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IS THE EXTREMELY LOW HETEROZYGOSITY LEVEL IN YPONOMEUTA
RORELLUS CAUSED BY BOTTLENECKS?

STEPH B. J. MENKEN
Department of Botany, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam,
The Netherlands

Abstract.— Among the common and widespread species of the small ermine moths (Yponomeuta)
the almost complete absence of genetic variability from a sample of 75 protein loci is a striking
feature of Y. rorellus. Congeners exhibit normal to high H levels. At least for soluble proteins, this
variation estimate is a real one, not resulting from an inability of the zymogram technique to detect
variation nor from a biased sample of loci. The most likely explanation for the dearth of variation
observed is a bottleneck at the species’ origin. Moreover, ongoing population-size fluctations in
the historical past of Y. rorellus may have prevented the recovery of equilibrium H levels as a

consequence of genetic drift in small populations.
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Genetic variation within populations is a
prerequisite for evolution, as it provides the
raw material for selection of better-adapted
genotypes in response to challenges by the
environment. Mutation is the ultimate
source of all this variation.

Rapidly accumulating information from
the last two decades shows that many species
have high levels of genetic variation at the
enzyme level; there is, however, much het-
erogeneity in variability levels among taxo-
nomic groups as well as among species with-
in taxonomic groups (Nevo et al., 1984;
Graur, 1985).

Much speculation has arisen concerning
the causes of these differences in overall ge-
netic diversity. The following potential
causes have been proposed: differences in
population size, differences in environmen-
tal heterogeneity, genetic or breeding sys-
tems limiting variability, directional selec-
tion for homozygosity or for general-purpose
genotypes in some species, or any combi-
nation of the aforementioned factors (Fu-
tuyma, 1979; Kimura, 1982; Nevo et al.,
1984). A confusing factor in comparisons
of heterozygosity estimates among species
can be different samples of loci, as single
locus heterozygosities differ much among
loci (Powell, 1975; Menken, 1980c¢; Simon
and Archie, 1985).

Species of the small ermine moth genus
Yponomeuta (Lepidoptera, Yponomeuti-
dae) have similar life histories, morpholo-
gies, and geographic distributions, but
somewhat differing feeding habits (Herre-
bout et al., 1976). In a group of six closely

related species, heterozygosity levels per
population based upon a homologous set of
51 genetic loci range from as low as 0% (Y.
rorellus) to over 15% (Y. evonymellus, Y.
padellus, and Y. cagnagellus; Table 4). In
the present study, I report the near absence
of any genetic variation in natural popula-
tions of Y. rorellus based upon a sample of
75 loci coding for soluble proteins. The re-
liability of the variation estimates and the
possible causes of the low heterozygosity
values will be discussed. Bottlenecks seem
to be the major factor that account for the
observed monomorphism.

MATERIALS AND METHODS
Life Cycle

Yponomeuta rorellus, a diploid, bisexual,
univoltine species, is common and wide-
spread with a palearctic distribution. Eggs
are laid in July in masses on branches of
willow (Salix spp.). Although the caterpil-
lars hatch some three weeks after oviposi-
tion, they remain under the protection of
the egg mass until the following spring. They
then spin a communal web over the devel-
oping foliage and feed within or in the
neighborhood of the web, extending it as
the leaves are consumed. Entire willow trees
may be defoliated in cases of severe infes-
tation, a characteristic Y. rorellus shares with
the other species of the so-called “padellus
complex.” In case of depletion of willows,
few if any other hosts will be attacked (Her-
rebout et al., 1976). Fifth-instar full-grown
caterpillars usually pupate within their web.
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Fig. 1. Collection sites in the Netherlands for the
Yponomeuta rorellus populations studied: 1) Haas-
trecht; 2) Hazerswoude; 3) Oosthuizen; 4) Schuilenburg
(Kesteren); 5) Ter Aar; 6) Wageningen; 7) Zuidoost
Beemster; 8) Zoetermeer.

Eclosion takes place after approximately
three weeks.

