a solution of (1.4) with arbitrary initial data. We 
have now proved that an w-limit set of (1.4) will be always inside R,,,. In the 
following we choose the initial data such that 

N 

f ( t )  = IZi",(t)lZ< 1 for all t 
k = - N  

(3.6) 

which can he achieved by choosing the initial data inside (or on the boundary of) 
R,,,. This is no restriction. It is a priori possible that a solution of (1.4) remains 
outside R,,, for all finite t .  However, such a solution approaches, arbitrarily 
accurate, one or more solutions of (1.4) which satisfy (3.6). This is due to the fact 
that an o-limit set consists of a collection of solutions of the differential equation 
(see, for instance, Verhulst [IS]). Thus, estimates on the behaviour for t-+m for 
solutions satisfying (3.6) are valid for all solutions. 

We proceed by estimating individual modes IZi",I for 1-m (assuming (3.6)). The 
estimates we derive are valid for all values of parameters a, b and q(q > 0). We are 
mainly concerned with estimates which bound IZ'/'N,I by functions of M which decay 
as M grows and which are independent of N .  
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Theorem 3.2. For M 3 M,(q)  3 2: 

(3.7) 

22 does not depend on N ,  % = max(M,, - 1, K W / q ’ ) ,  for some K = I?(,,,). 

Thus, for any N :  a mode lZiy)(f)l will become smaller than KIM’, for some K ,  IS 
t”. The proof of this theorem is based on an iterative estimation process: first we 
derive a (rough) estimate for lZg)l depending on N; the N disappears after ‘m’ 
iteration steps. 

Proof of theorem 3.2. Define 

F p =  2 Zk (N)z jN)~p 
k+/+m=M 
lll.lIl.lml~M 

and 
GC) = -(I + ib)Z‘,)*FC) - (1 - ib)Z(N)F(N)* 

M M  

Then, by eq”I!b!! ( ] A ) ,  

We observe, using proposition 3.1 (or (3.6)) that 

for all L s N .  Thus: 

J F p J s m .  
Expression GC) can be estimated by 

lG$$‘)lS 2- IFC’I lZC)l 

From (3.8) we deduce: if 1 - M Z q Z  < 0 then 

which yields, using lZc)l s 1, (3.9) and (3.10), 

(3.9) 

(3.10) 

(3.11) 

(3.12) 



N-dimensional mode& of the CL equation 239 

This situation is exactly as above: since we are only interested in estimates for the 
o-limit set ( t - m )  we may from now on assume that (3.12) is satisfied for all t. This 
idea will again be used (frequently) in this proof strictly speaking we derive 
estimates on the limsup for t + m  of lZ'$l, but we immediately assume that the 
inequality holds for all t .  Inequality (3.12) can be reformulated into: 

for all t (3.13) 

with M such that 1-M2q2<0, i.e. MaM,(q)>l/q and 2,=N1"L1(q,  b). Constant 
L, depends on the choice of MO, if for instance MO is such that M&*- 1 aaMk2 for 
some a > 0 then one may choose 

2 1  IZG)(t)l s- 
M 

m 
L,  = K.%- 

4 
(3.14) 

(estimating by fifi), with K .  = U&. Remark that K,,, and thus L1, 
becomes larger as one chooses MO smaller. Substituting (3.13) into (3.10) and (3.11) 
we obtain 

(and, as mentioned above, we assume that (3.15) holds for all t). We can now start a 
process of successive estimates. 

Step A: a new estimate for 1FE)l. Inequality (3.9) can be sharpened using (3.15): 

lFC)l=Z 2 IZLN)I 
k = - N  

(3.16) 

in which we use [Z,] =integral part of SI. By proposition 3.1 we have (see above) 

[ie,l 
lZLN)lSV5pqTiSvmTi 

k=- [41  

We want to apply (3.15) to the second term of (3.16); to this end it is necessary that 
[Z,] + 1 2  MO. If this is not the case we replace 9, by 2% = 2, + I,, 1, E N such that 
[z,] + 1,  + 1 B MO. We immediately skip the accent of 2;. (Remark that 2, is of 
order NI", hence large for large N . )  Thus, by (3.15) 

with, here, a = 22; in the following we use other values of a E (22, 2). Hence, we 
deduce (using 9, > MO - 1 and assuming MO 2 2) 

1Fg)l S [z +2(1+- a-1 (3.17) 
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with C1 = 12 as (Y = 2 :  IFC)I is bounded by a term of order NI", while the previous 
estimate of IF!&'$ (3.9), is only of order NIn. 

