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A Program for Computing the Exact Fisher
Information Matrix of a Gaussian VARMA Model

André Klein∗, Guy Mélard†, Jerzy Niemczyk‡and Toufik Zahaf§

Abstract

– A program in the MATLAB environment is described for computing the Fisher

information matrix of the exact information matrix of a Gaussian vector autoregressive

moving average (VARMA) model. A computationally efficient procedure is used on

the basis of a state space representation. It relies heavily on matrix operations. An

illustration of the procedure is given for simple VARMA models and an example of

output from a more realistic application is discussed.

1 Introduction

Time series analysis provides a useful technology that can be used in many fields of applic-
ation such as econometrics, finance, meteorology, signal processing and biology, etc. Time
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series analysis enables the past of a phenomenon to be studied in order to forecast its future
behavior. Among the models which can be used to represent a series, the general dynamic
model includes the large class of VARMA which is considered here. VARMA models can
be written in state space form which enables the use of the Kalman filter to compute the
pseudo-likelihood function, as if the process were Gaussian. That approach provides good
estimators of the parameters even when the process is not Gaussian.

For a time series with fixed length N , estimation by the pseudo-maximum likelihood
method of the parameters of an autoregressive-moving average (ARMA) model was a pole
of interest from the beginning of the 70’s until the middle of the 80’s. The major drawback
of the method is the computation time which has been reduced over the years. Among the
many algorithms which have appeared, the fastest was obtained through the use of a fast
version of the Kalman filter which is also called the Chandrasekhar equations (e.g. Morf et
al., 1974, Pearlman, 1980). Estimation by pseudo-maximum likelihood can now be found in
most statistical software packages.

Engineers have faced the problem of fitting ARMA and other time series models but
with on-line data. Consequently, they have developed estimation techniques where the es-
timates are updated each time a new observation becomes available. Algorithms such as
the Recursive Maximum Likelihood (RML), a special case of the Recursion Prediction Error
Method (RPEM), provides an on-line estimator which has the same asymptotic properties as
the off-line pseudo-maximum likelihood method (e.g. Ljung and Söderström, 1983). These
methods are used in signal processing and automatic control, much less in statistics and
econometrics, despite promising applications with stock exchange or meteorological data.

A good evaluation of an estimator is useful insofar as its statistical significance can be
assessed. This requires estimating the (generally asymptotic) covariance matrix of the vector
of estimators. Statistical tests on the parameters, determination of confidence intervals,
the scoring method (and also a new variant of the RML method developed by one of the
authors, see Zahaf, 1998) and the determination of the size needed for a sample, all require
computing the Fisher information matrix. Its inverse is the asymptotic covariance matrix of
the estimator and is also related to the Cramér-Rao lower bound. Most of the literature on
this subject for time series models has considered the asymptotic Fisher information matrix,
based on an approximation of the Gaussian likelihood function. Porat and Friedlander (1986)
have published an algorithm for computing the exact information matrix but their method
is time-consuming. Zadrozny (1989, 1992) and Terceiro (1990) have separately developed
methods based on the Kalman filter, which is faster than the Porat and Friedlander (1986)
method. Mélard and Klein (1994) and Klein et al. (1998), for scalar models, and Klein et al.
(2000), for vector models, have used the Chandrasekhar equations. The method of Mélard
and Klein (1994) is also more efficient in computation time than alternative procedures.
Klein et al. (2000) have given, for a general multivariate model expressed in state space
form, a system of matrix recurrence equations which enables computing the information
matrix as a whole instead of element by element, as the alternative methods. Being based
on the Chandrasekhar equations, the method is in principle more efficient than those of
Zadrozny (1989, 1992) and Terceiro (1990), which make use of the Kalman filter. Also, the
matrix representation allows easier checking of the strictly definite positive character of the
information matrix.
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We have implemented the algorithm of Klein et al. (2000), adding some modifications
described in Section 3, for VARMA models in the MATLAB environment. The purpose
of this paper is to describe the program and illustrate its usefulness on an example. The
program set forth also allows computation of the likelihood function and its first-order de-
rivatives.

In Section 2, we recall briefly the theory detailed by Klein et al. (2000). In Section
3, we describe the modification made in the algorithm in order to obtain stable results. In
Section 4, we handle two examples.

