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Abstract 
In automatic and human speech recognition alike, there is the 
unsolved problem of non-uniqueness in speech production 
because of many sources of more or less systematic 
variability (global and local context, speakers, style, 
communication channel, etc.) versus the supposed fixed 
distributional variance in template-based recognition. This 
paper concentrates on acoustic vowel recognition (neglecting 
language modeling) and various ways of extrinsic and 
intrinsic adaptive speaker normalization. We used such 
methods as discriminant analysis, Procrustes transform, 
feedforward neural nets and adaptive resonance theory 
networks. One of the problems is to optimize fast learning, 
adapting and generalizing on the basis of small amounts of 
new information, versus not forgetting acquired knowledge 
too quickly. For training and testing we used  Dutch databases 
of vowels spoken by men, women and children, plus the 
vowel segments from the American-English TIMIT database 
with 438 male and 192 female speakers. 

1. Introduction 
One of the amazing capabilities of human speech recognition 
and understanding is its robustness to all sorts of variability. 
This paper will actually concentrate on the rather limited but 
still challenging topic of vowel recognition. Even for these, 
generally high-intensity and all-voiced, speech segments the 
robustness problem holds equally well. Imagine the 
variability caused by different speakers with markedly 
different vocal-tract and vocal-cords sizes, the contextual 
variability, effects of age, speaking rate and speaking style, 
influence of the communication channel upon the spectro-
temporal characteristics of vowels, etc. Most emphasis in this 
paper will be given to between-speaker variability. A further 
limitation in this paper is our restriction to high-quality 
recordings of read speech. This still leaves as major sources 
of variability: speaker category (male, female, child) and 
individual speakers, context, stress, speaking rate and 
speaking style. Also the order in which subsequent stimuli are 
being presented (blocked per speaker or speakers mixed) for 
identification appears to be important. 

After having reviewed human vowel recognition in sect. 
2, we will study in sect. 4 how well automatic vowel 
recognition does perform if only acoustic information is 
available. This can be so-called stationary (single frame) or 
dynamic (multi-frame) information. Our limitation to acoustic 
information only indicates that language modeling plays no 
role in our present approach. In a later phase such information 
can of course always be added to improve overall 
performance. 

Unavoidably our vowel recognition scores will thus be 
rather low. However, the relative improvement from one 
condition, or one approach, to another will be more important 
to us. 

In sect. 3 we will first introduce various recognition 
approaches, such as discriminant analysis, Procrustes 
transform, feedforward neural nets and adaptive resonance 
theory networks. Contrary to most present-day speech 
recognition systems, we did not include HMM-based single-
phone or multi-phone models. Furthermore we will indicate 
how extrinsic or intrinsic speaker normalization can be 
incorporated in these techniques. Extrinsic normalization is 
considered to be based on preliminary information about the 
speaker, such as speaker-specific average vowel positions. 
Intrinsic normalization is based exclusively on vowel and 
speaker information of the momentary speech segment.  

2. Human vowel recognition 
A native speaker of the language will generally only 

make vowel recognition errors under critical conditions. This 
may have to do with sloppy pronunciation, poor signal 
conditions, totally unexpected (change in) topic of 
conversation, unknown words, etc. In the context of the 
present paper we will concentrate on one other possible 
source of poorer performance, namely the blocked versus 
mixed presentation of a series of vowel stimuli from various 
speakers. We recorded 10 male and 10 female speakers, as 
well as 10 children while pronouncing the Dutch utterance ‘V 
van pVt’, with all 12 Dutch monophthongs as V. Both V-
segments per utterance were isolated and then presented 
under various conditions to 20 listeners for identification. 
Actually in the listening experiments only half of the speakers 
(3 x 5) were used, for more details, see [12]. In the blocked 
conditions all vowel stimuli from one speaker were presented 
sequentially, whereas in the mixed conditions each 
subsequent vowel stimulus was from a different speaker.  

Table 1 summarizes the error scores, averaged over 20 
subjects, 12 vowels and 15 speakers, while distinguishing 
between mixed (M) and blocked (B) condition, for each of 8 
different experiments (for more details, see [12]). Most 
stimuli had a fixed duration of 50 ms, which precludes a 
proper distinction between long and short vowel pairs. Each 
short vowel response given to its long counterpart stimulus 
(such as /O/ for /o/) was thus considered to be a correct 
response, however, when the reverse happened this was still 
considered to be an error. The overwhelming conclusion of 
these results can only be that under the blocked condition 
listeners always performed better than under the mixed 
condition. For other interesting observations we refer to 
[12,13]. 