Step E :  a new estimate for lZ!&''l. Using estimate (3.15) of IZC)I and new estimate 
(3.17) of (IF!&']N)I in (3.10) and (3.11) we find: 

2 y 4  
IZ!&')I s p  for M > M O  (3.18) 

3 1 1 4  - m with * .re:/4 z -KO- 
4 

and thus & = N(1/4)(5")L2(4, b ) ,  L2 = K2 ( W / q ) ' " ,  with K2 a certain constant. 

It is clear that we can continue this process by using (3.18) instead of (3.15) in steps 
A and B: 

with X3 = N ( " 4 ) ( 5 " 1 ( " " 5 ) K 3 ( ~ / q ) ~ 3 ,  for some exponent y3 (one may have been 
forced to adapt & in step A to obtain [&] + 13  MO).  We can now again return to 
step A, etc. We obtain, for the general nth step: 

2?" IZC)I eM2-2" 

with K, as in (3.14) and C. = 4mnu,/((un - l), CY" = 2 - 2 7  (see (3.17)). By basic 
calculations one can show: 

(This can be done by deriving the exact expressions for the exponents of 
(K. m / q )  and observing that C,+S as n - + m ) .  

We remark that any time step A is used it is necessary that [9J + 1 3  MO. Hence, 
we define zm = max(Mo - 1, 8 K 2 m / q 2 )  and deduce 

which proves theorem 3.2. 

Remark 3.3. One can see directly that 2- is independent of N: let Dn he the 
exponent of N in 2" : 2" = NBL. (q ,  b).  Applying, once, step A and step B yields: 
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Remark 3.4. The essential result of this proposition is the fact that IZC)I can be  
bounded by KIM' for 1- m, K independent of N .  Of course K can be sharpened by 
a more sophisticated procedure using less rough estimates. 

Numerical simulations demonstrate that for q > qo(a. b) (see (2.2)) Stokes solution 

attractor (see section 4). This result does not follow from our analysis of (the 
estimates are not sharp enough); however: 

Corollary 3.5. There exists a Q, = Qa(b) >90(a, b), Q,, independent of N, such that 
for q > Qo: 

z6N) = e-ibt, ziN) 0 k = 1 , . . . , N attracts all solutions of (1.4), it is the global 

lim IZiN)I = 0 for k = 1, . . . , N 
c- 

Hence, the Stokes solution is a global attractor for the flow induced by (1.4) as 
q > Q,. We remark that this result cannot be a direct consequence of theorem 3.2 
since 2 3 M, - 1 3 1. 

Proof. Since the Stokes solution is stable for q > q,(a, b )  one can find a neighbour- 
hood of the orbit of this solution which is attracting, i.e. there exists an E, (= E O ( q ) )  
such that if 11 - ZhN)((t)l < and IZiN)(f)l < E ~ .  k = 1, . . . , N, for some f then 
lim,+, 1Zh''')l = 1 and lim,-- lZiN)[ = 0. This can be chosen independent of N (due 
to the structure of the linear stability problem, see section 2). Define No by 

_.<" # . T I  L~~ I L - - - - ~ ~ ~  I r . , N , ,  - lzmi V E ~ ~ ,  Inen DY meurem 3.2 we have: fur M > X0, iim sup,+, I.LG'~ i E ~ .  