2 Preliminaries

A Gaussian VARMA model of order (p, q) is defined by the equation

zt = α1zt−1 + α2zt−2 + . . .+ αpzt−p + wt − β1wt−1 − β2wt−2 − . . .− βqwt−q, (1)

where zt ∈ Rm is the vector of observations, wt is a sequence of independently and normally
distributed random vectors with mean 0 and an invertible covariance matrixQ. It is assumed
that the process is stationary, invertible and uniquely specified which implies conditions on
the autoregressive and moving average matrix polynomials which will not be detailed here.
The model is put under state space form (for example, Shea, 1989)

xt+1 = Φxt + Fwt, (2)

zt = Hxt + wt, (3)

where xt ∈ Rn is the vector of the state variables and

Φ =


α1 Im 0m · · · 0m

α2 0m Im
. . .

...
...

...
. . . . . . 0m

...
...

. . . 0m Im
αh 0m · · · · · · 0m

 , F =


α1 − β1
α2 − β2
...

αh − βh

 and H> =


Im
0m
...
0m

 , (4)

h = max(p, q), αi = 0m for i > p, βj = 0m for j > q. We use the same notations as in [3]
except q which was denoted by s.

Let bzt|t−1, be the prediction of the observation vector and x̂t|t−1, the linear prediction of
the state vector, given the past of the process. Let ezt = zt − bzt|t−1 be the (one-step-ahead)
prediction error of the observations and x̃t = xt − x̂t|t−1, the prediction error of the state
vector. LetBt = E{eztez>t } be the covariance matrix of the prediction error of the observations,
and Pt|t−1 = E{extex>t }, the covariance matrix of the prediction error of the state vector, a
n× n matrix, where n = hm.

There are several ways to express the exact likelihood function of a time series
{z1, . . . , zN} of length N . Except for the closed form expression of a normal multivari-
ate density, the simplest representation is based on the Chandrasekhar recurrence equations,
which are also the most computationally efficient, even with respect to the Kalman filter.
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It is possible here because the process defined by (1) is stationary and the state space rep-
resentation (2-3) is time-invariant. It consists in the following recurrence equations (Shea,
1989) to derive ezt, and Bt:

Bt = Bt−1 +HYt−1Xt−1Y >t−1H
> (5)

Kt =
£
Kt−1Bt−1 + ΦYt−1Xt−1Y >t−1H

>¤B−1t (6)

Yt = [Φ−Kt−1H]Yt−1 (7)

Xt = Xt−1 −Xt−1Y >t−1H>B−1t HYt−1Xt−1 (8)

ẑt|t−1 = Hx̂t|t−1 (9)

x̂t+1|t = Φx̂t|t−1 +Ktezt, (10)

using auxiliary matrices Kt, Xt and Yt, of dimensions n×m, m×m and n×m, respectively.
It can be seen from (2 - 3) and (9 - 10) that prediction error is the following

x̃t+1 = xt+1 − x̂t+1|t
= Φtx̃t + F̄twt, (11)

and

z̃t = zt+1 − ẑt+1|t
= Hx̃t + wt, (12)

where F̄t = (F −Kt) and Φt = (Φ −KtH). We suppose that the model (2) depends on `
parameters denoted by the vector θ = (θ1, . . . , θ`)>. Thus Φ, F , H and Q are functions of θ
and are supposed to be two times continuously differentiable.

Given a time series of lengthN , the Chandrasekhar equations (5-10) are used to compute
the negative logarithm of the likelihood of the system described by (2) and (3)

l(θ) = − logL(θ) =
NX
t=1

½
m

2
log(2π) +

1

2
log |Bt|+ 1

2
z̃>t B

−1
t z̃t

¾
. (13)

The Chandrasekhar recurrence equations are an alternative to the better known Kalman
filter recurrences. They are restricted to stationary processes and time-invariant models,
which are the case here (Morf et al., 1974). The exact information matrix is given as the
following `× ` matrix

JN(θ)=
NX
t=1

"
1

2

µ
∂vec Bt
∂θ>

¶> ¡
B−1t ⊗B−1t

¢µ∂vec Bt
∂θ>

¶
+ E

(µ
∂z̃t

∂θ>

¶>
B−1t

µ
∂z̃t

∂θ>

¶)#
.