Samples

Over a period of seven years (1974-1980)
populations of Y. rorellus were sampled by
collecting third- or fourth-instar larvae from
the field (Table 1). They were reared in cages
in the laboratory until eclosion. Mortality
in the laboratory was less than 5%. Adults
and, in some cases, fifth-instar larvae were
deep frozen at —30°C until used for elec-
trophoresis. Eight localities were sampled
(Fig. 1). Food plants were Salix alba (most
cases), S. cinerea, S. viminalis, S. dasycla-
dos, S. fragilis, and S. caprea. Other host
plants include S. tenuijulis, S. babylonica,
S. incana, S. oxycarpa, and S. australior (Z.
Gershenson, pers. comm.).

Electrophoresis

Specimen preparation, electrophoresis,
isozyme specification, and enzyme assays
follow Menken (1982a). In addition to the
51 loci studied in Menken (1982a) (Oost-
huizen population, sampled in 1978), data
are presented here on 22 more loci (Table
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2). This set of loci was not included in the
previous study because of inconsistently
scorable variation and/or absence in one or
more of the other small ermine moths in-
vestigated.

The variation reported is inferred to be
Mendelian from comparison with the re-
sults from crosses in Y. cagnagellus (Men-
ken, 1980a) and the general fit of observed
phenotypic proportions to those expected
under Hardy-Weinberg equilibrium.

The one heterozygote that occurs at each
of the Fudh and Est$-1 loci is a single male.
This observation is in agreement with the
sex-linked character of these two loci (Men-
ken, 1980a; Lepidoptera have female het-
erogamety). A-Acph activity is limited to
males (Menken, 1982a).

RESULTS

Natural populations of Y. rorellus harbor
extremely low levels of genetic variation as
revealed by electrophoresis. Individual val-
ues of mean heterozygosity per population
(H) range from O to 0.0153 (mean *+ SE =
0.0045 + 0.0042; Table 1). Most notable is
the Schuilenburg population, occurring on
the common food plant S. alba, in which
not a single individual in a sample of 25
moths was heterozygous for any of 45 pro-
teins screened.

Glyceraldehyde-3-phosphate dehydroge-
nase contributes most to H; out of 105 mu-
tant alleles, 58 or 55.2% are allele G3pdh®°
(Table 1). This allele is unique to Y. rorellus
(Table 3). Single-locus heterozygosity ranges
from 0.0000 to 0.4442 with a mean of
0.1103 + 0.1416. In contrast, G3pdh is ex-
tremely monomorphic in nine other Ypon-
omeuta species (Menken, 1980c); just five
heterozygotes were found in 7,000 individ-
uals).

At 15 other loci, one or a few heterozy-
gotes were found (Table 1). Every locus has
one single mutant allele except for Pgm (al-
leles 97 and 103) and Aph-2 (alleles 94 and
103). Many of these alleles are unique to Y.
rorellus (Table 3). Variant alleles at the
EstB-3 (see below), Lap-3, and Lap-4 loci
could not be classified as unique or other-
wise, since they have not been studied in
other Yponomeuta species.

Scarce information is available on two
more loci not shown in Tables 1 and 2, an
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TaBLE 2. Enzyme assays and stage specifications of Y. rorellus. See Menken (1982a) for composition of buffers
symbolized. Symbols for quaternary structure: M.= monomer; D = dimer; — = unknown. Stage specifications:
Id = identical isozymes in both stages; Ss = stage specific (referred to as L and A forms); Ls = larva specific;

As = adult specific, — = studied in adults only.
Abbreviation for Quaternary Stage speci-
Enzyme (EC number) locus Buffer? structure fication