Substituting this into (1.4) yields for Z&"), . . . , Zg) a perturbed version of (1.4) 
with N =  No. The perturbation of the equation for ZLN) can be estimated: 

1 ( 1 +  ib) 2 z ~ N ) z J N ) z ~ ) * I  
k+l+m=n 

min(lkl.lll.lml)>No 

~ 6 -  - '  by proposition 3.1 

< 6- 2-6. 
Thus, the perturbation is O(fi), independent of N (the perturbation is zero if 
N < No). This perturbation has no significant influence on the derivation of estimate 
(3.12), with N replaced by Ne. The 'new' estimate (3.12) can now be used to 
determine a Q,, independent of N ,  such that lim sup,-, IZkN)I < for q > Po, 
k = 1, . . . , No. Similarly one then shows that Z$,"(f) satisfies 

ZhN) = 26") - (1 + ib)Z&" 126"1'+ O ( G )  

Hence IZ6"I-f 1 for f +  m; this concludes the proof of the corollary. 
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The result of theorem 3.2 can be improved by using another type of estimate for 
IFr)l. We observe that 1Fc)I bas to be small for large M: in proposition 3.1 and 
theorem 3.2 we only used estimates on F e )  independent of M. Although it requires 
a lot of ‘bookkeeping’, it is not difficult to prove, by basic calculations, the following 
lemma. 

Lemma 3.6. Let a, > 0, k = -N ,  . . . , N with 

ah = a _ ,  for all k 

IkI*N 

L 
Ikl“ 

a, <- for some a> 1, Ikl> k,. 

Then 
G 

ahatam S -  I =  h+l+m=M I IMI“ 

for some G=G(a ,  L), I M I > M , = M , ( a ,  L, ko), G and MI independent of N. 
Hence, since IFE’1 =z lZiN)l lZiN’l l Z z ) l ,  we establish, using theorem 3.2 
and lemma 3.6 

for some G,  M > M, 

G and M I  independent of N .  This new bound for F e )  can be used to estimate G c ) .  
Thus, as in the proof of theorem 3.2 we deduce, using (3.10) and (3.11), 

G I F p  s2 

and some L’ independent of N. We can now again start a process of successive 
estimates similar to the process used in the proof of theorem 3.2: step A has to be 
replaced by an argument as above, using lemma 3.6. This yields: 

Theorem 3.7. For all a 3 2  there exist a K(a) and a M ( a ) ,  K ( a )  and M ( a )  are 
independent of N ,  such that for M > M ( a )  

Remark 3.8. Hence we have proved that lim sup,-, l Z c ) (  declines faster to zero (as 
function of M) than any power of M - l  as M increases. However, we did not prove 
that this decay is exponential. The wavenumber spectra computed numerically by 
Moon el a1 [lo] (with N=63, i.e. 64 modes) and Keefe [S] ( N =  31) exhibit an 
exponential decay of 

(3.19) 

as a function of n (for q fixed and To ‘large’) 
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In the proof of proposition 3.1 we introduced the ‘trigonometric polynomial’ 
Ycw(z, f ) ,  see (3.1). The function YcN) is a solution of a ‘perturbed’ Ginzburg- 
Landau equation: 

We can now estimate R“, using theorem 3.7 and lemma 3.6: 

3N 1 s ~ ~ L ( c u )  p as t - m ,  for some L(a) 
k=N+l  

for some L’ 

Hence, 

CoroNary 3.9. lim sup,-, lR(N)(z, t)l = O ( l / N ?  for all cu > 0 uniformly in z 

Remark 3.10. As was noted in remark 1.2: the symmetry ZF)( t )=  Z?i(r) is not 
used in this section, the results obtained here are also valid for other than 
homogeneous Neumann boundary conditions. This is with the exception of corollary 
3.5: the Stokes wave is no solution of (1.1) with homogeneous Dirichlet boundary 
conditions. However, one can check that corollary 3.5 and property 2.1 are true in 
the case of periodic boundary conditions. 