(14)
That formula was proved by [6].

The differentiation rule applied in [3] is used to derive recursion equations for Bθ
t =

∂vecBt/∂θ> and z̃θt = ∂z̃t/∂θ
> at the matrix level from which JN(θ) can be deduced.

For solving the first term of (14) the derivatives of the Chandrasekhar equations are
used, whereas the situation is different for the second one, which involves the expected value



5

of stochastic elements. In order to obtain an appropriate covariance structure, vectorization
of JN(θ) is recommended. Consequently we obtain

vecJN(θ) =
NX
t=1

1

2

µ
∂vecBt
∂θ>

⊗ ∂vecBt
∂θ>

¶>
vec(B−1t ⊗B−1t )

+
NX
t=1

E
µ

∂z̃t

∂θ>
⊗ ∂z̃t

∂θ>

¶>
vecB−1t

(15)

For developing a recurrence for the second term of (15) recurrence relations have to be
derived using the differentiation rules detailed in the theory described by [3]. We have

E
©
z̃θt ⊗ z̃θt

ª>
=
h
E
©
x̃θt ⊗ x̃θt

ª>i
(H ⊗H)> + E©wθ

t ⊗ wθ
t

ª>
+
h
E
©
x̃θt ⊗ wθ

t

ª>i
(H> ⊗ Im) +

h
E
©
wθ
t ⊗ x̃θt

ª>i
(Im ⊗H>) (16)

where (∂vec A) /
¡
∂θ>

¢
= Aθ and (∂b) /

¡
∂θ>

¢
= bθ, for any matrix A and any vector b.

Each term is computed by recursions with respect to time, using initial values which are
also described in [3]. Third and fourth factor of (16) can be rewritten as E

©
x̃θtH ⊗ wθ

t

ª>
,

E
©
wθ
t ⊗ x̃θtH

ª>
and they are related by E

©
x̃θtH ⊗wθ

t

ª>
=Ml,lE

©
wθ
t ⊗ x̃θtH

ª>
Mm,m via the

commutation matrices property, which is, for any matrices A ∈ Rk×l and B ∈ Rm×n we have

Mm,k(A⊗B)Ml,n = (B ⊗A). (17)

Thus wee need to compute only one of those factors.

3 On stability of the program

In order to obtain (16), at each iteration, we need to update the following expressions
E
©
x̃θt+1 ⊗ x̃θt+1

ª>
, E
©
xθt+1 ⊗ xθt+1

ª>
, E
©
xθt+1 ⊗ x̃θt+1

ª>
, E
©
xθt+1 ⊗ wθ

t+1

ª>
, E
©
wθ
t+1 ⊗ x̃θt+1

ª>
,

E
©
wθ
t+1 ⊗ wθ

t+1

ª>
, E
©¡
x̃θt+1

¢T ⊗ x̃t+1ª, E©¡x̃θt+1¢T ⊗ xt+1ª, E©¡xθt+1¢T ⊗ x̃t+1ª,
E
©¡
xθt+1

¢T ⊗xt+1ª, E©¡wθ
t+1

¢T ⊗ x̃t+1ª, E©¡wθ
t+1

¢T ⊗xt+1ª, E©x̃t+1⊗ x̃t+1ª, E©x̃t+1⊗xt+1ª,
E
©
xt+1 ⊗ xt+1

ª
.

All those equations are presented in [3]. In ??, we formulated a procedure for deriving the
initial values. To illustrate the method, let us consider the example of a two-dimensional
V ARMA(1, 1) process defined with

α1 =

µ
0.8 −0.2
1.2 0.2

¶
, β1 =

µ
0 −1
0.5 −0.5

¶
and Q =

µ
1 0
0 1

¶
.

This is Example 2 of Klein et al. (2004). We might conjecture that there exists a limit
Fisher information matrix for our model and that this is the asymptotic Fisher information
matrix defined by

J∞(θ) = E

(µ
∂wt

∂θ>

¶>
Q−1

µ
∂wt

∂θ>

¶)
.
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Figure 1: Graph above plots 1
t−1 ||Jt−1(θ)||− 1

t
||Jt(θ)|| for t = 80, . . . , 100, original formulae.