Oxidoreductases

Succinate dehydrogenase (1.3.99.1) Sdh 1 — Id

Glutamate dehydrogenase (1.4.1.2) Gdh I - -

Monoamine oxidase (1.4.3.4) Mao I - -

Tyrosinase (1.14.18.1) L-Tyr I — Ss2
Transferases

Glutamic oxaloacetic transaminase (2.6.1.1) Got-1 I - Idb

Hexokinase (2.7.1.1) Hk-2 1 - Id

Adenylate kinase (2.7.4.3) Ak 11 — Id
Hydrolases

Esterase (3.1.1.2) Esta-3 I - As

Esterase (3.1.1.2) EstB-2 III - As

Esterase (3.1.1.2) EstB-4 I — Ls

Alkaline phosphatase (3.1.3.1) Aph-1 I — Ls

Alkaline phosphatase (3.1.3.1) Aph-3 II — As

Amylase (3.2.1.1) Amy-2 Veronal - Ls

B-glucosidase (3.2.1.21) B-gluc 11 — Ls

Leucine aminopeptidase (3.4.11.1) Lap-2 I — Ls

Leucine aminopeptidase (3.4.11.1) Lap-3 I D As

Leucine aminopeptidase (3.4.11.1) Lap-4 1 M As
Lyases

Fumarase (4.2.1.2) Fum I - Id

Aconitase (4.2.1.3) Acon 1 — Id
Isomerases

Triosephosphate isomerase (5.3.1.1) Tpi I — —
Other systems

General protein Pt-6 II - Id

General protein Pt-7 I - Id

2 Adult form studied in Menken (1982a).
b Run cathodally.

esterase (Est8-3, EC 3.1.1.2) and mannose
phosphate isomerase (Mpi, EC 5.3.1.8). Both
code for monomeric enzymes. Detection of
EstB-3 is restricted to fresh adult material,
and Mpi has been studied only once (Ter
Aar population in 1981). The two enzymes
seem to exhibit variation levels comparable
with G3pdh.

The Ter Aar and Oosthuizen populations
show quite constant H values over years and
clearly have the highest amount of variation
at loci other than G3pdh (Table 1). Varia-
tion at the A-6Pgdh locus (not investigated
in 1974 and 1975) is restricted to Ter Aar.
In general the other populations are some-
what more variable (H = 0.0061 *+ 0.0055
versus H = 0.0030 = 0.0017 for Ter Aar
and Oosthuizen; two-tailed ¢-test, ns), due
to the presence of a higher number of G3pdh

heterozygotes. In Ter Aar and Oosthuizen,
a slightly smaller number of loci have been
investigated on the average (N = 32.9), com-
pared with the other populations together
(N = 34.8); hence no influence on H is to
be expected (Nei and Roychoudhury, 1974,
Graur, 1985). Those enzymes that appear
to be polymorphic (1% criterion) in Ter Aar
and Oosthuizen have been included in most
other population surveys, where they ap-
pear to be monomorphic. A much more
pronounced difference in H can be found
between populations infesting S. alba, on
the one hand, and all other Salix spp.
lumped, on the other (Table 1; H =
0.0030 = 0.0022 and 0.0094 + 0.0057 re-
spectively; P < 0.01, two-tailed z-test). Again
there is not much difference in the number
of loci studied (V = 34.9 and 30.4 respec-
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tively). The lower value for H on S. alba
can be fully ascribed to a lower incidence
of variation at the G3pdh locus, which is
not compensated by more variation at loci
other than G3pdh (see above). Population
sizes are comparable on the various food
plants (W. Ravensbergen, pers. comm.).
Esterases are known to be among the most
polymorphic enzymes; however, Est(3-3
seems to be the only enzyme with some
variation among seven isozyme loci.

DiscussioN

Without genetic variability there can be
no response to selection or genetic drift, and
evolution cannot occur. The best single es-
timate of genetic variation in a population
is the expected frequency of heterozygous
loci per individual (H), assuming Hardy-
Weinberg equilibrium (Nei and Roychou-
dhury, 1974). As these authors have pointed
out, it is better to examine a large number
of loci rather than a large number of indi-
viduals per locus for the reliable estimation
of average heterozygosities (Archie, 1985).
However, a negative correlation may exist
between the number of enzymes surveyed
and the magnitude of H, as studies often
start with known polymorphic loci (Graur,
1985). Among a sample of 73 genetic loci,
only G3pdh occasionally reaches apprecia-
ble variation levels in natural populations
of Y. rorellus, resulting in H values up to
0.0153, based on various numbers of loci
(Table 1).

