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1. Een brug tussen de wetenschap en de praktijk ontstaat door het 

beantwoorden van elkaars vragen, niet door het overnemen van 
elkaars gebruiken. 

Hoofdstuk 1 van dit proefschrift. 
 
 
 

2. Denk in problemen, niet in oplossingen. Voor procesverbetering is 
het een valkuil om te snel in oplossingen te denken, en is het 
belangrijk eerst een goede beschrijving en analyse te maken van de 
problemen. 

Hoofdstuk 2 van dit proefschrift. 
 
 
 

3. Een klant die verwacht lang te moeten wachten, kan beter wachten 
met afspreken. 

Hoofdstuk 3 van dit proefschrift. 
 
 
 

4. Een benaderingsformule voor de procesprestatie die alleen door 
simulatie geëvalueerd kan worden, mist haar doel. 

Hoofdstuk 4 van dit proefschrift 
 
 
 

5. Het meten van procesindicatoren is te zien als een proces, en dient 
daarom ook als zodanig georganiseerd te worden. 

Hoofdstuk 6 van dit proefschrift 
 
 
 
 
 
 
 

 
 
6. In het opleiden van professionals in het gebruik van methoden en 

technieken voor procesverbetering moet men streven naar 
realistische en situationele voorbeelden en oefeningen. 

J. de Mast and B.P.H. Kemper (2009), “Principles of Exploratory Data 
Analysis in Problem Solving: What Can We Learn from a Well-Known 

Case?”, Quality Engineering 21(4): 366-375 
 
 

7. De keuze tussen Lean, Six Sigma, de Theory of Constraints of een 
andere methodiek dient gemaakt te worden op basis van de 
problematiek die men wil aanpakken. 

 
 
8. Verbeterprojecten moeten beginnen met het identificeren en 

afbakenen van het proces dat verbeterd wordt. Projectleiders die 
aangeven dat hun project geen proces betreft, zitten vaak in een 
leerproces. 

R.D. Snee (1990), “Statistical Thinking and Its Contribution to Total 
Quality”, The American Statistician 44(2): 116-121 

 
9. Het is productiever na te denken in welke opzichten patiënten en 

zorgprocessen lijken op auto’s en de productie ervan, dan zich blind 
te blijven staren op het onmiskenbare en belangrijke feit dat ze 
verschillen. 

 
 
10. Als projectleider of onderzoeker dien je jezelf voortdurend terug te 

fluiten: vaar je op intuïtie, grijp dan terug op de theorie; zijn velen 
enthousiast, duik dan weer de diepte in; ben je compleet verdwaald, 
werk dan rustig door; en bovenal, luister niet naar alle adviezen, 
maar vraag er wel om en beschouw ze kritisch. 
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It's much more interesting to live not knowing than to have answers which might be wrong.

Richard Feynman

De oplossing is het probleem niet.

Theo Maassen
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1 Process Flow Improvement in
Services and Healthcare

1.1 The context: management and improvement of operations i n
services and healthcare

An organization's mastery of the management and improvement of its processes is an
important driver for its performance and competitiveness. The p ractice and study of
process management and improvement have strong roots in manufa cturing. In this
thesis, however, I focus on processes in the service industries and healthcare, in which
one encounters a cluster of problems related to issues such as:

� Ensuring acceptable lead times (the time from order to delivery).

� Matching capacity (in man-hours or equipment, for instance) to work load.

� Minimizing productivity losses due to rework.

I am not referring here to problems which are solved by introduci ng exogenous reme-
dies, such as replacing a manual process with a (partly) automated one. Rather, I am
talking about dealing with the abovementioned issues by optimizing the process itself.
The reader may think of improvement actions such as:

� Increasing capacity for some tasks, reducing capacity at others.

� Implementing changes in queue management, such as replacing prior itization
rules or replacing a `push' discipline with a `pull' discipline.

� Modifying or standardizing routing through the process.

� Reducing rework and iterations in the process.

� Replacing batch-wise production with a single-piece �ow discip line.

I will refer to this cluster of managerial endeavors as process �o w improvement. The
objectives of this thesis are to develop methods and techniques that help practitioners
solving various classes of process �ow improvement issues, to p rovide experts and
consultants with knowledge on process �ow management and improv ement, and to
support the debate on management and organization theory from the vi ewpoint of
design sciences.
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Process Flow Improvement

This thesis presents results of a research project that I started with my supervisors
at the Institute of Business and Industrial Statistics several years ago. Regarding the
choice of the subject of our research project, we carefully looked at current develop-
ments in the �elds in which the institute acts, that is, business process management
and improvement.

In this �rst chapter, I describe and demarcate the subject of our study , and explore
the scienti�c traditions in which such a study could be carried out. I als o describe the
study's background, and de�ne its objectives. An outline of the thesis concludes the
chapter.

1.2 The scienti c study of process !ow improvement

This section offers an exploration of the landscape of scienti�c endeavors in the study
of process �ow improvement. The improvement of processes is th e subject of a disci-
pline which goes back to scienti�c management around 1900 (Wren, 2005). Although
the pioneers of this discipline often had an engineering backgr ound and signi�cant
years of shop-�oor experience, a subsequent `scientization' in management research
is seen (Van Aken, 2004). This has resulted in a tension in the management sciences
between the pursuit of academic rigor and the practical relevance o f the research; see,
for example, Argyris and Sch ön (1991), Bennis and O'Toole (2005), and discussions in
the �elds of operations management (Meredith et al., 1989), and industrial statistics
(Snee and Hoerl, 2010).

The tension is sometimes framed in terms of two distinct ambitions o r roles, that of
`observer' and that of `player' (Van Aken, 2004). The role of observer features the
researcher in an objective and detached viewpoint with respect to his or her subject
of study. An observer aims to understand and explain the system under s tudy, and
standards for rigor and justi�cation are high. The ambition of obs erver suits well with
the traditional values and reputation system of the academic community, which tends
to sacri�ce practical relevance of research for rigor and comp leteness. The danger
of this perspective, noted in the literature, is that the research resul ts may become
too trivial, too broad, or too sterile (based on false assumptions ab out the application
context) to be relevant to practitioners.

Players, to the contrary, are rather bound by the values and reputation s ystem of pro-
fessional performance. They are not detached from the system under study, but part
of it. They have a purpose (objectives that they aim to achieve in the system) and their
actions are not aimed at understanding the system, but eventually at i ntervening in
the system. Standards for rigor and justi�cation tend to be relaxed, s ometimes to the
degree that a discipline is a practice-based craft rather than a science, and often to the
degree that advice is purely based on opinion and personal expe rience.

This tension seems to be more prominent in the management sciencesthan in �elds
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1.2 The scienti c study of process !ow improvement

such as medicine, engineering, or computer science (see the abovementioned refer-
ences), and the study of process �ow improvement in services and h ealthcare is no ex-
ception. One encounters, for example, studies that come across as sterile mathematics,
and, at the other extreme, poorly justi�ed heuristics by consultants an d management
gurus in the so-called Heathrow-literature. The discussion should no t, however, de-
generate into an either/or discussion between these two extremes, and we think that
it is not even a matter of �nding a balance in between.

Instead, we think this tension between academic rigor and practica l relevance is a
super�cial manifestation of a deeper confusion about the objective s and methods of
the management sciences. Rather than taking a stance defending therole of `player'
or that of `observer', we think both roles have merits, provided o ne is suf�ciently clear
about one's objectives and methods.

Taking as a premise that a de�ning characteristic of science is th at it emphasizes the
justi�cation of the claims that it makes, we discern three broad type s of scienti�c en-
deavor, that differ in the type of validity claims they make, and thus , in the proper
sort of justi�cation they entail. These three paradigms are: formal sciences, empirical
sciences, and design sciences (cf. Van Aken, 2004; Roozenburg and Eekels, 1995, etc.).

1.2.1 Formal sciences

Formal sciences, such as logic and mathematics, develop systemsof propositions that
are derived from premises, their justi�cation being aimed at log ical validity and con-
sistency. The formal sciences are empirically void, that is, th ey only make claims that
are logically implied by the premises, without claiming validi ty of the premises them-
selves. The discipline of operations research (OR), dominated by probability theory
and mathematical optimization, mainly works in the paradigm of fo rmal science.

Traditionally, the development of methods for process �ow impr ovement has been
one of the pursuits of OR (Alt�ok, 1996). Some of OR's roots are in the use of the sim-
plex algorithm in the military during the end of World War II, and in the modeling
and analysis of manufacturing systems (roughly from the 1950s onwa rds). Later, in-
creasing emphasis was put on applications in data communication n etworks; see, for
instance, the book by Kleinrock (1976).

By now OR has become a mature scienti�c �eld which offers a substanti al set of tech-
niques addressing ef�ciency issues in both deterministic and stoc hastic networks, such
as production and service systems. A central role in these techniques is played by
(mathematically oriented) methods for evaluating the performance of the underly-
ing networks, and mechanisms to optimize this performance, such a s planning and
scheduling. Research output is typically published in academic outl ets, such asOper-
ations Research, Computers & Operations Research, and OR Spectrum.
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1.2.2 Empirical sciences

Empirical sciences, such as the natural sciences and large parts of economics and the
social sciences, develop models that describe, explain, andpossibly predict empirical
phenomena within their �eld. The typical outcome of this type of rese arch are causal
relationships, often expressed as quantitative laws. Justi�cation i s aimed at demon-
strating that a claimed relationship is true by empirical studies (tha t is, by experimen-
tation and observation). As for the scienti�c study of process �ow im provement, jour-
nals such asJournal of Operations Managementand Management Sciencepublish many
empirical studies of the practices of process �ow improvement. Th ese studies aim at
trying to establish causal relations between certain in�uence domai ns (that is, tech-
niques and heuristics available to practitioners) and successful results in terms of im-
proved process �ow performance; see, for example, Linderman et al. (2003), Choo
et al. (2007), and Olivares et al. (2008).

1.2.3 Design sciences

Design sciences, such as engineering and medical science, aim to accumulate knowl-
edge on solving construction and improvement problems. The output consists of pre-
scriptions such as methods, design rules, treatment protocols, and heuristics. The va-
lidity claim made by these results is not logical correctness, nor empirical truth, but
rather: effectiveness in application. The justi�cation of the effe ctiveness of prescrip-
tions could be based on the results of the formal and empirical scien ces; many pre-
scriptions in engineering are based on the laws of physics and m athematics, and many
treatment protocols in medicine are based on biological and chemical knowledge. But
it would be too simplistic to conceive of the design sciences as merely applying the
results of the formal and empirical sciences (Rosenberg, 1982;Van Aken, 2004). For
one, the effectiveness of prescriptions typically cannot be reduced to the validity of a
small number of mathematical or empirical laws, but is typically a n issue of such be-
wildering complexity as to defy reductionist attempts to deduce the effe ctiveness from
the established body of laws of physics, mathematics, biology, o r chemistry. Second,
many problematic situations are essentially unique, whereas an app eal to an empirical
law necessarily claims that at least the relevant aspects of a situation can be considered
a replication of the circumstances assumed in it, while the applicati on of mathematical
results often departs from premises taken from a limited number of sta ndard models
(normal, Poisson, i.i.d., etc.) that at best approximate the uniq ue situation.

Justifying a prescription is typically a complex matter, possibly involving a combina-
tion of clinical testing (that is, proving the effectiveness of the p rescription by apply-
ing it under controlled conditions in practice, and observing its effect), empirical or
logical grounding (that is, arguing for its effectiveness by evok ing established results
from the empirical or formal sciences), and the identi�cation of indications and con-
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traindications for the application of the prescription (and thus, the demarcation of its
application domain).
In process �ow improvement, the approach of the design sciences can be traced in
�elds such as quality engineering, industrial engineering, and i ndustrial statistics.
These approaches have been well-studied in the academic literature, see, for example,
journals such as Quality Engineering, Interfaces, and International Journal of Operations
& Production Management, and tried and tested �rst in manufacturing. Later, process
management and work�ow modeling have become thriving discip lines in informa-
tion technology (Van der Aalst and Van Hee, 2004). Also the book F actory Physics
(Hopp and Spearman, 2008) takes this approach. In recent years, roughly from 1990s
onwards, we see an exploration of design sciences in service organizations and health-
care, see journals such asJournal of Service Management, and Quality Management in
Health Care, and the book by De Mast et al. (2006).

Roozenburg and Eekels (1995) characterize the empirical sciences as a process whose
main direction is inward: from phenomena in the outside empirica l world, into the
mental world, where they leave an image in the form of models and la ws. Consistent
with this inward process, the researcher predominantly works in the role of observer,
and the object of study is an explanandum, that is, something to be explained. The
design sciences are characterized as an outward going process.Starting from objec-
tives and strategies, conceived in the mind of the problem solver, the process proceeds
through actions into artefacts, that is, into man-made changes and in terventions in the
outside empirical world. The object of study is a mutandum, something that is to be
changed, and the design sciences favor a role as player. The formal sciences concern
an entirely internal (mental) process, namely, the process of pure reasoning itself.

1.3 Methods, techniques, and integrated methodologies for pro-
cess !ow improvement

The purpose of scienti�c studies of process �ow improvement is to pr ovide tested and
well-grounded methodological support for practitioners. In this section, we explore
the various forms in which this methodological support is offered to practitioners.

1.3.1 Mathematical modeling and analytical methods

These methods, based on probability theory and calculus, pose a number of premises,
stating stochastic properties of arrival and service processes, from which relevant
properties, such as the sojourn time (or: throughput time) of a job, the w aiting time
of a client, and the level of utilization of a resource, are derived b y mathematical cal-
culation. The approaches often simplify the problem under study in o rder to ensure
tractability of the mathematical derivation. Also, the validity of the outcome critically
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depends on the validity of the premises, which must, therefore, be a ssessed empiri-
cally.
These approaches have yielded a great number of problem solving techniques and
decision tools for standard problems in process �ow improvemen t based on mathe-
matical analysis. For example, in the context of healthcare, Green (2006) explores the
use of queueing models in healthcare to develop effective policies staf�ng, bed allo-
cation, and to identify opportunities for process improvement; for an introduction to
such approaches, we mention Davies and Davies (1994). The bookby Pinedo (2005)
elaborates analytical methods for planning and scheduling in se rvices.

1.3.2 Approaches based on simulation

Discrete event simulation (DES) and system dynamics modeling (SDM) refer to simu-
lation approaches that model and re-enact a (real-life) servi ces or healthcare process.
Both DES and SDM model a system as a collection of states with transitions. These
approaches are often application speci�c, and help practitione rs to evaluate systems
that are hard to analyze by mathematical modeling as the mathematica l expressions
become intractable. They are often used for scenario and sensitivity studies. As math-
ematical modeling and analytical methods, also simulation approa ches critically de-
pend on the validity of the assumptions incorporated in the simulation m odel.
See Robinson (2004) for an overview of DES. In healthcare, Jun et al. (1999) survey
applications of DES in, for example, hospitals, outpatient clinic s, and pharmacies.
Laughery et al. (1998) discuss DES in service systems. In Lane et al. (2000) system
dynamics modeling is used to study demand patterns and resource depl oyment in
healthcare.

1.3.3 Observational and experimental approaches

In observational and experimental approaches, performance i ndicators, such as through-
put times, waiting times, and resource utilization, are not derived f rom premises by
mathematical analysis, nor are they determined by simulation, but i nstead, they are
measured in the real process. Observational approaches are favored in methodolo-
gies such as Lean Thinking, Six Sigma, and other approaches originating in �elds such
as quality engineering and business process improvement. When dealing with pro-
cess �ow issues, solutions from these observational approaches are supported through
data-analysis or circumstantial evidence (generated by standard improvement princi-
ples). Note that these do not necessarily build on causal modeling , but often treat the
effect of an improvement on the performance as a black box.
An overview of the use of Lean Thinking and Six Sigma in services and healthcare is
given by De Mast et al. (2006). For case studies in services we refer to Furterer (2009).
Bisgaard (2009) discusses various case studies from healthcare.
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1.3.4 Approaches based on design rules

Design approaches to process �ow improvement offer practitione rs generic (re)design
principles to the process �ow. These principles are often best p ractices or heuristic
rules, that support practitioners to develop their own business proc ess (re)design; see,
for example, Hammer and Champy (1993) and Reijers and Mansar (2005).

In the management literature, these generic process (re)design principles are often
included in integrated methodologies for process �ow improveme nt, such as Busi-
ness Process Reengineering (BPR) by Hammer (1990), BusinessProcess Management
(BPM), and Lean Thinking by Womack and Jones (2003). A review of the literature on
these approaches is given in Aguilar-Savén (2004).

1.3.5 Methodologies for process !ow improvement

Many of the methods and techniques for process �ow improvement, ba sed on mathe-
matical modeling, simulation, observational approaches, or ap proaches based on de-
sign rules, are packaged into integrated improvement methodolog ies. Some of these
methodologies are the following.

� Lean Thinking (also referred to as Lean Manufacturing; see Womack and Jones,
2003): A pragmatic approach, which evolved from the Toyota Prod uction Sys-
tem. It was popularized in recent years and is now widely applie d in manufac-
turing, the service industries, healthcare, and beyond (Womack et a l., 1991). It
prescribes a number of standard remedies for improving proces s �ow, such as
rapid changeover, 5S, pull / Kanban instead of push �ow, and line balancing
(Hines and Rich, 1997).

� Six Sigma (Schroeder et al., 2008): A structured approach for problem solving
and quality improvement, which incorporates principles borrow ed from method-
ology for empirical inquiry, such as precise problem de�nition , operational terms,
and data-based problem diagnosis (see De Mast, 2007, for an overview of these
principles and other facets of Six Sigma).

� Business Process Reengineering, or Redesign (Hammer, 1990): The improve-
ment of processes mainly through best practices. In BPR a cross-functional team
should determine which of the process steps really add value and se arch ways
to achieve improved results on organizational performance (e.g . in terms of op-
erational costs or lead times). Several frameworks for BPR are proposed in liter-
ature, see Reijers and Mansar (2005) and references therein.

� The Theory of Constraints (Goldratt, 1990): A philosophy for on- going process
improvement built on two concepts: (1) every system must have at le ast one
contraint; (2) the constraint represents opportunities for improve ment (Rahman,
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1998). The approach is facilitated by �ve focusing steps for proc ess improve-
ment, see Goldratt (1990). Applications of the Theory of Constrai nts are found
in Mabin and Balderstone (2003).

1.4 Motivation and objectives

This research project was started as a study of the Institute for Business and Industrial
Statistics of the University of Amsterdam (IBIS UvA) with the purpose to expand the
institute's expertise on the topic of process �ow improvement. The del ineation to the
services and healthcare industries was mainly a business strategic choice.
IBIS UvA beliefs in application driven scienti�c research. Th e institute has its roots
in the �eld of industrial statistics. In the last decade it experienc ed a strong demand
for structured project management approaches that facilitate prod uct and process im-
provement in other industries such as services and healthcare. At the same time, it
experienced that improvement programs started to focus not only o n quality of prod-
ucts and services, but also on processing speed, dependability, �exibility, and cost.
Together, these are �ve generic “performance objectives” know n in the literature on
operations management, see e.g. Slack et al. (2009).
These developments triggered the members of IBIS UvA to explore o ther disciplines
and share their practical experiences. The institute's belief that a bridge between the
knowledge from their consultancy practices (a player's point of view) and the mathe-
matical modeling approach dominant in OR (an observer's poin t of view) would be of
value to both the university's academic output and the institute's consultanc y services.
The envisaged objectives of the study were to make contributions in the following �ve
directions:

� Frame of reference for process �ow improvement including a mo deling language
and an axiology (cf. Chapter 2).

� Theoretical understanding: design rules based on probability the ory (cf. Chapter
3 and 4).

� Validation through simulation: approximations and design heuristic s are vali-
dated by means of simulation results (cf. Chapter 4).

� Practical methods and techniques to support practitioners and consul tants in the
�eld of process �ow improvement (cf. Chapter 2 ,5, and 6).

� Case basis: a collection of case studies and applications in process �ow improve-
ment in real-life (cf. the example in Chapter 2 and the publications in the profes-
sional literature mentioned below).

The abovementioned ambitions and motivation are re�ected in the stud ies executed
within our research project, that resulted in this thesis. Some of the th esis's chapters
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follow approaches that belong to the paradigm of the design scien ces by offering a lan-
guage for process �ow improvement or practical methods for meas urement plans that
support practitioners. Other chapters take approaches that belong to the paradigm of
the formal sciences by analyzing standard building blocks of a p rocess �ow model.

During the research project, the author acted in the role of observer, but also in the
role of consultant and player. In this thesis, the results of the academic work are pre-
sented. In line with the institute's belief in application driven sci enti�c research, our
research project has also resulted in nonacademic output. In particul ar, the insights
gained in the project have been the basis for training material tha t is used in the insti-
tute's Lean Six Sigma courses. Furthermore, the consulting work has resulted in six
publications in the professional literature: Kemper et al. (2009) ; De Mast and Kemper
(2009); De Koning et al. (2010); Kemper et al. (2011); Schoonhoven et al. (2011); Does
et al. (2011). In total, our research led to 11 articles, 2 master theses and 1 working
paper.

Over the last decades process �ow improvement in services and healthcare has been
researched more and more extensively. This branch of the management sciences is still
of a rather exploratory and fairly immature nature compared to, for e xample, similar
bodies of knowledge in manufacturing. Studies are sometimes confusi ng in terms of
their objectives, methods, ambitions, and scienti�c status. Among d ifferent accounts
one often observes a lack of consistency in terminology and modeling language, and
there is insuf�cient clarity as to how competing approaches compa re to each other.
This thesis has attempted to make a contribution to the uni�cation of the �el d, pro-
viding an overview of scienti�c paradigms relevant to the �eld ( this chapter), and a
conceptual framework for applications (Chapter 2), besides a num ber of more detailed
contributions. We foresee, however, that many important breakthr oughs, as well as a
lot of detailed results, are yet to come. We enumerate suggested directions for future
research on process �ow improvement:

� Encourage the active participation of researchers in the execution and implemen-
tation of process �ow improvements in practice, and the involveme nt of practi-
tioners in academic work on process �ow improvement.

� Provide grounding for the use and effectiveness of integrated impr ovement method-
ologies and their methods on the basis of extensive collections of case studies and
empirical reasoning.

� Identify and re�ne models for generic processes; think of typic al, generic pro-
cesses in back of�ces and patient pathways in healthcare.

� Expand in-depth mathematical modeling of standard building block s for these
generic processes, for example on scheduling and queue handling issues.
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1.5 Outline of the thesis

In Chapter 2 we aim to develop a unifying and quantitative conceptual fr amework for
healthcare processes from the viewpoint of process improvement. The work adapts
standard models from operations management to the speci�cs of he althcare processes.
We propose concepts for organizational modeling of healthcare processes, breaking
down work into processes, tasks and resources. In addition, we pr opose an axiolog-
ical model which breaks down general performance goals into p rocess metrics. The
connexion between both types of models is made explicit as a system of metrics for
process �ow and resource ef�ciency.

The conceptual models offer exemplars for practical support in p rocess improvement
efforts, suggesting to project leaders how to make a diagrammatic r epresentation of a
process, which data to gather, and how to analyze and diagnose a process's �ow and
resource utilization.

The proposed methodology links on to process improvement metho dologies such as
BPR, Six Sigma, Lean Thinking, the Theory of Constraints, and Total Quality Manage-
ment. In these approaches, opportunities for process improvemen t are identi�ed from
a diagnosis of the process under study. By providing conceptual mod els and practi-
cal templates for process diagnosis, the framework relates many disconnected strands
of research and application in process improvement within hea lthcare to the unifying
pursuit of process improvement.

This chapter offers a frame of reference for the rest of the thesis, in which we use OR
techniques to execute in-depth analysis on generic building blocks of the process �ow
model (Chapters 3 and 4), and offer, from the viewpoint of the des ign sciences, prac-
tical methods to use this framework in real-life processes (Chapte rs 5 and 6). Besides,
it offers a real-life example in which we used the observational approach to identify
opportunities for process �ow improvement. The study in Chapter 2 le d to the publi-
cation De Mast et al. (2011).

Chapter 3 explores the improvement of the process �ow through the des ign of opti-
mal appointment schedules which is a particularly relevant topic in the services and
healtcare system focused on in this thesis. One can think of a dentist who, on a daily
basis, schedules several routine checks for his or her clients and some more involved
treatments (typically these treatments take longer, but also exhibit mo re variability in
treatment's total service time); or at a court of justice, where clients arrive on the ap-
pointed arrival times at a hearing, but may have to wait if the duratio ns of previous
hearings vary considerably.

When setting up an appointment schedule, one aims at achieving a pr oper balance be-
tween the interests of the service provider and its customers: if the sy stem is frequently
idle, then it is not functioning in a cost-effective manner for the s ervice provider,
whereas if it is virtually always busy, the customers' waiting times ma y become sub-
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stantial. In this chapter, we investigate schemes that align these `disutilities' (risks,
losses), in such a way that they are sequentially (that is, on a per-customer basis) min-
imized. While this approach gives explicit, appealing results f or the standard (e.g.
quadratic or linear) loss functions, it actually carries over to a co nsiderably broader
class of loss functions. Importantly, the approach does not impos e any conditions on
the service time distribution; it is even allowed that the customers' s ervice times have
different distributions.

A next question that we address concerns the orderof the customers. We develop a
criterion that yields the optimal order in case the service time distr ibutions belong to a
scale family, such as the exponential family. The customers should then be scheduled
in non-decreasing order of their scale parameter.

While the optimal schedule can be computed numerically under quite gene ral cir-
cumstances, in steady-state it can be computed in closed form for a variety of loss
functions. Our �ndings are illustrated by a number of numerical examp les; these also
address how fast the transient schedule converges to the corresponding steady-state
schedule.

In this study, we use an analytic method to study a technique that supports deci sion
making in appointment scheduling. It led to the paper Kemper et al . (2011).

In Chapter 4 we consider a fork-join system (or: parallel queue), which is a two-queue
network in which any arrival generates jobs at bothqueues and the jobs synchronize
before they leave the system. Such a system is an important building b lock in relevant
real-life systems (Van der Aalst et al., 2003), such as the services and healthcare systems
studied in this monograph. The study led to the paper Kemper and Mandj es (2009)
and the publication Kemper and Mandjes (2011).

The focus in this chapter is on an analytical methods to quantify the mea n value of the
`system's sojourn time' S: with Si denoting a job's sojourn time in queue i , S is de�ned
asmaxf S1; S2g. Earlier work has revealed that this class of models is notorious ly hard
to analyze.

First, in this chapter we focus on the homogeneous case, in which the jobs generated at
both queues stem from the same distribution. We evaluate various bounds de veloped
in the literature, and observe that under fairly broad circumstances these can be rather
inaccurate. We then present a number of approximations, that are extensively tested
by simulation and turn out to perform remarkably well.

Secondly, we discuss the heterogeneous case, in which the jobs generated at the queues
stem from the same type of distribution with different parameters. We explore the
effect of heterogeneity and present general rules of thumb for the h eterogeneous case.

Chapters 5 and 6 discuss process �ow issues from the viewpoint of th e design sciences.
In these chapters we offer practical methods and techniques that can be positioned in
the frame of reference elaborated in Chapter 2. Note that these methods and tech-
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niques equally apply to both services and healthcare. The results are based on real-life
processes that we studied as `players', such as a back of�ce process in �nancial ser-
vices that handles client requests, a ful�llment process in logi stic services that ful�lls
the pick and pack service for client orders of various web shops , or a classic nursing
process, in which nurses execute all kind of tasks during their shif ts.

Chapter 5 discusses tools, such as the �owchart, the value stream map, and a variety
of ad-hoc variants of such diagrams, that are commonly used in the p ractice of process
�ow improvement (Kemper et al., 2010). We present a clear, pr ecise, and consistent
framework for the use of such �ow diagrams in process improvement projects. We
�nd that traditional diagrams, such as the �owchart, the Value Stream M ap, and OR-
type of diagrams, have severe limitations, miss certain elements, or are based on im-
plicit but consequential premises. These limitations restrict the applicability of tradi-
tional diagrams in non-manufacturing areas such as service and healthcare processes.

We show that a rational reconstruction of the use of diagrams in vario us disciplines
regarding process �ow boils down to a generic framework of ele ments, de�nitions of
generic process metrics, and three classes of applications, namely the `as-is', `could-be',
and `should-be' analysis.