Table 1: Error percentages for vowel identification, averaged over subjects (20), vowels (12) and speakers 
(15 in total, or 5 per group men, women or children). Results are split for mixed (M) and blocked (B) 
presentation of the stimuli. The scores have been corrected for long/short confusions. For more details, see 
text. 

Expt. Description Averaged Men Women Children 
  M B M B M B M B 

1 full V 9.6 3.8 8.5 3.8 10.6 3.6 9.8 4.0 
2 50 ms from V 18.7 15.1 12.9 11.1 16.1 12.7 27.1 21.6 
3 50 ms from pVt 24.2 18.1 22.0 15.1 21.0 17.7 29.6 21.5 
4 50 ms, mean F0 29.0 25.8 22.6 20.8 24.9 20.7 39.3 35.9 
5 50 ms, F0=135 Hz 36.7 28.2 25.0 17.3 28.0 23.3 57.0 44.0 
6 50 ms, F0=235 Hz 36.7 29.0 36.3 28.0 26.1 22.0 47.9 37.0 
7 50 ms, F0=335 Hz 49.2 45.8 62.8 59.3 42.5 40.4 42.4 37.8 
8 50 ms, noise 34.5 26.0 30.5 19.6 25.3 21.2 47.8 37.4 

 

3. Methods for vowel recognition and for 
adaptive speaker normalization 

Most ASR-people will immediately consider Markov models 
(HMM) and/or neural nets (ANN) to be the best or perhaps 
even the only possible approach for phoneme recognition. 
However, we were not interested in the integration of such 
an acoustic recognizer into a full-fledged ASR-system. On 
the other hand we did want to have full control over number 
of vowel categories, type of parametric representation, 
dimensionality, type of training and speaker adaptation, etc. 
So, we tested and further developed a number of other 
pattern recognition procedures, that we will summarize 
below. We will also summarize the two parametric 
representations that we mainly used, namely formant 
analysis and bandfilter analysis followed by some form of 
data reduction. For many more details, see [13]. 

3.1. Parametric representation of spectral information 

The most popular vowel representation in Phonetics is a 
formant representation [1]. Undoubtedly a 3- to 5-formant 
vowel representation is highly informative, quite unique and 
highly noise-resistant. However, a fully automatic and error-
free formant analysis is still not available. Furthermore, it is 
much more a representation of the resonance characteristics 
of the speech production process, rather than a proper 
reflection of the peripheral processing in the inner ear. That 
is probably better achieved by a bandfilter representation. 
Such a representation is of a much higher dimensionality, 
that however can be reduced by applying for instance a 
principal components analysis (maximizing the amount of 
variance explained), or a discriminant analysis (maximizing 
class distinctions) or MFCC (a fourier-like decomposition of 
the envelope spectrum). As far as the available databases 
permitted, we tested both a formant representation as well a 
bandfilter representation of our vowel segments. Most 
learning models that we implemented (see sect. 3.3) have no 
explicit notion of time, but they can handle spectral vowel 
data very well, although they do not explicitly model vowel 
dynamics. However, we sometimes simulated dynamicity by 
grouping several analysis frames into one data item.  

3.2. Dutch vowel databases and American-English 
TIMIT 

In sect. 2. we already gave some information about the small 
size Dutch vowel database. It is minute compared to TIMIT, 
but its structure is optimally tuned to the needs for this 
project: it contains vowel segments from three highly 
different speaker groups (10 men, 10 women and 10 
children) under two well controlled conditions (vowels in 
isolation, and vowels  in pVt context). Furthermore, hand-
edited formant measurements are available (for average F1-
F2 positions, see Fig. 1) and bandfilter analyses can easily 
be achieved via praat [2]. 
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Figure 1: Average F1-F2 vowel positions for the 10 
male (small), 10 female (medium) and 10 children 
(large size symbols) Dutch speakers. 

Another Dutch vowel database that we used concerns 50 
male [9] and 25 female speakers [10] pronouncing Dutch 
vowels in hVt. Unfortunately the original audio recordings 
are no longer available, so we can only rely on the freely 
available formant measurements. 



Finally we extensively used the freely available TIMIT 
database. The audio recordings of 630 American English 
speakers, each pronouncing 10 sentences, are extended with 
a (hand-made) transcription and segmentation at the 
sentence, word and phoneme level. The stressed and 
unstressed vowel segments together comprise 78,374 vowel 
segments in 20 vowel categories, the subset of stressed 
vowels contains 49,562 segments. For some more details, 
see Table 2. The second author made this database 
accessible in praat [2]. 

Table 2: Number of speakers and of vowels in the 
TIMIT database, split up for male and female 
speakers and for train and test set. The so-called 
summary data contain up to 20 average vowels per 
speaker. For more details, see text. 