Figure 1 shows the differences 1
t−1 ||Jt−1(θ)|| − 1

t
||Jt(θ)|| for t = 80, . . . , 100. Note that

the scale of the vertical axis goes from 0 to 3.1031. This is far from our expectations.

A closer look at the steps in the computation revealed that the matrices that were
intended to be symmetric were no longer symmetric. As a matter of fact, even after a few
dozen iterations, the program provides EFIM which is not symmetric and is not semipositive
definite. We have noticed that, due to numerical imprecision, relationship (17) does not hold
exactly in our case. The differences between two expressions are very small (some elements
of the matrices differ after the fourteenth to sixteenth decimal place) but they accumulate
fast enough to distort the final result. To solve this numerical problem we make use of the
commutation matrices property described at the end of previous section. For each expression
above we compute its ’reflection’ derived from (17) and we take their average. For example
for E

©
wθ
t+1 ⊗ x̃θt+1

ª>
we compute its ’reflection’ E

©
x̃θt+1 ⊗ wθ

t+1

ª>
and then we take the

average E
©
wθ
t+1 ⊗ x̃θt+1

ª>
= 1

2

£
E
©
wθ
t+1 ⊗ x̃θt+1

ª>
+Ml,lE

©
x̃θt+1 ⊗ wθ

t+1

ª>
Mn,m

¤
. We do the

same to all expressions, including (16), even though some of them do not require computing
the ’reflection’ since they are of the form (A⊗A)

Let us check that our refinement produces a satisfactory solution. Figure 2 shows the
same difference as Figure 1 but this time for t = 2 · 105, . . . , 106. The scale of the vertical
axis goes from 0 to 4.10−6, which is nice. It looks that without applying these refinements
the program will not provide stable results.

For the number of observations, N = 106, we get the following EFIM

1

N
JN(θ) =


3.110805 −1.082425 1.307974 −0.095109 −1.279889 1.168475 0.470106 0.668476
−1.082425 3.783811 −1.127718 0.340585 −0.364131 −1.902170 −0.864129 1.097822
1.307974 −1.127718 5.037135 −1.861411 0.573368 −0.027173 −1.176628 0.472826
−0.095109 0.340585 −1.861411 5.257241 −0.288043 1.032604 0.211956 −1.967387
−1.279889 −0.364131 0.573368 −0.288043 1.749995 −0.499996 −0.000000 −0.000001
1.168475 −1.902170 −0.027173 1.032604 −0.499996 2.999987 0.000003 −0.000000
0.470106 −0.864129 −1.176628 0.211956 −0.000000 0.000003 1.749995 −0.499999
0.668476 1.097822 0.472826 −1.967387 −0.000001 −0.000000 −0.499999 2.999991


with eigenvalues equal to
(8.20921811 6.85508984 0.10662288 0.29046018 1.37934008 2.27652174 4.05188028 3.51981513).
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Figure 2: Graph above plots the differences 1
t−1 ||Jt−1(θ)||− 1

t
||Jt(θ)|| for t = 2 · 105, . . . , 106,

applying the refinements described above.

It can be shown (Klein et al., 2004) that the asymptotic FIM is equal to

J∞(θ) =


3.110809 −1.082428 1.307971 −0.095109 −1.279891 1.168478 0.470109 0.668478
−1.082428 3.783816 −1.127717 0.340580 −0.364130 −1.902174 −0.864130 1.097826
1.307971 −1.127717 5.037138 −1.861413 0.573370 −0.027174 −1.176630 0.472826
−0.095109 0.340580 −1.861413 5.257246 −0.288043 1.032609 0.211957 −1.967391
−1.279891 −0.364130 0.573370 −0.288043 1.750000 −0.500000 0 0
1.168478 −1.902174 −0.027174 1.032609 −0.500000 3 0 0
0.470109 −0.864130 −1.176630 0.211957 0. 0 1.750000 −0.500000
0.668478 1.097826 0.4728261 −1.967391 0. 0 −0.500000 3


with eigenvalues equal to
(8.20923183 6.85510786 0.10662309 0.29046074 1.37934653 2.27653031 4.05189158 3.51981769)
We see that elements of those two matrices starting differ between each other after fifth
decimal place. Below, Standard Deviations derived from the Exact and Asymptotic Fisher
Information Matrices for different number of observations are presented.

