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Abstract 

In this paper we develop a framework for optimal investment decisions for insurance companies under un-
hedgeable risk. The perspective that we choose is from an insurance company that tries to maximise the 
stream of dividends paid to its shareholders. The policy instruments that the company has are the dividend 
policy and the investment policy. The insurance company can continue to pay dividends until bankruptcy, 
and hence the time of bankruptcy is also endogenously controlled by the dividend and investment policies. 
Using stochastic control theory, we derive simultaneously the optimal investment policy and the optimal 
dividend policy, taking the insurance risks to be given. 
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1. Introduction 
Insurance companies are faced with risks of many types. These include financial risks such as 
risks inherent in the investment process, but also non-financial risks such as insurance claims. 
While financial risks are generally assumed to be hedgeable, which means that such risks can be 
replicated in the financial markets, insurance claims are generally considered to be unhedgeable 
as no replicating portfolio exists for most “insurance events”. 
  
In this paper we aim to develop a framework for optimal investment decisions for insurance 
companies under sources of un-hedgeable risks. The perspective that we choose is from an 
insurance company that tries to maximise the stream of dividends paid to its shareholders. The 
policy instruments that the company has to this end are the dividend policy and the investment 
policy. The insurance company can continue to pay dividends until bankruptcy, and hence the 
time of bankruptcy is also endogenously controlled by the dividend and investment policies. 
 
The problem of optimizing dividends payout schemes has a long history in actuarial mathematics; 
see, for example, the early contributions by De Finetti (1957), Borch (1967, 1969), Bühlmann 
(1970) and Gerber (1972, 1979). More recently the study of the problem has received an 
important impulse by the application of controlled diffusion techniques; see for example Paulsen 
and Gjessing (1997) and the overview paper by Taksar (2000). 
 
The starting point for this paper is the results obtained in the papers by Asmussen & Taksar 
(1997; AT in the following), Højgaard & Taksar (1999; HT99 in the following) and Højgaard & 
Taksar (2004; HT04 in the following). Especially the results of HT99 and HT04 are quite 
interesting. In HT99, they analyse the case where an insurance company finds both an optimal 
dividend policy and an optimal level of reinsurance. In HT04, they consider the case where also 
the investment risk can be controlled.  
 
Unlike the HT99 and HT04 papers, which focus primarily on the mathematical derivation of the 
optimal policies, we want to investigate in our paper what the economic significance is of the 
results we find. In order to do this, we specify explicitly the asset and liability processes and we 
distinguish carefully between hedgeable risks (i.e. risks that are traded in financial markets) and 
non-hedgeable risks (i.e. insurance risks that cannot be traded in financial markets). Unlike HT04 
who only consider a 1-dimensional case, we solve the general N-dimensional case for the space 
of investment opportunities. Given this setup, we can use our results to infer what price should be 
charged for the non-hedgeable risks such that the value of the insurance company is unchanged. 
We also derive what the probability distribution of the time of bankruptcy is, and we illustrate 
how this information can be used to calibrate the model such that the implied default probabilities 
are consistent with observed default probabilities for insurance companies. 
 
The outline of this paper is as follows: In Section 2 we introduce our framework. In Section 3 we 
derive the optimal policies and in Section 4 we illustrate the derived solution by means of an 
example. Section 5 discusses the pricing of insurance and Section 6 studies the time of 
bankruptcy. Finally, Section 7 concludes.  
 



2. Stylised insurance company 
We fix a probability space (  with a filtration ), ,Ω  ( ) 0t≥

, which we assume to satisfy the 
usual assumptions (completed and right-continuous). . This filtration represents the flow of 
information on which decisions are based. All Brownian Motions that we consider below are 
defined on  and adapted to this filtration.  ( , ,Ω )
 
Unlike the papers of AT and HT who postulate directly a stochastic process for the surplus (or 
“the reserves”), we will start by postulating the dynamics of liabilities and assets separately. 
 
The process for the liabilities Lt is given by 
 
(1)  ( ) MMIIMBt dWdWdtmdL σσμμ ++−+= . 
 
We assume that the liability process is driven by two sources of risk: the diffusion term σIdWI 
which represents the insurance risks, and the diffusion term σMdWM which represents financial 
market risk component of the liabilities. Many types of insurance liabilities like unit-linked or 
participating contracts have exposure to financial market risk. We will make the assumption that 
the Brownian Motions WM and WI are independent. The drift term consists of two parts: μB+μM 
which represents the return of the financial market risks that the policyholders expect minus a 
margin m that the insurance company has built into its process to cover the insurance risks and 
management fees. We assume that there is competition in the insurance market and that m is 
exogenously given and not a control variable for the insurance company. Please note that the 
constants μ, m and σ are absolute quantities and not “percentages”. 
 