  Male Female Total 
 nr. speakers 326 136 438 
train nr. vowels 40,468 16,995 57,463 
 summary 6,008 2,490 8,498 
 all stressed 25,706 10,622 36,328 
 nr. speakers 112 56 192 
test nr. vowels 13,889 7,022 20,911 
 summary 2,070 1,011 3,081 
 all stressed 8,845 4,389 13,234 
 nr. speakers 438 192 630 
total nr. vowels 54,357 24,017 78,374 
 summary 8,078 3,501 11,579 
 all stressed 34,551 15,011 49,562 

3.3. Various pattern recognition procedures 

Most of the pattern recognition procedures that we applied 
are not new, but some of them are not generally considered 
to be recognition procedures, but only dimensionality 
reduction procedures. For more details than can be given in 
this conference contribution, we refer to [13]. It should also 
be mentioned that these procedures plus several data sets are 
all available within praat. 

3.3.1. Principal components analysis (PCA) 

PCA learns from unlabeled multi-variate data how to 
represent these data in an efficient way, such that subsequent 
new dimensions are found in which the variance is maximal.  
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Figure 2: Average pc1-pc2 positions with 0.5-sigma 
ellipses of the 20 American English vowels of the 326 
male speakers in the train part of the TIMIT database. 

As an example, see Fig. 2 with the average positions and 
0.5-sigma ellipses of the 20 American-English vowels for 
the 326 male speakers in the train part of the TIMIT 
database. 

3.3.2. Discriminant analysis (DA) 

Contrary to PCA, DA learns from labeled multi-variate data 
and finds subsequent dimensions for which the classification 
is maximal. The measure used for classification is the 
quotient of between-classes-variance and within-classes 
variance, hence the requirement for labeled data. In Linear 
DA (LDA) one, over all classes pooled, covariance matrix is 
used in the distance calculation. In Quadratic DA (QDA) 
class-specific covariance matrices are used in the distance 
calculation. In this case the boundaries between classes, 
when projected on a two-dimensional space, are quadratic 
curve segments, while they are straight line segments for 
LDA. 

3.3.3. Procrustes normalization 

The Procrustes transform (PT) allows for a transformation of 
one data set to match another data set as closely as possible, 
while the structure of the transformed data is preserved, thus 
leaving all relative distances between the data points intact. 
The only admissible operations are thus dilation, translation, 
rotation and reflection. 

3.3.4. Feedforwar neural nets (FNN) 

Contrary to DA, neural net models do not make any 
assumption on the distribution of the data, i.e. these do not 
have to be normally distributed. FNN’s have separate 
learning and classification phases and therefore belong to the 
class of supervised models. In the learning phase, stimuli are 
presented one-by-one and the network adapts to the 
individual stimulus. This contrasts with discriminant 
learning which is batch-oriented, i.e. a statistic like the mean 
is derived from all data taken together. The forthcoming 
thesis of Weenink [13] discusses several aspects of FNN, 
such as topology, capabilities of one-, two-, and three-layer 
nets, non-linearities, and several cost functions. 

3.3.5. Adaptive resonance theory networks (ART) 

These ART neural network models are based on the 
perception theories of Grossberg, an overview of this theory 
can be found in [3]. ART is based on unsupervised real-time 
learning. An important problem to be solved in this context 
is the stability-plasticity dilemma: how can one learn new 
things without gradually forgetting old things. A predictive 
variant of ART called CategoryART was developed by the 
second author. It is able to learn to predict a prescribed 
category given a prescribed n-dimensional input vector. 
CategoryART shows excellent performance on a benchmark 
neural network test set, the artificial two spirals problem 
[13], but much poorer performance on our real-world 
problem of recognizing overlapping vowel categories. 

4. Adaptive vowel recognition 
In this section we will present several results of applying 
vowel recognition and speaker adaptation procedures to 
various data sets. First we will present in sect. 4.1 some 



extrinsic speaker normalization methods and then in sect. 4.2 
one intrinsic method. 

4.1. Extrinsic speaker normalization 

Any extrinsic method has preliminary knowledge about the 
data of a speaker, that then can be used to transform, adapt 
or normalize the data of that speaker or the model to be 
applied before starting vowel recognition. Already in 1967, 
Pols and colleagues [8,9,10] clearly demonstrated that level 
normalizing followed by ‘centering’ the formant or band-
filter vowel data per speaker, clearly improved recognition 
performance. This centering implies that all centers of 
gravity (average position of the 12 vowels per speaker) were 
put in the origin. However, there exist several other 
normalization methods. 

