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We present a non-linear representation of the so(4)-extended d=2 superconformal algebra in terms of one boson and four 
Majorana fermions. The matter fields and the currents can be grouped into a single N= 4 superfield. Breaking the supersymmetry 
to N= 3 or N= 2 leads to new representations of the N= 3,2 superconformal algebras. 

1. Introduction. The study of two-dimensional models possessing conformal or superconformal symmetries 
[1-3] is relevant both for statistical mechanics and high-energy physics. Exponents describing the critical 
behaviour of certain d = 2  statistical systems can be related to weights of  unitary representations of 
(super) conformal algebras [ 4,5 ]. In string theory (super)conformal algebras are present as gauge algebras in 
the two-dimensional formulation of (super)string models [6]. 

In addition to the d = 2  conformal algebra (Virasoro algebra) and the N = I  superconformal algebra 
(Neveu-Schwarz-Ramond algebra [7,8]) superconformal algebras (SCA) with extended supersymmetry exist. 
An N-extended superconformal algebra consists of  Virasoro generators L,, supercharges G~, m = 1,2 ..... N, and 
additional generators that are needed to close the algebra. The most important examples are 

(i) The regular series of  N-extended (N>~2) SCA given by Ademollo et al. [9] which have the so(N) 
Kac-Moody algebra (KMA) as a subalgebra. For N~< 4 these algebras admit a central extension. 

(ii) An exceptional N = 4  SCA with the su(2) KMA as a subalgebra [9,10]. 
The SCA's exist in different varieties which are in general not equivalent (Neveu-Schwarz, Ramond, twisted, 

non-twisted, see e.g. ref. [11 ]). A classification of all SCA's with generators of conformal spin 2>~J>~ ½ has 
been given in refs. [ 12,13 ]. 

It is the purpose of this note to show that the so(N)-extended SCA's with N=2,3  or 4 can all be realized 
non-linearly on the Hilbert space spanned by a single real boson ~0 and four Majorana fermions Z ~, i=  1 ..... 4, 
or, alternatively, on the Hilbert space spanned by six Majorana fermions Z ~, i=  1 ..... 4, and ~u a, a =  1,2. 

2. N-ex tended  superconformal  theory. In ref. [9 ] the so (N)-extended SCA is defined as the algebra of  super- 
conformal transformations of  the coordinates Z =  (z,O'), i= 1 ..... N, which describe one light-cone sector of a 
superspace extension of d = 2  spacetime. The variation of z,O ~ under the action of a generator G~ '~R with 
parameter a~,'"~ reads 

~)z=i RtR l)/2(2__R)O~nit..'iROi'...OiRZ n+l-R/2 ' 

60 i i mR-j~/2 ( ~  (--1)R-/c~i '~ 'a 'd 'RO'~. . .Oe' . . .OiRzn+l-m2--(n+l--~ , ~ '  " '  ~' ) . (1) = -  ~ R ) ~ .  "" 0 . , . O i R O i 2  n - R / 2  

\ l = I  

Both G# ...i~ and a~' '"i~ are completely antisymmetric in i~...iR. The index n is integer (half-integer) i fR is even 
(odd). The algebra of the transformations (1) is 
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"'"'~ J''Js ( [ m ( 2 - S ) - n ( 2 - R  ,~...iRj~...j,s..~ ~ (  ,V+k+S,V,JkC='~...;/...iRj,...A..j.~"~ [G . . . .  G.  }=i  -Rs )]G,+m --l,=,k=l - - ' ,  ~" " ,+m j .  (2) 

A general superconformal transformation is parametrized by the displacement superfield 

E(z, Oi )=2~ ~ i R~n '~/2a~i~O~')z'+'-m2 • (3) 
n (i) 

where (i) denotes a general multi-index i~...iR, O<~R <~ N. The transformation of a primary superfield q~3 of 
dimension A reads (cf. refs. [ 1,14]) 

8q)z = (Sz) 0:q~a + (80 ~) Oo,~z +A(O=E)clga =EO:qb~ + ½ ( D ' E ) ( D * ~ j )  +A(O..E)~a • (4) 

where we used the covariant derivative D ' =  0o, + 0~0.-. The components G~ ~) can be assembled in the current 
s u p e r f i c i a l  j {  N) 

~n l iR(3R+I)/2 N (i) (~) --n-2+R/2 j~u~= Y~. ,  0 G. z , .  (5) 
(i) 

where O N- ~) is shorthand for [ I I ( N -  R)!] ~ J ' J ~ - " " ' "  0 j' ...0 ju-". This definition is such that J(N) transforms 
as a primary superficial of dimension d = ½ ( 4 -  N). In a quantum mechanical realization of the SCA its trans- 
formation will be modified due to the presence of central terms in the quantum mechanical current algebra. 