The goal is not to replace all currently used diagrams, but merely to discuss the role of
diagram usage in process �ow modeling. This chapter provides a n explicit framework
that is unambiguous and �exible, and has the potential to serve as a guid eline for the
practitioner in services and healthcare. Besides, it served asa starting point to develop
an ontology for processes �ow improvement as presented in Chapte r 2.

In Chapter 6, we consider typical process �ow metrics that are dis played in the dia-
grams of Chapter 5 and that relate to resource utilization and throughput time. Lit-
erature mentions, amongst others, the low availability of valid me asurements and the
complexity and intangibility of processes as dif�culties in perf ormance measurement
in services and healthcare operations. Further, the discussion of performance mea-
surement is often on a conceptual, not operational, level; the operational and practical
matters on how to obtain data for process �ow improvement are scarc e. The purpose
of this paper is to offer well-de�ned and operational measuremen t plans that guide
project leaders when organizing measurement systems for process �ow improvement.

In this chapter, we de�ne a measurement plan, and study four measurem ent study
designs and corresponding methods and techniques, illustrating th ese with practi-
cal applications and solutions. Finally, the measurement plan is presented as a tool
to organize the measurement systems for process �ow improvement i n service and
healthcare.

The study results in practical guidelines for each design: which me thod and technique
to choose, how to organize the measurement system, and how to processthe obtained
data. Practical implications: These �ndings lead to an operation al tool for project

12



1.5 Outline of the thesis

leaders in the �eld of process �ow improvement and may serve as input to design
teaching material for consultants.
Our study contributes terminology to the methodological development o f improve-
ment initiatives in services and healthcare. For practitioners w e present the mea-
surement plans as a tool to organize the measurements in process �ow improvement
projects. The results of this study are presented in Kemper and De Mast (2011).

The �nal chapter is followed by a list of references, a summary o f the results in Dutch,
a curriculum vitae of the author in Dutch, and an acknowledgment.
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2 Process Improvement in
Healthcare: Overall Resource
Ef ciency

2.1 Introduction

Perhaps the �rst connotation with the topic of healthcare improvemen t is innovation
in medical science, including innovations in treatment protocol s, medical equipment,
and pharmaceuticals (Djellal and Gallouj, 2005). This chapter, however, focuses on the
improvement of healthcare by improving its delivery, that is, by improving a hospi-
tal's primary patient processes, medical support processes, and nonmedical support
processes. Characteristics of these processes, such as their capacity, ef�ciency, and reli-
ability, determine important performance dimensions of health care, such as through-
put, waiting times, and patient safety. Ultimately, they have a substanti al impact on
patient satisfaction, cost, and the quality and timeliness of medica l care.
In the process improvement paradigm, improvement originates in mapping processes
and measuring carefully de�ned quality characteristics and perfo rmance metrics. In
Six Sigma, for example, these diagnostic studies are done in the �r st three phases of
the DMAIC (de�ne, measure, analyze, improve, control) stage struc ture (De Koning
and De Mast, 2006). This diagnosis of the process reveals improvement opportunities
such as:

� Optimizing capacity and utilization of staff and equipment, ensuring a smooth
work�ow with acceptable waiting times, and reducing cost for pers onnel and
equipment.

� Reducing throughput times and waiting times by identifying bottleneck s and
iterations in the processes.

� Optimizing or introducing standardized routing through the process, such as
introducing sequencing rules, introducing restrictions on the amount of work-in-
process as in kanban and CONWIP, or replacing batch-wise work with a single-
piece �ow discipline.

� Improving a process's reliability and safety by mitigating failur e opportunities
and making the process more robust.

15



Process Improvement in Healthcare: Overall Resource Ef ci ency

� Reducing cycle times per task by optimizing work methods and proce dures.

� Reducing variability in the process, thereby optimizing utilizatio n and reducing
waiting times.

Some of these improvement opportunities are self-evident once th e process has been
mapped and diagnosed; examples include poorly organized or i nef�ciently structured
work, redundant work, and repeated but avoidable mistakes. Other improvement op-
portunities are derived from heuristics such as the ones from Lean Th inking, Business
Process Reengineering, and the Theory of Constraints.
The idea that improvement opportunities follow from a diagnosis of the process under
study discerns the process improvement paradigm, dominant in th e quality literature,
from competing approaches to healthcare improvement dominant i n the OR/MS lit-
erature. These OR/MS approaches are based on mathematical and simulation model-
ing; see e.g. Davies and Davies (1994); Jun et al. (1999); Laneet al. (2000); Green (2006);
Rohleder et al. (2007). A substantial empirical basis of applications of process im-
provement in healthcare is already available; for example, D oes et al. (2009); Bisgaard
(2009), and references therein. Also, there is an expanding literature discussing tech-
niques and methods for process improvement in healthcare, such as in Plsek (1997);
Does et al. (2006); Hall (2006).
This chapter contributes conceptual models for process diagnosis in healthcare, thus
facilitating projects according to the Business Process Management, Six Sigma, Lean
Thinking, Business process Reengineering, the Theory of Constraints, Total Quality
Management, or other process improvement approaches. We propose a class of orga-
nizational models, which conceptualize of what types of elements h ealthcare processes
consist. To facilitate their application in process improvement, we associate them to
an axiological model, which conceptualizes what constitutes value in healthcare pro-
cesses. Thirdly, we explicate the connexion between organizational and axiological
models by a system of metrics for quantifying process �ow. The metr ics allow an
analysis of the allocation of resources in healthcare processes, and we propose an ag-
gregate metric that we refer to as overall resource ef�ciency. We also demonstrate how
the proposed metrics help in bottleneck analysis.
This system of models contributes a unifying context and terminolog y to the method-
ological development of the �eld of healthcare delivery impro vement. For practition-
ers, the models may serve as exemplars for diagnosing processes in hospitals, sug-
gesting what to measure, and how to associate these measurements to organizational
performance. The overall resource ef�ciency metric helps in i dentifying wasted ca-
pacity of resources, while bottleneck analysis helps in improvi ng the �ow or capacity.
We demonstrate this practical value of the work by applying our model s in a real im-
provement project, optimizing a CT scan process.

The presentation of the work in this chapter has the following structure . In Section
2.2 introduces our system of metrics for quantifying process �ow. Se ction 2.3 presents
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Table 2.1 Potential capacity and other metrics.

Effective workload EW L Number of patients
to be treated per
time unit

patients / day

Effective throughput ETP Number of patients
treated per time unit

patients / day

Total time TotT Resource time
scheduled for a task

min. / day

Cycle time CT Processing and
changeover time per
patient

min. / patient

# Resources N Number of speci-
mens of a type of
resource

Potential capacity PCap = N � TotT=CT patients / day

a breakdown of work�ow into macro and micro processes, tasks, an d resources (the
organizational model). Section 2.4 links these elements to value by proposing a break-
down of performance indicators (the axiological model). Secti on 2.5, �nally, demon-
strates the use of our models as an exemplar for studying a real healthcare process. We
discuss the implications of our work in the `Discussion and conclusi ons' section.

2.2 Process !ow metrics

In the next sections we develop our model for process �ow in health care. Our model
includes a system of metrics for calculating the capacities of resources, tasks, and pro-
cesses, as well as ef�ciency factors for each. The calculationsresemble the framework
of overall equipment effectiveness (OEE) in the manufacturing ind ustry (Ljungberg,
1998; Nakajima, 1988). This framework allows the identi�catio n and diagnosis of bot-
tlenecks in the process, the key to improving throughput or reducing w aiting times.
Further, it allows an assessment of the ef�ciency of the process, quantifying where
resources are wasted. We propose to refer to our framework as overall resource ef�-
ciency (ORE).

In this section we introduce this system of metrics for healthcare pro cesses by consid-
ering a single task involving a single type of resource.
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2.2.1 Potential capacity

The effective workload EWL (Table 2.1) is the number of patients to be processed,
whereasETP is the number of patients that is actually processed. For many processes,
EWL may momentarily exceed the process's capacity, and therefore, when considered
over smaller units of time, ETP < EWL . When considered over a suitably long pe-
riod of time, workload and capacity are often balanced, and EWL = ETP. One of the
stabilizing mechanisms is that long waiting queues tend to deter dema nd (Worthing-
ton, 1991). Another mechanism is staff working overtime until the wo rk is done.
The cycle time (CT) is the required resource time per patient, and equals the sum
of processing time per patient and changeover times in between pa tients. Given the
total working time per day allotted to the task in question, TotT, and the number N of
specimens of a resource, the potential capacity of the resource isPCap= N � TotT=CT.

2.2.2 Effective capacity: taking rework and availability into account

Table 2.2 Effective capacity and other metrics.

Available time AvT Time that a resource
is actually available
for a task

min. / day

Availability Av = AvT=TotT %

First time right FTR Ratio or percentage
of jobs done right the
�rst time

%

Nominal workload NW L = EW L=FTR patients / day

Nominal through-
put

NTP = ETP=FTR patients / day

Effective capacity ECap = FTR � Av � PCap patients / day

Where TotT is the time that a resource is budgeted for a task, AvT (see Table 2.2) is the
time that the resource is actually available for the primary task (com pare a machine's
uptime in industry). For physicians and staff, AvT is typically TotT minus time lost
to distractions, interruptions, searches for missing equipment, ar ranging for replace-
ments for defective equipment, and other secondary activities. For equipment, causes
of unavailability includebeing missing, defective, and in main tenance. The percent-
age of TotT that a resource is actually available (Av) is often below 100%, but in the
case a resource works overtime, it can also be above 100%. To avoid confusion, we
note that changeover times in between patients are not considered part of resource
unavailability, as they are part of the patient cycle and included i n CT.
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Some of the work is not done right the �rst time, and must be redone; FTR is the
percentage of jobs done right the �rst time (Table 2.2). For each individual patient
treated, the number of patient treatments (including double, triple, an d more-than-
triple counts) is higher. We discern nominal and effective throughput, and they are re-
lated as

NTP = ETP �
1X

k=0

(1 ! FTR)k =
ETP
FTR

:

For the nominal workload we have

NWL = EWL + (1 ! FTR)NTP = EWL +
1 ! FTR

FTR
ETP: (2.1)

If ETP = EWL , then equation (2.1) reduces toNWL = EWL=FTR. Taking rework
and availability into account, the effective capacity is typically l ower than the potential
capacity: ECap = FTR � Av � PCap.

2.2.3 Utilization and idle time

Table 2.3 Utilization and idle time.

Idle time IT = AvT ! CT �
NTP=N

min. / day

Effective utilization EUt = ETP=ECap %

= ( AvT ! IT )=AvT

The effective utilization EUt (see Table 2.3) is the ratio or percentage of available time
that the process is not idle (EUt = ( AvT ! IT )=AvT), and also,EUt is the percentage of
the effective capacity that is used (EUt = ETP=ECap). Idle time can best be calculated
(IT = AvT ! CT � NTP=N), rather than measured, as employees adjust their work
pace to camou�age overcapacity.
Even in bottlenecks, EUt < 100%(and thus IT > 0), as some idle time is unavoidable
due to synchronization losses. Synchronization loss occurs if there is enough work in
the system, but the resource has idle time because it is waiting for othe r resources or
patients. Examples of causes of idle time due to synchronization are:

� Tardiness of patients or staff members, no-shows, or last-minute di sruptions of
the schedule; see e.g. Kim and Horowitz (2002).

� Schedules of physicians, rooms, and facilities impeding in util izing all capacity.

� Variation in cycle times and �uctuations in demand.

Taking the �rst two for self-evident, the third point follows from a generally known
principle in industrial engineering (see e.g. Hopp and Spearm an, 2008, especially chap-
ters 8 and 9), which states that higher variability (in cycle times, inter-arrival times,
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outages, quality problems, and other sources) results in lower utiliza tion, unless it
is buffered against by keeping work on stand-by. The high level of synchronization
needed to achieve near 100% utilization for all resources is unrealistic, and there-
fore, a certain percentage of nonutilized capacity is unavoidable . However, a possi-
bly substantial fraction of nonutilized capacity is typically dispe nsable (the resource's
so-called overcapacity), especially in the nonbottleneck resources.

2.2.4 Diagnostics for process !ow improvement

The metrics introduced in the previous sections allow the identi�cati on of improve-
ment opportunities, which, in the process improvement paradigm, are identi�ed from
process diagnosis. First, we discuss bottleneck analysis, the optimization of a bottle-
neck, which is a resource whose throughput ETP is smaller than its workload EWL .
The equation ETP = min f EWL; EUt � ECapg suggests two improvement strategies.
The �rst is to improve the bottleneck's capacity. The equation

ECap = FTR � Av � N � TotT=CT

reveals several options:

� Reduce cycle time (CT) by reducing processing time per patient or changeover
times.

� Extend the budgeted resource time (TotT).

� Increase the number of resources (N ).

� Improve availability ( Av) by limiting distractions or working overtime.

� Improve the �rst-time-right ratio ( FTR).

The second strategy is to improve the bottleneck's utilization EUt. For a bottleneck,
all idle time can be assumed attributable to synchronization losses, so better synchro-
nization of patients and other resources with the bottleneck is the key to improvement.
Some options include:

1. Schedule patients so as to build up a buffer of work on stand-by.

2. Schedule patients to minimize variation in cycle times (for exam ple time slots
with homogeneous patient groups).

3. Increase the capacities of other resources in the micro processto build up a buffer
of work before the bottleneck.

4. In�uence demand to reduce �uctuations in workload, or adjust capac ities to
match �uctuations in demand.

5. Reduce tardiness, no-show, cancellations, and other disruptions of schedules.

6. Improve the reproducibility of the process (standardization an d structuring of
work, well-de�ned and coordinated routing, and minimal rework a nd itera-
tions).
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7. Change the order of tasks, eliminate redundant tasks, merge tasks, or modify the
breakdown of work into tasks.

These options are based on well-known principles from Lean Th inking, industrial en-
gineering, and especially the Theory of Constraints (Rahman, 1998; Davies et al., 2005).
In particular, options (1), (2), (3), and (4) follow directly fro m the principle that variabil-
ity in a process will be buffered against by a combination of work i n process, waiting
time and excess capacity (Hopp and Spearman, 2008). Reducing variability, or keeping
a buffer of work on stand-by, reduces excess capacity and thus impro ves utilization.
Options (5) and (6) exploit the same principle by eliminating var iability. Option (7) is
quite general, and comprises the redesign of a process with an eye for reducing prop-
agation of variability through the process, for reducing variabil ity by pooling of varia-
tion sources, and for making processes less complex and less interdependent (Skinner,
1974).

Besides the optimization of bottlenecks, one could pursue the reduction of wasted
capacity in nonbottleneck resources. The overall resource ef�ciencyindicates what per-
centage of a resource's potential capacity is effectively used. It can be broken down
into three ef�ciency factors:

ORE = ETP=PCap= EUt � FTR � Av:

Low percentages show where capacity is wasted:

� Low availability ( Av): capacity is wasted due to distractions, disturbances and
other secondary activities.

� Low �rst-time-right ( FTR): capacity is wasted due to rework.

� Low effective utilization ( EU)t: capacity is wasted as idle time.

The last term suggests that it may be possible to discard part of the n onutilized capac-
ity, thus saving on costs or making this capacity available for other purposes. It is in
general dif�cult to determine analytically which fraction of non utilized capacity can
be discarded without consequences for the ETP; the pursuit of near 100% utilization
for one resource typically creates substantial synchronization id le times for other re-
sources. One approach is to determine a safe capacity level empirically. The idea is to
remove all nonutilized capacity (that is, one reduces the number N of resources or the
total time TotT until ECap = EWL , and EUt approaches 100%). This will typically
result in a growing queue of work somewhere in the system. By gradual ly increasing
capacity until the queue stabilizes, one determines a realistic need of capacity. Sim-
ulation modeling (e.g., Davies and Davies, 1994; Jun et al., 1999) is a more thorough
approach.
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2.3 Organizational models

The metrics introduced in the previous section are the building block s for our models
for healthcare processes. Our models comprise two types of diagrams. The �rst type,
such as the ones in Figures 2.1 and 2.2, has an organizational focus. It models how the
work to be done is broken down into micro processes, tasks, and ho w these tasks are
assigned to resources. The second type, such as the one in Figure 2.3, has a focus on
value.

2.3.1 Micro and macro processes

Considering patient trajectories in healthcare, it is fruitful to di scern between two
types of processes, which we namemacroand micro processes. The motivation for the
distinction is in their decisively different stochastic behavio r, underlying structure of
in�uence factors, and functional implications. Macro processes are the end-to-end tra-
jectories that patients follow (see Figure 2.1). Their dynamics revolve around waiting
times (in the order of magnitude of days and weeks) and scheduling e fforts. The `jobs'
�owing through the process are patients. The stochastic behavior of the process �ow
is similar to that of the typical exemplars in queuing theory: random , perhaps Poisson,
job arrivals (Alexopoulos et al., 2008), queues arising from a mismatch between capac-
ity (of staff and facilities) and workload, and ampli�ed by sync hronization problems.
The building blocks of the macro processes are the micro processes. The jobs �owing
through micro processes can be patients, but also requests for an examination, �les
that are processed, or other types of jobs. Often, but not always, micro processes are
preceded by a scheduling step, in which case arrivals are typically not Poisson-like,
but characterized as random variation around a target arrival time plus random no-
show (Alexopoulos et al., 2008). In many micro processes the scheduling ensures that
workload does not (substantially) exceed capacity, and as a consequence, the main
waiting queue is before, rather than in the micro process.
Some macro processes are completely polyclinical (outpatient), meaning that all micro
processes involved are polyclinical, while others involve a combination of polyclinical
and clinical (inpatient) micro processes. Micro processes can be discerned into:

� Primary patient processes: micro processes that have the patient as one of the
inputs, such as intakes, diagnostic consults, computed tomography (CT ) scans,
or surgeries.

� Medical support processes: micro processes that do no not havethe patient as an
input, such as pathological examinations or sterilization service s.

� Nonmedical support processes: services that are not directly related to the pa-
tient's primary patient process, such as transport of patients, pre paration of meals,
or advertisement of staff vacancies.
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Figure 2.1 Paradigmatic form of healthcare processes. The  gure shows a macro process
(end-to-end patient trajectory) involving seven micro processes. The micro processes are often
preceded by a scheduling step and a queue, which act as a buffer transforming a (typically
Poisson) stream into a scheduled stream.

2.3.2 Modeling process !ow in the micro process

In our model, the main organizational building blocks for the micr o processes aretasks
(linked in chronological sequence by routes), queues(where jobs, mostly patients, sit
idle for some time while no action is performed on them), and resourcesthat are in-
volved in tasks. Resources could be staff (such as nurses and operators), physicians,
equipment (such as MRI scanners), and other facilities (such as rooms). Note that re-
sources can be allotted to more than one task. The metrics introduced in the previous
section can be applied to resources, tasks, and entire micro processes. We differentiate
metrics by subscript indices, where resources are numbered I , II , III , . . . ; tasks are
numbered 1, 2, 3, . . . ; and micro processesA, B , C, . . . .

In Figure 2.2, the workload WLA of the micro process A is the number of patients
per day scheduled for the micro process (note that we drop the distin ction between
nominal and effective workload if there is no rework). There wi ll often be a queue
where patients wait before they are scheduled, and there will be wa iting time (also
called `queue' in the �gure) until the scheduled time has arrived; both que ues are not
part of the micro process. Note in particular that patients waiting to b e scheduled
are not included in WLA , but WLA does include emergency workload and walk-ins.
Patients enter micro process A when they arrive at the hospital. Arrival times are
stochastically distributed around the scheduled times, and the �rst step in the micro
process is again a queue (typically the waiting room).

The throughput TPA (at the right-hand side of the diagram) is the number of patients
per time unit that is actually treated. If the schedule is realistic, this number will typi-
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Figure 2.2 Organizational model of micro processes including the queue before the micro pro-
cess, the queues between the tasks in the micro process, and metrics for capacity and utiliza-
tion.

cally be equal to WLA . The effective workload for task 1, EWL 1 = WLA , is augmented
with rework, whence the nominal workload NWL 1 is higher. From the potential ca-
pacities and availabilities of the resources (PCapR and AvR), and the FTR percentage
of the task, the effective capacity ECap1 of the tasks can be determined. For task 1, for
example,

ECap1 = FTR1 � minf PCapI � AvI ; PCapII � AvII ; PCapIII � AvIII g:

One should be careful which FTR percentage to use, depending on the particulars
of the rework routes. In the example, failures in tasks 1 and 2 are revealed not until
the end of task 2, in which case both tasks must be redone. In this parti cular setting,
therefore, the �rst-time-right percentage is the same for both tasks (FTR1 = FTR2).
The nominal throughput of task 1 is the nominal workload for task 2; th e nominal
throughput of task 2, multiplied by FTR2, gives the effective throughput of task 2
(ETP2 = FTR2 � NTP2).
On micro process level, we de�ne the true capacity TCap (Table 2.4) to be the maxi-
mum throughput that can be achieved (given the current N , TotT, CT, Av and FTR).
We have TP � TCap � minf ECap1; ECap2g, that is, the micro process's capacity is
larger than the throughput, but not larger than the lowest capacity of the tasks that
it entails. Since, as explained before, it is unrealistic that all resource utilizations are
near 100%, theTCapof a micro process is usually substantially smaller than the low-
est of the effective capacities of the tasks. The ratio between the two is the process's
synchronization ef�ciency SE (Table 2.4). The percentage ofTCap which is actually
utilized, and therefore results in TP, is the process's true utilization TUt. The TCap
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Table 2.4 True capacity, true utilization, and synchronization ef ciency.

True capacity TCap Capacity of a micro
process, taking syn-
chronization into ac-
count

patients / day

True utilization TUt TUt = TP=TCap %

Synchronization ef�-
ciency

SE SE =
TCap=minECap

%

(and the related SE) can best be determined empirically, either by experimenting w ith
the real process or a simulation model. Increasing the workload WL until growing
queues emerge reveals the process'sTCap.

2.4 Axiological model and performance metrics

The organizational models in the previous section are complemente d by the axiolog-
ical model in Figure 2.3. In downward direction, it shows how or ganizational objec-
tives relate to the process �ow metrics de�ned in the previous section s, and thus, it
helps to translate organizational goals into measurable metrics. I n upward direction,
it shows the relevance of process metrics.
The process's �ow affects the hospital's business economic performancethrough opera-
tional cost (partly determined by the numbers N of resources and the resource times
TotT that are allocated to a certain task), and the throughput - assuming that th e hos-
pital receives payment from the government, insurance companie s, or patients them-
selves proportional to the number of treatments. Throughput depends on the capaci-
ties of the micro processes (TCap) and the workload ( EWL ). TCap is determined by
the synchronization ef�ciency SE and the effective capacities ECap of the tasks in a
micro process, whose further breakdown has been explicated in th e previous sections.
Quality of servicerefers to issues that may be an annoyance to patients, but do not
jeopardize the patients' health (Kenagy et al., 1999) - think of lo ng waiting times in the
waiting room, or having to undergo an examination twice because the � rst time failed.
There are numerous factors beyond process �ow affecting quality of service, such as
courtesy of staff and cleanliness of the facilities, but �rst-time-r ight ( FTR) percentages
of the tasks and waiting times within the micro processes are two proc ess �ow issues
impacting service quality.
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Figure 2.3 Axiological model for healthcare processes.
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2.5 Real-life example: CT scan process

Under quality of medical care and (patient) safetyare understood factors that affect the
patient's health and the effectiveness of the medical treatment (Don abedian, 1978).
Quality of medical care is affected by a few issues in the process's �ow, besides of
course many factors not related to process �ow. In particular, quali ty of medical care
depends on mistakes and errors in the process, which could harm th e patient, and
by waiting times in the macro process, which could result in treatmen ts being over-
due. The latter in turn are determined by the capacities of the micro pro cesses, the
workload, the FTR ratios of the micro processes, and the synchronization ef�cienc ies
in the macro process (problems arising in matching schedules of p atients, physicians
and facilities).

At the bottom of the diagram, we see that cycle times of tasks depend on the work
protocol (maybe alternative work procedures are more ef�cient?) , redundant work
(maybe some subtasks have no function and can be skipped?), and changeover time
(maybe the time in between patients can be minimized?). Availabili ty is in�uenced by
distractions, interruptions, searches for missing items, �nding r eplacements for miss-
ing items, and other secondary activities (for staff), and mainten ance, being missing,
and being defective (for equipment).

2.5 Real-life example: CT scan process

To illustrate the metrics and models introduced in previous sections w e discuss a mi-
cro process in a computed tomography (CT) scan department. The example results
from a Six Sigma project at the Deventer Hospital, a medical teaching hospital in the
Netherlands. The measurements were collected during 6 nonsequential days. Of each
arriving patient the planned arrival time, actual arrival time and start/stop times of
all tasks were measured. Also, attributes such as age, type of patient, type of examina-
tion, and date of appointment scheduling were recorded. In total, 6 6 patients treated
during polyclinical hours are included in the sample.

A CT scan is a medical imaging method used in the diagnostic phase of a healthcare
macro process. The method is part of the branch of medicine called radiology, and
the micro process is an example of a primary patient process. The scan process as de-
picted in Figure 2.4 has two input streams, a stream from a waiting lis t of patients that
are scheduled for a scan, and a stream of emergency patients. Emergency patients are
handled with priority and scheduled as �rst patient in line (a non preemptive queuing
discipline). The scheduled patients are typically scheduled 8am -1pm on workdays,
and are treated in the scheduled order. In general 18 patients are scheduled in time
slots of 15 minutes resulting in 4.5 hours of outpatient time slots per day . The remain-
ing 0.5 hours are allocated for breaks and emergency patients. During the morning,
an average of 1.3 emergency patients arrive, yielding a total wor kload of WLA = 19.3
patients per day (where a day is understood to be 8am-1pm).
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Figure 2.4 The CT scan primary patient process in its current con guration with two input
streams: scheduled and emergency patients.

For the outpatient stream, the average waiting time between the appointm ent and the
actual visit is 30.8 days. The waiting time is partly determined by th e process's capac-
ity and the patient's �exibility, and partly by the term and priority ad vised by the spe-
cialist. Scheduled patients arrive at the radiology department's re ception desk. Upon
arrival they are registered and enter the waiting room (average wa iting time 7.1 min-
utes). When summoned, an outpatient enters a dressing room (“Task 1: (Un)dress”).
The dressing room is occupied during the whole process, a cycle ti me of 19.7 minutes
per patient on average. The 3 dressing rooms are 100% availableduring the morning
shift, resulting in a PCapI of 45.7 patients per day. The undressed outpatient proceeds
to the second task (“Scan”), indicated by route 1 in Figure 2.4. After th e scan, an out-
patient returns to his dressing room (route 2). When the patient is dre ssed again, he or
she leaves the CT scan process (route 3). The emergency patients enter the process via
the dashed route in Figure 2.4, directly from their rooms in the emerg ency department
located next to the radiology department. After “Scan” they return to the emergency
department.

Task 2 is facilitated by a scan room and the task may consist of two sub-tasks per-
formed by diagnostic radiographers: a �uid injection for some p atients (about 62%)
and a CT scan for all patients. Patients that need �uid injection to inc rease visibility of
vital parts in the scan are injected by “Radiographer 1”. The expe cted �uid injection
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time is 4.4 minutes in total, including after-care when the CT scan is � nished (resulting
in CTII = 62% � 4:4 = 2:7 m/p when averaged over all patients). The second sub-task
is executed by “Radiographer 2” and the machine “CT scanner”. Th is sub-task takes
on average 6.9 minutes of which 4.6 minutes is CT scan time; the remainder of the
Radiographer 2's cycle time consists of transportation time and in struction time.
The expected total time in the scan room is 13.7 minutes, including a vi sible �uid injec-
tion for some patients, a CT scan, small transportations and instructi ons. There is no
signi�cant difference between the cycle times of outpatients and eme rgency patients.
Given these cycle times we calculate the effective capacities of resources II; : : : ; V . For
the radiographers, AvII = 86.7% andAvIV = 93.3% due to their 15 minutes' coffee break
and interruptions, such as phone calls and incomplete requests. The availability of the
CT scanner is 99.4% due to disturbances. The �rst-time-right percentages of both Tasks
1 and 2 are 100% (some rework and iterations are included in the cycle time of the CT
scanner). Consequently,ETP = NTP = 19:3 p/d. The resulting effective capacities
are as follows:

� Dressing room: ECapI = (3003=19:7)1:001:00 = 45:7 patients per day (p/d).