4.1.1. Bias adaptation in a neural net for formant data 

Another way of extrinsic speaker normalization can be 
achieved by adapting only the bias of the hidden or the 
output layer per speaker of an already trained neural net.  

We used here for training the log-transformed formant 
data of the 50 male Dutch speakers [9]. Since these formant 
data contain no durational information, we reduced the 12 
vowel categories to 9, by combining the short-long vowel 
pairs /O-o:/, /Y-2:/, and /I-e:/ (in SAMPA notation). The 
topology of the neural net was (3, h, 9): 3 input nodes 
(log F1, log F2, log F3), h hidden nodes (varying from 3 to 
7), and 9 output nodes (the 9 Dutch vowel categories).  

Table 3: Vowel classification and bias adaptation 
performance of a neural net with topology (3, h, 9), 
trained with the grouped 50 male formant set MG50 
and tested with various other sets. For more details, 
see text. 

H Test 
set 

Test 
(%) 

Hall 
(%) 

Hind 
(%) 

Oall 
(%) 

Oind 
(%) 

3 MG10 91.7 92.5 100 95.8 98.3 
3 WG10 74.2 91.6 96.7 73.3 76.7 
3 CG10 26.7 90.8 98.3 39.1 36.7 
 Mean 64.2 91.6 98.3 69.4 70.5 
3 MG50 89.3 89.3 96.7 89.3 94.7 
3 WG25 78.3 88.0 97.3 83.3 86.7 
7 MG10 93.3 94.1 99.2 95.0 96.7 
7 WG10 71.7 82.5 85.8 77.5 81.7 
7 CG10 51.7 63.3 70.8 58.3 62.5 
 Mean 72.2 80.0 85.3 76.9 80.3 
7 MG50 93.2 93.2 98.0 93.2 94.5 
7 WG25 75.6 84.6 92.0 85.0 83.7 

 
Table 3 shows the classification and adaptation 

performance in terms of percentage vowels correct for 
various test sets, varying from the 10 male (MG10), 10 
female (WG10) and 10 children (CG10), to the 50 male 
(MG50) (that was also used for training), and the 25 female 
speakers (WG25) [10]. Test results are presented in the third 
column for 3 and 7 hidden nodes (without bias adaptation) 
and then in the subsequent columns also for bias adaptation 
of the hidden (columns 4 and 5) or the output nodes 
(columns 6 and 7). The subscript ‘all’ indicates that the 
adaptation of the biases is done for all speakers together, 

whereas the subscript ‘ind’ indicates that this is done for 
every speaker individually.  

The general tendency for the test sets (column 3) is that 
classification performance gets worse when the speaker 
category goes from men to women and then to children, 
irrespective of the number of hidden nodes. Generally, 
classification performance increases when the number of 
hidden nodes increases, for instance MG50 (89.5 -> 93.1%), 
MG10 (91.7 -> 93.3%), or CG10 ((26.7 -> 51.7%). However 
for the women speakers (WG10 and WG25) there is a slight 
decrease. When the hidden nodes are allowed to adapt 
themselves to the complete test sets, we see a remarkable 
increase in percentage correct. With a change in only 3 bias 
parameters, WG10 improves from 74.2 to 91.6%, for CG10 
the increase is even more extreme from 26.7% to 90.8%. By 
adapting the biases to each individual speaker (column Hind) 
the results get even better. The recognition scores for this 
case came rather close to 100% for all speaker categories, 
which is quite extraordinary if we realize that the training 
was performed with the data from the male speakers. The 
last two columns (bias adaptation of the output layer) show 
high scores when the speaker category of the test set equals 
the speaker category of the training set (men). The 
improvement is only small when the speaker categories 
differ. 

For these formant data, bias adaptation of the hidden 
layer works best, indicating that a simple translation of the 
hyperplanes is sufficient to guarantee proper adaptation. At 
the same time it is powerful enough even for the adaptation 
of vowels spoken by children to those spoken by men. For 
similar results while training with formant data from 25 
female speakers, see [13]. 

The results in this section are extremely encouraging, 
however, they were based on idealized formant data, 
implying a manual segmentation and manual formant 
measurements. Therefore we wanted to run these tests again, 
but this time on automatically derived bandfilter data. 
Unfortunately, the audio files of the 50 male and 25 female 
Dutch vowel data are no longer accessible to us, so we ran 
the test on the TIMIT database, which also implies 
substantially more, and more natural, data. Before presenting 
these results in sect. 4.1.3, we will first present another 
normalization procedure on these TIMIT bandfilter data, by 
using discriminant analysis. 