Using (3) and (5) we can write the variation of a general superfield under the superconformal transfor- 
mation parametrized by E(z,O ~) very concisely as 

8q~(Z2) =½ ~ dZ, E(Z,  ) j ( N ) ( g  I ) ~ ( Z 2 )  , (6) 
Cz2 

where Z =  (z,O~), ~ dZ/2zri=~ (dz/2ni) J dNO and C~ is a curve in the complex plane enclosing the point z. All 
information about the transformation properties of q~ (z) is encoded in the super operator product expansion 
(SOPE) ofj~N)(ZI) and qS(Z2). 

3. A representation of  the so(4)-extended SCA. Having demonstrated some general features of theories with 
N-extended superconformal invariance we now turn to concrete realizations of these theories in terms of bosonic 
and fermionic quantum fields. If these fields are described by a free action then the central term in the Virasoro 
subalgebra 

[L,,Lm] -- ( n -  m)L,+m + -~cm(m 2 - 1 )~m+, (7) 

is given by 

c=#( rea l  bosons) + ½ #(Majorana fermions) . (8) 

A number of representations of SCA's in terms of free bosonic and fermionic fields are known. The N =  0,1,2 
and the exceptional N= 4 SCA's admit linear representations with c= 1, 3/2, 3 and 6 respectively which form 
the basis of the N=0,1,2 and 4 (spinning) string models [6]. In ref. [15] a purely bosonic non-linear rep- 
resentation of the N= 2 SCA is given in terms of vertex operators built from a single bosonic field taking values 
on a circle (see also ref. [ 16 ]). Also in ref. [ 11 ], where a c= 3/2 representation of the N =  3 SCA is presented, 
vertex operators are used to construct some of the superconformal generators. Another possibility, which has 
first been noted in refs. [ 14,17 ], is to realize superconformal symmetries non-linearly among free fermions 
only. For N=  1 the most general construction of this type has been discussed in ref. [ 18 ]. In ref. [ 19] a free 
fermion construction has been used to construct the discrete series of c < 3 unitary representations of the N =  2 
SCA. 
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Here we will present a non-linear c=  3 representation of the so(4)-extended N =  4 SCA which we obtain by 
combining the following two c=  3/2 representations of  the N =  1 SCA. 

(i) The linear N =  1 representation defined in terms of a real boson ¢p(z) and a Majorana fermion ~u(z). 
Using the elementary contractions 

1 
< ~ o ( z ) ~ o ( w ) > = - l o g ( z - w ) ,  < ~u(z)~,(w) > - (9) 

2 - - W  

and the Wick theorem it is easily shown that the currents 

L(z)=-½:(Oz~)2:-½:~Oz~:, G(z)=-i~'O:~o (10) 

satisfy the following short distance operator product expansions (OPE) with c=  3/2: 

½ c 2L(w) OwL(w) 
L ( z ) L ( w )  _ (z_w)---~ 4 ~ ( z _ w ) ~  + - - z - w  + ....  

~G(w)  O,,G(w) ~c 2L(w) 
L ( z ) G ( w ) = ( z _ w ) ~ t  z - w  + .. . .  G ( z ) G ( w ) - ( z _ w ) ~ t -  z - w  + .... (11) 

These OPE's are equivalent to the component algebra (2), which for N =  1 is just the familiar NSR algebra. 
(ii) The purely fermionic N =  1 representation defined in terms of three Majorana fermions Zt(z), i=  1,2,3. 