STD parameters α11 α21 α12 α22 β11 β21 β12 β22
N by method 0.8 1.2 −0.2 0.2 0 0.5 −1 −0.5
10 exact 0.5638 0.4841 0.3418 0.3213 0.6599 0.4816 0.4654 0.4680

asymptotic 0.5150 0.4344 0.3139 0.2931 0.5630 0.3729 0.4361 0.4403
30 exact 0.3037 0.2577 0.1852 0.1734 0.3385 0.2283 0.2558 0.2582

asymptotic 0.2973 0.2508 0.1812 0.1692 0.3251 0.2153 0.2518 0.2542
100 exact 0.1638 0.1384 0.0999 0.0933 0.1801 0.1198 0.1385 0.1398

asymptotic 0.1628 0.1374 0.0993 0.0927 0.1780 0.1179 0.1379 0.1392
103 exact 0.0515 0.0435 0.0314 0.0293 0.0564 0.0374 0.0436 0.0440

asymptotic 0.0515 0.0434 0.0314 0.0293 0.0563 0.0373 0.0436 0.0440
104 exact 0.0163 0.0137 0.0099 0.0093 0.0178 0.0118 0.0138 0.0139

asymptotic 0.0162 0.0137 0.0099 0.0093 0.0178 0.0118 0.0137 0.0139
105 exact 0.0051 0.0043 0.0031 0.0029 0.0056 0.0037 0.0044 0.0044

asymptotic 0.0052 0.0043 0.0031 0.0029 0.0056 0.0037 0.0044 0.0044
106 exact 0.0016 0.0014 0.0010 0.0009 0.0018 0.0012 0.0014 0.0014

asymptotic 0.0016 0.0014 0.0010 0.0009 0.0018 0.0012 0.0014 0.0014

It appear that asymptotic approximation of STD based on 1000 observations is already
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very good estimate of the exact STD and that with 106 observations the difference between
the two come out after eight decimal place. Whereas, for small samples the difference between
asymptotic and exact STD is not negligible anymore.

4 Examples

The first example will serve to illustrate the procedure. The second example will show an
application of the method.

4.1 Illustration of the procedure

In order to clarify the procedure given above, we illustrate with an example a VMA(1) where
m = 2, N = 5, p = 0, s = 1, h = 1 and n = 2.

1. The parameters of the model are the following:

β0 =

·
1 0
0 1

¸
, β1 =

·
β11 β12
β21 β22

¸
, where β11 = 0.8, β21 = 0.4, β12 = 0.2, β22 = 0.3,

θ = [β11, β21, β12, β22]
> and Q =

·
4 1
1 2

¸
.

2. The cross-covariances (δ) are given by

δ (0) = Q =

·
4 1
1 2

¸
and

δ (1) = −β1Q =
· −4β11 − β12 −β11 − 2β12
−4β21 − β22 −β21 − 2β22

¸
=

· −3.4 −1.2
−1.9 −1.0

¸
.

It is easy to show that the derivatives are

∂ vecδ (0)

∂θ>
=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ∂ vecδ (1)∂θ>
=


−4 0 −1 0
0 −4 0 −1
−1 0 −2 0
0 −1 0 −2

 .
For a moving average model, we do not need the autocovariances (Γ), so their compu-
tations have been omitted.

3. The matrices Φ, F and H are

Φ =

·
0 0
0 0

¸
, F =

· −0.8 −0.2
−0.4 −0.3

¸
and H> =

·
1 0
0 1

¸
.

4. Computation of P1|0H> and
¡
∂ vecP1|0H> / ∂ θ>

¢
yields
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P1|0H> =
£−β1δ>(1)¤ = −· β11 β12