4.1.2. Discriminant analysis on TIMIT bandfilter data 

The bandfiltered vowel data from the TIMIT database are a 
real challenge in many respects. The database is much 
bigger (78,374 segments, see Table 2) and much more 
variable (both stressed and unstressed vowels from many 
male and female speakers in several dialects), the bandfilter 
data are automatically derived and the TIMIT data are 
widely accepted as a standard data set [4,6,7]. We used a 
filterbank with 18 filters 1 Bark wide and also 1 Bark apart, 
as implemented in praat [2,13]. The bandfilter analysis is 
performed on three frames in each vowel segment: a 20-ms 
frame at the midpoint and two frames at 25 ms before and 
after the midpoint. Because the 20 vowels did not occur 
equally often per speaker, we calculated the average 
representation for each vowel for each speaker. These 20 
average (so-called summary) vowels per speaker were the 
basis for an unbiased determination of for instance the PCA 



representation in Fig. 2 above and for the discriminant 
classifier described next. For these tests we used the 
summary data of 630 speakers, in principle this results in 
630 x 20 = 12,600 entries. However, since sometimes a 
speaker did not produce a certain vowel at all, the actual 
number was 11,579 (see Table 2). 

Table 4 shows the vowel recognition performance for 
these 18-dimensional bandfilter data of a discriminant 
classifier trained with three different summary data sets and 
tested with the same three sets. First the total set of male 
plus female data (MF-S), then the 8,078 only-male entries 
(M-S) and the 3,501 only-female entries (F-S). For instance, 
the row marked MF-S in the table reads as follows: a 
discriminant classifier trained on the whole data summary 
set (MF-S, male plus female data) shows 57.5% correct 
when tested on the same data set. It shows 63.4% correct 
when tested on the male data set only (M-S) and 44.0% 
correct on the female set only (F-S). The increase from 
57.5% for MF-S to 63.4% for M-S and the following 
decrease to 44,0% for F-S is due to the fact that MF-S 
training is biased, since that set contains many more male 
than female data (see Table 2). Having separate classifiers 
for male (M-S) and female (F-S) data, substantially 
improves the percentage correct to 66.3 and 62.4, respective-
ly. At the same time these classifiers show worse 
performance when the “other” set is tested, as the numbers 
23.3 and 25.9 show, but see sect. 4.1.5. These differences 
between the speaker groups still remain when we perform a 
speaker normalization (see below), as the numbers between 
parentheses show. 

Table 4: Percentage correct vowel scores with a 
discriminant classifier. Between parentheses the scores 
after speaker normalization. For more details see text. 

 tested with  
trained 
with 

MF-S M-S F-S Entries 

MF-S 57.5 (64.5) 63.4 (70.4) 44.0 (51.0) 11,579 
M-S 53.3 (59.6) 66.3 (73.4) 23.3 (28.0) 8,078 
F-S 37.0 (39.8) 25.9 (26.7) 62.4 (70.2) 3,501 

 

In the straightforward speaker normalization procedure 
that we have applied here, we have corrected the bandfilter 
data by the difference of the speaker’s average and the group 
average. We see that this improves the correct scores 
substantially, but that the differences between the M-S and 
F-S sets remain. 

4.1.3. Neural net bias adaptation for bandfilter data 

After having shown above the possibilities of discriminant 
analysis for vowel identification, applied to the TIMIT 
bandfilter data plus a simple form of speaker normalization, 
we want to see next what bias adaptation can achieve in a 
neural net. We were quite optimistic about that given the 
excellent result achieved in sect. 4.1.1 for formant data. 

Input data are 18-dimensional bandfilter spectra of all 
vowel segments in TIMIT. However, since we preferably 
wanted the training time for the neural nets to be short, we 
reduced the dimensionality of the input data to 9 dimensions 
by applying a principal components analysis. These first 9 
factors already comprise 97.3% of the total variance. The 
topology of the feedforward neural nets was (9, h, 20): the 

first 9 principal components as input, 1 to 9 hidden nodes, 
and the 20 American English vowel classes as output. We 
trained the neural nets (batch training with maximally 1,000 
epochs) with either male or female summary data (see Table 
2). The test data will always be independent from the train 
sets. 

Once the neural net has learned the data set, we perform 
the adaptation process as follows: 
- The data in the test set are grouped according to speaker 
identity; 
- We make a copy of the trained neural net and arrange its 
parameters in such a way that only the biases of the hidden 
or the output layer are allowed to be modified during 
adaptation. We started the minimization in the adaptation 
step with the biases as they resulted from the training phase, 
since initialization with random numbers got too often stuck 
in local minima; 
- We select the vowel spectra for a particular speaker and 
again train the neural net. However, this time only the 
selected biases are allowed to change. Since much less data 
are involved here (maximally 20 spectra) and since only a 
few bias weights have to be modified, we limited the number 
of epochs to 100; 
- We then use the neural net as a classifier for the data of the 
selected speaker and we record the fraction correct; 
- We then move on to the data of the next speaker until all 
test speakers have been processed. 