� Radiographer 1: ECapII = 96:2 p/d (of whom only 62% would need a �uid
injection).

� Scan room: ECapIII = 21:9 p/d.

� Radiographer 2: ECapIV = 40:6 p/d.

� CT scanner:ECapV = 64:8 p/d.

The scan room, having the lowest effective capacity, is the constraining resource in
the process; it would become a bottleneck if workload increased. Its effective uti-
lization is 88.1%. Most interruptions of the radiographers are tak en care of in their
idle time, and do not interfere with the utilization of the scan room, b ut the radio-
graphers' coffee break and a few interruptions make an idle time o f 20 minutes per
day unavoidable for the scan room. Therefore, the utilization of the scan room cannot
be above (300 ! 20)=300 = 93:3%. Thus, an upper bound for the process's synchro-
nization ef�ciency is SEA � 93:3%, and TCapA � 93:3%� ECapIII = 20:4 p/d. The
current average throughput serves as a proven lower bound, and TCapA � 19:3 p/d.
A sharper lower bound could, in some cases, be found by taking the hi ghest daily
throughput achieved as lower bound. In this case, however, we are a fraid that this top
day is not representative for the maximum throughput, but rather repres ents a day
with a more than average number of easy patients (patients not requiri ng �uid injec-
tion), and therefore, the top throughput could not be sustained over lon ger periods.
The process's true utilization of TUtA � 94:6% indicates that, given the current con-
�guration, the process is operating near its maximal throughput. The r adiographers
and CT scanner, all expensive resources, have fairly low utiliz ations. For example, the
overall resource ef�ciency of Radiographer 1 is OREII = 20:1%� 100%� 86:7% = 17:4%.
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The analysis above helps us to identify constrictions in the perfor mance of the current
CT scan process. The improvement effort is focused on improvin g the true capacity,
in order that more patients can be treated per day, and simultaneously improving the
utilization of the radiographers and CT scanner. Improving the ef fective utilization
of the scan room gives only limited prospects at improvement; at b est, it goes from
EUt III = 88.1% to 93.3%, improving true capacity by only 1.1 patients per day. Better
opportunities are revealed by the equation

ECapIII = FTRIII � AvIII � N III � TotTIII =CTIII = 100%� 100%� 1 � 300=13:7:

The FTR and Av are already perfect (for example, cleaning and maintenance of the
scan room are scheduled such that they do not interfere, ensuring tha t Av is 100%).
Opening a second scan room (N III = 2) would double the capacity, but then one would
also need another CT scanner and possibly more staff. Scheduling longer hours for the
service (increasing TotTIII ) would improve ECapIII , but this is a costly option, as it
does not improve the low utilizations of the other resources. It was d ecided to focus on
the cycle time CTIII . Following principles from the Theory of Constraints (Rahman,
1998; Davies and Davies, 1994), we spare the bottleneck resourceas much as possi-
ble. Thus, the scan room is used only for the CT scan itself, moving o ther tasks (�uid
injection and after care) to an area next to the scan room (Figure 2.5). Further, Radio-
grapher 1 copes with interruptions as much as possible, improving the availability of
Radiographer 2 to AvIV = 95% (the last 5% unavailability due to coffee breaks).
Emergency patients and undressed outpatients either go directly to “Ta sk 3: Scan”, or
�rst to “Task 2: Injection”, executed by Radiographer 1. Radiogr apher 1 is assigned to
both task 2 (TotTII ! 2 = 3.1 hours per day) and task 4 (TotTII ! 4 = 1.9 h/d); we have
differentiated the process �ow metrics by subscripts II ! 2 and II ! 4 (Figure 2.5). The
calculations predict effective capacities for tasks 2 and 4 of 58.6 and 57.0 p/d.
With injection, after care and some patientradiographer interacti on taken out, the cycle
time for the scan room is expected to fall to 9.3 m/p, increasing its ef fective capacity
to ECapIII = 32.3 p/d. It is still the bottleneck in the process, and since its effe ctive
utilization cannot be more than 95% (due to coffee breaks), the true capacity of the
new process is predicted to be below 95%� 32:3 = 30.7 p/d. We propose to sched-
ule 29 outpatients per day, which, combined with an in�ow of 1.3 emer gency patients
per morning, would give a true utilization of at least 98.7%. The extr a 11 patients per
day (compared to the old setting), or about 2700 patients per year, wo uld generate
361k Euros extra revenue per year. The CT scanner is still idle for about half the time
(EUt IV = 46:7%), and one could argue that there is still room for improvement, but
demand may not be suf�cient to utilize more of its capacity. Another di rection for im-
provement is the substantial idle time for Radiographer 1 ( EUt II � 32%). One could
try a scheduling discipline where patients who need a �uid injectio n are scheduled
�rst. As soon as the last patient needing a �uid injection has been tr eated, Radiogra-
pher 1 is available for other duties (thus reducing his or her TotTII ).
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Figure 2.5 The redesigned CT scan primary patient process with two input streams: scheduled
and emergency patients.
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2.6 Discussion and conclusions

Process improvement in healthcare is an urgent and important pur suit. This chapter's
contributions to that pursuit can be summarized as follows:

1. A system of metrics for quantifying capacities, utilizations, and overall resource
ef�ciency. The system is �exible enough to be of use in the variety of process
structures typical for healthcare.

2. An organizational model which breaks down healthcare proce sses into macro
and micro processes, and the latter into tasks and resources. The model is the
basis for the types of diagrams such as in Figures 2.1, 2.2, 2.4, and 2.5, which we
propose as useful instruments in process diagnosis.

3. An axiological model (Figure 2.3) which relates general busi ness objectives of
hospitals to process �ow metrics.

These results attempt to contribute to the uni�cation of the �eld of process improve-
ment in healthcare, and have implications in several areas.

Managerial implications.The three components mentioned above provide a conceptual
framework for understanding and studying process improvement i n healthcare in a
general context. These components also offer methodological guidance to a project
leader responsible for improving processes in a hospital. Th e presented material has
been the basis for training material, which we have integrated in o ur Lean Six Sigma
training curriculum for courses that we teach to professionals in hea lthcare. The ma-
terial suggests to project leaders how to make a diagrammatic repre sentation of the
process under study, which data to gather, and how to analyze and diag nose a pro-
cess's �ow and resource utilization. The proposed diagnostics fo r bottlenecks and
ORE optimization provide guidelines for a methodical exploration of improvement
directions. Further, the models offer an instrument for hypothesiz ing about alterna-
tive con�gurations, and predicting their performance. Finally, th ey facilitate laying
down the speci�cations for a redesigned process.

Integration of the work in standard process improvement approaches.The presented mod-
els can be readily integrated in currently popular standard improv ement approaches,
such as the ones mentioned in the introduction. Both in Lean Thinking a nd in Busi-
ness Process Management (BPM) there is an emphasis on diagrammatic modeling of
processes. Our type of diagrams, as in Figures 2.1, 2.2, 2.4, and2.5, is an alternative, tai-
lored to healthcare processes and the analysis of process �ow, to the value stream map
in Lean Thinking (Braglia et al., 2006), and the business process modeling language,
uni�ed modeling language, and other standards in BPM (Aguilar-Sa vén, 2004). Also
Six Sigma prescribes mapping of processes; further, our axiological model (Figure 2.3)
links on to Six Sigma's prescription to frame a project's objectiv es in terms of mea-
surable characteristics named critical to quality (CTQ). In fact, Figure 2.3 represents a
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generic CTQ-�owdown, see De Koning and De Mast (2007), for Si x Sigma projects in
healthcare. The �gure also places quality, defects and variabili ty, the traditional fo-
cal points of Six Sigma and Total Quality Management, in a coherent breakdown of
value in healthcare processes. TheORE system of metrics, �nally, facilitates applica-
tion of the Five Focusing Steps of the Theory of Constraints (Rahman, 1998; Davies
and Davies, 1994).

Directions for future research.An important topic for further study is to develop empiri-
cal techniques for determining the metrics proposed in Section 2.2 f or actual processes
under study. Most of the presented metrics can be measured by direct o bservation,
and it would be useful to identify methods and equipment which make such data
gathering as ef�cient and reliable as possible, possibly thro ugh automation. Some of
the metrics cannot be determined in a straightforward manner. For example, although
we have made some suggestions for establishing a process's true capacity and syn-
chronizing ef�ciency, a more thorough study and practical guideli nes for setting up
such an experiment would be useful. A second direction for researc h, also highly rele-
vant in the author's opinion, and enabled by the models expounded i n this chapter, is
to re�ne the models for selected generic processes in hospitals. For example, most hos-
pitals have one or more CT scan processes, and by describing a certain number of them
in the generic format proposed in this chapter, one could compare th eir organization
and performance across hospitals. Eventually, this could result i n the identi�cation of
standards and best practices.

33



Process Improvement in Healthcare: Overall Resource Ef ci ency

34



3 Utility-Based Appointment
Scheduling

3.1 Introduction

When setting up an appointment schedule, one aims at achieving a pr oper balance
between the interests of the service provider on the one hand, and the customers on
the other hand. Indeed, if the system is frequently idle, then it is no t functioning in
a cost-effective manner for the service provider, whereas if it is virtually always busy,
then the customers' waiting times may become substantial. The objectiv e is then to
minimize the system's loss (in terms of the idle times of the service provider, as well
as the waiting times of the clients) by optimally choosing the clients ' arrival epochs. A
common choice is to assume a quadratic loss function, such that �nding the optimal
schedule requires solving

min
t1 ;:::;t n

nX

i =1

 
EI 2

i + EW 2
i

�
; (3.1)

with t i denoting the appointed arrival time of client i with I i the preceding idle time
(of the server), and with Wi the waiting time of the i -th client. Now it is crucial to
observe that the random variables I i and Wi are also affected by the arrival epochs
t1; : : : ; ti ! 1 of all previous clients. This explains why solving the above opti mization is
hard: apart from numerical approaches, to the best of our knowled ge no manageable
characterization for the optimal schedule is known. Ideally, one would like to have a
tractable solution for arbitrary loss functions (that is, not just the q uadratic one) and
general service time distributions, to obtain an approach that can b e used across a
broad range of application areas (such as health care, service systems, manufacturing,
etc.).
There is a sizeable literature on appointment scheduling, but the �n dings tend to be
rather case-speci�c: often one particular loss function (that is ap propriate for the ap-
plication at hand) is considered, and in view of numerical tracta bility exponential or
Erlang service times are assumed (Fries and Marathe, 1981; Kaandorp and Koole, 2007;
Wang, 1999). Besides, many studies rely on simulation to overcome the inherent com-
putational complexity, and to obtain support for speci�c heuristics; see, for example,
Brahimi and Worthington (1991); Rohleder and Klassen (2000). These approaches have
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clear limitations: an approach designed for a speci�c applica tion (with its speci�c loss
function and service time distribution) can often not be used in other a pplication do-
mains.

In this chapter we propose a sequentialoptimization approach to cope with the above
mentioned dif�culties. By `sequential' we refer to an approach that determines the
i -th appointment time t i with the earlier arrival epochs t1; : : : ; ti ! 1 being known. For
instance in the case of a quadratic loss function, the sequential optimiz ation problem
yielding t i (for given t1; : : : ; ti ! 1) is

min
t i

 
EI 2

i + EW 2
i

�
; i = 1; : : : ; n: (3.2)

The idea is that the t i are determined recursively. Remarkably, it turns out that (3.2)
allows an explicit solution: performing the optimization for i = 1; : : : ; n we obtain for
this quadratic loss function the optimal schedule

t1 := 0; and t i :=
i ! 1X

j =1

ESj ; i = 2; : : : ; n;

with Sj denoting client j 's sojourn time (which is de�ned as the sum of the associated
waiting time and service time).
Importantly, the approach sketched above applies to a rather gener al class of loss func-
tions, and to arbitrary service time distributions. It is, e.g., nei ther required that clients'
service times stem from the same distribution, nor that the clients hav e the same loss
function. Where we �nd for the quadratic loss function that the optimal a rrival epoch
equals the sum of the meansof the sojourn times of the previous customers, for linear
loss (that is, the loss function of the i -th customer equalling EI i + EWi ), it is the sum
of the mediansof the sojourn times. In practice, one often relies on the heuristic tha t
the arrival epochs are chosen in accordance with the sum of the service timesof the
previous customers. In light of the above results, it is concluded tha t this strategy is
suboptimal given a quadratic or linear loss function.

The main contribution of the chapter is the sequential optimization app roach for ap-
pointment scheduling, as described above. Apart from the favor able features that we
already mentioned (applicable for a broad class of loss functio ns, general service time
distributions), it is highly �exible, in that it allows the incorp oration of various real-life
phenomena such as urgent arrivals and `no-shows'.
The above results concern the determination of the optimal arriving e pochs, for the
situation that the order in which the customers are served has been given. A next
question concerns the optimal order; this is the second contribution o f our work. We
prove the appealing result that if all service time distributions co ncerned stem from
a scale family with �nite variances, clients should arrive in non -decreasing order of
their scale parameter. This result is in line with the commonly used h euristic to keep
the variability initially as low as possible, see e.g. Lehaney e t al. (1999); Wang (1999).
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3.2 Preliminaries: background and literature

The structure of the chapter is as follows. Section 3.2 presents standard scheduling
schemes and an overview of the relevant literature; it also further motivates the re-
search reported on in this chapter. Section 3.3 introduces our sequential optimization
approach; it includes a proof of the `mean rule' for quadratic loss and the `median
rule' for linear loss. In Section 3.4 we address the problem of id entifying the opti-
mal order of the clients. Section 3.5 discusses additional issues such as urgent arrivals
and no-shows. Then, in Section 3.6 we present some numerical examples. Section 3.7
concludes.

3.2 Preliminaries: background and literature

Appointment scheduling has been widely studied in many applicati on areas, such as
manufacturing and healthcare. As mentioned in the introduction, the se rver and cus-
tomers have opposite interests: the service provider wishes to mini mize the amount
of server idleness (and is therefore in favor of a `dense schedule'), whereas customers
are interested in minimizing waiting times (and hence prefer sch edules in which the
slots are relatively long).
As pointed out by Mondschein and Weintraub (2003), in order to deal with the oppo-
site interests of the server and the clients, two approaches can be distinguished. In the
�rst place, one may facilitate the process environment with featur es so that waiting
time or idle time is either perceived or used differently; note that th is is essentially
`manipulating' the disutility curves of the server and customers. The a lternative is
to de�ne a loss function, that in some way encompasses the disutilities experienced
by both server and customers. Then a schedule needs to be determinedthat mini-
mizes the expected loss, that is, therisk, thus realizing an optimal trade-off between
the agents' interests. This chapter considers the latter approach.

3.2.1 Background

Let us consider the following standard scheduling scheme, which is, owing to its sim-
plicity, frequently used in practice. Consider a sequence of jobs, each of random dura-
tion, and assume the job durations B1; : : : ; Bn to be mutually independent. Let job i be
the i -th job to be scheduled. Now we de�ne the scheduling scheme S by setting the
arrival epoch of job i , denoted by t i , equal to the sum of the expected durations of the
previous jobs

t1 := 0; and t i :=
i ! 1X

j =1

EB j ; i = 2; : : : ; n: (3.3)

Due to its simple structure, this standard scheduling scheme is often seen in practice;
cf. also Klassen and Rohleder (1996). It has a serious drawback, though: the system
becomes essentially a queue with load 1, leading to potentially long waiting times. As
a result this scheme might be attractive for the server, but for the custo mers it is not.

37



Utility-Based Appointment Scheduling

To support this claim, consider for the moment the situation that the B i are identically
distributed (as a random variable B), such that strategy S can be seen as a D/G/1
queue (starting empty) with load 1. The next result shows that EWn explodes as a
function of

p
n; while this result has appeared in various forms in the literature, f or

the sake of completeness we include its proof in Appendix 3.8.1.

Proposition 3.2.1. In a D/G/1 queue with load 1 starting empty, with the service times having
�nite variance� 2, the mean waiting time of then-th customer obeys, asn " 1 ,

EWnp
n

" �

r
2
�

:

This result and its proof remain valid in the GI/G/1 setting,with � 2 := Var A + Var B , where
A is distributed as the interarrival time.

To remedy the undesirable effect that the mean waiting times explod e, one could in-
troduce the `adapted scheme' S � , for some � � 0; with

t1 := 0; and t i := � �
i ! 1X

j =1

EB j ; i = 2; : : : ; n: (3.4)

Observing that S 1 = S , the above result on EWn relates to the case� = 1 : Obviously,
the server's idle time is reduced (compared to S ) when picking � 2 [0; 1); in the ex-
treme case of� = 0 , all customers arrive at time 0, thus minimizing the expected idle
time (at the expense of the clients' waiting time). On the other hand, i t is clear that the
mean waiting times in the adapted scheme S � are reduced (relative to S ) when pick-
ing � > 1 (at the expense of the expected server's idle time); then the corresponding
D/G/1 queue is stable in the sense that it has a proper steady-state distri bution.
These observations suggest that one should pick some� larger than 1 in order to �nd
a good compromise between the waiting times of the clients and the idl e time of the
server, as was also recognized by Ho and Lau (1992) and references therein. It is evi-
dent, though, that � does not uniquely predict the customer's waiting time: a given �
can lead to a broad range of waiting time distributions, depending o n the service time
distribution. Indeed, for � > 1 deterministic service times lead to zero waiting times,
while the waiting times can be quite substantial if the service time distr ibution has
heavy tails. Intuitively, one could anticipate them to increase in the s quared coef�cient
of variation ( SCV) of the service times. The above reasoning tells us that the schedule
should incorporate more detail of the service time distributions than just their means.
To set up the schedule in a sounder way, one could use the concept of `risk function',
which measures the aggregate disutility of the server and client. Mor e speci�cally, the
risk associated with the i -th arrival depends on the distribution of the waiting time
Wi of the i -th client, as well as the idle time I i prior to the arrival of this i -th client. It
makes sense to choose non-decreasing functionsg(�) and h(�) with g(0) = h(0) = 0 ;
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and to de�ne the risk associated with the i -th arrival as

R(g;h)
i (t1; : : : ; ti ) := Eg(I i ) + Eh(Wi );

clearly, the i -th risk function depends on arrival epochs t1 up to and including t i : Note
that g(�) and h(�) determine how much weight should be given to the idle and waiting
time respectively, and that this risk depends on the schedule up to and including the
i -th appointment time. In this framework, the optimal schedule then fol lows from
solving the minimization problem

min
t1 ;:::;t n

nX

i =1

(Eg(I i ) + Eh(Wi )) : (3.5)

As argued in the introduction, this optimization problem is intrinsic ally complex, and
therefore we propose in the next section to analyze its `sequential counterpart'. Before
we do so, we �rst give a brief literature overview.

3.2.2 Literature

The literature on appointment scheduling started with the seminal wor ks of Bailey
(1952, 1954); Welch (1964); Welch and Bailey (1952). They proposed a simple schedule
that sets interarrival times equal to the average service time, but star ts with twoarrivals
scheduled at time 0. In line with these works, most papers focus on a pplications of
appointment scheduling in healthcare, see Cayirli and Veral (2 003) for an extensive
overview. We also mention Denton and Gupta (2003), and Mondschei n and Weintraub
(2003), who discuss a somewhat more general setting.
The usual starting point of this optimization approach concerns the c hoice of a spe-
ci�c risk function. Besides waiting time and idle time, this may inc lude various other
performance metrics; see Table 2 in Cayirli and Veral (2003) for an overview. It is
emphasized that the choice of the risk function and service time dis tribution is often
rather application-speci�c (and, as a consequence, of limited us e for practitioners in
other application domains). Many studies rely on simulation to over come the inherent
analytical and computational complexity, and to obtain support for sp eci�c heuristics,
such as, for example, Brahimi and Worthington (1991); Rohleder and Klassen (2000);
in addition we mention Klassen and Rohleder (2004); Patrick et a l. (2008).

3.3 Sequential optimization

In our sequential counterpart of (3.5), we minimize, for each i the risk

R(g;h)
i (t1; : : : ; ti ) = Eg(I i ) + Eh(Wi )

over t i , where it is essential that t1; : : : ; ti ! 1 are given; we do so in a recursive manner
for i = 1; : : : ; n: A crucial observation is that I i and Wi cannot be both positive, and it
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is therefore natural to introduce the loss function

`(x) = g(! x)1[x< 0] + h(x)1[x> 0]; x 2 R;

which in non-increasing on (!1 ; 0] and non-decreasing on [0; 1 ) with `(0) = 0 : In
terms of this loss function we may write

R(g;h)
i (t1; : : : ; ti ) = Eg(I i ) + Eh(Wi ) = E`(Wi ! I i ); i = 1; : : : ; n;

and we de�ne the risk at the i -th arrival with loss function `(�) as

R(` )
i (t1; : : : ; ti ) = E`(Wi ! I i ); i = 1; : : : ; n: (3.6)

3.3.1 Schedule for quadratic and linear risk functions

To ease the exposition, we �rst present our procedure to �nd the optim al interarrival
times for loss functions that are used most frequently in the literature: the linear and
quadratic loss functions. Then Section 3.3.2 shows that this approach essentially car-
ries over to a broad class of risk functions.

Quadratic loss function.A simple (that is, non-weighted) quadratic loss function is de-
�ned by

R(v)
i (t1; : : : ; ti ) := EI 2

i + EW 2
i ; i = 1; : : : ; n:

Due to the well-known Lindley recursion (Lindley, 1952),

I i = maxf t i ! t i ! 1 ! Wi ! 1 ! B i ! 1; 0g (3.7)

and

Wi = maxf Wi ! 1 + B i ! 1 ! t i + t i ! 1; 0g: (3.8)

Let Si ! 1 := Wi ! 1 + B i ! 1 denote the sojourn time of the i -th customer, with density
f Si ! 1 (�) and distribution function FSi ! 1 (�). In addition, de�ne by x i ! 1 := t i ! t i ! 1 the
time between the (i ! 1)-st and i -th arrival. Then, with (3.7) and (3.8) in mind, we may
write

W 2
i + I 2

i = ( Si ! 1 ! x i ! 1)2 (3.9)

and so the system's risk (in relation to the i -th client) reads

R(v)
i (t1; : : : ; ti ! 1; t i ! 1 + x i ! 1) = E (Si ! 1 ! x i ! 1)2 : (3.10)

The following result is an immediate consequence of the general approach that will
be presented in Section 3.3.2. We give two proofs: the �rst one is elementary and
insightful; the second one has the �avor of the general approach.
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Proposition 3.3.1. De�ne the scheduleV through

t1 := 0; and t i :=
i ! 1X

j =1

ESj ; i = 2; : : : ; n:

For the simple quadratic loss function, the scheduleV sequentially minimizes the risk de�ned
in (3.10).

Proof 1 Observe that W1 = 0, I 1 = 0, (3.7) and (3.8) hold. This immediately implies
that when computing I 2

i + W 2
i , the maxima in Eqns. (3.7) and (3.8) vanish:

I 2
i + W 2

i = ( Wi ! 1 ! B i ! 1 ! t i + t i ! 1)2 = ( Si ! 1 ! t i + t i ! 1)2:

Now minimize, for given t i ! 1, the risk of customer i :

min
t i

R(v)
i (t1; : : : ; ti ) = min

t i
E(Si ! 1 ! t i + t i ! 1)2 = Var Si ! 1;

where the minimum is attained for t i = t i ! 1 + ESi ! 1. Hence the optimal interarrival
time x?

i ! 1 is ESi ! 1, in agreement with schedule V : 2

Proof 2 Again, observe that W1 = 0 and I 1 = 0, and

I 2
i + W 2

i = ( Si ! 1 ! t i + t i ! 1)2:

Minimize, for given t i ! 1, the risk at the arrival of client i :

min
t i

R(v)
i (t1; : : : ; ti ) = min

t i
E(Si ! 1 ! t i + t i ! 1)2 = min

x i ! 1
E(Si ! 1 ! x i ! 1)2:

Since we deal with a non-negative convex loss function in x i ! 1, the �rst order condition
(use `Leibniz's rule') yields the optimal interarrival time for the (i ! 1)-st client, and
consequently also the optimal arrival time. We have to solve

d
dx i ! 1

E(Si ! 1 ! x i ! 1)2 = 2
Z 1

0
(s ! x i ! 1)f Si (s)ds = 0;

which gives us the optimal interarrival time x?
i ! 1 = ESi ! 1. 2

Note that the latter proof is reminiscent of that featuring in the well k nown newsvendor
problem, see for instance Hopp and Spearman (2008). Evidently, it can beused to other
loss functions as well. Next, we consider the case of a linear loss function.

Linear loss function.Consider the simple (that is, non-weighted) linear loss function :
the risk associated with the i -th customer equals the sum of the expected waiting time
and idle time. Again, due to (3.7) and (3.8), we obtain

R(u)
i (t1; : : : ; ti ! 1; t i ! 1 + x i ! 1) := EI i + EWi = E jSi ! 1 ! x i ! 1j; (3.11)

which is a non-negative convex loss function.
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Proposition 3.3.2. De�ne the scheduleU through

t1 := 0; and t i :=
i ! 1X

j =1

F ! 1
Sj

�
1
2

�
; i = 2; : : : ; n:

For the simple linear loss function, the scheduleU sequentially minimizes the risk (3.11).

Proof We are to minimize

E jSi ! 1 ! x i ! 1j =
Z x i ! 1

0
(x i ! 1 ! s)f Si ! 1 (s)ds +

Z 1

x i ! 1

(s ! x i ! 1)f Si ! 1 (s)ds:

Applying Leibniz's rule gives
Z x i ! 1

0
f Si ! 1 (s)ds =

Z 1

x i ! 1

f Si ! 1 (s)ds:

This implies that we should take the optimal interarrival time x?
i ! 1 equal to a medianof

Si ! 1, that is, x?
i ! 1 = F ! 1

Si ! 1
(1=2), as claimed. 2

Interestingly, we conclude that a linear loss function leads to inter arrival times equal-
ing a medianof the sojourn times, whereas a quadratic loss function leads to intera r-
rival times equaling the meanof the sojourn times. There is a connection with statistical
estimation theory: there one obtains the (sample) median when impo sing the absolute
value as loss function and the mean absolute deviation as risk, whereas the (sample)
mean is found when imposing the square as loss function and the varia nce as risk.
It is noted that the above approach (essentially based on Leibniz 's rule) carries over
to more general loss functions. We present the resulting general approach in the next
subsection.

3.3.2 Schedule for convex loss functions

We now present our sequential optimization approach for convex lo ss functions, which
contains the cases dealt with in the previous subsection. The approach borrows ele-
ments from statistical decision theory; see e.g. Ferguson (1967) or Chapter 10 in Bickel
and Doksum (2001).
As observed before, due to (3.7) and (3.8),

Wi ! I i = Wi ! 1 + B i ! 1 ! t i + t i ! 1 = Si ! 1 ! x i ! 1 2 R; (3.12)

so that we can de�ne a general risk function (to be minimized over x i ! 1)

R(` )
i (t1; : : : ; ti ) := E`(Si ! 1 ! x i ! 1): (3.13)

If the loss function is convex, then x?
i ! 1 can be found by solving the �rst order con-

dition, as explained in Lemma 3.8.1 in full detail. As for the quadr atic and linear
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case, we can set up a sequentially optimized scheme, in which the arrival epochs can
be determined recursively. More precisely, Thm. 3.3.3 states how to generate the op-
timal schedule for any non-negative convex loss function `(�), and for any sojourn
time distribution function FSi (�). We impose the (mild) condition that E`(Si ! x) and
Ej`0(Si ! x)j are �nite for all x 2 R and i = 1; : : : ; n:

Theorem 3.3.3. LetR(` )
i (t1; : : : ; ti ) := E`(Wi ! I i ) be the risk associated with thei -th client,

with a non-negative convex loss function`(�) onR such that̀ (0) = 0 .
De�ne the scheduleW through

t1 := 0 and t i :=
i ! 1X

j =1

x?
j ; i = 2; : : : ; n;

wherex?
j is the unique solution of the �rst order condition associatedto the optimization prob-

lem
min

x j
E`(Sj ! x j );

for givent1; : : : ; ti ! 1. For any distribution functionFSi (�), for i = 1; : : : ; n, the scheduleW
sequentially minimizes the risk (3.13).