4. Bifurcation histones for N = 1, 2 and 3 

In this section we study, numerically, three low-dimensional truncated models of the 
Ginzburg-Landau equation: system (1.4) for N = 1, 2 and 3. We compare these 
models with each other and with the outcome of the N = 31 model studied by Keefe 
[8]. As Keefe did, we fix a =4 and b = -4 and use wavenumber q as a bifurcation 
parameter in the range 0.6 < q < m. It should be remarked that system (1.4) with 
respectively N = 1, 2 or 3 is a two-, three- or four-dimensional complex differential 
equation which can be reduced, using symmetry Te (section 2), to, respectively, a 
three-, five- or seven-dimensional real system. 

We determine numerically the asymptotic dynamics ( t+ m) of the flow induced by 
(1.4), for arbitrary initial data (inside R,,,, see section 3). using a Poincark map: we 
plot the projection in the Re(Z&”)), Re(Zp))  plane of the section of a solution Z ( t )  
of (1.4) at lm(ZLN)) = 0 with (d/dt)Im(Z&”’) >O. The set of points in the Re(ZLN)), 
Re(Z‘,”) plane, depending on the value of parameter q ,  is called wq. 

The set of points Sow,, induced by solution S,]Z(t), SI as in (2.4), is the mirror 
image of 0, in the Re(Z&”)-axis. Thus &w, = w, if wq is symmetrical. (There is an 
interplay of merging and splitting between wq and Sowq which causes many 
bifurcations.) 

In this section we will sometimes refer to Keefe’s results (181, N = 3 1 )  as the 
untruncated N = m model. The magnitudes of the various modes (N = 1,2, 3) are 
very similar to the magnitudes of the modes in the N=31 ,  or m case: 



244 A Doelman 

max((Z&”( S 1  (and decreases as q decreases) and max(JZ$”)()s0.4 for any N ;  
1Z$”’1 and IZ$”l are very small compared with I.Z$”)( and l.Z(“‘)l: 12$”)1> 0.01 and 
12$”)1- 0.001 (although they grow as q decreases). 

The results are summarized in figure 1. Here we plotted, for N = 1.2,3 and m the 
bifurcation value of q. Lines connecting the ‘N-beams’ represent similar bifurca- 
tions. Parts of the N-beams with the same character in it represent similar structures 
wq in the Poincark sections, for different N .  We did not plot all bifurcation values of 
y: in regions (2) and ( y ) ,  E, F and G, more bifurcations can be found. 

As was remarked (and partly proved) in section 3, the Stokes wave is a global 
attractor for the flow as y > qo(a, b) .  For a = 4, b = -4 we have q0(4, -4) = fl= 
1.328. . . . 

We discuss in detail the differences and similarities between the bifurcation 
histories of (the asymptotic dynamics) of solutions of (1.4) for N =  1,2 and with 
bifurcation parameter q. 

Regiom A and E .  N = 1 , 5 3  yigure 2). The Stokes wave corresponds to a critical 
point in the (Rk, @k - @N) system: 

this critical point undergoes a pitchfork bifurcation, due to symmetry So, as q 
passes through qo(-4, 4 j  = i.328. . . ; 

as q decreases further the two new stable critical points become unstable again by 
a Hopf bifurcation, at values of y, now dependent on N .  

N=2 N = 3  N- 31 

U =  I N = 2  N=3 N.31 

F i y r e  1. Bifurcation values for q decreasing from 1.4 to 0.6 Shaded regions stand for q 
values at which (1.4) has a chaotic attractor. 
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Figure 2. Region B.  ( a )  N = 1, ( b )  N = 2, (c) N = 3 

Translating this back to solutions of (1.4) yields: 

entering region A: two new stable periodic solutions split off from the Stokes 

entering region B: the two periodic solutions bifurcate into invariant tori, by a 
wave; 

Hopf bifurcation; see figure 2. 

These two bifurcations can be analysed locally in the ( R k ,  @,, - &) system 

Remark. Newton and Sirovich [12,13] analysed the untruncated equation (1.1) near 
the Stokes wave "(2, I )  = e-ibr using perturbation techniques. For q close to qo(a, b )  
they found two, stable, symmetric, even periodic solutions, the same as we find in 
the truncated system. In [13] they proposed, but did not prove, a Hopf behaviour 
similar to the behaviour we observed at the next bifurcation value. 