This procedure was repeated for each of the 9 different 
neural net topologies, and the whole process was repeated 
ten times. 
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Figure 2: Vowel recognition results for TIMIT bandfilter 
data with bias adaptations in a neural net. For more 
details, see text. 

Figure 2 summarizes the adaptation results. In each of 
the four panels the fraction correct vowel classification is 
displayed as a function of the number of hidden nodes. A ‘0’ 
indicates the result without speaker adaptation, the symbols 
‘1’ and ‘2’ show results for speaker adaptation of the biases 
in layer 1 and 2, the hidden and the output layer, 
respectively. With the two symbols M (men) and W 
(women) it is indicated what were the training data and what 
were the test data. Thus in parts (a) and (d) we have a 
learning task in which the train and the independent test data 
belong to the same speaker group, either MM or WW. 
Whereas in parts (b) and (c) the train and test data belong to 
different speaker groups (MW and WM). We note in all four 



panels that adaptation is effective and shows larger fractions 
correct than the baseline condition ‘0’. Contrary to the 
results with formant data (see sect. 4.1.1), this time the bias 
adaptation of the output layer ‘2’ appears to be slightly more 
effective than the adaptation of the hidden layer ‘1’. For all 
three conditions ‘0’, ‘1’ and ‘2’ the fractions correct 
gradually increase and then level off. The asymptotic scores 
for the best condition ‘2’ in the four panels are: MM 80.0%, 
MW 52.9%, WM 55.0% and WW 77.8% correct. 

Just as for formant data (see sect. 4.1.1), the bias 
adaptation model also seems to work very well for bandfilter 
spectra, especially when the adaptation is to a speaker from 
the same male or female group. There was also adaptation 
when train and test sets belonged to different speaker 
groups, but in these cases the absolute fractions correct were 
not impressive. Apparently the differences between male 
and female vowel spectra cannot be annihilated by simply 
adapting the biases, but see sect. 4.1.5. In the next section 
we will test a, potentially more powerful neural net model to 
help us to find a better speaker adaptation model. 

4.1.4. Vowel recognition with CategoryART 

We trained this CategoryART net with the male train set of 
6,008 summary vowel entries, and we used the same 9-
dimensional input data as before. The independent test set 
consist of all 13,889 male entries, see Table 2 for more 
details. The stability-plasticity dilemma (see sect. 3.3.5) was 
tackled by varying ρ and β. The vigilance parameter ρ was 
varied in 7 steps from 0.7 to 1 and the learning rate 
parameter β was varied in 5 steps form 0.05 to 1. These 35 
different parameter combinations were tested with match 
track on as well as off. When on the network artificially 
increases the vigilance level until a matching node has been 
found (or created). This actually implies that 2 x 35 different 
CategoryART’s have been trained. The tests then were 
repeated 10 times and the results averaged. The results for 
match track off are displayed in Figure 3. 
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Figure 3: Summary of the CategoryART training and 
testing results with TIMIT vowel data. For more details, 
see text. 

In panel (a) the fraction correct is displayed as a function 
of the vigilance parameter for the train set. We note a steady 
increase, leading to a correct classification of all items in the 
train set when ρ=1. Panel (b) shows the fraction correct as a 
function of the learning rate  for various vigilance levels 
labeled 1 (ρ=0.7) to 7 (ρ=1) for the train set. Apparently the 
vigilance parameter has a much larger effect on the fraction 
correct than the learning rate parameter. Panel (c) shows the 
generalizing properties of the network. The scatter plot 
shows the fraction correct for the test set versus the train set 
at the seven different vigilance levels. The plot clearly 
shows that for the first five vigilance levels the performance 
on the train set and the test set are almost equal and increase 
monotonously with vigilance level. At vigilance level 6 
where ρ=0.95, the fraction correct levels off to a value of 
roughly 0.52. The value of 0.52 seems to be the maximum 
performance on the test set. Panel (d) shows the number of 
committed nodes as a function of the fraction correct for 
different values of the vigilance parameter. We have left out 
the 7th level since the number of committed nodes for ρ=1 
equals the number of items in the train set: 6,008. 