The assets At of the insurance company are given by the following stochastic differential 
equation: 
 
(2)  ( ) ( ) AAA WΣα'μα' ddtdA Bt ⋅++= 2

1

μ . 
 
We assume that the assets of the insurance company can only be invested in financial markets. 
However, the insurance company can choose from a universe of N investment categories. The 
(Nx1)-vector μA denotes the vector of expected excess investment returns over the risk-free rate, 
the (NxN)-matrix ΣA denotes the covariance matrix of the investment returns (which implies that 
ΣA has to be symmetric and positive semi-definite) and WA is an N-dimensional Brownian 
Motion. The vector α denotes the amounts that are invested in each of the N investment 
categories. Note that when α=0 then the insurance company invests only in risk-free assets and 
earns the risk-free bond-return μBdt with certainty. 
 
The surplus St of the insurance company is given by the difference in value between assets and 
liabilities. The insurance company remains solvent as long as St>0. The surplus process is given 
by: 
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In equation (3) we have stacked the N+1 sources of financial market risk together in an (N+1)-
vector, with an (N+1)x(N+1) covariance matrix. The (Nx1)-vector σAM denotes the covariance of 
each asset category with the insurance liability portfolio.  
 
When the financial risk of the insurance liabilities is spanned by the N investment opportunities, 
then the vector σAM is collinear with the matrix ΣA and as a consequence the (N+1)x(N+1) 
covariance matrix is rank-deficient. In this case it is possible to choose a vector α such that all 
financial risk drivers are eliminated. This is known as the replicating portfolio. In this case the 
surplus process reduces to IIt dWmdtdS σ−= . This means that when the insurance company 
decides to invest in the replicating portfolio, the surplus process is driven by pure insurance risks 
only. The optimal dividend policy for this special case is investigated in the AT paper.  
 
If the insurance company decides to deviate from the replicating portfolio then the surplus 
process may benefit from additional excess returns, but at the cost of increased risk. It is this 
risk/return trade-off which is the subject of so-called ALM (Asset-Liability Management) 
models. 
 
To lighten the notation for the analysis the surplus process, we replace the N+2 Brownian 
Motions by a single diffusion term which has the same law: 
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[As a final point, we note that we will assume that (due to risk management or regulatory 
restrictions) there is an upper bound M on the investment position, that is, β≤M.  
AP1: we need a different constraint for this as α is now a vector…] 
 
Remark 2.1 
Although geometric (rather than arithmetic) specifications of the liability and asset processes (1) 
and (2) would perhaps be more appropriate, we consider arithmetic specifications for analytical 
tractability reasons. Also note that for a typical insurance companies the surplus S is a factor 10 
or 20 smaller that the total asset portfolio A (or the liability portfolio L). Therefore an arithmetic 
specification of the resulting surplus process St seems a reasonable approximation. 



3. Optimal policy 
After HT we seek the optimal solution for the following dynamic programming problem: 
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where Dt denotes the cumulative dividend payout process, and τ denotes the time of bankruptcy 
defined as τ  = inf{t: St=0}, x denotes the initial surplus of the insurance company, and c denotes 
the (subjective) discount rate that shareholders use to discount future dividends. In our search for 
the optimal dividend and optimal investment policies we restrict ourselves to cumulative 
dividend payout processes that are adapted to ( ) 0t≥

, that are non-decreasing and right-
continuous and satisfy D0-=0.   
 
Remark 3.1 
When deriving the optimal dividend and optimal investment policies it is assumed that the 
management of the insurance company acts in the shareholders’ interests. We thus refrain from 
possible agency problems between shareholders and management. 
 
Remark 3.2 
In (5), the expected discounted dividend stream paid to the shareholders is maximised, implicitly 
assuming that shareholders admit a linear utility function. In particular the risk discount rate c of 
the shareholders does not react to change in riskiness of the balance sheet of the insurance 
company. The dynamic programming problem becomes much more complex in case one would 
consider non-linear utility functions; see Hubalek & Schachermayer (2004) or Thonhauser and 
Albrecher (2007) for extensions of the 1-dimensional case in this direction. 
 