Region C. N =  1, 2, 3 figure 3). The tori grow larger and melt together (w ,  = 

&%). 

Region D .  N = I ,  2, 3 figures 4 and 5) .  The attracting forces of the 8-shaped w, 
become weaker as q decreases. At the next bifurcation value a chaotic attractor, 
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... 

Figure 4. just after entering chaotic region D. ( a )  N = 1, ( b )  N = 2, ( c )  N = 3. 

enveloping the 8-shaped w,, appears (although, for a small range of q both 
attractors seem coexistent). Note that, although for different values of q. the 
topological features of the Poincart sections for N = 1 ,2 ,3  (and 'm') are still similar. 
Keefe [8] computed the Lyapunov dimension L, of this chaotic attractor as a 
function of y : L, is larger than 3 for y E [0.910, 1.030]. Hence the dimension of the 
governing system has to bc 'at least 4, thus N =  1, which is essentially a 
three-dimensional (Rk ,  $Jk - $JN) system, can no longer exhibit the same Poincart 
sections as N = 2, 3 and 'm'. The maximum value of L,, L, = 3.05, is attained at 
q = 0.950, hence N = 2, 3 can still give the same pictures as N = 'm'. These pictures 
lack every kind of structure: they are two-dimensional projections of a structure 
with dimension larger than 3; they need to be examined using a different approach. 

Remark. The w-limits sets are necessarily inside Rat, (see proposition 3.1). 
However, the numerics show that a solution of (1.4) in the w-limit set passes the 
Stokes solution (and thus the boundary of R,,,) frequently very close (for y in 
chaotic region D). This is possible (and not surprising) since for these values of q 
the Stokes wave still has an N-dimensional attracting manifold and a one- 

Figure 5. (a)  N = 1, the chaotic attractor remains as in figure 4, L,  < 3; ( b ) ,  (c):  N = 2, 
3 L , > 3 .  
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Fipre 6. Between regions D and F :  (a )  N = 2, ( b )  N = 3 

dimensional unstable manifold: solutions may flow close along unstable solutions of 
saddle type. 

Region E. N = 3 (fgure 7). In figure I we show how the wq’s leave the chaotic 
region for N = 3. Although the bifurcation values are not identical (they differ by 
=0.002), the topological structure of the wq’s is the same as observed in the 
N = 31(m) case. There is a different bifurcation sequence for N = 2 at the boundary 
of chaotic region D, see region ( x ) .  The coy’s are again identical, for N = 2, 3, at 
q =O.W (see figure 6). 

We now describe the bifurcation history for N = 3 for increasing q, starting at 
q =O.W: 

q = 0.905: wq becomes asymmetrical: wq # Sow,; 

q =0.908: the loops of wq split in two (‘period-doubling’); 

q = 0.910:another ‘loop-splitting’: the onset of a sequence of loopsplittings; 

q = 0.911 :chaos, wq # &mq: the big loop of wq does not intersect the Re(ZL3’)-axis; 
it grows nearer as q grows; 

Fpre 7. Region E, N = 3 
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Figure 8. Region (x j, iv' = 2, (a j o1 V $0, 

q =0.912: the big loop of ay becomes tangent to the Re(Zh3))-axis: wq merges with 
&U,. 

Region (x ) .  N = 2 figure 8). Again we discuss the bifurcation behaviour for 
increasing q,  starting at q = 0.900: 

q = 0.905 : as N = 3 : U, becomes asymmetrical; 

q = 0.915: differentfrom N = 3: the big loop of wq touches the Re(Z&")-axis: wq and 
Sow, merge. Hence, my and Sow,, merge before getting chaotic, while wq gets 
chaotic before merging with Sow, for N = 3. In figure 8(a)  we plotted w, and &wq in 
one picture to show what happens when wq and S,,w, merge; 

q = 0.918: wq becomes symmetrical again; 

q = 0.920: wq and &w, merge again: one could call this step a period-doubling; 

q = 0.921: chaos, after a sequence of period-doublings. 