When we compare these fractions correct with the 
numbers displayed in Table 4 for the discriminant classifier, 
we must conclude that the generalization capabilities of the 
exemplar-based CategoryART network are not too 
impressive with this kind of (overlapping) data. For 
example, the discriminant classifier scores 66.3% correct on 
the (summary) test set which is clearly better than our 52%. 
Also the feedfoward neural network shows better results as 
was shown by the ‘0’ symbols in Fig. 2 when the number of 
hidden nodes exceeds 4 or 5.  

4.1.5. Procrustes normalization 

In Table 4 we showed identification results for a discrimi-
nant classifier that were quite good within one type of 
speakers (either male or female), but much less so for 
differing speaker groups (M-S vs. F-S and F-S vs. M-S). By 
using the Procrustes transform to optimally transform the 
average 18-dimensional female data to the male data and 
then applying that transform to all individual female data, 
we can improve the 23.3% score (for the condition: trained 
with M-S and tested with F-S) to 58.3% and similarly for 
transforming the average 9-dimensional female male data to 
the male data, the score improves from 25.9% score to 
57.3%. 

4.2. Intrinsic speaker normalization; static/dynamic data 

Various extrinsic speaker normalization procedures have 
been presented above. However, always information about 
the whole vowel set of one or more speakers was required 
for that. A truly successful and more human-like adaptation 
method should have to adapt faster without requiring at least 
one item for each vowel class. One solution could be to 
make local differences have global consequences. We have 
implemented such a model in the following way: 
- we start with a trained discriminant analyzer and suppose 
that an average reference vowel position is available for 
each vowel; 
- then an unknown vowel is presented to the classifier and 
the distance to each reference vowel is determined. 

 



Table 5: Static (one central frame) and dynamic (3 frames) discriminant classification of the TIMIT vowels 
with 18-dimensional bandfilter data. Percentages correct are presented for various data sets and various train 
and test conditions. The numbers between parentheses concern scores after a simple form of speaker 
normalization. For more details, see text. 

   tested with 
trained with Static Dynamic 

Data # segments type Train data Test data Train data Test data 
40,468 M 47.3 (50.3) 48.4 (50.6) 56.0 (58.4) 55.7 (58.1) All 
16,995 F 46.4 (49.3) 46.1 (48.6) 56.3 (59.0) 54.7 (57.1) 
6,008 M-S 65.9 (76.6) 66.8 (77.3) 84.4 (89.9) 83.6 (89.0) All Summary 
2,490 F-S 62.0 (73.9) 61.2 (73.6) 83.8 (88.7) 79.7 (86.6) 
25,706 M + 49.8 (53.0) 50.9 (53.7) 60.7 (63.1) 60.0 (62.7) All Stressed (+) 
10,622 F + 49.0 (51.9) 48.9 (51.3) 60.7 (63.5) 59.4 (62.3) 

 
- the shortest distance is determined and tested against a 
tolerance criterion, because we want to make sure that the 
unknown is “close enough” to the reference. 
- If the “close enough” criterion is satisfied, all references 
are moved parallel to the direction of the difference vector, 
otherwise no changes are made. 

Before applying this model, we present first in Table 5 
the basic results of discriminant classification for various 
data sets. On the left-hand side the training data are 
specified, whereas on the right-hand side the results for 
various test sets are given. We distinguish (see also Table 2) 
‘all data’ (train set 57,463 segments; test set 20,911), ‘all 
summary data’ (train 8,498; test 3,081) and ‘all stressed 
vowel data’ (train 36,328; test 13,234), each time for male 
and female speakers separately. Furthermore, we distinguish 
between ‘static’ and ‘dynamic’, indicating that either one 
central frame or three frames per vowel segment are used 
(see also sect. 4.1.2). Finally, the numbers between 
parentheses concern correct scores after speaker normaliza-
tion. This is the same straightforward procedure as applied 
before in sect. 4.1.2, namely correcting the individual 
bandfilter data by the difference of the speaker’s average 
and the (male or female) group average. 

For instance the last row in this table should thus be read 
in the following way: A discriminant classifier trained with 
the 10,622 stressed vowels of 136 female speakers in the 
train part of TIMIT shows a correct score of 49.0% when 
tested with the same data set, and shows a correct score of 
48.9% when tested with the 4,389 stressed vowels of 56 
female speakers in the test part. When three frames, rather 
than one frame of bandfilter data are used for training and 
testing, these scores are 60.7 and 59.4%, respectively. The 
higher scores between parentheses concern the above 
mentioned simple form of speaker normalization. It is 
furthermore clear that the stressed vowels alone have a 
consistently higher score than all vowels, even though ‘word 
stress’ is based on the normative transcription in the TIMIT 
pronunciation lexicon, rather than on actually realized word 
stress. 

 
If we now apply the earlier described more human-like 
adaptive procedure for speaker normalization, we achieve 
the results as presented for the male summary data in 
Table 6. 