The currents 

L ( z ) = - ½ : Z i O : Z i : ,  G ( z ) = i z I z 2 z  3 (12) 

satisfy the same OPE's (11 ) with c=  3/2. Supersymmetry is realized non-linearly on the fields Z~(z) 

8QZi(Z) = ½ i~OkE(Z)U(Z)Zk(Z) . (13) 

The important observation is now that the combination (~0, ~u,Z ~) of  both c = 3/2 systems, which trivially realizes 
the N =  1 SCA with c=3 ,  has a much richer symmetry structure which turns out to be as large as the so(4)- 
extended SCA! In order to see this we write (Z~,q/) as Z', i=  1 ..... 4, and we define 

L ( z )  = - ½ :(0:~0)2: - ½ :zi O_-z~: , G~(z) = - ~i~OklZ~ZkZ I- iZ~ O~(o , 

T~J ( z )= i z ' z  j ,  F ' ( z ) = z  ~, A(z)=q~. 

These operators satisfy the following OPE's with c=  3: 

L ( z ) L ( w ) -  ½c ÷ 2 L ( w )  ÷OwL(W) + ....  L ( z ) G i ( w  ) = -  
(Z--W) 4 (Z--W) 2 Z--W 

(14) 

k G ' ( w )  OwGi(w)  
~ - -  + . . . .  (15) 

( z - w )  2 z - w  

L ( z ) T O ( w ) _  T ° ( w )  OwTiJ(w) 
( z -  w) - - - - ~  ~ z -  w 

+ ... , 

L ( z ) F i ( w ) -  ½ F i ( w )  O,,Fi(w) 
( z - w )  2 ~ z - w  

awJ(w)  
- -  + .. . .  L ( z ) J ( w ) - - -  

Z - - W  
+ ... , 

G i ( z ) G J ( w )  = 2 cOij 
( z - w )  3 

2iT°(w) iOwTiJ(w) 2~°L (w)  
- -  ~ - - + . . .  

- -  + ~ "2 z - w  z - w  ' 

Gi(z)TJk(w)=_eijktf FZ(w) OwFl(w)~ i[,~'kGJ-~°Gk(w)] + ... 
\ ( z_w)  2 + ~--S-w ) z - w  ' 

(15) 
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Table 1 
The so(4) -ex tended  superconformal  algebra. A c = 3  realization of  this algebra is provided by the Laurent coefficients L . =  

( d z / 2 r r i ) L ( z ) z  "+~ , G',, =~ ( d z / 2 n i ) G ' ( z ) z  ~+ t,._, T~ =Sf (dz /2ni )  T ~ ( z ) z  ~, F'., =~ ( d z / 2 n i ) F ' ( z ) z  " t/z, j .  =~ (dz /2 ; , r i )J ( z ) z  ~ ~ of  the 
currents (14). Up to central terms this algebra is identical to the algebra (2) for N =  4 by the identifications L., = ½ G., G',, = G ' ,  T ~ = G o, 
T',{ = ½ ~ °k/G ~, F'~ = ( - 1/3!)e~/~GJ,) ~, d .  = (1/4!)ei'~A',~. 

[ L,,,,L,,] = ( m - n ) L  ...... + ~ c m ( m  2 - 1 )c~ . . . . .  

[L , , , ,G ' , , I=(½m-n)G ' ,  . . . . . .  [ L , , , , T ~ I = - n T ~  . . . .  [ L , , , , F ' ~ l = ( - ½ r n - n ) F ' ,  . . . . .  [ L m , A . , l = ( - m - n ) A  . . . . .  

{ G',,,,G{, } =26'JL ...... - i ( m - n ) T ' , { , + .  + ~ c ( m  2 - ~)O'J~ ...... 

[G',,,,T',~, l=neiJk~F I, . . . .  + 2i6'uG~,,l+., { G ' , , , , F ~ } = i ( m + n ) a " A  . . . . .  - T T . + . ,  [G',,,,A.I=iF'.,+,. 

[T',!,,T~,/I = --i(6 'k T~/,,+,,- ~" T;,},+,,- 6Jk T'/,,+. + 6~' T',~;+.,) + ~c(gF'~a;'-O"~')mc~ . . . . .  