Proof According to (3.13) we may write the corresponding risk R(` )
i (t1; : : : ; ti ) = E`(Si ! 1!

x i ! 1). The statement now follows from Lemma 3.8.1. 2

3.3.3 Weighted standard loss function

The loss functions of Section 3.3.1 can be generalized in the sense that we could relax
the restriction of identical weights. As argued in e.g. Ho and Lau (1 992), it is some-
times justi�ed to weight the server's idle time in a different manne r than the client's
waiting time. We here consider both a weighted linear and weighted quadratic loss
function.

A weighted-linear loss function. Let the risk be a weighted sum of the idle time and
waiting time, � EI i +  EWi for non-negative �; : Without loss of generality we may
concentrate on risks of the form

R(u;� )
i (t1; : : : ; ti ) := � EI i + (1 ! � )EWi ; i = 1; : : : ; n; � 2 (0; 1):

Note that for � # 0 this risk minimizes only the client's waiting time. This results in a
schedule that favors the clients by making the interarrival times ex cessively long, thus
generating substantial idle times for the server. For � $ 1 the risk minimizes the idle
times of the server, which is similar to setting � = 0 in (3.4): all customers are to arrive
at time 0, resulting in long waiting times for the clients.
The optimal interarrival time x?

i ! 1 can be found by solving the condition

�
Z x i ! 1

0
f Si ! 1 (s)ds ! (1 ! � )

Z 1

x i ! 1

f Si ! 1 (s)ds = FSi ! 1 (x i ! 1) ! 1 + � = 0;
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for i = 2; : : : ; n. By Thm. 3.3.3 this leads to the optimal schedule

t1 := 0 and t i :=
iX

j =1

F ! 1
Si ! 1

(1 ! � ) ; i = 2; : : : ; n:

For � = 1=2 it is easily seen that this schedule equals the optimal scheme of Prop. 3.3.2,
as desired. Note that �= (1 ! � ) may be viewed as the ratio between the cost of idle
time and the cost of waiting time. Guidelines so as how to choose � are given by Fries
and Marathe (1981).
To ease the exposition, we have so far assumed that the loss functionsare uniform in i ,
that is, equal for any customer. Inspection of the above theorem show s that this is by
no means necessary. The result straightforwardly extends to risk functions of the type
R(` )

i (t1; : : : ; ti ! 1 + x i ! 1) := E` i (Si ! 1 ! x i ! 1) (that is, the function ` i (�) is client-speci�c).

A weighted-quadratic loss function.Here we consider a loss function that is of the form

R(v;� )
i (t1; : : : ; ti ) := � EI 2

i + (1 ! � )EW 2
i ;

for i = 1; : : : ; n and 0 � � � 1. Applying Thm. 3.3.3, we obtain that the optimal
interarrival time x i ! 1 satis�es

� (x i ! 1 ! ESi ! 1) ! (1 ! 2� )
Z 1

x i ! 1

P(Si ! 1 > s )ds = 0; (3.14)

which for � = 1=2 reduces to the scheme of Prop. 3.3.1, as desired. We present an
example involving a weighted-quadratic loss function in Section 3 .6.

3.4 Optimal ordering

Having dealt with the optimal schedule for a given order of the clie nts, we now turn
to the obvious next question: how should the order of arriving clients be chosen? This
question will be addressed in this section.
A commonly used heuristic is that the service times are put in increas ing order of
variance. The underlying idea is that the variability (in terms of waiting times and
idle times) in a D/G/1 system, is exclusively caused by the variabili ty of the service
times. When putting the clients with low variability (in their service times) early in the
schedule, the uncertainty for clients arriving later is reduced. In th is section we study
the ordering issue, by deriving a result that con�rms the above heur istic. Related
results were presented in Wang (1999) in case of exponentially distributed jobs.
Before going to the main result of this section, we present a simple c ovariance inequal-
ity due to Chebyshev (see Hardy et al., 1934, pp. 43-44 for an overview). Note that this
result is known as Chebyshev's algebraic inequality, see Mitrin ovi ć and Vasić (1974),
and has been rediscovered several times later, see Jogdeo (1977) and references therein.
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Lemma 3.4.1. Lets(�) be a non-decreasing function and letX be a random variable such that
EX 2 < 1 andEs2(X ) < 1 hold. ThenCov(s(X ); X ) � 0 holds. This inequality is strict, if
s(�) is strictly increasing andX is non-degenerate.

Proof Note that [s(X )! s(EX )][X ! EX ] � 0holds a.s. and that we have Cov(s(X ); X ) =
E ([s(X ) ! s(EX )][X ! EX ]) : 2

The main contribution of this section is the following. Consider n customers with in-
dependent service times B1; : : : ; Bn , and let B i be distributed as � i B for i = 1; : : : ; n,
where we assume � 1 � � 2 � : : : � � n . Let � be a permutation of f 1; : : : ; ng. The
corresponding permutation (B � (1) ; : : : ; B� (n)) of the service times (B1; : : : ; Bn ) that se-
quentially minimizes the risks, is the identical permutation � (i ) = i , i = 1; : : : ; n: More
precisely, we have the following result; see Appendix 3.8.3 for a proof.

Theorem 3.4.2. LetR(` )
i (t1; : : : ; ti ) := E`(Wi ! I i ) be the risk corresponding to a non-negative

convex loss functioǹ(�) with `(0) = 0 , and let� 1 � � 2 � : : : � � n be positive numbers. In
addition, let for alli , all � > 0; and allx 2 R the expectationsE`(Wi + �B ! x); Ej`0(Wi +
�B ! x)j2; andEB 2 be �nite. Furthermore, for any permutation� , let R(` )

i (� ) be the risk from
(3.13) sequentially minimized by the scheduleW from Theorem 3.3.3 fori = 1; : : : ; n, when
the service timesB i are distributed as� � ( i )B, i = 1; : : : ; n.
If the random service timeB has a density with respect to the Lebesgue measure, then the
identical permutation� (i ) = i sequentially minimizes the riskR(` )

i (� ) at the i -th arrival,
i = 1; : : : ; n.

Since the � i are scale parameters, this theorem con�rms the intuitive idea that the
clients should be put in increasing order of variance. In case of the B i having exponen-
tial distributions with parameters � 1; : : : ; � n , it implies that the order should be such
that the � i decrease with i ; that is, the one with lowest variance (and mean) should be
served �rst. In Wang (1999) partial proofs were given for a rela ted result for the special
case of exponential services times.

3.5 Additional issues: urgent arrivals and no-shows

In this section we present a number of extensions of the scheduling scheme developed
in the previous sections. We focus on two speci�c complications, cf . Cayirli and Veral
(2003): an additional stream of customers that has to be handled with priority, and
the impact of no-shows. Although we discuss the two complications fo r the case of
quadratic loss functions only, the results can be generalized to any l oss function, in the
spirit of Lemma 3.8.1.

Urgent arrivals. A common approach is to model urgent arrivals by adding a random
process, see for example Rising et al. (1973); Swisher et al.(2001). Consider the model
presented in the Section 3.3, but let there be an additional Poissonstream of customers
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that has to be handled with priority — if the server is busy upon arriva l of such an
`urgent customer', the job in service is �nished before the server starts serving the
urgent customer(s). Let urgent customers arrive according to a Poisson process of
rate � , and let their service requirements (J1; J2; : : :) be i.i.d. samples (distributed as a
generic random variable J ).
It is not hard to see that under these additional urgent arrivals and quadratic loss
functions, the scheduling scheme V should be adapted to

t i = t i ! 1 + EWi ! 1 + EB i ! 1 + � (t i ! t i ! 1) � EJ;

leading to

t1 := 0; and t i :=
1

1 ! � EJ

i ! 1X

j =1

(EWj + EB j ) ; i = 2; : : : ; n:

Note that we should necessarily have � EJ < 1, as otherwise the second `regular' job
would never be scheduled.

no-shows. As argued in, e.g., Hassin and Mendel (2008); Kaandorp and Koole (2007),
the impact of no-shows may be substantial. To analyze this effect, l et � i be the indicator
that customer i actually shows up, independently of the job sizes and other customers
showing up or not, where � i equals 1 with probability pi and 0 else. This means that the
service time B i is replaced by B i � i . It is readily checked that in this model we would
obtain the schedule (under quadratic loss functions)

t1 := 0; and t i :=
i ! 1X

j =1

(EWj + pj EB j ) ; i = 2; : : : ; n:

Other loss functions can be dealt with similarly.

3.6 Computational study: steady-state and convergence

Above we presented a method to determine the optimal interarrival tim e given the
sojourn time distribution of the previous jobs, for any given convex loss function. To
illustrate this method, we discuss a set of examples. Although the method works
for all service time distributions, we consider the exponential ca se for its attractive
computational properties.
We �rst consider `steady-state schedules': if all jobs stem from th e same distribution,
then the schedules prescribe that the customers should arrive equidis tantly in time.
We denote the risk per customer in the steady-state for loss function `(�) at interarrival
time x by R(` )(x). We present closed-form optimal interarrival times for the vari ous
loss functions introduced above. Then we verify the legitimacy of th e use of steady-
state results, which is particularly relevant in case the number of job s is relatively
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low. Finally, we compare our sequential approach with the simultane ous optimization
program (3.1).

Example 3.6.1. In this example we consider the effect of scheduling policies U and V
by considering the situation of i.i.d. service times, and the number of jobs n being large.
Our goal is to compute the limiting interarrival time for both schedulin g policies.
We assume that the service times are exponential with mean 1=�; so that the queue un-
der consideration is an D/M/1. Let x be the interarrival time between two subsequent
jobs; it is evident (cf. Proposition 3.2.1) that we should have x larger than the average
service requirement 1=�: Then the distribution of the steady-state waiting time W is
given through Asmussen (2003); Tijms (1986)

P(W > y ) = � xe! � (1! � x )y; y > 0;

where � � � x is the unique solution in (0; 1) of e! � (1! � )x = �: By straightforward
calculus, with B exponentially distributed with mean 1=� , we obtain

G(y) := P(W + B � y) = 1 ! e! � (1! � x )y; y > 0:

(i) First consider the linear loss function and strategy U . It follows directly that

G! 1

�
1
2

�
=

log 2
� (1 ! � x )

:

We �nd for the optimal interarrival time x? = G! 1(1=2)

� x? =
1
2

and x? =
2 log 2

�
:

Note that in case of a weighted-linear loss function the optimal x solves

G! 1(1 ! � ) =
! log�

� (1 ! � x )
;

yielding

� x? = �; x ? =
1
�

�
! log�
1 ! �

; and R(u;� )(x?) =
! � log�
� (1 ! � )

:

For � $ 1, the optimal x? converges to 1=� . This results in a stable queue with large
waiting times for the clients, due to the heavy weight imposed on idle times in the
risk.
(ii) Let us now focus on the quadratic loss function and policy V . It is easily veri�ed
that

EW + EB =
� x

� (1 ! � x )
+

1
�

=
1

� (1 ! � x )
:

Straightforward calculations now reveal that, with x? being the optimal interarrival
time,

� x? =
1
e

; and x? =
1
�

�
e

e ! 1
:
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As e=(e ! 1) � 1:5820and 2 log 2� 1:3863, we conclude from the above that under the
quadratic loss function the scheduling is somewhat more conservati ve than under the
linear loss function.
Finally, we consider the weighted-quadratic loss function. The use of (3.14) and the
constraint on � x yield the equation

� (x ! ES) + (1 ! 2� )
�

! e! � (1! � x )x

� (1 ! � x )

�
=

! � (1 + log � x ) ! (1 ! 2� )� x

� (1 ! � x )
= 0;

which is equivalent to  (� x ) = 0 with

 (� ) = � (1 + log � ) + (1 ! 2� )�; 0 < � � 1; (3.15)

strictly increasing, lim � #0  (� ) = !1 , and  (1) = 1 ! � � 0. It follows that (3.15) has a
unique solution � x? 2 (0; 1], and we get

x? =
! log� x?

� (1 ! � x? )
and R(v;� )(x?) =

1
�

�
� + (1 ! 2� )� x?

� (1 ! � x? )

� 2

:
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R ( u;� )

R ( v;� )

Figure 3.1 The steady-state interarrival time as function of the weight � for the loss due to idle
time; � = 1 .

The optimal interarrival times x? for R(u;� )(x) and R(v;� )(x) exhibit different sensitiv-
ities with respect to the weight � , as observed in Figure 3.1, where we have chosen
� = 1 without loss of generality. For an � close to 0:2, both prescribe the same inter-
arrival time. For large values of � the interarrival times corresponding to R(u;� ) and
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3.6 Computational study: steady-state and convergence

R(v;� ) converge, as expected, towardsx? = 1 for both loss functions (from above, thus
still guaranteeing the stability of the queue). }

Example 3.6.2. In this example we analyze the speed of convergence of the various
scheduling schemes by considering the situation of i.i.d. servic e times exponentially
distributed with mean 1, and the number of jobs n being relatively small. For each
scheme we analyze the speed of convergence; that is, we investigate the difference
between the sequentially optimized interarrival time and the asymptoti c regime as
studied above.

0.0
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1.0
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1.4

1.6

1.8
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i

x?

R ( v;� )
i

R ( v;� )

R ( u;� )
i

R ( u;� )

Figure 3.2 Speed of convergence for the linear and quadratic schemes. The  gure shows
the scheduled interarrival times as a function of the customer number, as well as their limiting
value; � = 1 .

The schemesU and V analyzed in this example are based on the ordinary (i.e., � =
1=2) linear and quadratic loss functions. The optimal interarrival tim es are determined
by using the algorithm proposed by Pegden and Rosenshine (1990). Based on our
�ndings in the previous example, we expect the quadratic scheme V to be slightly
more defensive for � = 1=2. As can be seen in Figure 3.2 the optimal values for x? are
increasing in the job number; that is, the �rst jobs are scheduled ` tighter' than the jobs
later on in the schedule (which is due to the fact that the �rst customers ar e facing less
uncertainty).
From Table 3.1 we conclude that the transient scheme converges rather fast to the sta-
tionary scheme. In our example, the relative difference between th e optimal interar-
rival of a job and the steady-state interarrival, which we denote he re by Df x?

1 ! x?
i g,

is smaller than 5% for jobs scheduled after the 4-th arrival. There fore, the use of the
steady-state optimal interarrival times x?

1 for all jobs reduces the expected waiting
time for the jobs early in the schedule (but at the expense of increasing the server's
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Scheme Df x?
1 ! x?

i g

U x?
5 1.3245 4.10%

x?
10 1.3673 1.37%

x?
20 1.3814 0.36%

x?
1 1.3863 0.00%

V x?
5 1.5438 2.41%

x?
10 1.5749 0.45%

x?
20 1.5813 0.05%

x?
1 1.5820 0.00%

Table 3.1 The optimal interarrival times for the different job numbers in schemes U and V ;
� = 1 .

idle time). The example indicates that simple heuristics, in the sp irit of “schedule
the �rst �ve jobs at 95% of the steady-state interarrival time and the re st of the jobs
at steady-state interarrival time”, are close to the optimum and easil y applicable for
practitioners. }

Example 3.6.3. Finally, we compare the output of our sequential approach with that of
the simultaneous program (3.1). In the latter approach one obtains the clients' optimal
arrival times through the simultaneousoptimization

min
t1 ;:::;t n

nX

i =1

E(Wi ! I i )2: (3.16)

As mentioned in the introduction, this simultaneous approach is numeric ally typi-
cally harder than our sequential counterpart, the most substantial advan tage of the
latter scheme being that only single-dimensional optimizations need to be performed.
For the special case of exponential service times, the objective function in (3.16) can be
evaluated once we have a procedure to compute the number of customers present at
t1 up to tn (due to the memoryless property), and this can be done by an algorith m de-
veloped in Wang (1999). Below we compare the simultaneous and sequential scheme,
in terms of both their steady-state and transient properties.

Steady-state.Informally, in case of a quadratic loss function and for large n, to compute
the steady-state interarrival time for the simultaneous approach, we a re to evaluate

min
x1 ;:::;x n ! 1

nX

i =1

E(Wi ! I i )2 � n � min
x

E(S(x) ! x)2;

where the random variable S(x) corresponds to a steady-state sojourn time in a D/G/1
queue with interarrival time x. It is seen that the optimal steady-state interarrival time,
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say x?
sim, follows from the �rst order condition

d
dx

 
ES2(x) ! 2xES(x) + x2

�
=

d
dx

ES2(x) ! 2ES(x) ! 2x
d

dx
ES(x) + 2 x = 0:

Given that ES(x) = 1 =(� (1 ! � x )) , ES2(x) = 2 =(� (1 ! � x ))2, and that � x is the unique
solution in (0; 1) of e! � (1! � x )x = � x , the �rst order condition yields the equation

2
� (1 ! � x )

�
2� x + � x log� x

� x ! 1 ! � x log� x
! log� x ! 1

�
= 0; or � x + (1 + log � x )(1 + � x log� x ) = 0 :

In case� = 1 we numerically �nd x?
sim = 1:847. For the sequential approach we found

that the steady-state optimal interarrival time equals x?
seq = 1:582. Consequently, the

simultaneous approach yields longer optimal interarrival times ( hence in the clients'
favor, and disadvantageous to the server).

Transient. In case the number of jobs n is relatively small, we are able to numerically
analyze the optimal transient interarrival times relying on Wang 's algorithm Wang
(1999). Wang's algorithm enables us to �nd the distribution of the numb er of cus-
tomers in the system at the arrival times t1 up to tn , and therefore to evaluate the
objective function for a given t1; : : : ; tn . Then a numerical minimization procedure is
used to determine the optimal transient interarrival times.

Our �ndings are depicted in Figure 3.3, together with the steady-state r esult as well as
the results of the sequential approach from the previous example. We o bserve that all
jobs, except for the last one, are scheduled less tightly with the simultaneous approach
than with the sequential approach. Furthermore, for the sequential app roach the op-
timal interarrival times are increasing and converge towards the steady-state optimal
interarrival time x?

seq, whereas for the simultaneous approach the optimal interarrival
times are increasing in the �rst arrivals and decreasing in the l ast arrivals, being close
to x?

sim in the middle part. }

3.7 Conclusion and outlook

In appointment scheduling, rules are needed that assure a good trad e-off between
quality (in terms of the customer's waiting time) and cost (in terms of the server's
idle time). In this chapter we presented a technique to generate such rul es. More
speci�cally, these rules can be used to determine a schedule, for any loss function and
service time distribution. In this framework, one should schedule j obs in the order
of increasing variances, for convex loss functions with scale families of service time
distributions. Also, the scheduling rules presented here can be extended to cover real-
life phenomena such as no-shows and urgent arrivals.
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Figure 3.3 The optimal interarrival times for the sequential and simultaneous approach in case
of a quadratic loss function; � = 1 .

We demonstrated the approach by three representative examples. In the �rst we con-
sidered a system with a large number of customers, so that the system can be effec-
tively replaced by its steady-state version. In case of exponential service times there are
closed-form expressions for the steady-state schedule, whereasthe transient schedule
can be determined relatively easily relying on basic standard m athematical software;
we do so for (possibly weighted) linear and quadratic loss functio ns. The numeri-
cal output illustrates the impact of the choice of the loss function on the i nterarrival
times. In the second example we show how fast the transient schedul e converges to the
steady-state schedule. Numerical experiments indicate that simple heuristics perform
well. In the third example we compare our approach with the simultaneo us approach
that was described in the introduction.

In this chapter we developed an approach that sequentially minimiz es risks. We pre-
sented various applications and a comparison with a simultaneous ap proach. A next
step could concern both approaches in more detail for a D/G/1 system a nd various
loss functions. These issues, as well as the extension to more complex queueing net-
works, such as tandem or parallel queues, are topics for future research.

3.8 Appendix

3.8.1 Waiting time

Proof of Proposition 3.2.1 Let A j be the j -th customer's random interarrival time. By
the Spitzer-Baxter identities, see pp. 229-232 in Asmussen (2003), and Ch. 7 and Ch.
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18 in Feller (1971), we have to study

EWnp
n

=
�

p
n

n! 1X

k=1

1
p

k
I k ;

with

I k :=
Z 1

0
P

!
1

p
k

kX

j =1

B j ! A j

�
> y

#

dy:

By Chebyshev's inequality the integrand is bounded, as follows

P

!
1

p
k

kX

j =1

B j ! A j

�
> y

#

� min

(

1;
1
y2

Var

!
1

p
k

kX

j =1

B j ! A j

�

#)

:

Therefore, we have

I k �
Z 1

0
(1 ^

1
y2

)dy =
Z 1

0
dy +

Z 1

1

1
y2

dy = 2:

By dominated convergence and the central limit theorem, this yiel ds

I k =
Z 1

0
(1 ! �( y)) dy =

1
p

2�
:

Subsequently, note

1
p

n

n! 1X

k=1

1
p

k
I k =

Z 1

0

I dnx eq
dnx e

n

1[x� 1! 1
n ]dx:

The integrand is bounded by 2x ! 1=2 with
R1

0 2x ! 1=2dx = 4. Consequently, dominated
convergence yields

1
p

n

n! 1X

k=1

1
p

k
I k !!!"

n"1

Z 1

0

1
p

2�

1
p

x
dx =

r
2
�

:

It thus follows that the claim of Proposition 3.2.1 holds. 2

3.8.2 Convex loss functions

Lemma 3.8.1. Let `(�) be a non-negative convex function onR with `(0) = 0 : Then`(�) is a
loss function, i.e., it is non-increasing on(!1 ; 0]and non-decreasing on[0; 1 ) with `(0) = 0 ;
and it is absolutely continuous with derivative`0(�): LetS be a random variable with a density
with respect to Lebesgue measure and letE`(S ! x) andEj`0(S ! x)j be �nite for all x 2 R:
Then

inf
x2 R

E`(S ! x)

is attained atx � if and only if
E`0(S ! x � ) = 0 (3.17)

holds.
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Proof of Lemma 3.8.1 For the �rst statements we refer to standard textbooks, such as
Hewitt and Stromberg (1965).
We may write

d
dx

E`(S ! x) = lim
� " 0

1
�
E (`(S ! x ! � ) ! `(S ! x))

= ! lim
� " 0

1
�
E

� Z �

0
`0(S ! x ! � )d�

�
(3.18)

= ! E`0(S ! x) + lim
� " 0

1
�
E

� Z �

0
[`0(S ! x) ! `0(S ! x ! � )] d�

�

and we note that the integrand at the right hand side is bounded in abs olute value
by j`0(S ! x) ! `0(S ! x ! � )j, since `(�) is convex and hence `0(�) is non-decreasing.
It follows that the expression after the limit sign at the right han d side of (3.18) is
bounded in absolute value by

Ej`0(S ! x) ! `0(S ! x ! � )j:

Since `0(�) is non-decreasing, it has at most countably many discontinuities. Conse-
quently, j`0(S ! x) ! `0(S ! x ! � )j converges to 0 almost surely as � " 0, becauseS
has a density with respect to Lebesgue measure. By dominated convergence we may
conclude that the limit at the right hand side of (3.18) vanishes. This completes the
proof. 2

3.8.3 Sequential ordering

Proof of Theorem 3.4.2 In view of (3.6)–(3.13) we have

R(` )
i (t1; : : : ; ti ) = E`(Wi ! I i ) = E`(Wi ! 1 + � i ! 1B1 ! t i + t i ! 1):

Consequently, it suf�ces to show that for the waiting time Wi and the service time
random variable B1

 (� ) := inf
x2 R

E`(Wi + �B 1 ! x) (3.19)

is non-decreasing in � > 0: Similarly as in the proof of Theorem 3.8.1 in Appendix
3.8.2, we may write

d
d�

E`(Wi + �B 1 ! x) = lim
� " 0

1
�
E (`(Wi + ( � + � )B1 ! x) ! `(Wi + �B 1 ! x))

= E (`0(Wi + �B 1 ! x)B1) (3.20)

+ lim
� " 0

1
�
E

� Z �

0
[`0(Wi + ( � + � )B1 ! x) ! `0(Wi + �B 1 ! x)] d� B 1

�

and we may note that the integrand at the right hand side is bounded in absolute value
by j`0(Wi + ( � + � )B1 ! x) ! `0(Wi + �B 1 ! x)j, since`0(�) is non-decreasing. It follows
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that the square of the expression after the limit sign at the right hand side of (3.20) is
bounded by Cauchy-Schwarz by

Ej`0(Wi + ( � + � )B1 ! x) ! `0(Wi + �B 1 ! x)j2 EB 2
1:

Since `0(�) has at most countably many discontinuities and B1 has a density with re-
spect to Lebesgue measure, we may conclude by dominated convergence that the limit
at the right hand side of (3.20) vanishes, and hence that

d
d�

E`(Wi + �B 1 ! x) = E (`0(Wi + �B 1 ! x)B1) (3.21)

holds.
Fix � 0; and choosex �

0 according to Theorem 3.8.1 such that it satis�es

 (� 0) = E`(Wi + � 0B1 ! x �
0); E`0(Wi + � 0B1 ! x �

0) = 0 : (3.22)

First we will consider the case that `(�) is strictly convex. Then (3.21), (3.22), and Cheby-
shev's strict inequality from Lemma 3.4.1 yield

d
d�

E`(Wi + �B 1 ! x �
0)

�
�
�
� = � 0

= E (`0(Wi + � 0B1 ! x �
0)B1)

= E (`0(Wi + � 0B1 ! x �
0)[B1 ! EB1]) (3.23)

= E (E ( `0(Wi + � 0B1 ! x �
0)[B1 ! EB1] j Wi ))

= E (Cov (`0(Wi + � 0B1 ! x �
0) ; B1 j Wi )) > 0;

since `0(�) is strictly increasing and B1 is non-degenerate. It follows that there exists a
� 1 < � 0 such that for all � 2 [� 1; � 0) the strict inequality

E`(Wi + �B 1 ! x �
0) < E`(Wi + � 0B1 ! x �

0)

holds, which implies
 (� ) <  (� 0); � 1 � � < � 0: (3.24)

Furthermore, for all � 1 > 0 and � 2 > 0 there exist x �
1 and x �

2 by Theorem 3.8.1, such that
by the convexity of `(�)

1
2

[ (� 1) +  (� 2)] =
1
2

[E`(Wi + � 1B1 ! x �
1) + E`(Wi + � 2B1 ! x �

2)]

� E`
�

Wi +
1
2

(� 1 + � 2)B1 !
1
2

(x �
1 + x �

2)
�

(3.25)

�  
�

1
2

(� 1 + � 2)
�

holds, which means that  (�) is convex. Consequently,  (�) is continuous, which to-
gether with (3.24) proves that  (�) is non-decreasing, as may be seen as follows.
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Assume  (�) would not be non-decreasing. Then there would exist � 3 and � 4; � 3 < � 4;
with  (� 3) >  (� 4): Since (�) is continuous the in�mum of it on [� 3; � 4] is attained at
� 0, say. Note � 3 < � 0 and  (� 3) >  (� 0): According to (3.24) there exists a� 1 < � 0 with
 (� ) <  (� 0) for � 1 _ � 3 � � < � 0; which is in contradiction with

inf
� 3 � � � � 4

 (� ) =  (� 0):

Having proved the monotonicity of  (�) for strictly convex loss functions, we now
consider the case of a general convex loss function`(�) that satis�es the conditions of
the theorem. For � > 0 we de�ne ` � (x) = `(x) + �x 2; x 2 R: SinceWi is bounded by
B1 + � � � + B i ! 1 and EB 2

1 is �nite, the conditions of the theorem are ful�lled for this
strictly convex loss function ` � (�) as well. Consequently the corresponding function
 � (�) is non-decreasing. Choose� 5 < � 6: The de�nition of  � (�) and its monotonicity
yield

 (� 5) �  � (� 5) �  � (� 6): (3.26)

Let x �
6 satisfy  (� 6) = E`(Wi + � 6B1 ! x �

6); and note

lim sup
� #0

 � (� 6) � lim sup
� #0

E` � (Wi + � 6B1 ! x �
6) = E`(Wi + � 6B1 ! x �

6) =  (� 6): (3.27)

Together, (3.26) and (3.27) prove that (�) is non-decreasing. 2
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4 Mean Sojourn Times in Two-Queue
Fork-Join Systems: Bounds and
Approximations

4.1 Introduction

Fork-join systems(or: parallel queues) are service systems in which every arrival gen-
erates input in multiple queues. One could for example consider a Poi ssonian arrival
stream (with rate � ) that generates jobs in two queues. The service times in queuei (for
i = 1; 2) constitute an i.i.d. sequence of non-negative random quantities (B i;n )n2 N (dis-
tributed as a generic random variable B i ), where in addition both sequences (B1;n )n2 N

and (B2;n )n2 N are assumed to be mutually independent. After their service the two
jobs synchronize before leaving the system. One could call the resulting queueing sys-
tem an `M/G/1 fork-join system'. To ensure that the system is stable, on e imposes the
obvious condition that � EB i be smaller than 1 for both i = 1 and 2.