The parameter α defines how much the current reference 
positions will move. With α=0 there is no change, so this 

condition then is identical to the male summary data 
condition (66.8%) in Table 5. Whereas for α=1 the 
difference between the reference and the unknown input is 
completely corrected for, however, this can easily lead to an 
unstable system that jumps from one input to the next input. 
The distinction between blocked and mixed has to do with 
the order in which the data are presented to the classifier: 
either all vowel data from one speaker sequentially 
(blocked) or each new vowel item from a different speaker 
(mixed). Clearly these are very challenging conditions. 
Speaker normalization can only rely one (unlabeled) item at 
a time. We see that in the blocked condition some adaptation 
is effective, with a maximum score of 69.7% correct for 
α=0.2. However, in the mixed condition no real adaptation 
appears to be possible. Still, there is always a difference 
between the scores under both conditions, thus reflecting the 
same trend as in human vowel recognition (as described in 
sect. 2). 

Table 6: Vowel classification scores for the 18-dimen-
sional male bandfilter summary data from TIMIT for a 
blocked or mixed presentation of the data. Test data (112 
males) are independent of the train data (326 speakers). 
Each cell in the column mixed is the average of 10 
different randomized test sets. 

α Blocked Mixed Differenc
e 

0.0 66.8 66.8 0.0 
0.1 69.0 66.1 2.8 
0.15 69.0 64.8 4.2 
0.2 69.7 64.9 4.8 
0.3 68.9 64.5 4.3 
0.4 67.8 62.8 5.0 
1.0 59.0 52.7 6.3 

5. Discussion and conclusions 
By systematically analyzing various vowel data sets 

(Dutch 10 male, 10 female, 10 children; Dutch 50 male and 
25 female; American English male and female vowel 
segments from TIMIT), with several different 
parameterizations (formant data and 18- and 9-dimensional 
bandfilter data), with several pattern recognition procedures 
(discriminant analysis, feedforward neural nets, and adaptive 
resonance theory networks) and several extrinsic speaker 
normalization procedures (centering, neural net bias 



adaptation, CategoryART, and Procrustes normalization) 
and one intrinsic one (gradual change in references), we 
have learned a lot about the possibilities of acoustic vowel 
recognition. We were even able to imitate some human 
vowel recognition behavior, in terms of the distinction 
between scores for a blocked and a mixed condition. It also 
became abundantly clear that a straightforward comparison 
of percentage correct scores is not so simple, because many 
dependencies exist. 

For instance, if hand-corrected formant data are 
available, the correct scores can be very high and bias 
adaptation in a neural net can be very efficient. However, if 
we have to work with more realistic, and automatically 
derivable, bandfilter data, all scores are substantially lower. 
A discriminant classifier (that however requires labeled data) 
generally performs very well, see the older data of Pols and 
colleagues [8,9,10], as well as Table 4 for our 9-dimensional 
bandfilter data and Table 5 for our 18-dimensional bandfilter 
data. 

Neural net bias adaptation is another interesting 
approach, because it is appealing as a human analagon: once 
the network is trained, only small adaptations of a small set 
of bias parameters suffices to adapt to a new speaker. 
However, the substantial differences between male and 
female bandfilter data cannot be overcome with this bias 
adaptation alone. For that a Procrustes transform appears to 
be a better solution (see sect. 4.1.5). 

Conceptually the idea behind ART is attractive but its 
performance appears to be rather poor for our vowel data in 
which the categories are partly overlapping (see sect. 4.1.4). 

The intrinsic speaker normalization procedure that we 
developed, and that is perceptually relevant and is based on 
the concept of local differences having global consequences, 
does perform according to expectations  (see Table 6) but 
the benefits compared to discriminant analysis perse, are 
small and even negative in the mixed condition. 

Our analyses also showed that frequently it was 
advantageous to train with the so-called summary data, 
implying that some of the within-speaker variability as well 
as the unbalanced vowel distribution of frequency of 
occurrence, was taken out of the data by using average 
positions per vowel. 

It was also shown in sect. 4.2 that, using a simplified 
form of dynamic information (three frames rather than one 
central frame per vowel segment), significantly improved 
vowel recognition performance. Using even more detailed 
spectro-temporal information will probably improve further 
the performance, however, not all pattern recognition 
procedures can easily handle temporal data. 

It should not worry the reader that the percentage correct 
scores for the TIMIT data that we present, are generally 
lower than found elsewhere in the literature. This is fully 
based on the fact that we limited ourselves mainly to static 
acoustic information only, thus neglecting context and 
language modeling which will certainly improve overall 
performance. 
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