β21 β22

¸ · −4β11 − β12 −4β21 − β22
−β11 − 2β12 −β21 − 2β22

¸
=

·
4β211 + 2β12β11 + 2β

2
12 4β21β11 + β21β12 + β22β11 + 2β22β12

4β21β11 + β21β12 + β22β11 + 2β22β12 4β221 + 2β21β22 + 2β
2
22

¸
,

∂ vecP1|0H>

∂θ>
=


8β11 + 2β12 0 2β11 + 4β12 0
4β21 + β22 4β11 + β12 β21 + 2β22 β11 + 2β12
4β21 + β22 4β11 + β12 β21 + 2β22 β11 + 2β12
0 8β21 + 2β22 0 2β21 + 4β22


which gives

P1|0H> =
·
2.96 1.72
1.72 1.06

¸
and

∂ vecP1|0H>

∂θ>
=


6.8 0.0 2.4 0.0
1.9 3.4 1.0 1.2
1.9 3.4 1.0 1.2
0.0 3.8 0.0 2.0

 .
5. The initial values of Chandrasekhar relations yield :

B1 = H P1|0H> +Q =
·
6.96 2.72
2.72 3.06

¸
,

Y1 = F Q =

· −3.4 −1.2
−1.9 −1.0

¸
,

K1 = Y1B
−1
1 =

· −0.5137 0.0645
−0.2226 −0.1289

¸
,

X1 = −B−11 =

· −0.2202 0.1957
0.1957 −0.5007

¸
.

The derivatives of the initial values of Chandrasekhar :

∂ vecB1
∂θ>

= (I2 ⊗H) ∂ vecP1|0H>

∂θ>
=


6.8 0.0 2.4 0.0
1.9 3.4 1.0 1.2
1.9 3.4 1.0 1.2
0.0 3.8 0.0 2.0

 ,

∂ vecY1
∂θ>

= (Q⊗ I2) ∂ vecF
∂θ>

=


−4 0 −1 0
0 −4 0 −1
−1 0 −2 0
0 −1 0 −2

 ,

∂ vecK1

∂θ>
=

¡
B−11 ⊗ I2

¢ ∂ vecY1
∂θ>

− (I2 ⊗ Y1)
¡
B−11 ⊗B−11

¢ ∂ vecB1
∂θ>

=


−0.1339 −0.3421 0.3279 −0.1124
0.3044 −0.8324 0.1024 0.1026
0.1112 0.7948 −0.7772 0.2593
−0.1324 0.8206 −0.0183 −0.5732

 ,
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∂ vecX1
∂θ>

=
¡
B−11 ⊗B−11

¢ ∂ vecB1
∂θ>

=


0.1659 −0.1474 0.0302 −0.0268
−0.0107 0.1327 0.0451 −0.0177
−0.0107 0.1327 0.0451 −0.0177
−0.1120 0.2865 −0.1041 0.2663

 .
6. We also give an example of the commutation and permutation matrices. The block-
permutation matrix M b

2,2 and the commutation matrix M4,2 are given by :

M b
2,2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, M4,2 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


.

7. Some of the initial values of the components of EFIM are

E

½
∂ex1
∂θ>
⊗ ∂ex1

∂θ>

¾>
=

½
∂ vecF

∂θ>
⊗ ∂ vecF

∂θ>

¾>
{(M4,2 [vecQ⊗ I2]M1,2)⊗ I2}

=

 4 0 1 0 0 0 0 0 1 0 2 0 0 0 0 0
0 4 0 1 0 0 0 0 0 1 0 2 0 0 0 0
0 0 0 0 4 0 1 0 0 0 0 0 1 0 2 0
0 0 0 0 0 4 0 1 0 0 0 0 0 1 0 2

> ,

E

(µ
∂ex1
∂θ>

¶>
⊗ ex1) =

(µ
∂ vecF

∂θ>

¶>
⊗ F

)
(M4,2 [vecQ⊗ I2]M1,2)

=
h
3.4 1.9 0.0 0.0 1.2 1.0 0.0 0.0
0.0 0.0 3.4 1.9 0.0 0.0 1.2 1.0

i>
,

E {ex1 ⊗ ex1} = (F ⊗ F ) vecQ =
 2.961.72
1.72
1.06

 .
The initial value of vecJ1(θ) is

vecJ1(θ) =
1

2

·µ
∂ vecB1
∂θ>

¶
⊗
µ
∂ vecB1
∂θ>

¶¸> £
I2 ⊗B−1t ⊗B−1t ⊗ I2

¤
vecI4,

so we deduce

J1(θ) =


0.5436 −0.2493 0.1883 −0.1249
−0.2493 0.9954 −0.0443 0.4457
0.1883 −0.0443 0.0813 −0.0499
−0.1249 0.4457 −0.0499 0.2450

 .
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8. Finally, after 5 recurrences, we obtain the following exact information matrix

J5(θ) =


3.8699 −2.8925 0.6952 −0.4612
−2.8925 9.4501 −1.9187 1.3993
0.6952 −1.9187 2.6913 −1.5903
−0.4612 1.3993 −1.5903 3.4271

 .