While the distribution of the sojourn time of both individual queues, whi ch behave as
M/G/1 queues, is explicitly known (albeit in terms of its Laplace tran sform, through
the celebrated Pollaczek-Khinchine formula), considerably l ess is known about the
joint distribution of the workload in both queues of the parallel queue. It is clear that
these workloads are positively correlated: if the workload of on e of the queues is larger
than usual, a potential reason for this is that there were temporarily un usually many
arrivals, such that the workload in the other queue is probably large r than average as
well. The level of correlation is primarily caused by the shape of the distributions of
B1 and B2; as can be seen easily the correlation is maximal if both B1 and B2 equal the
same deterministic number (as then both queues evolve `synchronously').

The rationale behind studying fork-join systems of the type descri bed above lies in the
fact that they are a natural model for several relevant real-life systems, for instance in
service systems, healthcare applications, manufacturing systems, and communication
networks. With Si denoting a job's sojourn time in queue i , a particularly interesting
object is the fork-join system's sojourn timeS := maxf S1; S2g. This sojourn time is rel-
evant, as in many situations the job can be further processed only if service at both
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queues has been completed, which explains the term `fork-join'. O ne could think of
many speci�c examples in which fork-join systems (and the sojo urn time S) play a
crucial role, such as:

� a request for a mortgage is handled simultaneously by a loan divisi on and a life
insurance division of a bank; the mortgage request is �nalized whe n the tasks at
both divisions have been completed.

� a laboratorial request of several blood samples is handled simultaneously by
several lab employees of a hospital; the patient's laboratorial r eport is �nalized
when all the blood samples have been analyzed.

� a computer code runs two routines in parallel; both should be completed in order
to start a next routine.

We here remark that on a generic level, many service systems can be modeled as net-
works of queues, see for instance the process-�ow-based modeling framework pro-
posed in Kemper et al. (2010) and Chapters 2 and 5, of which fork-join systems can be
an important building block.

M/G/1 fork-join systems have been studied intensively in the past, se e for instance
the overview article Boxma et al. (1994) and the references therein, and have turned
out to be notoriously hard to analyze. We now give a brief account of th e literature,
where we restrict ourselves to the papers that are relevant in the scope of our work.
In general, no explicit expressions are known for the joint ste ady-state workload dis-
tribution of both queues, nor for the mean sojourn time. For the speci�c c ase of an
M/M/1 fork-join system, Flatto and Hahn (1984) derive the probabil ity generating
function of the joint queue-length (in terms of numbers of jobs), thus de �ning the
steady-state probabilities pij , where i and j represent the number of jobs in the two
queues. The asymptotics of this distribution are analyzed in Flatto (19 85); these pro-
vide insight into the dependence between the two queues. For this M/M/1 f ork-join
system, under the additional assumption that the service times at both q ueues stem
from the sameexponential distribution, the mean sojourn time can be derived expl ic-
itly from the system's balance equations, see Nelson and Tantawi (1988), and obeys
a simple closed-form expression. It is noted, however, that the underlying argument
breaks down as soon as we depart from the exponentiality and homo geneity assump-
tions.
For the general M/G/1 fork-join system (and in fact for the GI/G/1 var iant), upper
and lower bounds on the mean sojourn time were derived by Baccelli and Makowski
(1985), relying on stochastic comparison techniques; see also Baccelli et al. (1989).
These bounds are not always easy to compute, as they require the availability of ex-
plicit expressions or accurate approximations of the distribution function of the work-
load in related single-node M/G/1 and D/G/1 queues. In addition, the bo unds are
in many cases quite far apart, as observed from the numerical results on the heteroge-
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neous exponential case by Balsamo et al. (1998). In their paper,Balsamo et al. present
considerably more accurate bounds, but their approach is restricte d to the situation of
heterogeneous exponential service times; also, their method is of relatively high com-
putational complexity. An elegant approximation technique for the h omogeneous case
was proposed in Varma and Makowski (1994). In their work, spec ial attention is paid
to the impact of the number of servers operating in parallel (which we assume to be
2 throughout this chapter). We �nally note that results on the correspon ding G/M/1
queue are given in Ko and Serfozo (2008).

The above literature overview underscores the need for accurate methods to approxi-
mate the mean sojourn time ES that work for a broad set of service-time distributions.
In this chapter we present a set of such approximations and heuristic s, that are of low
computational complexity, yet remarkably accurate. In more detail, our contributions
are the following:

� We explicitly compute the upper bound of Baccelli and Makowski (198 5) for a set
of frequently used service-time distributions. We also note that the ac company-
ing lower bound can be evaluated for a limited set of service-time d istributions
only.

� We systematically assess the homogeneous case (i.e.,B1 and B2 having the same
distribution, say that of a random variable B). The approach followed is the
following.

– We �rst observe that in many situations, the bounds presented in Bacc elli
and Makowski (1985) are rather far apart (and sometimes even outperformed
by trivial bounds).

– The approximations we develop are based on a two-moment characteriza-
tion of the service times; after scaling the arrival intensity to 1, the only rele-
vant parameters in the model are then the load %and the squared coef�cient
of variation ( SCV) of B . This approach essentially assumes an insensitivity:
ES depends only on the �rst two moments of the service-time distribution .
This claim is justi�ed by simulation results (where we sample from v arious
service-time distributions with the same �rst two moments, some of wh ich
have heavy tails).
The reason for restricting ourselves to two-moments-based approx imations
is that in the singleM/G/1 queue the mean sojourn time, say m, depends
on B through its �rst two moments only, due to the Pollaczek-Khinchine
formula.

– We argue, based on theoretical as well as empirical arguments, that approx-
imations of the type

ES =
3
2

m;

with m denoting the mean sojourn time in one of the individual queues,
work surprisingly well for a broad set of parameters.
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– We then re�ne this crude approximation to �ts of the type

ES
m

� a(%) + b(%) log SCV;

and
ES
m

� a(%) + b(%) log SCV + c(%)(log SCV)2;

particularly the latter type turns out to have an excellent �t.

� We brie�y touch upon heterogeneous scenarios. If the loads of both que ues are
different, ES could be approximated by the mean sojourn time of the queue with
the highest load. We assess under what conditions such a bottleneck approach
works well.

Our approach, based on numerical approximation, sketched in the a bove, may be con-
sidered as somewhat unconventional by the OR community. The strikin g accuracy
of the �t, however, makes our �ndings interesting and practically r elevant. In addi-
tion, we hope that our approximation results trigger new research, s o that they will
eventually be justi�ed by analytical arguments. As an aside, we mentio n that numer-
ical approximations constitute an important subject within OR — think for instance
of the classical approximations De Kok and Tijms (1985); Kühn (1979); Whitt (1983).
Evidently, such approximations gain credibility when they are ba cked by analytical
justi�cation (for instance if they are exact for certain special ca ses, or in certain asymp-
totic regimes).

The structure of the chapter is as follows. In Section 4.2 we sketch the model, and
present some preliminaries. We also review the bounds of Baccelli and Makowski
(1985), and explicitly calculate them for speci�c service-time d istributions. In Section
4.3 we consider the homogeneous case, i.e.,B1 = d B2, and identify under which con-
ditions the bounds of Baccelli and Makowski (1985) are far apart. We then present the
approximations, which turn out to be highly accurate. Section 4.4 dis cusses the effect
of heterogeneity among servers and presents general rules of thumb for the heteroge-
neous case. The chapter is concluded in Section 4.5 by a brief summary and discussion.

4.2 Model, preliminaries, and bounds

In this section we formally introduce the fork-join system (or: par allel queue), see
Fig. 4.1. This system consists of two queues (or: workstations, nodes) that work in
parallel. The jobs arrive according to a Poisson process with parameter � ; we renor-
malize time by setting � � 1 (we return to this issue later). Upon arrival the job forks
into two different `tasks' that are directed simultaneously to both wor kstations. The
service times in workstation i (for i = 1; 2), which can be regarded as aqueue, are an
i.i.d. sequence of non-negative random quantities (B i;n )n2 N (distributed as a generic
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random variable B i ); we also assume(B1;n )n2 N and (B2;n )n2 N to be mutually indepen-
dent. As mentioned before, one could call the resulting queueing syste m an `M/G/1
parallel queue'. In this system we denote by B i the generic service time, and by Si the
stationary sojourn time of an arbitrary customer in queue i , for i = 1; 2 (where it is
noted that S1 and S2 are not independent).
With � = 1, the load of node i is de�ned as %i := � EB i � EB i . The system's stabil-
ity is assured under the, intuitively obvious, condition maxf %1; %2g < 1, see Baccelli
and Makowski (1985). Under the stability condition and with � = 1, the Pollaczek-
Khinchine mean formula for the mean sojourn time in each node, mi = ESi , yields

mi =
� E[B 2

i ]
2(1 ! %i )

+ EB i

=
%2

i

2(1 ! %i )
(SCVi + 1) + %i ; (4.1)

see for instance Eq. (2.55) in Tijms (1986).
In the sequel we will denote by SCV the squaredcoef�cient of variation, de�ned by
the ratio of the variance to the squared mean. Our approach is validate d over a large
range of values for SCV. Note however that the SCV in most applications is in the
range SCV 2 [0:5; 2], see for example Brown et al. (2005); Cayirli and Veral (2003) and
references therein.

Each queue handles the tasks in a �rst-come-�rst-serve fashion. In other words: if the
task �nds the queue non-empty, it waits in the queue until service starts. Wh en both
tasks (that correspond to the same job) have been performed, they join and the job
departs the network (thus explaining the terminology `fork-join sy stem'). Therefore,
the total sojourn time of a job in the network is the maximumof the two individual
sojourn times. The goal of this chapter is to devise ways to approxim ate the mean
stationary sojourn time, i.e.,

ES = E [maxf S1; S2g] :

As mentioned above, without loss of generality, we may renormali ze time such that
� = 1 (which we will do throughout this chapter). Note that the general case � > 0
can be derived from the special case� = 1, since we have for i = 1; 2, in self-evident
notation,

Si (�; B i ) = d
Si (1; �B i )

�
;

so that

S(�; B 1; B2) = d
S(1; �B 1; �B 2)

�
:

In general, the mean sojourn time cannot be explicitly calculated, the only exception
being the case that B1 and B2 correspond to the same exponential distribution, as
mentioned in the introduction. This result, by Nelson and Tantawi (19 88), is recalled
in Section 4.2.1. Relaxing the homogeneity and exponentiality assumptions, upper and
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Figure 4.1 A simple fork-join queue

lower bounds are known, which will be reviewed in Section 4.2.2 , and made explicit
in Section 4.2.3.

4.2.1 The homogeneous M/M/1 fork-join system

As proven by Nelson and Tantawi (1988), in case of two homogeneous servers with
exponentially distributed service times, the mean sojourn time obeys th e strikingly
simple formula

ES =
�

12! %
8

�
� m;

where m := %=(1 ! %) is the mean sojourn time of a M/M/1 queue by virtue of (4.1).
Observe that, when increasing the load from 0 to 1, the ratio of the mea n sojourn time
ES to the mean sojourn time of a single workstation, i.e., ES=m, varies just mildly:
for %$ 1 it is 11=8 = 1:375, whereas for %# 0 it is 12=8 = 3=2 = 1:5, i.e., about 8%
difference. This entails that an approximation of the type ES � 3

2m is conservative,
yet quite accurate.

4.2.2 Bounds for the M/G/1 fork-join system

In this section we discuss a number of bounds on ES in an M/G/1 fork-join system. It
is noted that they in fact apply to the GI/G/1 fork-join system, but under th e assump-
tion of Poisson arrivals often explicit computations are possibl e, see Section 4.2.3.
An upper and lower bound for the general GI/G/1 case are presented by Baccelli and
Makowski (1985), see also Baccelli et al. (1989); in the sequelwe refer to these bounds
as the BM bounds. The idea behind these bounds is that the level of the variability of
the fork-join system's waiting time should be increasing in the lev el of variability of
the stochastic arrival process of the system. The BM bounds for the sojourn time are
in fact sojourn times of related two-queue systems, but, importantly, in these systems
the queues areindependent:
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4.2 Model, preliminaries, and bounds

� in the BM upper bound one reasons from the assumption that the two queues ar e
independent. Informally, by making the queues independent, the sto chasticity
increases, and therefore the mean of the maximum of ES1 and ES2 increases, and
therefore this approach results in an upper bound.

� in the BM lower bound one considers two D/G/1 queues (with the same loads
as in the original parallel queue). Informally, by assuming deter ministic arrivals,
one reduces the system's stochasticity, and therefore the mean of the maximum
of ES1 and ES2 decreases, and therefore this approach results in a lower bound.

This intuitive reasoning leads to bounds, which are rigorously pro ven in Baccelli and
Makowski (1985); Baccelli et al. (1989). Below we discuss these BM bounds, and in
addition also a number of trivial (but useful) bounds. Then we show ho w to compute
these bounds explicitly in a number of practically relevant cases in Section 4.2.3.

Trivial bounds

We �rst present a trivial lower bound. Using that x 7" maxf 0; xg is a convex function
and due to Jensen's inequality, we have

ES = ES1 + E maxf 0; S2 ! S1g

� ES1 + maxf 0; E(S2 ! S1)g = maxf ES1; ES2g =: `:

Sincemaxf a; bg = a + b! minf a; bg � a + b, we also have the upper bound

ES � ES1 + ES2 =: u:

Notice that these bounds are insensitive, in the sense that they depend on the distribu-
tion of S1 and S2 only through their respective means.

BM bounds

The BM bounds for the GI/G/1 parallel queue are `explicit' in the sense that they
reduce to standard formulas in terms of the distribution of the sojourn time s of single
GI/G/1 systems for the upper bound, and singleD/G/1 systems for the lower bound
(with the same load as the original system). Recall that the stability of these systems is
ensured if � EB i < 1 for both i = 1 and 2, which is identical to the stability condition
of our fork-join system. The bounds, as established in Baccelli and Makowski (1985);
Baccelli et al. (1989), are then as follows.

Upper bound.We pretend that the two queues are independent, that is, fed by indepen -
dent processes (but identical in law). As a consequence,S1 and S2 are independent as
well; call the maximum of S1 and S2 under this assumption �S. Then it is elementary
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that, in self-evident notation, E �S equals

E �S =
Z 1

0
yPGI =G=1(S1 � y)dPGI =G=1(S2 � y)

+
Z 1

0
xPGI =G=1(S2 � x)dPGI =G=1(S1 � x) =: U:

Lower bound.Now we pretend that the two queues are fed by deterministic arrival
processes. Call the maximum of S1 and S2 under this assumption S. Then

ES =
Z 1

0
yPD=G=1(S1 � y)dPD=G=1(S2 � y)

+
Z 1

0
xPD=G=1(S2 � x)dPD=G=1(S1 � x) =: L:

It thus holds that

maxf `; L g � ES � U � u:

In our numerical experiments, in Section 4.3, we have included the tr ivial bounds `
and u to offer a comprehensive view. In addition, we will show that in m any situ-
ations the trivial lower bound ` is actually tighter than the BM lower bound L, and,
given the computational advantages, one could consider ` and u as an approximation
instead of L and U. Also, the BM bounds L and U cannot be explicitly computed for all
M/G/1 fork-join systems. Hence, if they must be determined numerica lly, then their
advantage over estimating ES by simulation is unclear (in Section 4.2.3 we present a
few examples in which U and L canbe computed, though).
As a �nal remark, we mention that if m1 is considerably larger than m2 (i.e., %1 consid-
erably larger than %2), then ES � m1. This is proven for the M/G/1 case as follows.
Suppose the load of the second queue is� < 1. Then, relying on (4.1),

m1 � ES � m1 + m2 = m1 +
� 2

2(1 ! � )
(SCV2 + 1) + �;

so that ES " m1 as � # 0: This indicates that if the loads of both queues are highly
asymmetric, the bottleneck queue essentially determines the parallel queue's sojourn
time.

4.2.3 BM bounds for speci c M/G/1 fork-join systems

We now present a number of explicit expressions for the bounds u; U; `; and L in
the case of Poisson arrivals and various service-time distributio ns. In Section 4.3 we
approximate the service-time distribution by a so-called phase-type distribution(with
appropriate mean and variance), and therefore we focus on a number of phase-type
service-time distributions, viz. exponential service times, Erl ang service times (useful
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to approximate service times with coef�cient of variation smalle r than 1), and hyper-
exponential times (useful to approximate service times with coef�cie nt of variation
larger than 1). The use of phase-type distributions make models trac table, but one can
also view them as a semi-parametric density, see Asmussen et al. (1996). The sensitiv-
ity of the approach with respect to the service-time distribution is di scussed in Section
4.3.

M/M/1 case.Here we let the service times in both queues be exponentially distrib uted,
with means %1 and %2 respectively; recall that the exponential distribution has SCV

equal to 1. From (4.1) follows that Si has an exponential distribution with mean mi :=
%i =(1 ! %i ). Trivially,

` = maxf m1; m2g; u = m1 + m2:

A straightforward computation shows that

U = m1 + m2 !
�

1
m1

+
1

m2

� ! 1

:

In case of deterministic arrivals it is known that Si has an exponential distribution
(in fact any G/M/1 leads to an exponential distribution). Its mean, tha t is ESi , reads
� i := %i =(1 ! ! i ), where ! i is the unique solution to ! i = e! (1! ! i )=%i , with 0 < ! i < 1.
Then computing the integrals yields

L = � 1 + � 2 !
�

1
� 1

+
1
� 2

� ! 1

:

M/E2 /1 case.We now consider the case of the service times having an Erlang distr ibu-
tion with two phases. Random variables with an Erlang distribution a re known to be
`less variable' than the exponential distribution; more precisel y, an Erlang distribution
consisting of k phases has aSCV of 1=k: In casek = 2, these two exponential phases
have mean length %i =2 = 1=� i . Using elementary queueing theory, it is readily checked
that the Laplace transforms of the sojourn times read, for i = 1; 2,

�Si (s) =
(1 ! %i )� 2

i

s2 + s(2� i ! 1) + � i (� i ! 2)
:

Applying a partial fraction expansion, with s� ;i denoting the zeros of the denominator

s� ;i :=
1
2

�
1 ! 2� i �

p
4� i + 1

�
;

and
� 1i :=

s! ;i

s! ;i ! s+ ;i
; � 2i := !

s+ ;i

s! ;i ! s+ ;i
;

leads to

P(Si � x) = � 1i (1 ! exp(s+ ;i x)) + � 2i (1 ! exp(s! ;i x)): (4.2)
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This result enables us to evaluate the upper bound U. Tedious computations eventu-
ally lead to

U = m1 + m2 +
1

(s! ;1 ! s+ ;1)(s! ;2 ! s+ ;2)
�

�
s+ ;1s+ ;2

(s! ;1 + s! ;2)
!

s! ;1s+ ;2

(s+ ;1 + s! ;2)
!

s+ ;1s! ;2

(s! ;1 + s+ ;2)
+

s! ;1s! ;2

(s+ ;1 + s+ ;2)

�
;

where mi is the mean sojourn time in queue i , which in this case reduces to %i (4 !
%i )=(4 ! 4%i ): The lower bound L is based onP(Si � x) for a D/E 2/1 queue, for which
no explicit form is known, to the best of our knowledge.

M/E1 ;2 /1 case. Let us consider the situation of the service times being `generalized
Erlang' (see Tijms, 1986, p. 398). More speci�cally, we consider a mixture of an E 1 and
an E2 with the samescale parameters, which is denoted as an E1;2. We here choose the
parameters such that the SCV of the service time is 3

4 : This is done by choosing for B i

with probability pi an exponential distribution with mean 1=� i , and with probability
1 ! pi an E2 distribution with mean 2=� i . For given %i and SCV, the parameters pi and
� i are uniquely de�ned (see Tijms, 1986, Eq. (A.14)). Standard queueing theory then
yields the Laplace transforms of the sojourn times, for i = 1; 2,

�Si (s) =
(1 ! %i )( � 2

i + pi � i s)
s2 + s(2� i ! 1) + � i (� i + pi ! 2)

:

With s� ;i the zeros of the denominator, that is,

s� ;i :=
1
2

�
1 ! 2� i �

p
4(1 ! pi )� i + 1

�
; (4.3)

and

� 1i :=
s! ;i + pi (� i ! 2 + pi )

s! ;i ! s+ ;i
; � 2i := 1 ! � 1i ; (4.4)

Equation (4.2) again applies, but now with s� ;i given through (4.3) and � ji through
(4.4). Si has a E1;2 distribution with mean given through (4.1). It can then be shown
that

U = m1 + m2 +
� 11� 12

s+ ;1 + s+ ;2
+

� 21� 12

s! ;1 + s+ ;2
+

� 11� 22

s+ ;1 + s! ;2
+

� 21� 22

s! ;1 + s! ;2
: (4.5)

The lower bound L is based onP(Si � x) for a D/E 1;2/1 queue, for which no explicit
form is known, to our best knowledge.

M/H 2 /1 case.Above we concentrated on service times with SCV smaller than 1; we now
consider the case of SCVs larger than 1. A hyperexponentially distributed random
variable B i now results from sampling from an exponential distribution with mea n
1=� i 1 with probability pi , and from an exponential distribution with mean 1=� i 2 with
probability 1 ! pi . We �x the mean service times, leading to the requirement

%i =
pi

� i 1
+

1 ! pi

� i 2
:
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Under the additional condition of `balanced means' (Tijms, 198 6, Eq. (A.16)), one im-
poses� i 1 = 2pi � i and � i 2 = 2(1 ! pi )� i , and with �xed SCVs this leads to

SCVi :=
Var B i

(EB i )2
=

1
2pi (1 ! pi )

! 1 ) pi =
1
2

�
1
2

r
SCVi ! 1
SCVi + 1

:

It is obvious that we again have that Si has mean as in (4.1), with the SCVs given in the
previous display. For i = 1; 2 we �nd, as before, the Laplace transforms of the sojourn
times:

�Si (s) =
4pi (1 ! pi )( � 2

i ! � i ) + 2 s(p2
i + (1 ! pi )2)( � i ! 1)

s2 + s(2� i ! 1) + 4pi (1 ! pi )( � 2
i ! � i )

:

With s� ;i denoting the zeros of the denominator, i.e.,

s� ;i =
1
2

�
1 ! 2� i �

r

1 ! 4
SCVi ! 1
SCVi + 1

� i + 4
SCVi ! 1
SCVi + 1

� 2
i

�
; (4.6)

and

� 1i :=
1
2

+
1
2 + SCVi ! 1

SCVi +1 (1 ! � i )
q

1 ! 4SCVi ! 1
SCVi +1 � i + 4 SCVi ! 1

SCVi +1 � 2
i

; � 2i = 1 ! � 1i ; (4.7)

it follows that Equations (4.2) and (4.5) again apply, but now with s� ;i given through
(4.6) and � ji through (4.7). The lower bound L requires knowledge of P(Si � x) for a
D/H 2=1 queue, for which no explicit expression is available.

4.3 The homogeneous case

In this section we consider the situation of homogeneousservers, i.e.,B1 and B2 are (in-
dependently) sampled from the same distribution. As shown by Nelso n and Tantawi
(1988), the mean sojourn time in case of homogeneous exponentially distributed ser-
vice times is a simple function of the mean sojourn time of a single que ue, saym, and
the service load, %, see Section 4.2.1; for other service times, however, no explicit results
are known. In this section we assess the accuracy of the boundsu; `, U, and L, by sys-
tematic comparison with simulation results. We do this by varying the l oad %(equal
for both queues) imposed on the system, as well as the `variability' o f the service times
(in terms of the SCV).
Our analysis indicates that for a substantial set of model instances the upper and lower
bounds are far apart, and therefore we have attempted to develop more accurate ap-
proximations. We empirically �nd an approximation with a nearl y perfect �t, which
gives us the mean sojourn time as a function of the load and SCV. An important by-
product of the analysis performed in this section, is a number of ex plicit expressions
for the bounds, for a set of practically relevant service-time di stributions (e.g., Erlang
and hyperexponential); it is noted that the trivial bounds u and ` reduce to 2m and
m, respectively, in case of homogeneity. Our results once again clearly reveal that the
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effect of the system's service load%is modest, as was already observed by Nelson and
Tantawi (1988) for the case of exponentially distributed service ti mes.

M/M/1 case. As mentioned earlier, in the symmetric case when m = m1 = m2 =
%=(1 ! %), the mean sojourn time is explicitly known: ES = m � (12 ! %)=8; see Nelson
and Tantawi (1988). Also, it is easily seen from the results in Section 4.2 that

U =
3
2

� m;

notably, this fraction 3
2 is insensitive with respect to the load %. The upper bound U is

close to the mean sojourn time ES for small %; one must, however, bear in mind that
this scenario is perhaps not so realistic in practice. Also,

L =
3
2

� �;

with � the mean sojourn time of a single D/M/1 queue with appropriate load. We w ill
see later on in this section, in Table 4.1, thatU and L substantially differ from the `real'
mean sojourn time (as shown by simulation).

M/E2 /1 case.We consider the case thatSCV = 1
2. Straightforward computations yield

U = 2m +
(� ! 1)(! 5� + 1)
2� (� ! 2)(2� ! 1)

= m
11� 2 ! 10� + 3
8� 2 ! 8� + 2

= m
3%2 ! 20%+ 44

2(%! 4)2
:

The fraction clearly is sensitive to the service load %. For a system with small load %# 0
gives U � 11

8 m = 1:375m, and for a system with large load %$ 1 gives U � 3
2m = 1:5m.

This once more implies that a conservative approximation can be of the type ES � 3
2m.

M/E1 ;2 /1 case.We now consider service times following a generalized Erlang distri-
bution with SCV = 3

4. In this symmetric case straightforward calculus yields, with
s� � s� ;i given by (4.3) and � j � � ji by (4.4), for i = 1; 2,

U = 2m +
� 2

1

2s+
+

2� 1� 2

1 ! 2�
+

� 2
2

2s!
; (4.8)

where we have used that s! + s+ = 1 ! 2� . It can be seen that the ratio of U to m
is sensitive to the service load %. For a system with a small load, %= 0:1, we have
U � 1:45m, whereas for a system with large load, %= 0:9, we have U � 1:49m. Again,
a conservative approximation can be of type ES � 3

2m.

M/H 2 /1 case. We again obtain (4.8), but now with s� ;i given through (4.6) and � ij

through (4.7). Again the ratio of U to m is sensitive to the service load %. For a system
with SCV = 2 and a small load, %= 0:1, we �nd U � 1:59m, whereas for a system with
large load, %= 0:9, it holds that U � 1:53m; for a system with SCV = 4 and small load,
%= 0:1, we have U � 1:89m, whereas for a system with large load, %= 0:9, we have
U � 1:55m.
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Observe that the ratio of U to m is close to 3
2 in the (perhaps most relevant) situation

that the load is relatively high, that is, for loads %higher than, say, 0:9.

The lower bound L cannot be given in closed-form, except in the M/M/1 case, but
can of course be determined through simulation. We now verify the acc uracy of the
bounds L and U, see Table 4.1. We concentrate on two `extreme' loads (0.1 and 0.9),
and we vary the SCV. The table should be read as follows. The upper part concerns
the case%= 0:1, while the lower part relates to %= 0:9. Then we provide, for several
values of the SCV:

(i) The mean sojourn time m of a single queue. For this we have exact expressions,
see (4.1).

(ii) The mean sojourn time ES of the parallel queue. We have an exact expression for
this for SCV = 1, and for the other SCVs we obtained a value through simulation.

(iii) The ratio of ES to m, which we call � (SCV). In view of the trivial bounds, it is
clear that � lies between 1 and 2.

(iv) The upper bound U, using the expressions derived earlier in this section.

(v) The ratio of U to m, denoted by � U (SCV).

(vi) The lower bound L, obtained through simulation (for SCV = 1 the corresponding
phase-type distribution is the exponential distribution, for which w e have an
exact expression Nelson and Tantawi (1988)).

(vii) The ratio of L to m, denoted by � L (SCV).