[T', ' , , ,F),]=-2i6at'F',,I . . . .  [T~ , , J , , ]=0 ,  {F' , , , ,FI ,}=lc6'J6 . . . . . . .  [F',,,,A.,]=O, [d , , , , J . , ]=~c(1 /m)d  . . . . .  

i~') (w) iOiJO,A(w) iF ' (w)  
G ' ( z ) F J ( w ) - -  - + . . . .  G ' ( z ) A ( w ) -  + . . . .  

Z - - W  Z - - W  Z - - W  

T , j ( z ) T k l ( w )  ~ c(~ikc~jl-6 ' l~j~)  _ i [ 6 ' k T J t ( w ) _ O i I T J k ( w ) _ O J k T ' l ( W ) + ~ J l T i k ( W ) ]  

( z - w )  ~ z - w  
+ . . . ,  

T O ( z ) F k ( w ) _  - i [ ( ~ k ~ F j ( w ) - ~ k F ' ( w ) ]  + . . . .  

z - w  

F ' ( z ) F J ( w )  = ~ c ~ ° +  . . . .  A ( z ) A ( w )  = - ~  c l o g ( z - w )  + . . . .  (1 5cont'd) 
Z - - W  

This establishes our central result: the currents (14) form a closed N = 4  superconformal algebra. The com- 
mutator algebra of the Laurent coefficients Ln, G~,, Tg, F'~, A, is listed in table 1. 

From the representation (14) we can also obtain a purely fermionic representation of the so(4)-extended 
SCA. By introducing two fermions ~,J (z), ~tZ(z) and making the replacements 

L ( z ) - - . . - t  :~u,0_4ua: _½ :ziO:z,:  , O:.A(z)--.,~ ~ v/2 , G ' ( z ) - - - ' . - ~  i ~ ' J k / z j z k z l - - i z i q l l  ql 2 , 

we obtain a realization of the so(4)-extended SCA in terms of fermionic fields only. The presence of six fer- 
mionic fields in this representation suggests that it could be possible to have a so(6) symmetry among these 
fermions and to define as much as (63) --20 supercharges trilinear in the fermionic fields. However, upon closer 
inspection it turns out that in order to have a closed algebra without four-fermion terms (as we have in (15)) 
it is necessary to break the symmetry to so(4) and to keep only ( 4 ) = 4  of the supercharges. 

In the representation (14) the superconformal transformations are realized non-l inearly  on the matter fields 
(¢,X') but (if we discard the central terms for a moment)  they are realized l inearly on the currents 
( L , G  ~, T ° , F ~ , J ) .  The current superfield, which for general N is given in (5) reads as follows for N=4:  

j (4I  = _ A + i O i F  , _ 1 ie,JklO,OJTkl _ ~ e i j k l o i o J O k G l  + ~ ~ , J k l o i o J o k o I  L . (16) 

Apart from central terms, j(4} transforms as a primary superfield of dimension 0. The OPE's (15) for the cur- 
rents (L ,  G ~, T~J,F' ,A) are equivalent to the following SOPE for the current superfield j(4) 

(~i04~!Li2 0z~24 ) J(4)(ZI)J(z)(z2)~- ~ - - - - D ~  + 2 Z I 2  0 -  2 J ( 4 ) ( Z 2 ) - l o g ( Z i 2 )  , (17) 
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where Z~ ~ =z~ - z ~  -S ,O~  0'2 and 0~z = 0~ -0~ .  Note that this single formula summarizes all the commutation 
relations of the so(4)-extended SCA as listed in table 1. Since zJ(z) --- ~(z) and F ' ( z )  =Z~(z) we have the amus- 
ing situation that the N =  4 current superfield is at the same time the N =  4 matter superfield, or, stated dif- 
ferently, that the currents and the matter fields are in the same (8 + 8) component chiral multiplet. 