4.2 Application

The series were simulated (Nsiri and Roy, 1996) using a VARMA(1,2) model

zt =

µ
0.6 0
0.5 −0.5

¶
zt−1 + wt −

µ
0.8 −0.2
0 0

¶
wt−1 −

µ−0.85 −0.8
0 0

¶
wt−2,

with the number of observations N = 120, and covariance matrix Q = I2. Contrarily
with the intention of that paper, which was to investigate refined echelon forms in order to
reduce the number of parameters, we have estimated all the coefficients of the VARMA(1,2)
model. The column ”estimate” contains the exact maximum likelihood estimators obtained
by merosa (Mélard et al., 2004) which makes use of the NAG library [As far as we know,
no standard software package fits VARMA models using the exact maximum likelihood
estimator ; the authors rejected the idea to compute the exact information matrix on the basis
of a non-exact estimator]. The column ”merosa/StdErr” are the standard errors provided by
the software as a by-product of the optimisation procedure. The column ”KMNZ/StdErr”
are the square roots of the elements of the matrix obtained by inverting the exact information
matrix following the method of this paper. The two columns ”t-stat” are the Student
statistics (ratio of the estimate by the standard error, distributed as a standard normal
distribution if the corresponding coefficient is equal to 0) associated to the merosa estimates
using the respective standard errors. Here are the results.

Parameter value merosa merosa merosa KMNZ KMNZ
in the simulation estimate StdErr t-stat StdErr t-stat
α111 = 0.6 0.4804 0.0948 5.0675 0.1134 4.2363
α121 = 0.5 0.5299 0.0421 12.5867 0.0559 9.4794
α112 = 0 0.2200 0.1888 1.1653 0.2417 0.9102
α122 = −0.5 −0.5434 0.0681 −7.9794 0.1056 −5.1458
β111 = 0.8 0.6199 0.0956 6.4843 0.1028 6.0302
β121 = 0 0.0409 0.0834 0.4904 0.1038 0.3940
β112 = −0.2 0.0775 0.2091 0.3706 0.2472 0.3135
β122 = 0 −0.0779 0.1077 −0.7233 0.1348 −0.5778
β211 = −0.85 −0.7635 0.0805 −9.4845 0.1074 −7.1089
β221 = 0 0.1039 0.0745 1.3946 0.0860 1.2081
β212 = −0.8 −1.0160 0.1328 −7.6506 0.1645 −6.1763
β222 = 0 0.0710 0.0816 0.8701 0.0951 0.7465

It should be noted that all the coefficients having a true zero value are not significant
at 5% level.
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A Program for a VARMA Model

In this appendix we describe a Matlab program for computing the exact Fisher information
matrix (EFIM) in the case of a VARMAmodel. The choice of Matlab is motivated by the fact
that the complex matrix structure of the several relations is relatively easy to implement in
this environment. The main program EXFIM is subdivided in a certain number of procedures
and we will give the purpose of each of them.

A.1 Framework

1. In the program EXFIM, for computing the exact Fisher Information Matrix the fol-
lowing parameters are read:

the length N of time series,

the value of the AR andMAmatrix parameters, (αi; i = 1, ..., p) and
¡
βj; j = 1, ..., q

¢
,

the covariance matrix Q of the white noise wt.

The orders of the AR and MA polynomials, p and q, are deduced from the size of the
parameters. EXFIM calls the following procedures: autocovd, primod and FIM.

2. In procedure autocovd, see Niemczyk (2004), the autocovariances of the process zt
(E
©
zt z

>
t−k
ª
), cross-covariances (E

©
ztw

>
t−k
ª
) and their derivatives with respect to θ

are computed.

3. In procedure primod, the matrices H, F, Φ are created and their derivatives com-
puted. Primod also checks that the model is stationary and invertible.