(viii) The `BM-spread', that is, the ratio of (U ! L) to ES.

The service times with SCV equal to 0:25 and 0:33 are obtained by using E4 and E3

distributions, respectively. For SCVs larger than 1 we use hyperexponentional distri-
bution, with the additional condition of `balanced means' (Tijms, 1986, Eq. (A.16)). In
this table we used explicit formulae where possible; we otherwise relied on simulation.
Here and in the sequel, the spread of the 95% con�dence intervals fo r the simulated
mean sojourn times is less than 0.5%.
The main conclusions from this table (and additional numerical ex perimentation, on
which we do not report here) are the following:

� For low loads, i.e. %= 0:1, the bounds L and U are relatively close, the difference
can be substantial for values of SCVs between 1 and 16.

� For high loads, i.e. %= 0:9, L and U tend to be far apart, particularly for low
SCVs.

� In several cases, the lower boundL is even below the trivial lower bound ` = m:
It is readily checked that this effect is not ruled out in the construc tion of the
lower bound L.
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Table 4.1 Simulated sojourn times and the corresponding BM bounds.
% SCV m ES � (SCV) U � U (SCV) L � L (SCV) BM-Spread
0.1 0.25 0.1069 0.1357 1.2690 0.1375 1.2861 0.1273 1.1908 7.55%

0.33 0.1074 0.1403 1.3070 0.1421 1.3227 0.1313 1.2220 7.68%
0.5 0.1083 0.1482 1.3676 0.1497 1.3819 0.1375 1.2693 8.23%
0.75 0.1097 0.1580 1.4401 0.1594 1.4531 0.1452 1.3230 9.03%
1 0.1111 0.1653 1.4875 0.1667 1.5003 0.1500 1.3501 10.10%
2 0.1167 0.1842 1.5792 0.1855 1.5902 0.1596 1.3681 14.06%
4 0.1278 0.2126 1.6634 0.2138 1.6730 0.1762 1.3787 17.67%
16 0.1944 0.3509 1.8048 0.3520 1.8105 0.2985 1.5350 15.26%
64 0.4611 0.8790 1.9062 0.8804 1.9093 0.8215 1.7815 6.70%
256 1.5278 2.9833 1.9527 2.9862 1.9546 2.9247 1.9143 2.06%

% SCV m ES � (SCV) U � U (SCV) L � L (SCV) BM-Spread
0.9 0.25 5.9600 7.4225 1.2449 8.7203 1.4625 2.3497 0.3941 85.83%

0.33 6.3000 8.0219 1.2733 9.2529 1.4687 2.8561 0.4534 79.74%
0.5 6.9750 9.1751 1.3154 10.3173 1.4792 3.8797 0.5562 70.16%
0.75 7.9875 10.8374 1.3568 11.9037 1.4903 5.4102 0.6773 59.92%
1 9.0000 12.4875 1.3875 13.5000 1.5000 6.9912* 0.7768 52.12%
2 13.050 19.0620 1.4607 19.9568 1.5293 13.4624 1.0316 34.07%
4 21.150 32.0373 1.5148 32.8541 1.5534 26.3568 1.2462 20.28%
16 69.750 109.3820 1.5682 110.1838 1.5797 103.6263 1.4857 6.00%
64 264.15 418.1811 1.5831 419.4601 1.5880 412.2813 1.5608 1.72%
256 1041.75 1650.0856 1.5840 1656.5520 1.5902 1636.7130 1.5711 1.20%

� A disadvantage of relying on these bounds is that particularly L is in most cases
not known in closed-form. It therefore needs to be obtained by si mulation, but
then there is no advantage of using this bound anymore: with comparab le effort
we could have simulated the parallel queue itself as well.

1.0

1.5

2.0

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

�

log(SCV)

� ( SCV)
' ( SCV)
� U ( SCV)
� L ( SCV)

Figure 4.2 Graph with BM bounds, simulated values, and approximated values for load %= 0 :1.

In view of the tables presented above and illustrated in Figures 4.2 a nd 4.3, there is a
clear need for more accurate bounds and/or approximations. The ap proach followed
here is to identify, for any given value of the load %, an elementary function ' (�), such
that ' (SCV) accurately approximates � (SCV): In this approach we parameterize the
service-time distribution by its mean and SCV: The underlying idea is that in a single
M/G/1 queueing system the mean sojourn time solely depends on its �rst two mo-
ments, as it can be expressed as a function of its mean service time and coef�cient of
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0.3

1.0

1.7

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

�

log(SCV)
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' ( SCV)
� U ( SCV)
� L ( SCV)

Figure 4.3 Graph with BM bounds, simulated values, and approximated values for load %= 0 :9.

variation through the Pollaczek-Khintchine formula (see for exam ple Tijms, 1986, Eq.
(2.55)). We expect the mean sojourn time of the parallel queueing system to exhibit (by
approximation) similar characteristics, thus justifying the appro ach followed. Having
a suitable function ' (�) at our disposal, we can estimate ES by m � ' (SCV). The func-
tion ' (�) shown in Figures 4.2 and 4.3 refers to the one that will be proposed in the left
panel of Table 4.4.

(Approximate) insensitivity. In the approach described above, we assume that ES is
(approximately) insensitive, in that it depends on the �rst two mo ments of the service-
time distribution only. We veri�ed this property by comparing ES for two different
distributions of the service times with identical �rst and second mo ments. Table 4.2
gives a representative illustration of our �ndings. There we compa re the ratio � (SCV)
of the phase-type service-time distribution with the ratio � (SCV) of the Weibull service-
time distribution.

In our approach we took phase-type distributions, in the way we expla ined above:
Erlang for SCV smaller than 1 and balanced-means hyperexponential for SCV larger
than 1. For values of SCV up to 1, the corresponding Weibull distribution has a shape-
parameter larger than 1, meaning that all moments exist and that ev en the moment
generating function is �nite for some positive arguments — we could the n call these
distributions `light tailed'. For larger values of the SCV, however, the shape parameter
will lie between 0 and 1, and then the Weibull distribution could be cal led heavy-
tailed: although all moments exist, the moment generating function do es not (for any
positive argument). For instance for SCV equal to 16 (256) the shape parameter of the
Weibull distribution has value 0:35 (0:20, respectively). It is noted that Weibull tails
are not as heavy as Pareto tails, but our �ndings obviously provide support for our
operational claim of approximate insensitivity.

The table should be read as follows. The upper part is on %= 0:1, while the lower
part relates to % = 0:9. Then we provide, for a range of values of SCV, the mean
sojourn time ES and the corresponding � (SCV) for the service times having a phase-
type distribution, as well as their counterparts ESW and the corresponding � (SCV)W
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Table 4.2 Simulated sojourn times and the corresponding � (SCV) s for phase-type and Weibull
service-time distributions.

% SCV m ES � (SCV) ESW � (SCV)W

0.1 0.25 0.1069 0.1357 1.2690 0.1363 1.2749
0.33 0.1074 0.1403 1.3070 0.1411 1.3135
0.5 0.1083 0.1482 1.3676 0.1488 1.3737
0.75 0.1097 0.1580 1.4401 0.1579 1.4392
1 0.1111 0.1653 1.4875 0.1653 1.4875
2 0.1167 0.1842 1.5792 0.1871 1.6037
4 0.1278 0.2126 1.6634 0.2184 1.7092
16 0.1944 0.3509 1.8048 0.3627 1.8651
64 0.4611 0.8790 1.9062 0.8965 1.9448
256 1.5278 2.9833 1.9527 3.0227 1.9727

% SCV m ES � (SCV) ESW � (SCV)W

0.9 0.25 5.96 7.4225 1.2449 7.4117 1.2431
0.33 6.30 8.0219 1.2733 8.0110 1.2715
0.5 6.98 9.1751 1.3154 9.1639 1.3138
0.75 7.99 10.8374 1.3568 10.8412 1.3572
1 9.00 12.4875 1.3875 12.4848 1.3874
2 13.05 19.0620 1.4607 18.9871 1.4549
4 21.15 32.0373 1.5148 31.9305 1.5100
16 69.75 109.3820 1.5682 110.4690 1.5836
64 264.15 418.1811 1.5831 430.3272 1.6318
256 1041.75 1650.0856 1.5840 1729.6191 1.6684

in case of Weibullian service times. The main conclusions from o ur experiments are
the following. For %= 0:1 and SCV < 1 we observe that ES and � (SCV) are nearly
equal to their Weibullian counterparts; for SCV > 1 the difference is modest, that is,
up to 3.5%. For %= 0:9 the �t is accurate up to SCV = 4, whereas for SCV > 4 the
difference is modest, about 5%. The results of other numerical experiments give the
same impression. These �ndings justify our two-moment approach .

Numerical approximations.Now that we have justi�ed the use of phase-type distribu-
tions, we proceed as follows. To estimate � (SCV) = ES=m for various values of SCV

and %, we performed simulation experiments, leading to the results shown in Table
4.3. The table indicates that a rule of thumb of the type ES � 3

2m (that is � � 3
2) is a

conservative, yet accurate approximation for a broad range of pa rameter values. We
now try to identify a function ' (�) with a better �t.

In Table 4.3 we study the simulated ratios as function of the service-tim e distribu-
tion's SCV. We approximate the ratio � (SCV) with a polynomial of log(SCV) of degree
two, based on 10 datapoints. The coef�cients are estimated by apply ing ordinary least
squares. The performance of the procedure is veri�ed through the R2, which is the
coef�cient of determination that indicates how well the model app roximates the real
datapoints, i.e. the goodness of �t of a model; see e.g. Section 8.3 in Stone (1996) for a
de�nition.

As can be seen in the left part of Table 4.4 and from Figure 4.2 and 4.3, the polynomial
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Table 4.3 Simulated values of � (SCV) of several SCVs and several loads %.

SCV %= 0.1 %= 0.3 %= 0.5 %= 0.7 %= 0.9
0:25 1.2690 1.2603 1.2523 1.2462 1.2449
0:33 1.3070 1.2961 1.2858 1.2773 1.2733
0:50 1.3676 1.3526 1.3381 1.3251 1.3154
0:75 1.4401 1.4170 1.3948 1.3650 1.3568
1.00 1.4874 1.4626 1.4374 1.4124 1.3875
2.00 1.5792 1.5662 1.5447 1.5114 1.4607
4.00 1.6634 1.6658 1.6423 1.5942 1.5148
16.0 1.8048 1.8155 1.7685 1.6886 1.5682
64.0 1.9062 1.8828 1.8143 1.7175 1.5831
256 1.9527 1.8999 1.8207 1.7217 1.5840

regression �ts extremely well, with an R2 of nearly 100%. The table gives �tted curves
for %= 0:1 + 0:2 � i; with i = 0; : : : ; 4. Our experiments indicate that for other values of
%, we are able to achieve good approximations by interpolating esti mates for � (SCV)
linearly.
Note that one could also think of �tting a function of both SCV and %(rather than
�tting functions of just SCV, for various %). However, it turned out that such a function
does not perform signi�cantly better than the interpolation-based approach described
above.

Table 4.4 Fitted ratios � (SCV) for various loads %based on least squares estimation.

Load % ' (SCV) R2 ' (SCV) R2

%= 0 :1 1:484 + 0 :1461 log(SCV) ! 0:01099 log(SCV)2 100:00% 1:463 + 0 :1031 log(SCV) 96:20%
%= 0 :3 1:476 + 0 :1527 log(SCV) ! 0:01344 log(SCV)2 99:70% 1:451 + 0 :1001 log(SCV) 93:80%
%= 0 :5 1:456 + 0 :1448 log(SCV) ! 0:01406 log(SCV)2 99:50% 1:430 + 0 :0898 log(SCV) 91:70%
%= 0 :7 1:427 + 0 :1266 log(SCV) ! 0:01323 log(SCV)2 99:40% 1:403 + 0 :07486 log(SCV) 89:70%
%= 0 :9 1:392 + 0 :0950 log(SCV) ! 0:01109 log(SCV)2 99:60% 1:372 + 0 :05158 log(SCV) 85:80%

We could also try to see how good a �t can be obtained by an even simpl er function,
for instance by approximating � (SCV) by a polynomial of log(SCV) of degree one. The
results are reported in the rightmost column of Table 4.4. The model s till shows a
reasonable �t, but one observes that the R2 for this polynomial regression analysis is
decreasing in the load %. Especially for larger values of %the polynomial of degree one
�ts considerably worse than the polynomial of degree two.
We conclude this section with a few words on the approximation appro ach proposed
by Varma and Makowski (1994). Their idea is to interpolate heavy - and light-load re-
sults to expressions for arbitrary load. The results show a good �t, a nd the procedures
are of modest numerical complexity. In our chapter, we took an alter native approach,
relying on (i) a two-moment parameterization of the service times ( and replacing them
by their phase-type counterpart), (ii) an numerical approximation with a nearly per-
fect �t. Our approach requires negligible computational effort, an d can therefore be
used as an easily applicable engineering heuristic.
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It is �rst noted that their approach gives expressions that are in line with limiting
results for heavy and light loads. Compared to our approach, our emp irically derived
approximation is perhaps slightly easier to work with — as in the ap proach of Varma
and Makowski (1994) the approximation needs to be determined case-by-case (see
their Examples 1–4 in Section 6). The resulting approximation is v ery accurate (but
less accurate than our approximation of Table 4.4). For instance in case theSCV equals
1/2 (Erlang-2 services), the Varma-Makowski algorithm gives 0:1481for %= 0:1 and 9
for %= 0:9, where our simulated values were 0:1482and 9:1751, respectively.

4.4 The heterogeneous case

Having dealt with the case of homogeneous servers in the previous section, we now
focus on the situation that the servers are heterogeneous. We restrict ourselves to the
case that the service timesB1 and B2 stem from the same distribution, but with differ-
ent parameters, as in the setting of Section 2. First two basic observations are in place:
(i) in order to obtain a conservative estimate of ES, we can replace the service-time dis-
tribution of the most lightly loaded queue by the service-time distributi on of the other
queue, so that we obtain a homogeneous system to which the theory developed in the
previous section applies; (ii) if one of the queues has a substantially higher load than
the other one, one expects that the mean sojourn time of the queue with the heaviest
load yields a good approximation for ES.

Balsamo et al. (1998) describe a numerical scheme for �nding accurate upper and
lower bounds for the situation of heterogeneous exponentially distributedservice times.
In this section we further explore this issue by studying the impact of h eterogeneity
on the mean sojourn time for a broader set of service-time distributi ons. As in previ-
ous section we will use the typical phase-type service distributions, namely Erlang-2,
exponential, and hyperexponential. As before, we analyze the r atio � (SCV) = ES=m,
where m is now the mean sojourn time of the bottleneck queue (that is, the queue with
the heaviest load).

M/M/1 case.In Balsamo et al. (1998) the numerical experiments are such that theload
%1 of queue 1 (which is the `bottleneck') is in the interval (0:1; 0:9), whereas the load of
queue 2 is %2 = b%1, with the `heterogeneity factor' b = f 1

3 ; 1
2 ; 2

3g. In these experiments
the bounds presented in Balsamo et al. (1998) are rather tight, but the reader should
bear in mind that the impact of heterogeneity is modest anyway for b 2 ( 1

3; 2
3) and a

relatively high load in the bottleneck queue (so that, for these situation s, ES can be
approximated by the mean sojourn time of queue 1). The most substantial impact
occurs in the range of ratios b2 (0:7; 1), as will be shown in Table 4.5.

Table 4.5 gives for %= 0:1 � i; with i = 1; : : : ; 9, simulated values of � (SCV) for various
b. As seen from the table, � (SCV) increases inb, as could be expected. We also observe
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that � (SCV) # 1 if b # 0, since the sojourn times in the parallel queueing system then
mimic those in the bottleneck queue.

%1 b = 0 :1 b = 0 :2 b = 0 :3 b = 0 :4 b = 0 :5 b = 0 :6 b = 0 :7 b = 0 :8 b = 0 :9 b = 1 :0

0.1 1.0074 1.0278 1.0590 1.0993 1.1475 1.2033 1.2656 1.3340 1.4081 1.4875
0.2 1.0060 1.0227 1.0490 1.0842 1.1281 1.1805 1.2414 1.3107 1.3885 1.4750
0.3 1.0047 1.0178 1.0395 1.0695 1.1084 1.1567 1.2153 1.2851 1.3672 1.4626
0.4 1.0034 1.0135 1.0305 1.0553 1.0885 1.1320 1.1872 1.2566 1.3432 1.4499
0.5 1.0024 1.0098 1.0225 1.0417 1.0688 1.1061 1.1568 1.2246 1.3156 1.4374
0.6 1.0015 1.0064 1.0153 1.0290 1.0495 1.0798 1.1236 1.1877 1.2824 1.4250
0.7 1.0007 1.0035 1.0090 1.0177 1.0317 1.0534 1.0880 1.1445 1.2405 1.4124
0.8 1.0003 1.0015 1.0043 1.0088 1.0160 1.0285 1.0512 1.0938 1.1828 1.3996
0.9 1.0000 1.0001 1.0009 1.0023 1.0044 1.0087 1.0174 1.0374 1.0969 1.3875

Table 4.5 Simulated values of � (SCV) in case of exponential service-time distribution for various
levels of service loads heterogeneity (of type %2 = b%1).

We emphasize that Table 4.5 shows that in a considerable part of the parameter space
� (SCV) can be accurately approximated by 1. It is observed that the mean sojourn time
of the bottleneck queue plus an increment of about 10% can be a good (conservative)
approximation for all levels of heterogeneity bup to, say, 0.4.
When increasing b from, say, 0.7 to 1.0 we see that the� (SCV) sharply increases, par-
ticularly for the (perhaps more relevant) heavier loads. For thes e situations the value
for b = 1:0, which can be determined as described in Section 4.3, provides us with a
conservative estimate.

M/E2 /1 case.In a similar way the impact of heterogeneity on values of � (SCV) is pre-
sented in case of an E2 service-time distribution. In Table 4.6 we observe the same
behavior of � (SCV) for the various loads and levels of heterogeneity. The impact in the
range b 2 (0:7; 1) for the relatively high loads is less severe compared to the M/M/1
case.

%1 b = 0 :1 b = 0 :2 b = 0 :3 b = 0 :4 b = 0 :5 b = 0 :6 b = 0 :7 b = 0 :8 b = 0 :9 b = 1 :0

0.1 1.0013 1.0086 1.0243 1.0490 1.0826 1.1247 1.1748 1.2323 1.2967 1.3676
0.2 1.0010 1.0072 1.0204 1.0419 1.0721 1.1113 1.1596 1.2172 1.2840 1.3601
0.3 1.0008 1.0057 1.0166 1.0348 1.0613 1.0970 1.1429 1.2002 1.2697 1.3526
0.4 1.0006 1.0044 1.0130 1.0278 1.0502 1.0817 1.1244 1.1806 1.2531 1.3453
0.5 1.0005 1.0032 1.0096 1.0211 1.0390 1.0656 1.1038 1.1578 1.2333 1.3381
0.6 1.0003 1.0021 1.0065 1.0146 1.0280 1.0489 1.0812 1.1312 1.2089 1.3313
0.7 1.0001 1.0013 1.0039 1.0089 1.0177 1.0324 1.0569 1.0996 1.1769 1.3251
0.8 1.0001 1.0004 1.0018 1.0044 1.0089 1.0170 1.0323 1.0627 1.1322 1.3197
0.9 1.0000 1.0001 1.0004 1.0014 1.0023 1.0051 1.0106 1.0238 1.0665 1.3154

Table 4.6 Simulated values of � (SCV) in case of E2 service-time distribution for various levels
of service loads heterogeneity (of type %2 = b%1).

M/H 2 /1 case.Finally, the impact of heterogeneity on values of � (SCV) is presented in
case of an H2 service-time distribution with SCV = 4. In Table 4.7 we observe a similar
behavior of � (SCV), for the various service loads and levels of heterogeneity.
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%1 b = 0 :1 b = 0 :2 b = 0 :3 b = 0 :4 b = 0 :5 b = 0 :6 b = 0 :7 b = 0 :8 b = 0 :9 b = 1 :0

0.1 1.0178 1.0551 1.1042 1.1621 1.2284 1.3014 1.3821 1.4691 1.5630 1.6634
0.2 1.0131 1.0426 1.0840 1.1354 1.1974 1.2698 1.3522 1.4458 1.5510 1.6682
0.3 1.0097 1.0325 1.0664 1.1112 1.1679 1.2369 1.3196 1.4172 1.5320 1.6658
0.4 1.0065 1.0235 1.0509 1.0885 1.1387 1.2026 1.2832 1.3831 1.5058 1.6569
0.5 1.0047 1.0164 1.0374 1.0678 1.1100 1.1671 1.2427 1.3419 1.4720 1.6423
0.6 1.0030 1.0108 1.0255 1.0481 1.0817 1.1296 1.1970 1.2923 1.4275 1.6215
0.7 1.0018 1.0065 1.0155 1.0308 1.0539 1.0907 1.1461 1.2315 1.3674 1.5942
0.8 1.0008 1.0029 1.0073 1.0152 1.0292 1.0515 1.0900 1.1567 1.2839 1.5592
0.9 1.0000 1.0004 1.0006 1.0041 1.0087 1.0171 1.0339 1.0680 1.1581 1.5148

Table 4.7 Simulated ratios � (SCV) in case of H2 service-time distribution for various levels of
service loads heterogeneity (of type %2 = b%1).

From the experiments above a few, more general, conclusions canbe drawn:

� Restricting ourselves to cases with SCV � 4 (which is quite realistic in most appli-
cations), a rule of thumb of the type 1:10�m always yields a conservative estimate
for the system's mean sojourn time ES for heterogeneity level b 2 (0:1; 0:7) and
loads %1 2 [0:8; 0:9]:

� Similarly, for the same range of SCVs, but bsmaller than 0:3 and all %1 � 0:9, the
same statement applies.

� In all other situations, replacing the service time distribution of the m ost lightly
loaded queue by the service time distribution of the other queue yields a c onser-
vative estimate; for the resulting homogeneous system the theory devel oped in
the previous section applies.

4.5 Concluding remarks

As mentioned in Chapter 1, the fork-join queue is an important gener ic building block
of more complex service systems in manufacturing, services, and healthcare; see, for
example, Van der Aalst et al. (2003). It is indisputably true that th e analysis of these
systems is highly complex, even in the very simple case of just two s ervers. This makes
the analysis challenging, and explains the need for simple heuri stics.
This chapter �rst discussed the bounds suggested by Baccelli and Ma kowski (1985).
Then these bounds were numerically assessed for the homogeneous parallel queue
(i.e., the service times at both queues have the same distribution). As they performed
poorly, we developed an alternative approach: we identi�ed a sui table function of the
�rst two moments of the service-time distribution to approximate the me an sojourn
time of the homogeneous parallel queue. Finally, we brie�y commen ted on the het-
erogeneous parallel queue by giving several practical approxim ation guidelines.
In more detail, the conclusions are as follows:

� A trivial lower bound on the fork-join queue's mean sojourn time is evi dently
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the largest of the individual mean sojourn times, ` := maxf ES1; ES2g, and an
upper bound is the sum of the two mean sojourn times, u := ES1 + ES2.

� Using standard queueing-theoretic methods, we derive explicit exp ressions for
the upper bound developed by Baccelli and Makowski (1985). We do so for
various phase-type service-time distributions. The lower bound sug gested in
Baccelli and Makowski (1985), however, can only be evaluated by performing
a stochastic simulation for almost all service-time distributions. We stress that
when doing so there is no advantage of using this bound anymore: with compa-
rable effort we could have simulated the fork-join system itself as well.

� For a substantial part of the parameter space both bounds from Baccelli and
Makowski (1985) are highly inaccurate. In some cases their lower bound is even
outperformed by the trivial lower bound.

� In the homogeneouscase, the ratio of the mean sojourn time ES in the fork-join
system to the mean sojourn time m of a single queue dependsapproximatelyonly
on the distribution of the service times mainly through the �rst two momen ts,
or equivalently, the load %, and the SCV of the service times. This legitimates our
approach to expressES as a function of %and SCV: The resulting function has a
nearly perfect �t.

� In case of two heterogeneousqueues in the parallel queueing system, we identi-
�ed situations in which ES is close to the mean sojourn time of the queue with
the highest load (the `bottleneck'). In all other situations, we show ed how to
conservatively approximate ES by the mean sojourn time of a suitable homoge-
neous fork-join system, to which the theory mentioned above applie s (see previ-
ous item).

Possible directions for future research include:

� To what extent is the mean sojourn time of the fork-join system insens itive with
respect to higher moments of the service-time distribution?

� The study on the effect of heterogeneity can be extended, for instance by con-
sidering scenarios in which the service times stem from two entirel y different
distributions (e.g., exponentially distributed service times in que ue 1, and E2 ser-
vice times in queue 2).
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5 Modeling Process Flow Using
Diagrams

5.1 Introduction

In Chapter 1 of this thesis (Section 1.3) we have broadly discerned a number of ap-
proaches to process improvement. These include the analytical and simulation (DES,
SDM) approaches studied in OR, and the heuristic design approaches of BPR and
BPM. They also include the observational approaches offered in quality engineering
and process improvement (and packaged into integrated methodol ogies such as Lean
Thinking, Six Sigma and the Theory of Constraints). In all of thes e approaches, the
study, diagnosis, and optimization of process �ow is facilitated b y diagrams. Such
process �ow diagrams are the topic of this chapter.

The traditional type of diagrams (used in the total quality movement, fo r example)
is the �owchart. Its origins can be traced to Gilbreth's work in the er a of scienti�c
management, see Wren (2005). The �owchart helps us visualize industrial and busi-
ness processes and shows how jobs �ow through a network of tasks an d decisions.
The �owchart does not display quantitative information about proc ess �ow, and does
not depict servers. Although there seems not to be an authoritative se t of symbols, in
practice the more commonly used elements are depicted using standard symbols such
as Chapin's basic and additional sets (Chapin, 1970).

In addition to �owcharts, operations researchers use a type of diag rams such as the
one in Figure 5.1; see, for example Tang et al. (2007) and Alt�ok(1996)). Whereas there
appears to be a de facto standard for �owcharts, the symbols and struc tures used in
OR-type diagrams seem to be ad hoc. Note the essential difference between this type
of diagrams and �owcharts. While �owcharts follow jobs through a network of tasks,
OR-type diagrams follow jobs through a network of servers.

In Lean Manufacturing a type of diagrams is used which is called val ue stream map
(VSM), e.g. McDonald et al. (2002) and Manos (2006). The symbols given in Rother
and Shook count as the de facto standard (Rother and Shook, 1999). Avalue stream
map traces jobs through a network of stations, which can be workstatio ns, queues /
warehouses, and suppliers, see, for an example Seth and Gupta (2005). By employing
symbols and so-called data boxes it documents information about p rocess �ow, such
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Figure 5.1 An OR-type diagram of a queuing system. Circles depict servers, horizontal stacks
represent queues, and arrows represent job routes.

as processing times, queue times, information �ows, and queue disci plines (pull vs.
push), see Braglia et al. (2006).

The abovementioned types of diagrams for modeling process �ow emerged and evolved
in and through practice. Prescriptions given in textbooks and train ing manuals are
pragmatic rather than precise, and tied to speci�c applications ra ther than generic.
Moreover, the adoption of traditional quality engineering techniq ues from manufac-
turing in other �elds, such as the service industries and healthcare, requires a clear,
consistent, generic and precise prescriptive framework for di agrams intended to model
process �ow. It is the purpose of this chapter to present such a framew ork. We will
hardly go into the matter of which symbols to use – this remains a noness ential matter
of convention. Instead, we aim to specify a generic list of eleme nts of diagrams for
process �ow, such as tasks, servers, routing, and more. Next, in Ch apter 6 we specify
metrics for each element that are relevant for understanding the p rocess �ow.

Such an explicit framework has the potential to have substantial impa ct both on the
analysis techniques focused on in academia, and on the development of practical
guidelines. Our analysis shows that currently popular types of diag rams have severe
limitations, miss certain elements, or are based on implicit but c onsequential premises.
A better articulated framework provides for more effective guideli nes for the practi-
tioner. And a uni�ed and precise modeling language facilitates sc ienti�c mathematical
studies of process �ow.