4. Reduction to N =  3,2. Since the so(N)-extended SCA's with N =  3,2 are subalgebras of  the N =  4 algebra, 
the fields (~0,;() automatically provide representations of  these smaller algebras, which are of some interest in 
their own right. Upon reducing N = 4 - - , N = 3  we only keep the superconformal generators L ( z ) ,  G~(z), 
T~(z) = - ½ ~OkTJk(z) and F4(z) ,  i , j , k= 1,2,3. Their Laurent coefficients L , ,  G,; T~,Fni 4 form the so(3)-extended 
SCA with central charge c=  3 which is a subalgebra of the N =  4 SCA listed in table 1. The superfield j(4) splits 
as J~ 4) = _ q~ ~ 3 ) _ 04j~ 3 ~, where J~ 3) is the N=  3 current superfield (cf. ( 5 ) ) and q~ ~ 3 ~ is an N =  3 matter superfield, 

~ 3~ = ~o - iOix ' - ½ ~OkOiOJxk~U + ~ i~'Jk0~0J 0k( + ( . l m n ~ l ~ m x n  -- ~lOz~O ) . ( 18 ) 

Interestingly, this construction automatically provides an answer to the question of how to obtain an invariant 
action density for the components (~0,x',F~,2) of a chiral N =  3 multiplet, i.e. a N =  3 scalar superfield q~ (z). 
It has been noted in ref. [ 9 ] that the traditional way to obtain an invariant action from a scalar superfield (by 
constructing a superspace density of  the appropriate dimension from q~ and its covariant derivatives Dtq~) fails 
for the N-extended algebras with N~> 3. From the analysis above we see that for N =  3 this problem can be solved 
quantum mechanically by expressing the "auxiliary fields" F ~ and 2 in ~0, X ~ and an additional field ~, according 
to 

Fk=z~q /  , 2=~ ~iJkZiUXk--~O~O . (19) 

A free action for the fields (~o,Z~,q/) is then invariant under all superconformal transformations. The price one 
has to pay is that supersymmetry is realized non-linearly on (~0,Z~,~u), 

~ 0 = i ( z  ~ , 6Z' =--ieiO-~+ieOk~Jxkql , 8~U=-- ½ ieOke~ZJZ k . (20) 

A similar analysis for the breaking N =  4 ~ N =  2 leads to a non-linear c=  3 representation of the N =  2 SCA 
with one real boson and four Majorana fermions, in contrast with the linear c=  3 representation which has a 
complex scalar field and one single Dirac fermion. 

5. Comments.  
(i) Superstring compactification. By applying fermionization to compactified coordinates the degrees of free- 

dom of the N =  1 superstring can be organized as follows [20-22]: 

(x~,,~u) ~=1  ..... 4 ,  Z I I=1  ..... 18. 

Since the number of internal fermions is a multiple of 6 it is possible to define a global N =  4 superconformal 
symmetry on the internal fermionic degrees of freedom. It would be interesting to see whether this symmetry 
has any consequences for superstring dynamics. 

(ii) Highest weight representations. A representation of the so(4)-extended SCA automatically provides a 
representation of the so(4) Kac-Moody subalgebra, which has level k=c/3 .  In a unitary highest weight rep- 
resentation the level k is a positive integer and consequently c is a positive multiple of  3. These values for c 
can all be realized by taking tensor products of copies of the basic c=  3 representation (14). 

(iii) N =  3,4 string models. In principle the field ~0 in the multiplet (~o,X') can be interpreted as a string-coor- 
dinate. However, due to the non-linearity of the supersymmetry transformations the formulation of "so(3)-  
or so(4)-strings" is not a straightforward extension of the results for strings with u(1)- or su(2)-extended 
supersyrfimetry [ 23,10,24 ]. 

(iv) Critical central charge. I f  a SCA appears as the algebra of constraints of a quantum system then the 
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theory is consistent only for one special value of the central charge. In ref. [25 ] it is shown that in the BRST- 
quantization of a system with constraints corresponding to the N =  3 SCA the ghost contribution to Q2aRSa- van- 
ishes and that accordingly the value of the critical central charge for this algebra is 0. It turns out that also the 
N =  4 so(4)-extended SCA has critical central charge c=  0 ~. This value differs from the critical value of c for 
the N = 4  su(2)-extended SCA which is - 12. 

I thank E. Verlinde and H. Verlinde for many valuable comments and B. de Wit for reading the manuscript. 
This investigation was performed as part of the research program of the "Stichting voor Fundamenteel Onder- 
zoek der Materie" (FOM).  

~ I thank E. Verlinde for discussions on this point. 
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