Remark 3.3 
As is usual in ruin models, it is assumed that bankruptcy takes place when St=0 for the first time, 
even though in reality the insurance company may decide to raise external funds at (or prior to) 
such occasion. The decision whether or not to raise external funds would be based on a trade off 
between incurring high costs of external financing while realizing future profits on the one hand 
and not incurring high costs of external financing and not realizing future profits on the other 
hand. We refrain from making such trade off and assume that bankruptcy takes place with 
certainty as soon as St=0 for the first time.  
 
Following HT, we define a value function V(x)=E ∫ e-ctdDt, which is the expected value of the 
discounted dividends given the initial level of surplus x. Note that from this definition it follows 
that V(0)=0, because when x=0 the insurance company immediately goes bankrupt and no 
dividends will ever be paid to the shareholders. 



 
Using similar arguments as HT we find that V(x) satisfies the following HJB equation: 
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To construct a solution to (6), we assume there are three regions: 

• 0<x<u0, where we follow a “dynamic” ALM policy with [β<M], and no dividends are 
paid out;  

• u0<x<u1, where we follow a “maximum risk” strategy with [β=M], and no dividends are 
paid out; 

• u1<x, where we pay out immediately the excess surplus x-u1 as dividends to the 
shareholders. 

Such a dividend strategy is called a barrier strategy.  
 
Remark 3.4 
Using barrier strategy by insurance companies in the real world. 
 
Let us start with the region 0<x<u0. In this region the function V(x) must satisfy 
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The expression on the left-hand side is maximised for 
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We can interpret optimal portfolio α* as follows: the optimal portfolio consists of two parts. The 
term (ΣA)-1 σAM is the hedge portfolio that replicates as much of the (financial) liability risks as 
possible. Note that this term does not depend on the level of the surplus x. The term (ΣA)-1 μA is 
the mean-variance optimal “Merton portfolio”. The exposure to the Merton portfolio depends 
only on the level of the surplus x through the quantity -V’(x)/V’’(x). Hence, we find that, like in 
the CAPM, we get a two-fund separation solution for the optimal portfolio, and therefore the 
optimal choice of N assets can be reduced to a 1-dimensional problem.  
 
Remark 3.5 
The result we have found has important consequences for the ALM-process for an insurance 
company. First, the insurance company can determine the optimal hedge portfolio (ΣA)-1 σAM. 
This is a fixed portfolio that does not depend on the surplus position of insurance company, but is 
determined by the nature of the liability portfolio. Second, the insurance company can determine 



the mean-variance optimal portfolio (ΣA)-1 μA. This is the “speculative” portfolio that the 
insurance company uses to optimise its expected asset returns. The composition of this portfolio 
is given exogenously, only the amount invested in this portfolio depends on the surplus x. The 
variance σU

2 of the un-hedgeable risk consists of two components: ( ) 22
IM σσ +− −

AM
1

AAM σΣ'σ , the 
first term is the market risk of the portfolio of insurance liabilities that cannot be hedged by the 
optimal hedge portfolio, the second term is the variance σI

2 of the (non-traded) insurance risks. It 
is the variance σU

2 that determines the mean-variance trade-off in the ALM-process that the 
insurance company has to make. 
 
If we define β(x) = -V’(x)/V’’(x) in expression (8) and substitute into (7) we obtain 
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We could substitute the definition for β(x) back into equation (7R) and obtain a differential 
equation for V(x). Unfortunately, the resulting non-linear differential equation is very difficult to 
solve directly. We therefore proceed along a different path and solve for β(x).  
 
Substituting V’’(x) =  -V’(x)/β(x) into (7R) leads to 
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Taking the derivative with respect to x of this equation leads to 
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Substituting V’’(x) = -V’(x)/β(x) into (10) leads to: 
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As the value function V is an increasing function, we have that V´ is strictly positive for all x. 
Hence, we are allowed to divide (11) by V’ and we obtain a differential equation for β(x): 
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This is a first order differential equation of the form 
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We can express the solution for (13) in the form: 
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The integration constant Cβ can be found from setting x=0 in equation (9). 
 
The integral on the right-hand side of (14) is trivial and is equal to x. The integral on the left-hand 
side of (14) is a rational function in β which can be integrated analytically. We find the following 
expression for β(x): 
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If we set x=0 in equation (9), use V(0)=0 and divide by V’(0), we obtain 
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If we multiply by β(0) we obtain a quadratic equation. Selecting the positive root gives the 
following expression for β(0): 
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If we substitute this expression for β(0) into (15) for x=0 we can solve for Cβ. 
 