Our approach comes down to a rational reconstruction of expositions given in litera-
ture and current practice. Critically verifying the consistency of these expositions, and
confronting the given prescriptions with real-life application s, we identify a number
of problematic issues with the traditional types of diagrams. In Sec tion 5.2 we give
an example and describe these problematic issues. Our solutions to these problems
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are contained in our framework, which is discussed in Section 5.3 . Section 5.4, �nally,
presents a selection of applications. Section 5.5 concludes.

5.2 A grammar for process diagrams

We de�ne a process as a system of activities that transforms input in to output. The
input can be a request from a client at a bank, a patient in a hospita l, raw material in
manufacturing, or the output of a preceding process. Similarly, the o utput can serve
as an input of a subsequent process, but can also be a completed service for a client, a
cured or diagnosed patient or an end-product.

5.2.1 An example

To have a tangible basis for introducing our framework to model pro cess �ow we
provide an example here. The process we discuss refers to a backof�ce of a bank
which processes requests for loans. After a request is �led and ch ecked, either a loan
is offered to the client or the request is rejected. The back of�ce d epartment handles
two types of private loans: a limited loan and a �exible loan. In Fi gure 5.2, the process
diagram depicts the back of�ce process as a system of activities. Solid and dashed
lines indicate the �ows of requests for limited and �exible loans.
A request for a loan from a client enters the bank at the Customer Conta ct Center
(CCC). From the CCC the request is forwarded to the back of�ce. After a job enters
the back of�ce process, it waits until it is picked by one of the emplo yees. At this task,
the request for a loan is received by the back of�ce and the solvenc y of the client is
checked. Next, the request is approved or rejected based on the outcome of the �rst
task, by a server who is authorized to execute the loan approval. Appr oved jobs go
to `Approval letter and loan offer', where an offer for a loan is m ade. Rejected jobs
go to `Rejection letter', where a rejection letter is printed. Output of th e �nal tasks is
forwarded to `Internal mail'. The internal mail facilitates the pr ocess of sending the
documents to the clients.

Industrial and business processes considered as a system of activities consist of generic
elements. Diagrams used to map process �ow make use of generic symbols to depict
these generic elements. Besides a unique symbol, these elements have properties. The
properties of an element can be displayed in so-called data boxes, known from the VSM-
literature (Rother and Shook, 1999).
In the example we identify the following generic elements, to be di scussed in more
detail in the next section:

� Connector: a job creation process or job departure process. Both link to other
processes. In the example, a �led request for a loan is an output of th e process at
the CCC and generates a job in the back of�ce process at CCC 1 and CCC 2.
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� Route: the arrows that display the route of a type of job from one activity to the
following. In the example, jobs of the limited loan type follow the s olid arrows
and of the �exible loan type follow the dashed arrow.

� Queue: a station where a job spends waiting time, without an operation be ing
applied to it, such as in queue 3 and 4, where requests wait until they are c hecked.

� Task: a station where an operation is applied to a job. A task is executed by one
or more servers, possibly in combination with a machine. In Fig ure 5.2 a server
executes an approval procedure in the task `Check', and with this task it singles
out requests from insolvent clients.

� Server: an agent who executes a task on a job. In the example, two servers exe-
cute the task `Reception and evaluation' of requests. Note that the same servers
1 and 2 execute all of the tasks `Reception and evaluation', `Approval letter and
loan offer' and `Rejection letter' during a shift.

� Action rule: a set of rules for the server, possibly in the form of a d ocument. In
the example, the action rule plans the capacity of server 1,2 and 3, schedules the
different tasks for server 1 and 2, and dictates to servers in whic h order jobs are
to be picked from the queue.

� Conditional routing: a job status check that decides upon the next activ ity. Ap-
proved loan requests go to the `Approval letter and offer' task and re jected loan
requests go to the `Rejection letter' task.

� Job: in the example the jobs that �ow through the process are requests f or loans.

With the help of a process diagram such as in Figure 5.2, we can trace a single job
through the system. In the data boxes of the diagram, we display vario us quantities
that are properties of the job as it �ows through the process. For exa mple, in the data
box related to connector CCC 1, we can display the arrival time of a c ertain job. In
the data box of queue 1, we display the job's waiting time. Further, the da ta box of a
task displays the job's processing time executed by a certain server. The data box of
Routing 1 displays whether a loan request is approved, denoted by ` Yes', or rejected,
denoted by `No'. We propose to call such a process diagram, in whic h quantitative
properties of an individual job are documented, a `single-job �ow diagram'.
Alternatively, in data boxes we could display aggregate statistics f or a population of
jobs. For example, in the data box related to the connector CCC 1, we can display the
arrival rate of jobs of limited loan type. In the data box of queue 1, we can display the
average waiting time of this type of job. Further, the data box of a task c an display an
average processing time or a processing rate per time unit per server. The data box of
Approval 1 displays an approval rate as aggregate statistic. We pr opose to call such
a process diagram an `aggregate �ow diagram'. Note that the statisti cs chosen in an
aggregate �ow diagram are not generic. One may choose to display statistics other
than we suggest, such as the maximum waiting time per queue. Or, in case of a call
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Figure 5.2 A back of!ce process handling loan requests at a ba nk.

center, one can choose even more complex ones, such as the average waiting time of
jobs that wait at least twenty seconds.

5.2.2 Shortcomings of current  owchart, VSM, or OR-type diagrams

The �owchart, the VSM, and the OR-type of diagrams facilitate the study o f pro-
cess �ow. Although, in essence, these diagrams have the same objective, they dif-
fer remarkably from each other in the inclusion of basic elements . For example, the
�owchart and the VSM do not display servers explicitly, as in `S erver 1' and `Server 2'
at the `Reception and evaluation' task in our example. Nor do these dia grams give in-
formation about which server executes what task and according to wh at schedule, as
we display explicitly in the `Action rule' of a server. The �owcha rt and VSM only deal
with interchangeable servers and thus disregard differences am ong servers in authori-
ties, skills, and experience. These server speci�c characteristics are crucial information
for optimal resource allocation. These diagrams, therefore, are not suited for modeling
processes with multi-task employees.
The VSM does not explicitly inform us about the rejection rate due to co nditional rout-
ing and the distinction between a single-job �ow and aggregate �ow is not made ex-
plicitly. Another drawback of the VSM is the limited use of the differ ent queue han-
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dling or priority rules. In service or healthcare a �rst-in-�rst- out (FIFO) discipline is
often not the optimal priority rule, and thus the possibility to model mor e complex
rules for queue handling is important. For example, in data transfer over internet
one chooses to handle the smallest jobs �rst in order to serve a large amount of small
data packages �rst. In healthcare, emergency cases are treated with priority, and thus
patient handling deviates from FIFO.
The OR-type diagram follows a job through a system of servers, ins tead of tasks as
in a �owchart and VSM. For each server the corresponding queue is displayed. This
diagram is widely applicable to queueing problems in operations research, but it does
not model basic elements such as tasks, conditional routing and action rules.
Our proposed process diagram displays information about a job' s (inter) arrival time
explicitly in a data box of the single-job �ow diagram, or an average waiting time of a
population of jobs in a data box of the aggregate �ow diagram.
Our diagram displays tasks, servers and their corresponding ac tion rules. It allows for
the situation that servers are noninterchangeable (in authorities, s kills, and experience)
and therefore requires explicit capacity planning (which serv er does perform the task?)
included in the action rule. It allows for the situation that servers ar e assigned to more
than one task and therefore requires an explicit server schedule (when is a multi-task
server performing a task?) included in the action rule. Both situation s are common in
healthcare and service processes. The inclusion in our diagram of action rules (repre-
senting, among others, planning and scheduling) allows proces s optimization to take
full advantage of differences among servers (in authorities, ski lls, and performance),
as well as the possibility to allocate them to multiple tasks.
Our diagram has enough �exibility to accommodate the various forms of action rules
found in industrial and business processes. Further, the distinction between single-job
and aggregate �ow diagrams is important, and therefore made expl icit in our frame-
work. Table 5.1 summarizes the contrasts between the �owchart, the VS M, and the
OR-type diagram, and the proposed framework.

5.3 Detailed discussion of the elements in a process diagram

Although we tried to follow the �owchart and VSM literature in our choic e of symbols,
we do not prescribe the use of any speci�c symbols, as these are just a matter of con-
vention. We discuss the elements in our generic framework in more d etail, give some
examples, and list properties for each of them. A detailed discus sion on the metrics
that are useful for process �ow improvement is given in Chapter 6.
Connector.Connectors are the job creation and departure elements that demarcate the
process under study. The generic symbol used for a connector is a rounded rectangle.
Examples:

� Job creation: �led requests for loans are forwarded by the CCC to the back of-
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�ce of a bank; a downstream production process in manufacturing del ivers semi
manufactures to the �rst workstation, or to the �rst queue related to this wor k-
station; patients arrive at the front desk of a hospital with a referr al from their
general practitioner.

� Job departure: a letter possibly together with a loan offer is forwar ded from the
bank's back of�ce to the internal mail; a manufacturing department fo rwards the
end products to the shipping/expedition area; or a patient leaves the hospital
when the treatment is �nished.

Typically, connectors include data on the arrival time or the arriv al time distribution,
which indicate the workload of the process (at job creation) or the throughput, that is,
the number jobs that actually �ow through the process (at job departure) .

Task.The generic symbol used for a task is a rectangle. Tasks are operations performed
by one or more servers, possibly in combination with a machine. F or example, a sol-
vency check of a client in a service process at a bank; an operation along the assembly
line or the transport of a product in manufacturing; or an intake of a pa tient at the
front desk of a hospital.

Server (or, resource).A server is an agent who executes a task on a job. The generic
symbol used for a server is a circle. Since the server is a resource for processing time,
the total number of servers and their planning and scheduling are im portant factors
for the system's throughput.
Examples: an operator in manufacturing, an employee at a bank, but a lso a machine
in an assembly line or a truck driver that facilitates the transport i n manufacturing.

In a single job �ow diagram, the data boxes of a task or server typic ally include prop-
erties of the processing times, setup times, and times lost due to interr uptions. Typical
properties in the aggregate �ow diagram are the processing time di stribution and the
setup time distribution (and derivatives such as means and standard de viations). The
average number of jobs handled at a task per time unit is the task throug hput. Given
the availability of servers (that is, taken into account setup times, i nterruptions, etc.),
the maximum possible throughput is the effective capacity at the task, s ee Chapter 2.
The ratio of (effective) throughput to (effective) capacity is the (ef fective) utilization at
the task. If utilization is below 1, the servers may have an availabi lity less than 1 or a
positive idle time.
Note that most metrics under task are server speci�c. We do not assum e the servers to
be interchangeable; each server may have distinct characteristics such as skills, expe-
rience or authorities. Further, servers need not be allotted to a sing le task.
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Table 5.1 The difference per element between the "owchart, V SM, OR-type diagram, and the
proposed framework.

Characteristic of diagram Flowchart VSM OR-type Proposed
framework

Server - not dis-
played ex-
plicitly; tasks
are the main
building
blocks of the
diagram

- not dis-
played ex-
plicitly; tasks
are the main
building
blocks of the
diagram

- servers are
the main
building
blocks, in-
stead of
tasks

- are accom-
panied by an
action rule;
schedule
and queue
handling

- no �exibil-
ity among
servers
in task-
assignment
and schedule
(i.e. servers
are inter-
changeable
and tied to
one task)

- no �exibil-
ity among
servers
in task-
assignment
and schedule
(i.e. servers
are not inter-
changeable
and tied to
one task)

- no �exibil-
ity among
servers
in task-
assignment
and schedule
(i.e. servers
are not inter-
changeable
and tied to
one task)

- are non-
interchange-
able; differ
in skills and
experience
- can be allot-
ted to mul-
tiple tasks
- servers
displayed
explicitly

Single job / Aggregate distinction
not made

distinction
not made

distinction
not made

distinction
described
and facili-
tated

Queue handling not displayed limited;
mainly FIFO

not explicitly
displayed

standard and
nonstandard
queue han-
dling rules
are made
explicit

Conditional routing displayed,
but no per-
centage
indicated

displayed,
but no per-
centage
indicated

not displayed displayed
with percent-
age

Process �ow metrics not included limited; not
well-de�ned
nor standard-
ized

not included included and
well-de�ned
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Action rule. Action rules prescribe to servers what tasks to perform, when, in c ase of
multi-task servers, to perform a task, and in which order to handle j obs. An action rule
is typically a document that consists of planning, a schedule and w orking rules. The
generic symbol used for an action rule is a rectangle with a wavy low er edge, attached
to a server. It may also include a queue handling rule, such as FIFO, or smallest-jobs-
�rst , in which latter case the job with the smaller expected processing tim e is handled
�rst. Also it may contain a rule for priority handling, such as a pre emptive resume
priority rule. This rule prescribes that, on arrival of a priority job, a server is to quit the
current job and handle the priority job �rst.

Examples: a planning of available time per server per task, a queue rule like FIFO or a
priority handling rule that prescribes how to handle emergency p atients in a hospital.

Queue.A queue is a station where a job waits for a server to become idle. The generic
symbol used for a queue is a cylinder. In the single job diagram, the job's waiting time
is recorded in the queue's data box, while the aggregate diagram inc ludes derivatives
of the waiting time distribution.

Job.Jobs are the entities that �ow through the process. The jobs in the proc esses we
discuss in this chapter move one by one or in batches from one task to the following
task in the system. In literature these types of �ow are called single p iece �ow and
batch-and-queue respectively. We do not discuss continuous-�ow pro cesses.

Examples: a loan request that �ows through the back of�ce of a bank, a car that �ows
through a part of an assembly line in manufacturing or a patient that �o ws through
one or more departments in a hospital.

Route. The route of a job is displayed as an arrow that connects every step in the
process in a prescribed order. Different type of jobs can be depicted in one diagram.
The generic symbol used for a route is an arrow, possibly with a cer tain pattern. In our
example the routes are depicted by solid arrows for jobs of the limi ted loan type, and
dashed arrows for jobs of the �exible loan type. The pattern or col or of arrows is used
to distinguish the route of different types of jobs.

Conditional routing.At a conditional routing, the path of jobs forks in one direction or
another depending on a characteristic related to the condition of the job. The generic
symbol used for a conditional routing is a diamond. In the single-j ob �ow diagram
in Figure 5.2 the rejected requests fork in the direction of the task `Rejection letter'
and the approved requests in the direction of the task `Approval letter and loan offer'.
Examples: an approval check for loans, a quality check for prod ucts.

The single job diagram shows which of the paths the job takes; the aggregate diagram
shows the percentage of jobs taking each path.
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5.4 Applications

Process diagrams, originally used as a design tool in informati on technology, nowa-
days visualize process �ow and document process performance. They can display
relevant performance metrics, based on the elementary metrics listed in Chapter 6. A
number of these are:

1. Performance metrics related to timeliness of delivery, such as process throughput
time (or lead time). The diagram also shows the components of throug hput time,
namely, processing times, setup times, and queue times.

2. Performance metrics related to iterations, such as rework rates,and rejection.

3. Performance metrics related to the identi�cation of bottlenecks i n the process,
such as a task's capacity and the throughput at the previous task upstream.

4. Performance metrics related to capacity planning, such as throughput and uti-
lization.

The metrics can be determined by measurement, simulation, predicti on from analyti-
cal methods (such as queueing-theoretic calculations), and typically a combination of
these.
The process performance is determined by process settings. Process settings are those
variables that are controllable and typically prescribed or se t by management, such as
resource planning parameters (number of servers, equipment, of� ce rooms), schedul-
ing parameters (schedule of tasks for an individual shift), and oth er settings (allocation
of consecutive workstations, software and databases).
The process diagram can be used to document, predict, optimize, and specify process
performance. Most of these applications can be grouped in three application types,
popularly known as `as-is', `could-be', and `should-be' analy sis.

As-is analysis
In most problems that regard the process �ow, the �rst step in the an alysis is to map
the current process (the so-called as-is, current state, or Ist-situation), with the current
process settings. Both the single-job �ow diagram and the aggrega te �ow diagram
can be used to document and visualize the current process performance. In business
improvement programs for example, the resulting diagram is help ful in identifying
problems and improvement opportunities in the current process, o r in prioritizing
processes that are candidates for improvement projects.
In practice, it is not always possible to measure every step in the p rocess under study.
With help of the statistics in an aggregate �ow diagram and queueing mo dels from
OR it may be possible to predict the metrics of the process steps that are not measured.
For example, given the throughput of a task before a queue, and given th e capacity of
the task that follows the queue, one can predict from mathematical cal culations the
average waiting time.
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Could-be analysis
A second sort of application of the diagram is to study a hypothetical `what-if' process,
based on OR calculus, simulation, or other analytical tools. One can make predictions
about the process performance of alternative process settings or hypothetical circum-
stances. With the information from aggregate �ow diagrams and corr esponding set-
tings, one can predict the performance of nonmeasured process settings with help of
interpolation techniques, or one can make forecasts of process performance, based on
for example next week's server capacity and expected demand.
Besides, one can optimize the process performance by experimenting with the settings
of the process. In order to �nd the optimal settings one can use both emp irical ex-
perimentation and simulation. One can for example experiment wi th various queue
handling rules. Another example of such a process optimization is ` line balancing'.
It means that schedules are adjusted to ensure that all tasks have a capacity slightly
higher than the job arrival rate. One may for example change the schedule of the
servers in the back of�ce, so that (given the processing rate per server per task) the
different tasks have equal processing rate per hour that is slightl y higher than rate of
recorded requests at the CCC.

Should-be analysis
Third, the diagram is used to lay down the settings, and correspondi ng expected per-
formance, of the future process. In the VSM literature these settings are documented in
a so calledfuture-state map(Rother and Shook, 1999). The goal is to specify the settings
so as to synchronize the process �ow with upstream processes, down stream processes,
or needs of the client. In a simple case of the future-state map, we specify the number
of servers per task and the expected job arrival rate, as well as the predicted through-
put times and utilization per task which result from these choices.
In the example of the loan request process in Section 2, one can seta throughput at
every task based on the rate at which requests are recorded at the CCC. A next step
might be to reschedule the servers' available times such that this thr oughput is just
met. The should-be diagram translates the performance goal into op erational de�ni-
tions and process settings. It spells out the adjustments in the process and where to
focus on in process improvement initiatives.

5.5 Concluding remarks

Commonly used tools such as the �owchart, VSM, and variants of the OR- type di-
agrams, have similar functions, namely, to model process �ow. Th ese variants can
be seen as different dialects of a modeling language. Our framework is intended to
provide a common, unambiguous and �exible grammar for such langua ge. Besides
a grammar, a modeling language needs a vocabulary, which our generic elementspro-
vide. One step further would be the development of an ontology of busin ess processes;
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see Dietz (2006) for a proposal.
In this chapter, we identi�ed various shortcomings of the �owchart, VSM and OR-type
diagrams. They can be grouped under

� They are not �exible enough; for example, they cannot accommoda te multi-
task or noninterchangeable servers, as are commonly encountered in service and
healthcare processes.

� The elements that they consist of are poorly de�ned. The diagram s for model-
ing process �ow emerged and evolved in and through practice, and as a conse-
quence, the question which elements to include has not received much explicit
consideration.

� They do not use well-de�ned and unambiguous metrics, which is impo rtant for
measuring and calculating process �ow characteristics.

Our diagram deals with these shortcomings and is presented in a gen eric and well-
de�ned framework.
Flow diagrams can be on the single-job or aggregate level, referring to whether the
metrics included in the data boxes refer to an individual job, or to a p opulation of jobs.
The distinction is important, and especially for aggregate proce ss diagrams it is crucial
to de�ne the population of jobs considered, and in addition, one sh ould specify which
characteristics of the distribution one is interested in (for exampl e, the average, the
standard deviation, or certain percentiles).
The usefulness of �ow diagrams consists in their facilitation of a v ariety of applica-
tions, which can be grouped in `as-is', `could-be', and `should- be' analysis.

� The `as-is' analysis is used to document and to complete informatio n of the cur-
rent process.

� The `could-be' analysis is used to predict performance and to opti mize process
settings.

� The `should-be' analysis is used to lay down the future process and to tr anslate
this goal in operational de�nitions and process settings.

These �ndings result in an explicit framework that has the potentia l to serve as a
guideline for the practitioner, in manufacturing as well as in servic e and healthcare.
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6 Measurement Plans for Process
Flow Improvement in Services and
Healthcare

6.1 Introduction

In operations management, the subject of capacity management has been researched
extensively, also in relation with services and healthcare; see e.g. Sasser (1976), Smith-
Daniels et al. (1988), Van Looy et al. (1998), and Olhager et al. (2001). Capacity manage-
ment aims to make and keep the operation as ef�cient as possible so that it matches
demand and supply. The goal is to minimize customer waiting time and a void re-
source idle time (Adenso-D �́az et al., 2002). Note that in a more comprehensive view,
capacity management relates to the well-known basic operations p erformance objec-
tives: quality, speed, dependability, �exibility, and cost (Sla ck et al., 2009, pp. 300-301).
Capacity is the maximum level of value-added activity over a period of time that
the process can achieve under normal operating conditions (Slack et al., 2009). For
planning and control as well as improvement of the organization 's operational per-
formance an important question is: what is the current operational performance com-
pared to the organization's capacity? To answer this question we coul d quantify the
operational performance.
In this chapter we discuss how to measure the current performance in te rms of op-
erational performance metrics. In particular, we focus on how to me asure the per-
formance metrics throughput time and resource utilization in service and healthcare.
In the context of process �ow, these metrics relate to the abovementio ned losses of
waiting time and idle time.

In literature (see for example Melneyk et al., 2004), operational performance metrics
ful�ll the need to provide, amongst other, the following functions:

� Planning and control: to enable organizations to control perform ance of the re-
source, and to plan adjustments in the near future.

� Improvement: to enable organizations to diagnose performance o f the resource
in order to identify opportunities for process improvement.
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Usually one does not distinguish between these two functions of perfo rmance metrics.
However, practical requirements for measuring current performa nce in both functions
are quite different. In planning and control one monitors the proces s to facilitate
day-to-day decision making. These measurements should be of low effort and sig-
nal whether a process is in a state of control. In improvement initi atives such as Lean
Thinking, Six Sigma, and the Theory of Constraints, one typicall y measures and an-
alyzes the process to diagnose the current performance. These measurements should
give a detailed insight in the process and facilitate improvemen t techniques for idea
generation, such as value stream mapping, exploratory data analysis, and bottleneck
analysis.

Literature mentions several dif�culties in performance measureme nt in services and
healthcare operations: low availability of valid measurements c ompared to manufac-
turing (McLaughin and Coffey, 1990; Snee and Hoerl, 2004), and the complexity and
intangibility of processes (Elmaghraby, 1991; Bamford and Ch atziaslan, 2009). Further,
the discussion of performance measurement is often on a conceptual, not operational,
level (Neely et al., 2005). In spite of these complications, literature provides many
case studies of successful improvement initiatives in service and healthcare driven by
performance measurement; for example, Motwani et al. (1996), Breyfogle III (1999)
[examples 43.6 - 43.8], Mabin and Balderstone (2003), Moss (2007), Elkhuizen (2008),
Bisgaard (2009), Furterer (2009), and Erdmann et al. (2010).

This chapter discusses measurement plans for process �ow improv ement in services
and healthcare. We offer a set of clear de�nitions for a measurem ent plan and its
elements. We consider typical process metrics, such as the processing time, rework
rate and workload, all of which are related to the themes of resource utilization and
throughput time. The �rst represents wasted production capacity (the p rovider's loss),
while the latter concerns time lost by the client due to waiting (the cli ent's loss).

For the abovementioned process �ow metrics, we elaborate useful me asurement study
designs and corresponding methods and techniques, illustrating th ese with practical
applications and solutions. Finally, the measurement plan is pre sented as a tool to or-
ganize the measurement systems for process �ow improvement in s ervice and health-
care. Through these results, we translate the conceptual framework in to a practical
guide for project leaders.

The chapter is organized as follows. Section 6.2 de�nes a measurement plan. In Section
6.3 we present a selection of metrics that relate to resource utilization and throughput
time, and their link to organizational performance indicators. T hen, in Section 6.4
we elaborate four measurement study designs; for each we mention sui table measure-
ment methods and techniques. Section 6.5 presents a measurement plan and discusses
additional elements through a real-life example. Section 6.6 concludes.
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6.2 Measurement plans

A measurement plan facilitates the measurements of performance that could identify
opportunities for improvement. It speci�es the why, what, how and w ho of measure-
ments (Briand et al., 1996). It speci�es operational de�nition s, data collection tech-
niques, roles and responsibilities, and when the data are collected. A measurement
plan consists of three elements:

� Metric: the conceptually de�ned characteristic to be measured.

� Measurement study design: the de�nition of the study that measures the metr ic;
including the type of measurement study, such as time-and-motion study, work-
sampling study, or input/output study, and the measurement method(s) used i n
the study to record data, such as shadowing employees, self registration, ERP
system, or Lotus Notes Activity Logging.

� Measurement system: the operational de�nitions of measurements, i ncluding
the measurement techniques and tools, measurement procedure, the sample size,
possible training, and planning and organization (Breyfogle III, 1999).

In the next section we discuss a set of metrics that relate to resource utilization and
throughput time.

6.3 Metrics for assessing resource utilization and throughp ut time

Metrics for process �ow improvement often follow directly from performance mea-
surement models; see Neely et al. (2005). These models, such asthe balanced score-
card (Kaplan and Norton, 1992), the Theory of Constraints (Locka my and Spencer,
1998), the CTQ-�owdown (De Koning and De Mast, 2007), or Overal l Equipment Ef-
fectiveness (Johnsson and Lesshammar, 1999), relate a metric,for example processing
time, to organizational performance indicators, in this case ope rational costs. Figure
1 presents a selection of process �ow metrics and their relations w ith performance in-
dicators (based on the model proposed in De Mast et al. (2011), see Chapter 2 of this
thesis). In downward direction, the model relates organizationa l performance indica-
tors to process �ow metrics. The relations help to translate organiz ational goals into
measurable process �ow metrics. In upward direction, the relation s indicate the rele-
vance of the process �ow metrics. We discuss the metrics in Figure 6. 1 and relate them
to the performance metrics resource utilization and throughput time.

Total resource time.The total resource time, given by the total time per resource and the
number of resources, is the sum of scheduled or deployed times of a resource devoting
its capacity to a particular activity. In services and healthcare ope rations, total resource
time is usually a major constituent of operational cost.
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Processing time.The processing time of an individual task or process step is the time
that a resource needs to process a single job. In literature, processing time is also
called activity time or operator/machine cycle time. The sum of the pr ocessing times
of successive process steps gives the total processing time investedin the job. Note
that this total processing time is typically just a minor part of the job 's throughput
time in the process, as a major part is typically waiting time. The a ctivities' processing
times, however, determine the capacity of resources at the processsteps.

Rework. Rework considers additional processing time for jobs after the � rst attempt
went wrong or appeared to be insuf�cient.

First time right. The �rst time right is the ratio of the jobs that were processed corr ectly
in one round to the total amount of jobs. It differs from rework in the s ense that it
should be reprocessed (and thus it represents jobs that will pass all the process steps
another time).

Capacity. Capacity (also potential capacity or design capacity) is the maxim um level
of value-added activity over a period of time that the process can ac hieve under nor-
mal operating conditions; that is, capacity is the maximum throughput. Capacity is
determined by total resource time, the processing time per job, and r ework.

Availability. The availability is one of the elements of resource utilization. It c aptures
the losses in resource time due to breakdowns, set-ups, distractions (of staff), adjust-
ments, preventive maintenance, or improper breaks. It is often s tated as a fraction of
total resource time.

Workload.Workload is the demand or work volume that is to be processed. Work load
can be de�ned as the (actual or scheduled) number of jobs per time unit.

Throughput (TP), utilization. Throughput is the actual amount of work that �ows
through the process. It is typically stated as a number of jobs processed per time unit.
Throughput is bounded by the process's capacity and the workload, a nd further de-
pends on availability and �rst time right ratio. The ratio of through put to capacity
gives an overall measure for resource utilization.

Waiting time. The waiting time refers to the time spent by a job in the process while
no activity is performed on it. In healthcare, one distinguishes be tween waiting time
before entering the process (admission time) and waiting time in th e process. In this
chapter we will focus on the waiting time in the process.

Throughput time (TT), work in process (WIP ). The throughput time is the total time a job
spends in the process; it is also called the process cycle time. It includes the processing
times of individual process steps, waiting times and rework. In se rvice and healthcare
processes, waiting time is usually by far the largest constituent of th e throughput time.
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The WIP is the number of jobs in the process, either undergoing an activity, o r waiting
in between process steps. TheWIP and throughput time are related through Little's
Law as TT = WIP=TP.