As q decreases further system (1.4) enters for N = 2 and N = 3 a seco,id chaotic 
region, F. The routes to and from chaos are similar to the situation around region 
D: a chaotic attractor appears 'suddenly' as q decreases into region F ;  it disappears 
by a sequence of period-halvings. Also, as in regions ( x )  and E, there is a difference 
between the case N = 2 and N = 3: for N = 2 (region (y)) wq and &w, r;elt together 
before getting chaotic, for N = 3 (region G) wq becomes chaotic before merging 
with S,pq (both cases for increasing q). The bifurcations for N = 3 are igain similar 
to N = 'm'. 

We observe that the wq are again topologically the same for N = 1, 2 and 3 as q 
has entered region H, see figure 9. Chaotic attractor wq originates from the wq of 
figure 9(a), N = 1, by a process which had been observed before: as q increases the 
intersection point of w, with the Re(Zh')) axis becomes tangent, we and &wv merge 
into one chaotic attractor. It should be remarked that one can find only one 
period-doubling in region ( y )  (N =2, q increases). It seems that there is no 
complete sequence of period-doublings: chaos appears suddenly after w, has 
become asymmetrical again (just as in the case N = 1). These observations may be 
caused by the numerical inaccuracy. 
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FTgure 9. Region H .  ( a )  N = 1, ( b )  N = 2, (c) N = 3. 

Regions H ,  I and 1. N = 1, 2, 3 (fgures 9 and 10). The wq’s are similar for 
N = 1, 2 , 3  and 31(m) for q in regions H and I. At the bifurcation between H and I 
the asymmetrical 8-shaped wq becomes symmetrical (i.e. merges with &,U,). It 
should be remarked that in region I ,  for instance at q = 0.750, the wq(s are not only 
topologically equivalent, but also their proportions and the position in the plane are 
very much alike. Keefe [8], i.e. N = 31(m), found the next bifurcation at q = 0.700: 
all even modes (i.e. Z,, Z2,  . . .) disappear, and an attracting periodic solution, with 
only non-zero odd modes appears. We remark that due to symmetry So solutions 
with only non-trivial odd modes are possible. Hence we search for an isolated 
periodic solution with ZAN1 = ZiN1 = . . . = 0. 

N = 1. Setting ZA” = 0 we find 
Z? = (1 - q2(1 + ia))Z? - 3(1 + ib)Z{” lZ$‘)12 (4.1) 

which has a periodic solution 
Wq(t) = Q(q)eia(q)* with Q ( q )  = O ( q )  = (b - a)q2  - b. (4.2) 
Straightforward computation shows that this solution cannot be stable. (The next 
bifurcation appears at q = 0.513: wq collapses into an isolated orbit with Z&”#O.) 

s b 

3 
T -  9-0.780 

P i  10. Region I .  ( a )  N = 1, ( b )  N = 2, (c )  N = 3 
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N = 2. Setting Z&’) = Z p ’ =  0 we again obtain (4.1) with periodic solution (4.2). 
W,(t) is a stable stationary point in the (Rk, @k - @,)-system for q E [0.574, 0.706]. 
This is in agreement with the numerical observations: the even modes disappear in 
this q region; solutions tend towards W,, i.e. W, is a global attractor. 

N = 3. We now obtain a two-dimensional ZP),  ZS3) system, after setting 28) = 
Zi3’ = 0, with an isolated periodic solution 

Z(3) , - - r&), 1 zp = r;(t). 

This solution resembles W,: IlW,l- Ir,ll and Ir:l are small, the periods of W, and r, 
are almost the same, etc. Using the (Rk, $Ik - $I3) system we compute that r, is 
stable for q E [0.574, 0.6981. We observe numerically a disappearance of the even 
modes on this region; (0, r:, 0, r:) is also a global attractor. 
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