Note, that (15) is the expression for the inverse function of β(x). Let us denote this inverse 
function by x(β). Although we do not obtain an explicit expression for β(x), the implicit equation 
(15) is quite useful. First, the inverse function x(β) is strictly increasing. Hence β(x) itself is also 
strictly increasing in x. So for increasing levels of the surplus x the optimal investment policy for 
the insurance company is to hold an ever increasing amount of market risk until the maximum 
level M is reached. The surplus level u0 is defined as the first point where β reaches the maximum 
level M. If we substitute β=M into (15) we obtain directly an analytical expression for u0. 
 



Let us now seek a solution for V(x). The definition β(x) = -V’(x)/V’’(x) gives a differential 
equation for V(x). If we take the reciprocal on both sides and integrate we obtain 
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The integral on the right-hand side evaluates easily to lnV’(x). The left-hand integral is slightly 
more complicated since we do not know an explicit expression for β(x). We can evaluate the 
integral if we perform a change of variable from dx to dβ. Using the Change of Variables 
Theorem dx = (dx/dβ)dβ = 1/(dβ/dx) dβ, we can substitute the expression for β’(x) given in 
equation (14) into the left-hand side of equation (17a): 
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The left-hand side is a rational function in β that can be integrated explicitly. After taking the 
exponential we obtain: 
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If we substitute this result for V’(x) into equation (9) we obtain the following expression for V(x): 
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where C0

* denotes an arbitrary constant that will be solved later. 
 
 



On the interval u0<x<u1, the insurance company will follow the “maximum risk” strategy by 
holding β=M. The value function V1(x) is therefore a solution of the equation  
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The solution to this second order differential equation on the interval u0<x<u1 is given by 
 

(19) ( )22
2

)(
2

)(
11 21with)( 00

MMMMMM
MM

M
uxux ceCeCxV MM σμμ

σ
γγγ +±−=+= ±

−− −+ . 

 
At the point x=u0, we know β(x)=M=- (V’/V’’). We also know that V(u0)=V1(u0). These two 
pieces of information are sufficient to determine C1 and C2: 
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The function V1(x) is therefore given by 
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We can now solve for the upper limit u1. From equation (6) follows that for x>u1, the insurance 
immediately pays out the excess surplus x-u1 as dividends. Hence, the function V(x) follows the 
equation V’(x)=1. The solution is given by V2(x)=C3+x. The point u1 is the point where the 
function V1(x) makes a “smooth” contact with the function V2. This means that the first and 
second derivatives should match at the point u1. 
 
Since V2(x) is a straight line, its second derivative is 0. We can solve u1 from the equation 
V1”(u1)=0. This leads to: 
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Given this value for u1, we can now solve the constant V(u0) from the condition V1’(u1)=1. This 
leads to 
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Finally, we solve for C3 from V1(u1)-u1=C3.  
 



4. Example 
Let us illustrate the derived solution with an example. The parameter specification is set as 
follows: 
 
Table 4.1 
Parameter Value  
μM 5.25 (million) 
σM 25.4 (million) 
m 0.525 (million) 
σI 4.60 (million) 
M 25.0% 
c 5.00% 
 
 
Figure 4.1 displays the optimal investment policy as a function of the initial surplus.  
 



Figure 4.1  Optimal investment policy as a function of the initial surplus: β(x) 
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Next, Figure 4.2 displays the expected value of the discounted dividends under the optimal 
investment and optimal dividend policy as a function of the initial surplus, i.e., the value 
function.   
 
Figure 4.2 Value function: V(x)  
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5. The pricing of insurance 
The value function turns out to be decreasing in σI. The sensitivity of the value function with 
respect to σI can be interpreted as the marginal price of insurance risk. The marginal price of 
insurance risk is such that the shareholders are indifferent between bearing an additional unit of 
insurance risk (as measured by σI) while receiving an immediate dividend payout equal to the 
marginal price of insurance risk, and not bearing the additional unit of insurance risk.  
 
Alternatively, to price insurance risk one may determine the increase of the margin m that offsets 
the decrease of the value function when an additional unit of insurance risk is borne. The increase 
of the margin m can be interpreted as the annual equivalent utility premium for one additional 
unit of insurance risk. 
 

5.1 The example revisited 
Let us consider again the example of Section 4. Figure 5.1 displays the sensitivity of the value 
function with respect to σI. 
 