The organization's quality of servicerefers to issues that may be an annoyance to clients.
There are numerous factors affecting quality of service, such as cleanliness of the fa-
cilities and courtesy of staff. However, in the context of process � ow improvement,
quality of service relates to the throughput time and �rst time right rati o. Figure 6.1
also shows how the abovementioned process �ow metrics affect the o rganization's
business economic performancethrough operational cost and the throughput (assuming
that an organization receives revenues proportional to the throughp ut).

Table 6.1 presents a complete overview of these metrics (column 1) together with a
brief description (column 2). In columns 3 and 4, we indicate whethe r the metric is
related to resource utilization (RU) or throughput time (TT). In the foll owing section,
we discuss measurement study designs to measure these process �ow metrics.

Process flow
metrics

Organizational
performance indicators

AvailabilityAvailabilityCapacityCapacity

Throughput, 
Utilization

Throughput, 
Utilization

First time rightFirst time right

Business economic 
performance

Business economic 
performance Quality of serviceQuality of service

Waiting timeWaiting time

WorkloadWorkload

Throughput time,
Work in process

Throughput time,
Work in process

Operational
costs

Operational
costs

Number of 
resources

Number of 
resources

Total time 
(per resource)

Total time 
(per resource)

ReworkReworkProcessing
time

Processing
time

Figure 6.1 A model for process "ow metrics based on De Mast et a l. (2011).
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Table 6.1 An overview of common metrics, their de!nition, an d whether they relate to resource
utilization or throughput time.

Metric Description Resource utilization
(RU)

Throughput time
(TT)

Capacity (Cap) The maximum
throughput

X

Throughput ( TP) The actual amount
processed

X X

Workload ( W L) Demand that is to be
processed

X

Work in process
(W IP )

The total job volume
in the process

X

Total resource time
(TRT)

Number of re-
sources (N ) and
planned production
time (TotT)

X X

Availability ( Av) Fraction of planned
resource time that is
truly available

X X

Processing time
(PT)

The time to execute
an activity

X X

Rework (RW ) Extra processing
time per activity

X X

First time right
(FTR)

Defect free produc-
tion when delivered

X X

Waiting time ( W T) Nonprocessing time
spent in the process

X

Throughput time
(TT)

Total time spent in
the process

X
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6.4 Measurement study design

In this section we describe four measurement study designs suitable fo r process �ow
improvement in service and healthcare, (cf. McLaughin and Cof fey, 1990). These de-
signs group various methods that measure process �ow metrics.

6.4.1 Output/input design

In an output/input design one measures input or output metrics of a process on a high
level (treating the process as a black box). These metrics are thenused to calculate
aggregate metrics such as unit-costs, which is the ratio of the total (operational) cost to
the throughput.
For example, at a postal service company the unit-cost is a common metric for re-
source utilization. As seen in Figure 6.2, weekly data on the sorting v olumes (that
is, the throughput), the total resource time ( TRT) and the operational costs (booked
under a speci�c code that represents the variable costs, use of material and scheduled
personnel) are recorded in a measurement form. From these data, one can calculate the
average weekly unit-costs (for each week divide the operational c osts by the sorting
volume).

Project: [title]  Date: 
Q1-Q2/2009 

  

Week number Sorting 
volume 

TRT (hrs.) Operational 
costs (Euros) 

Unit costs 
(Euros) 

1 1453658 468 € 8110 € 0,0056 
2 1760892 546 € 9462 € 0,0054 
3 1825426 546 € 9462 € 0,0052 
4 1698456 546 € 9462 € 0,0056 
5 2002563 609 € 10554 € 0,0053 
6 1958325 588 € 10190 € 0,0052 
7 1856954 546 € 9462 € 0,0051 
8 … … … … 
… … … … … 

Figure 6.2 An example of a measurement form for throughput, total resource time, and total
operational costs.

Other aggregate metrics that one may use are, cf. Hatry (1980) and pp. 201–202 in
Maskell (1991):

� throughput-capacity ratio: the ratio of throughput to capacity over a peri od of
time indicates what part of the resources is used to process jobs.

� workload-throughput ratio: the ratio of the workload to the throughput pe r time
period is an indication for the waiting time before entering a proc ess.
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� WIP-throughput ratio: the ratio of the WIP and the throughput per period o f
time predicts the throughput time.

Input/output designs make use of the following metrics:

� Capacity: this can be established for each process step by dividing the total re-
source time by the potential (or: design) processing time of the activ ity.

� Throughput: one may obtain the throughput per time period from a producti on
schedule (that records both scheduled and released production). N ote that this
concerns the actual �ow of work through the process.

� WIP: from a production schedule system (often such systems can make snap
shots of work volume in the process), or through Little's formula ( WIP = TT �
TP)

� Workload: can be derived from a production schedule system (often such a sys-
tem reports the workload to be processed).

Measurement system technique: data warehouse.High level data on metrics such as
throughput, operational costs, workload or even throughput time are of ten available
from the organization's data warehouse, possibly through a �nance or control depart-
ment. These data are useful in an output/input study design. For example, i n a hospi-
tal, data are available on the total number of beds (capacity) and the av erage number
of beds occupied per week (throughput). Based on these metrics one can form a ca-
pacity throughput ratio to diagnose the resource utilization with respec t to hospital
beds. At an Internet provider, one may construct a unit-cost measur e through the ratio
of the total operating cost to the total number of megabytes available.
The workload or WIP metrics may not be directly available in data warehouse sys-
tems. However, one can derive the WIP through a check for which jobs the beginning
of the �rst process step is before this moment and the end of the �nal process step after
this moment (or, are still open and thus have no �nal time stamp).

6.4.2 Resource measurement design

In resource measurement designs we follow a resource (an employee, a machine or
a facility) during a shift and record its occupations; cf. Baines ( 1995). For example,
we follow a nurse during his or her shift and record the beginning and end time of
each activity that he or she engages in, such as serving food to patients, making beds,
or distributing medicines. A standard method for resource measurem ent is a time-
and-motion study or continuous time study; cf. Milne et al. (1953) and S alim and
Bernold (1994)). In a time-and-motion study one typically uses time stamps to record
the beginning and end of each activity during a shift, see Figure 6.3 for an example of
a time-and-motion study in healthcare.
The nurse records for each activity (column 1) the start and stop time in column 2 and
3. Also, the nurse indicates whether the executed process step concerns rework or not
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Nurse: [name] Date: 4/2/2010 
  Start/stop shift: 9:00 / 11:00 

   
Process step Start Stop Rework (Y/N) 
Dismissal letter 4/2/2010 9:19 4/2/2010 9:40 N 
Medicine card 4/2/2010 10:08 4/2/2010 10:14 N 
Transport 4/2/2010 10:15 4/2/2010 10:16 Y 
Transport 4/2/2010 10:19 4/2/2010 10:31 N 
Dismissal letter 4/2/2010 10:34 4/2/2010 10:41 N 
Medicine card 4/2/2010 10:42 4/2/2010 10:47 N 
Transport 4/2/2010 10:48 4/2/2010 10:57 N 

Figure 6.3 An example of a time-and-motion study in healthcare.

(column 4). Furthermore, the name of the nurse, the date of the shift, and th e length
of the shift are recorded at the top of the sheet.
From the time stamps in a time-and-motion study one can calculate the pro cessing
time of a process step by subtracting the start time from the stop time. One c an calcu-
late the availability from the ratio of the sum of processing times to the total resource
time (in this case the nurse was scheduled for the dismissal processfrom 9.00 till 11.00).
Below we give a detailed guidance on how to deter the metrics for proc ess �ow im-
provement from time-and-motion study measurements:

� Processing time: by subtracting start time from stop time.

� Nonavailability: the total of the times in between a task's stop time and the next
task's start time, as a fraction of total resource time. Note that when ther e is
insuf�cient work, time in between tasks may be idle time (time waiting for a job)
instead of nonavailable time (time lost due to distractions or the reso urce being
down).

� Rework: found from the processing times of activities labeled as r ework (column
4).

Another method frequently used in resource measurement designs is a w ork-sampling
study (Baines, 1995), and in healthcare (Urden and Roode, 1997). In work-sampling
one records in a tally table, on given time intervals, the type of acti vity the resource is
engaged in; see Figure 6.4. These time intervals can be chosen equidistant, for example
every 5 minutes, or random, so as to avoid interaction between observations and work
schedule (for example in case of consults with a �xed length of 5 min utes). Consider
the nurse whose activities were measured in Figure 6.3. A work-sampl ing study with
time intervals of 5 minutes would have yielded the measurements in Fig ure 6.4.
From the data in the column “Checks” of Figure 6.4, we can calculate the time spent
on each activity. For example, at seven time intervals the nurse was performing the
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Nurse: [name] Date: 4/2/2010 
    
Activity Checks Activity time Percentage of 

total 
Dismissal letter IIII II 35 
Medicine card II 10 
Transport IIII II 35 
Other IIII III 40 

Total 24 120 
  

Figure 6.4 An example of a work-sampling study in healthcare.

transport activity. We weight these intervals with the interval leng th of 5 minutes and
thus measure a total of 35 minutes spent on transport. Also, we can calculate the total
time covered by the study as 24 intervals (120 minutes). The availability is the ratio
of the sum of times spent on designated activities (in this case 80 minutes) to the total
time, that is about Av = 67%. From the time-and-motion study we would have found
an availability Av = 61=120 = 51%.
Below we give a detailed guidance on how to derive metrics for proc ess �ow improve-
ment from work-sampling studies:

� Total resource time: can be derived from the multiplication of total num ber of
checks and the time interval length. This can also be done per activity, which
forms the start of an employee occupation study.

� Processing time: provided that the throughput of each activity is rec orded, the
processing time per activity follows from the total resource time div ided by the
throughput.

� Availability: from the ratio of total checks on designated activitie s to the total
number of checks.

Both time-and-motion and work-sampling studies have their advanta ges. The time-
and-motion study is accurate and offers the opportunity to observe the ac tivities in
great detail, while work-sampling takes less effort and the pos sibilities to execute more
measurements at the same time; see Finkler et al. (1993) for a comparison of both
methods.

Measurement system techniques: shadowing and self registration. Both for time-and-motion
and work-sampling studies one can collect data through shadowing . This is a tech-
nique in which an employee follows the resource during a shift or a working day. The
employee that does the shadowing may use a measurement form with a p reprinted
tally table with activities (in case of work sampling), or a table wi th an activity column
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and columns for start and stop times. An advantage of shadowing ove r self registra-
tion (discussed next) is that the observer can combine the time measurements with
other observations concerning inef�ciencies and improvemen t opportunities in the
process, thus providing input for Gemba studies and other activities in Lean Thinking
(cf. Womack 2006; and Mazzocato et al. 2010).
Another technique often used in work sampling and time-and-motion s tudies is self
registration. In case of self registration instead of shadowing, one should aim to design
the measurement so it does not in�uence an employee's schedule and work pace. One
can think of reducing the sample frequency when using a work sampli ng method, or
reducing the number of different activities when using time-and-moti on studies.
In healthcare one often measures time allocation of nursing personnel with time-and-
motion study through self registration; see for example Wijma et al. (2009). By keeping
the number of different activities small, a nurse is able to manage th e measurements.
Although this small number of different activities might lead to les s detailed informa-
tion, one can collect measurements from more shifts or more departme nts. A project
leader may choose to do both shadowing and self registration, so h e or she can check
whether self registration is in line with the results from shadowing and, if so, collect
large amounts of data at the same time.

6.4.3 Job measurement design

In job measurement designs one follows a job through the process to capture job spe-
ci�c metrics such as processing times, waiting times, and rework; i .e., typical elements
of the job's throughput time. A method for job measurements is the use of a tr aveler
sheet or traveler check sheet, which travels along with the request, transaction or pa-
tient through the process (Breyfogle III, 2008, pp. 525-527). It is used to record time
stamps when entering or leaving an activity. This method is a simpl i�cation of process
activity mapping, often used in industrial engineering (Hines and Rich, 1997).
Figure 6.5 shows an example of a traveler sheet, attached to a sales order in a sales
department. The order came in on April 1, 2010, and contained a request to prepare
and deliver the order on June 23, 2010. At each process step the start and stop time
are recorded. The process steps are in the �rst column of the measurement form. The
start and end times are recorded in columns 2 and 3, while the 4th and 5th columns
are used to record the start and end times of possible rework activiti es. For example,
the process step “Take order” of the job of Figure 1 initially started at 14:19 and ended
at 14:26 on Thursday April 2, 2010. After the client received a con�rmation, he or she
got back to the sales department to correct some of the order details. The step “Take
order” was executed a second time, starting at 10:08 and ending at 10:13 on June 3,
2010.
If (internal) transportation takes place in a process (think of a pa tient transported from
an intensive care to a long stay department), one may also record tim e stamps at the
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Client number: [client id] Arrival date 
(dd/mm/yyyy): 

1/4/2010 

Order number: [order id]   

Process step Start 1 Stop 1 Start 2 Stop 2 Comments 
Arrival order  1/4/2010 14:07  3/6/2010 9:34 

Take order 1/4/2010 14:19 1/4/2010 14:26 3/6/2010 10:08 3/6/2010 10:13 

Register 
order 1/4/2010 14:26 1/4/2010 14:35 3/6/2010 10:13 3/6/2010 10:15 

Confirm 
order 1/4/2010 14:35 1/4/2010 14:36 3/6/2010 10:15 3/6/2010 10:16 

Prepare 
order 23/6/2010 8:03 23/6/2010 11:31   

Check order 23/6/2010 11:31 23/6/2010 11:37   

Clear order 23/6/2010 11:39 23/6/2010 11:42   

Send out 
order 23/6/2010 12:03 23/6/2010 12:14   

Figure 6.5 An example of a traveler sheet in a service process.

begin and end of the transport activity. Thus, we see transportation a s a process step.
Below we give a detailed guidance on how to get metrics for process �ow improve-
ment from traveler sheets measurements:

� Throughput time: the difference between the arrival time (1/4/2010 14 :07 in Fig-
ure 6.5) from the last stopping time (23/6/2010 12:14).

� Processing time: for each activity or process step one can calculate the processing
time by subtracting the start time from the stop time.

� Rework: possible rework time is recorded for each activity as the differences
between Start 2 and Stop 2. One can sum these individual rework times to �nd
the additional processing time due to rework, or compute a rework rate for each
rate from the ratio of the total number of rounds to the total number of jobs.

� Waiting time: one calculates the waiting time by deducting the stop time of a
process step from the start time of the subsequent process step.

Measurement system techniques: track and trace, and activitylogging. Other methods for
job measurements are very similar to the use of traveler sheets, but generate auto-
mated time stamps through track and trace or activity logging systems.
Techniques to track and trace products in the process, such as RFID, are commonly
used in logistics and manufacturing industries (McElroy et al., 200 8). For example,
in warehousing in the clothing industry a product is registered on se veral locations
in the process. Typically, a product is scanned when entering an d leaving a storage
point, and when eventually entering and leaving the retailer. Thes e data can be used
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to compute the throughput time of an individual product, but also cycle, sto rage, and
transport times.
Other typical applications are found in production and assembly pr ocesses. An op-
erator may scan the product at the start and end of an activity, thus regi stering the
processing time. At the end of the shift, one may also analyze how muc h time the op-
erator spent on the activity and how much time was spent on other activiti es, breaks,
or nonproductive hours. These automated track and trace techniques can thus be used
to combine resource and job measurement designs.
In the service industries, software such as Lotus Notes and People Soft facilitate ac-
tivity logging, including start and stop times of activities. Measure ment pens and
barcode scanners are additional options for combined resource and job measurement
designs. In case of the former, an employee registers the start of an activity with a
special pen, equipped with a small camera, on a special form, containing a raster code.
By the scored position on the form the pen records a code linked to the activity, a code
linked to the speci�c form, and the start time. At the end of the activity , the nurse
scores the stop �eld on the form; the pen then records the stop time of the a ctivity.
Note that the forms are linked to individual jobs, and registrations are linked to em-
ployees. By combining information from a single form and diff erent employees, one
facilitates a job measurement design; by combining information from different forms
but a single employee, one facilitates a resource measurement design.
Barcode scanners enable a similar way of working (Figure 6.6 gives an example). Typ-
ically, a list of activities with corresponding barcodes is used by an employee or a
team member who is shadowing the resource. The list also includes a barcode that
corresponds with the name of the team member who executes the measurement, and
barcodes that refer to the start and stop of the measurement period. In case of a re-
source measurement design, when a barcode is scanned, the scanner records a time
stamp and a code (based on the barcode) that refers to an activity. If a job measure-
ment design is chosen, one uses barcode forms that are unique for each job. An em-
ployee scans the barcode at the start of an activity and a stop-code when �nished. The
scanner then records a code that corresponds with the employee (based on the scanner
itself), the activity code and the product code (based on the barcode with a unique job
component), a time stamp at the start, and a time stamp at the end of the acti vity.

6.4.4 Quality inspection design

The quality inspection design focuses on the end quality of the proces sed job. Such
designs are particularly suited for measuring delays and defects. Focusing on de-
lays, one records, for a number of jobs, the agreed delivery time and realized delivery
time. A defect is a job that a client sends back to reprocess when it does not meet
the speci�cations. Defects are captured in methods that measure the �r st-time-right
(FTR) ratio of the process. The FTR ratio is de�ned as the ratio of the throughput
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Figure 6.6 An example of a form for barcode scanners.

that meets the speci�cations of the client to the total throughput. Recordi ng defects
requires an inspection of the quality, either a 100% inspection on al l jobs, or a sam-
pling inspection. For example, cd-roms containing software pr oducts undergo an au-
tomated, 100% quality inspection before they are sent out. If the quality does not meet
the speci�cation, the cd-rom is registered as a defect in a system' s log. The defect rate
over a time period is then calculated as the ratio of the number of regis tered defects
to the total number of cd-roms produced and inspected. As an alternativ e to auto-
mated logging, check sheets can be used (Pyzdek, 2001, pp. 275 - 276). The operator
who encounters a defect places a check in the row that corresponds to the type of de-
fect, see Figure 6.7. In this case for example, the operator encounters two damaged
cd-roms in the sample of 359 produced cd-roms. The measurement form also includes
�gures such as throughput volume, workload, date or time period, name of inspection
operator.
Below we give a detailed guidance on how to derive metrics for proc ess �ow improve-
ment from defect check sheet measurements:

� First time right: in case defect types are additive (a job can have at most 1 defect),
the FTR follows from 1 minus the ratio of total number of defects to the sample
size. In case defects are multiplicative (a job can have more than 1defect type),
the FTR per defect type follows from 1 minus the ratio of defects per type to the

104



6.4 Measurement study design

Check sheet 
number: 

[number] Inspection 
operator: 

[name] 

  Date: 4/8/2009 
Defect Frequency Sample size: 359 
Incomplete copy IIII Throughput: 359 
Installation error IIII I Workload: 359 
Damage II  
Other IIII IIII  

Total 22  

Figure 6.7 An example of a defect check sheet for software updates.

sample size. Under the assumption that the types of defects are independent,
the overall FTR is then calculated through the multiplication of the FTR s per
defect type. Note that in case of multiplicative defects, one should n ot add up
frequencies to a total sum of defects (as done in Figure 6.7), since this �gure has
no meaning in the context of FTR on job level.

� Workload and throughput: provided that these �gures are included in th e mea-
surement form.

Another method is to measure complaints (in case of a delay) or recl aims (in case
of a defect) that the organization receives, possibly through the cl ient contact center.
Again, one could rely on log data of all incoming complaints or re claims, or one could
have employees at the client contact center record complaints or reclaims during a
sampling period.
Consider for example an organization that offers cell phone re pair services and gives
a one-month guarantee on its services. To record measurements on complaints and re-
claims of 2 weeks (approximately 250 repairs in the period from January 3 till January
15, 2011), employees measure all incoming complaints and reclaims for 1 month and 2
weeks (since from then on claims from the initial 2 weeks do not fa ll under warranty
anymore). The measurement sheet in Figure 6.8 presents an example of 9 complaints
or reclaims recorded by an employee. For each incoming case,the employee registers
date of arrival, the date of repair, whether it is a complaint or a r eclaim, and more
details about the complaint or reclaim.
From the data in Figure 6.8, we are able to derive complaint rates or reclaim rates. Be-
low we give a detailed guidance on how to derive metrics for proces s �ow improve-
ment from a defect check sheet measurements:

� First time right: related to reclaim, the defect ratio of a period fol lows from the
number of reclaims over the total throughput. This ratio excludes defec ts in
products bought by clients who do not send in reclaims.

� Throughput time: for the subgroup of clients who complain about the del ivery,
one may get a throughput time of the delivery process (e.g. from the co mments).
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Employee 
number: 

[employee id] Relate to repairs 
in period 

3-8/jan/2011 
10-15/jan/2011 

Case 
number 

Date 
Arrival 

Date 
repair 

Reclaim/Complaint Comment 

1 8-Jan-11 4-Jan-11 Complaint Delivery 2 days late 

2 8-Jan-11 3-Jan-11 Complaint Delivery 1 day late 

3 10-Jan-11 ?? Complaint Call for status 

4 11-Jan-11 10-Jan-11 Reclaim Display error 

5 13-Jan-11 8-Jan-11 Complaint Delivery 1 day late 

6 14-Jan-11 12-Jan-11 Reclaim OEM display 

7 14-Jan-11 12-Jan-11 Reclaim OEM display 

8 14-Jan-11 7-Jan-11 Complaint Delivery 4 days late 

9 17-Jan-11 15-Jan-11 Complaint Delivery 1 day late 

Figure 6.8 An example of a measurement sheet for reclaims and complaints in services.

Technique: Interviews for service quality.An alternative method is to randomly select
a group of clients and interview them about the service quality regard ing delays or
defects. One may then use a similar sheet to record these data as for measurement
done at a client contact center in Figure 6.8.
We end this section with Table 6.2 that presents an overview of the fo ur measurement
study designs as discussed above. For each design we list alternative methods, and in-
dicate metrics for which the design is a suitable study design. The tab le also indicates
whether metrics are related to resource utilization or throughput time.

6.5 Measurement systems: additional elements

Besides the designs, methods and techniques mentioned in Section 6.4, a measurement
plan should also specify the measurement procedures, the sample sizes, possible train-
ing, and planning and organization. We illustrate these elements o f the measurement
system in the example below.

Example 1: A measurement plan for a sales order process
Consider an administrative department, whose employees proces s incoming orders.
The process steps on a high level are:

� take the order;

� register the order in production planning;

� check and �nalize the order.

Currently, the department faces high operational costs. The major ity of these costs
are personnel costs. From an initial observational study, includi ng brief interviews
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Table 6.2 On overview of measurement study designs for the process "ow objectives resource
utilization and throughput time.

Measurement study
design

Measurement
method

Metrics Relate to RU; TT

Output / input Throughput ca-
pacity (or target)
ratio

Cap; TP RU

Unit-cost measure TP RU

Workload through-
put ratio

W L; TP TT

Little's law W IP; TT; TP TT

Resource measure-
ment

Work sampling TRT; PT; Av RU

Time-and motion
study

PT; Av; RW; TP; Cap RU

Job measurement Track and trace TPT; PT; RW; W T;
TP; W L; W IP

TT

Traveler sheets TPT; PT; RW; W T TT

Quality inspection Sampling inspection FTR RU

Complaints/reclaims
or interviews

FTR; TT TT; RU

with some of the employees, it has been concluded that availabili ty of the employees
could be improved by reducing time lost on disturbances, such as com pleting missing
information, downtime of the database, and telephone calls not re lated to client orders.
We measure the process's current performance. The study is limited to the availability
of the employees. The chosen study setup is a work-sampling design through shad-
owing, in which team members register the activities that an employe e is engaged in
at �xed time intervals. For two weeks the team member follows 3 emplo yees, and
observes and records the activity of each employee every 5 minutes. Self registration
and automated recordings would have been alternative set-ups.
The measurement plan in Figure 6.9 organizes the measurements for the availability
metric. First, it states the metric to be measured. Next, it states the study d esign.
Furthermore, the measurement plan includes:

� Techniques: a tally table with a list of prede�ned activities in the p rocess, cate-
gorized as primary task (available) and distraction (nonavail able).

� Tools: a paper form with the tally table, a pen, and a clip-board. F urthermore
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Sample size Planning RACI Deadline Data matrix

30 shifts on work 
days

10 working days 
in September, 3 
shifts per work 
day

R: assistant          
A:  project leader      
C:  manager             
I:  manager

11/30/2010 project_sheet
.xls

… … …

Metric Measurement 
study design

Measurement 
system

Study Method Techniques Tools Training Operational 
definition

Availability Work-sampling Shadowing Tally table 
registration: 
availabilty/  
nonavailability 
per minute

Paper form with 
tally table, pen, 
clip-board, 
interval timer

2-day trial and 
feedback

The ratio of time 
spent on 
primary tasks to 
total work time

Unit: per shift 
Goal: maximize

… … … … … … …

Figure 6.9 A complete measurement plan for the metric availability of employees in an admin-
istrative process, as discussed in Example 1.

one needs an interval timer that signals every 5 minutes.

� Training: Nelson et al. (2004) assert that one should organizea training and pilot
measurements to �ne tune the study's set-up. Also, employees at a �nance or
control department may need to be informed or trained, since they a re often not
familiar with the metrics and de�nitions used in a process �ow impr ovement
project.

� Operational de�nition: the de�nition of the metric, and on what unit basis it is
measured (per shift) and the performance goal (maximize, that is , the larger the
better).

� Sample size: the planned number of observations. Here, 30 shifts on work days
that are representative for the process in terms of order types and w orkload.

� Planning: the actual measurements are scheduled on 10 working days in Septem-
ber.

� RACI: roles and responsibilities are established using the RACI (responsible, ac-
countable, consulted and informed party) model. Since data collec tion in im-
provement projects is often a time consuming activity, one should co nsider hir-
ing temporary staff (student workers) to assist during the data colle ction period.

� Deadline: the deadline for the measurement phase. Then the measurements
should be processed and structured in a data matrix.

� Data matrix: raw data are processed into realizations of variable s; in this case, an
availability percentage per shift.
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6.6 Concluding remarks

Process �ow improvement in services and healthcare is an urgen t and important pur-
suit. In this chapter we present the measurement plan as a tool that guid es project
leaders when measuring performance metrics for process �ow im provement in ser-
vices and healthcare. In particular we discuss the performance metr ics resource uti-
lization and throughput time, but our approach could also apply to other performance
metrics. This chapter's contributions can be summarized as follow s:

1. A template for well-de�ned measurement plans that consist of a metric, a mea-
surement study design, and a measurement system.

2. A selection of four suitable measurement study designs for process �ow im-
provement in service and healthcare:

(a) output/input designs: these are �gures obtained from high level pl anning
and control systems such as a resource planning and a production schedule.

(b) resource measurement designs: studies that obtain measurementsby fol-
lowing a resource during operations.

(c) job measurement designs: measures obtained by following a job through
the process.

(d) quality inspection designs: studies that measure the products' qual ity issues
that relate to the throughput time and the resource utilization.

3. Detailed guidance for project leaders on which method and tech nique to choose,
how to organize the measurement system, and how to obtain data.

4. Additional elements that should be included in a measurement pla n, such as
training, operational de�nitions, and roles and responsibili ties.

These results go beyond the conceptual discussion on performance measurement in
services and healthcare. The results have implications in several �elds, including the
three we mention here.

Project management
In addition to the work of De Mast et al. (2011), see also Chapter 2 of this thesis,
this chapter shows how to measure process �ow metrics, offering me thodological and
practical guidance to a project leader responsible for the execution of measurements
within the context of process improvement initiatives in service s and hospital.

Standard improvement approaches
The presented models can be readily integrated in currently popula r standard im-
provement approaches, such as Lean Thinking, Six Sigma, and the Theory of Con-
straints. The presented material could form a basis for training ma terial for any of
these approaches.
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Directions for future discussion
An important topic for further study is to share more techniques for meas uring the
metrics proposed in Section 6.3, so that project leaders do not need to design ad hoc
measurement systems (Ljungberg, 1998). Also, the discussion is not limited by the
metrics and designs discussed here. One could discuss other metrics, such as met-
rics that drive revenues, and more corresponding suitable desig ns (for any proposed
metric).
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