Are these estimates an artifact caused by
inadequate resolving power of the zymo-
gram technique or biased sampling? It is
now evident that electrophoresis is an im-
perfect detector of enzyme variants (heter-
ogeneity within electromorphs: King and
Ohta, 1975; Ayala, 1982). In order to elu-
cidate part of this cryptic variation, some
enzyme systems in Y. rorellus were sub-
jected to sequential electrophoresis using two
concentrations of starch (10 and 12%) and
a total of 11 buffer systems with pH values
ranging from 5.8 to 9.0 (unpubl.; see also
Menken, 1982a). No additional variation
was found at the G3pdh, Pgi, Pgm, Lap-1,
EstB3-1, EstB-2, and A-Gluo loci, loci that
are known (with the exception of G3pdh)
to be highly polymorphic in related Ypo-
nomeuta species (Menken, 1980c¢, 1981,
1982a). Thus the low level of variability in

STEPH B. J. MENKEN

TABLE 3. Alleles unique to Y. rorellus are designated
by +; those designated by — also occur in congeners.
All loci have 100 as the most-common allele (which
is also the most-common allele in Y. cagnagellus [Men-
ken, 1982a]), with the exceptions of five loci (*) that
lack such alleles and which are diagnostic, and A-6Pgdh,
Pt-1, and Mpi (with most-common alleles = 98, 98,
and 95, respectively). The diagnostic loci are fixed save
for A-Ao (most-common allele = 98) and L-Gluo (most-
common allele = 104). For abbreviations see Table 2
and Menken (1982a).

Locus Allele Unique
Fudh 97 +
G3pdh 96 +
Idh-1* 104 +
Mdh-2 106 -
L-6Pgdh* 94 +
A-6Pgdh 97 +
A-Ao* 95 +
A-Ao* 98 +
A-Gluo 103 -
L-Gluo* 104 +
L-Gluo* 106 +
Got-2 98 +
Pgm 97 -
Pgm 103 -
Esta-1* 96 +
EstB-1 104 +
A-Acph 98 -
Aph-2 94 +
Aph-2 103 -
Lap-1 107 +
Mpi 89 +
Pt-1 97 -

Y. rorellus seems to be a real phenomenon,
not caused by inadequate technical sepa-
ration of proteins. Moreover, similar elec-
trophoretic surveys in this laboratory have
found normal H levels in several other in-
sect species (Menken, 19825; Menken and
Ulenberg, 1983, 1986; Wilkinson et al.,
1983).

Bearing the above in mind, one may con-
clude that Y. rorellus is extremely mono-
morphic at loci coding for soluble proteins,
while all species closely related to Y. rorellus
show mean heterozygosity levels ranging
from 6 to 15% (Table 4). How can this low
level of polymorphism be explained?

Restricted distribution and apomixis can
be excluded as possible factors reducing
variation, because this is a common, wide-
spread species which should harbor a lot of
variation according to the theoretical con-
siderations of Kimura and Crow (1964) (see
Varvio-Aho [1981] for a practical example).
Y. rorellus has anormal sex ratio (1.11, based
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TaBLE 4. Heterozygosity levels (H) in five species closely related to Y. rorellus. Ng = number of food plants;
Np = number of populations studied; Ny = mean number of loci studied per species.

Species Np Np N, H H range
Y. evonymellus 1 3 41.3 0.1380 + 0.0123 0.1270-0.1513
Y. cagnagellus 1 7 29.0 0.1253 £ 0.0196 0.1004-0.1523
Y. mahalebellus 1 3 41.7 0.0587 + 0.0167 0.0444-0.0771
Y. malinellus 2 6 34.7 0.0809 + 0.0095 0.0704-0.0888
Y. padellus >10 9 30.1 0.1272 + 0.0149 0.1135-0.1554

on 1,214 individuals). The general fit with
Hardy-Weinberg proportions indicates an
amphimictic breeding system as well.