Figure 5.1 Sensitivity of the value function with respect to σI 
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6. The time of bankruptcy 
In this section we study the distribution of the time of bankruptcy, τ. We denote by  
ϕ (c,x)=E e-cτ, c>0, the Laplace transform of (the distribution function of) τ. It can be interpreted 
as the expected value of a payment 1 at the time of bankruptcy discounted by the dividend 
discount rate. 
 
The function φ(c, x) is a solution of the ode (7R) in the region 0<x<u0, and of the ode (18) in the 
region u0<x<u1.  
 
Because the optimal dividend policy is a barrier strategy, the (modified) surplus process is a 
Brownian Motion with a reflecting barrier (at the level u1 where the excess surplus is paid out as 
dividends to the shareholders) and an absorbing barrier (at the level 0 at which bankruptcy takes 
place). Hence, the function φ(c, x) satisfies the following boundary conditions: 
 
(24)  φ(c, 0) = 1 
 
(25)  d/dx φ(c, x=u1) = 0 
 

6.1 Solution for φ in the region 0<x<u0 
In the region 0<x<u0, the function V(x) given in (17d) is a particular solution to the ode (7R). The 
general solution for a linear second-order ode is given by the sum of two linearly independent 
functions. Given that we know one solution, the other solution V2(x) may be found using the so-
called reduction of order method (see, for example, Weisstein (2004)). 
 
Let us rewrite the ode (7R) as 
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The second solution V2(x) is now given by 
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We will proceed to build this solution in steps. The calculation is not straightforward as we only 
know the inverse function of β(x) given in equation (15). 



 
First, we determine the integral of P(x) as follows: 
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where in the third line we have substituted the expression for β’(x) given in (12). 
 
The resulting integral can be evaluated explicitly and we obtain  
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Substituting (17d) and (29) into equation (27) and simplifying yields: 
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When we substitute the expression for V(x) given in (17d) we obtain finally: 
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Please note that in the derivation for V2 we have ignored any multiplicative constants, as they are 
irrelevant for obtaining a linearly independent solution. Also note that V2(x) we find here is equal 
(up to a constant) to V’(x) given in (17c). 
 
With this result, we can now derive an expression for φ(c, x) as 
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where F1 and F2 are constant that have to be solved from the boundary conditions imposed on φ. 
 
The lower boundary condition is given by (24) and is imposed for x=0. Note that at x=0 we have 
V(x)=0, and hence we can solve for F2. 
 

6.2 Solution for φ in the region u0<x<u1 
In the region u0<x<u1 the function φ(c,x) is given by the ode (18). This ode has a general solution 
given by (see also equation (19)) 
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with ( )M M cγ γ± ±=  as defined in (19).  
 
At the point x=u0, we know β(u0)=M. Furthermore, at x=u0, the function φ must satisfy a “smooth 
pasting” condition. This implies that φ(u0)=φ1(u0) and that φ’(u0)=φ’1(u0). These two pieces of 
information are sufficient to determine G1 and G2: 
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The solution for G1 and G2 is linear in the remaining free constant F1. 
 
Using the upper boundary condition d/dx φ(c, x=u1) = 0, we can determine F1. This is a linear 
equation in F1 that is straightforward to solve, but the resulting expression is rather long and is 
omitted here for brevity. 
 

6.3 Results for τ 
The distribution function of τ can be obtained by inverting the Laplace transform φ(c,x). Given 
the complicated expressions we find, this inversion has to be done numerically. 
 



Furthermore, given our analytical solution for φ(c,x) we can derive an analytical expression for 
the expected time to default for different levels of surplus x via E[τ(x)] = d/dc φ(c=0,x), for both 
the intervals 0<x<u0 and u0<x< u1. 
 
[Mathematica can do this calculation, but will lead to very messy expressions…] 
 
The distribution function of τ can be useful in calibrating the model. In particular, it may be used 
to infer the dividend discount rate, c. Suppose that the insurance company aims at a probability of 
bankruptcy q over a 1-year time horizon, i.e., [ 1] qτ ≤ = . Then, using the distribution function 
of τ (which implicitly depends on c), one can solve for the value of c for which, under the 
corresponding optimal investment and optimal dividend policy, the probability of bankruptcy 
aimed at is achieved.  
 

6.1 Example revisited once again 
Let us consider again the example of Section 4. Figure 6.1 displays the expected time of 
bankruptcy under the optimal investment and optimal dividend policy as a function of the initial 
surplus. 
 



Figure 6.1 Expected time of bankruptcy as a function of the initial surplus   
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7. Conclusion 
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