4. In procedure DP10H, the product P1|0HT and its derivatives are computed.

5. Procedure FIM consists in a loop over time, t = 1, ..., N , where, for t = 1, the
Chandrasekhar recursions and their derivatives plus the components of EFIM, are
initialized. For t > 1, EFIM procedure is used to update the expression (16) and then
the elements of the Chandrasekhar recursions (5-10) so that the components of EFIM
are updated.

A.2 Matlab program :

The algorithm programmed in the MATLAB environment is available from the authors. It
can be translated in any other matrix environment where the Kronecker product is defined.
The program is subdivided into 6 procedures described below. Let n = mh, ` = pm2 + qm2

and θ = vec[α1, . . . ,αp,β1, . . . ,βq].

A.2.1 EXFIM

Parameters needed for the computation are read and the exact Fisher Information Matrix
is computed.
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[FM]=EXFIM(AR,MA,S,N)

variable type description
AR real array (pm×m) input: the matrix of the AR coefficient

AR = [α1, . . . ,αp]
MA real array (q m×m) input: the matrix of the MA coefficient

MA = [β1, . . . , βq]
S real array (m×m) input: Q the covariance matrix of wt
N integer input: the length of the times series
FM real array (`× `) output: the exact Fisher Information Matrix

A.2.2 autocovd:

The autocovariances of the process z and the cross-covariances between z and w are com-
puted. Details for the computations can be found in [13].

[E,dE,DGG,GG]=autocovd(AR,MA,S,h)

variable type description
AR real array (pm×m) input: the matrix of the AR coefficient
MA real array (q m×m) input: the matrix of the MA coefficient
S real array (m×m) input: Q the covariance matrix of wt
h integer input: h = max{p, q} the maximum lag at which

we compute the autocovariance
E real array (n×m) output: matrix of cross-covariances

E = [(Eztw
>
t )
>, . . . , (Eztw>t−h)

>]>

dE real array (mn× `) output: matrix of the derivatives of E
dE = ∂vec[Eztw>t , . . . , Eztw

>
t−h]/∂vecθ

GG real array (n×m) output: matrix of the autocovariances
GG = [(Eztw

>
t )
>, . . . , (Eztw>t−h)

>]>

DGG real array (mn× `) output: matrix of derivatives of GG
DGG = ∂vec[Eztw>t , . . . , Eztw

>
t−h]/∂vecθ

A.2.3 primod:

Initialization and computation of : H, F , Φ, F θ and Φθ.

[P,PD,F,FD,H]=primod(AR,MA,m)

variable type description
AR real array (pm×m) input: the matrix of the AR coefficient
MA real array (q m×m) input: the matrix of the MA coefficient
m integer input: m
P real array (n× n) output: Φ
PD real array (n2 × `) output: Φθ = ∂vecΦ/∂θ>

F real array (n×m) output: F
FD real array (mn× `) output: F θ = ∂vecF/∂θ>

H real array (m× n) output: H
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A.2.4 DP10HT :

Computation of P1|0H> and ∂ (vecP1|0H>)/∂θ>.

[P10H,DP10H]=dp01ht(E,dE,DGG,GG,AR,MA,m)

variable type description
E, dE real input: output of autocovd procedure
GG, DGG real input: output of autocovd procedure
AR, MA real input: AR and MA coefficients
m integer input: m
P10H real array (n×m) output: P1|0H>

DP10H real array (mn× `) output: ∂vecP1|0H>/∂θ>.

A.2.5 FIM:

This main procedure computes the Exact Fisher Information Matrix. It calls for another
procedure, named EFIM, which updates expressions (51)-(61) described in [2] needed to
accomplish the computation of EFIM. Inputs of this procedure are: S, P, PD, F, FD, H,
P10H, DP10H which were derived using previous procedures together with p, q, m, and N .
Output of the procedure is FM which is `× ` Fisher Information Matrix of our model.

[FM]=FIM(S,P,PD,F,FD,H,P10H,DP10H,p,q,m,N)

A.2.6 Additional functions:

function description
MXX computes the block-permutation matrix M b

h,r described in [3],
MMN computes the commutation matrix Mmn introduced in [3],
vec vectorization of a matrix,
devec de-vectorization of a matrix.
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