A severe bottleneck when Y. rorellus arose
may have caused the drop in the level of
variation (Nei et al., 1975; Chakraborty and
Nei, 1977). After a population reduction a
bimodality in / levels of different loci can
be observed (Nei et al., 1975; Berlocher,
1976). This has not been the case in Y. ro-
rellus. It seems that the founders did not
carry over genetic variation in the form of
individual heterozygosity. Most of the vari-
ation found in Y. rorellus is unique (Table
3) and probably resulted from mutations
after its original bottleneck. After a bottle-
neck, it takes more than 2N./(4N.v + 1)
generations (with N, = effective population
size and v = mutation rate/generation/lo-
cus) for the original H level to be restored.

Reliable estimates of population sizes in
Yponomeuta are not available, let alone ef-
fective population sizes. Locally, Y. rorellus
numbers can exceed 103, but population size
is known to fluctuate heavily over years
(Herrebout et al., 1976; A. M. Emmet, pers.
comm.). Moreover, population differentia-
tion and substructuring are difficult to as-
sess, as the low level of variation does not
allow the calculation of Fg; values (Wright,
1951), except in the case of G3pdh. The mean
Fgr value over three years (0.0304 = 0.0304)
indicates little differentiation among pop-
ulations, although there is a striking differ-
ence in H between populations on S. alba
and those on other Salix species (Table 1).

The time since Y. rorellus shared a com-
mon ancestor with its closest relative can
be estimated from the genetic distance (Nei,
1971) between them tobe 1.4 X 106t0 5.7 X
10¢, depending on the formula used (Thorpe,
1982; Menken, 1982a). Bottlenecks lead to
overestimates of divergence times (Chak-
raborty and Nei, 1977); the higher estimate

is probably the more reliable one (Thorpe,
1982). Because Y. rorellusis univoltine, there
have thus been several million generations
for H to have been restored. Using the crude
estimates N, = 10° and v = 1077, the num-
ber of generations required is about 1.92 X
105. A single bottleneck when Y. rorellus
arose cannot, therefore, explain sufficiently
its low H value. The difficulty of estimating
the crucial quantities of D, N,, v, and f means
that it is hard to choose among various pos-
sible explanations, but some remarks can
still be made. Thus, recurrent population-
size fluctuations (which do occur frequently
in Y. rorellus) may have kept effective pop-
ulation sizes small, preventing populations
from building up H. The absence of differ-
ential allelic fixation counts against this
scenario though: it is possible that the pres-
ent populations derived from a single recent
population of restricted size, a bottleneck
which may have been caused by a recent ice
age (some 10,000 years ago). However, con-
geners probably experienced similar bottle-
necks as they feed on plants belonging to
the same plant community (Herrebout et
al., 1976). The finding that Y. rorellus pop-
ulations from Darmstadt and Bayreuth
(West Germany) show the same dearth of
variation (Menken, unpubl.), together with
the extraordinarily simple sex-pheromone
(Lofstedt et al., 1986) and the reduced chro-
mosome number (n = 29) (Thorpe, 1929;
Gershenson, 1967) of Y. rorellus compared
with other Yponomeuta species (n = 31), all
hint at a bottleneck at the origin of this
species.

Other factors, both genetic and environ-
mental, may reinforce the low incidence of
new variation in Y. rorellus.

The number of food-plant species is an
important component of niche breadth (en-
vironmental heterogeneity). A positive cor-
relation between number of food plants and
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genetic variation has been found for Rhag-
oletis (Berlocher, 1976), but not for a num-
ber of forest lepidopterous species (Mitter
and Futuyma, 1980). In related Yponomeu-
ta species, no clear correlation between H
level and number of food plants could be
found. Y. rorellus infesting various Salix
species has by far the lowest H level; Y.
cagnagellus and Y. evonymellus (both strict-
ly monophagous), and Y. padellus (oligoph-
agous) have H levels between 10 and 15%
(Table 4). The importance of this and of
factors such as low mutation rates, trophic
stability (Levins, 1968), and effective pop-
ulation size is difficult to assess in the ab-
sence of critical data. They all remain in the
realm of conjecture.

Yponomeuta species can be hybridized
easily in the laboratory, but the monomor-
phic nature and genetic homogeneity of nat-
ural populations of Y. rorellus provide ad-
ditional evidence of the effectiveness of its
reproductive isolation from sympatric rel-
atives in the padellus complex (Menken,
19805).
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