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Abstract

We show that the sensitivity of the limit distribution of commonly used GMM statis-
tics to weak and many instruments results from superfluous elements in the higher order
expansion of these statistics. When the instruments are strong and their number is small,
these elements are of higher order and result in higher order biases. When instruments
are weak and/or their number is large, they are, however, of zero-th order and influence
the limit distributions of GMM statistics. Edgeworth approximations do not remove these
superfluous elements. Expansions of GMM statistics that are robust to weak or many
instruments do not possess these superfluous elements. Their robustness is therefore the
result of improved higher order properties. This renders an additional reason for usage of
these statistics. An Edgeworth expansion of the robust statistics can be constructed so the
approximation of their finite sample distribution can be further improved upon by use of the
bootstrap. We illustrate the finite sample performance of GMM statistics by constructing
power curves for tests on the autocorrelation parameter in a panel autoregressive model
using both asymptotic and bootstrap critical values.

JEL classification: C11, C20, C30

1 Introduction

The finite sample distributions of Generalized Method of Moments (GMM) estimators and statis-
tics are affected by the quality and number of instruments, see e.g. Hansen et. al. (1996) and
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Stock et. al. (2002). It has therefore become customary to conduct non-identification pre-tests
on the parameters. Pre-testing for parameter non-identification, however, implies that all sub-
sequent inferential procedures are conditional on the outcome of the pre-test. Stock and Yogo
(2001), for example, show that 2-step GMM estimators are still considerably biased at the mod-
erate, but significant at the 95% level, values of the non-identification statistics that we typically
encounter in practice. Inferential procedures have therefore been developped that are robust to
many instruments, see e.g. Bekker (1994), and/or weak instruments, see e.g. Stock and Wright
(2000), Kleibergen (2001,2002a) and Moreira (2003). These robust procedures are advocated to
be used in case of many and/or weak instruments.

We construct higher order expressions for a number of different GMM statistics. These higher
order expressions indicate the behavior of the different statistics in case of weak and/or many
instruments. In case of proper identification, the 2-step Wald statistic from Hansen (1982) and
the Lagrange multiplier (LM) statistic of Newey and West (1987a) have higher order elements
that distort their limit distributions when the instruments become weak or irrelevant. Edgeworth
approximations to the finite sample distributions of these statistics are also sensitive to these
higher order elements. The bias caused by the higher order elements implies a further distortion of
the limit distribution when the number of instruments gets large. The K-statistic from Kleibergen
(2001,2002a) does not possess these higher order elements so its limit distribution is robust to
weak and/or many instruments. The Wald statistic that is based on the continuous updating
estimator (CUE) of Hansen et. al. (1996) does also not possess these higher order elements
but is, because it uses an covariance matrix estimator that is evaluated under the unrestricted
alternative, only robust to many instruments and not to weak instruments. The absence of the
higher order elements implies that the limit distribution of the robust K-statistic is also a better
approximation of its finite sample distribution in case of appropriate identified parameters. Its
robustness to weak and/or many instruments is just an artifact of this improved approximation.

Tests of misspecification hypothezes can also be based upon the robust K-statistic. The higher
order expression of the resulting misspecification statistic also indicates its robustness to weak
instruments when compared to misspecification statistics that are based on non-robust statistics.
The robustness of this misspecification statistic again results from the improved approximation
of the finite sample distribution by the limiting distribution in case of valid instruments. We
therefore also advocate the use of robust statistics when the parameters are properly identified.
Because the higher order elements of the robust statistics do not depend on the degree of iden-
tification, we can use the bootstrap to further improve the approximation of the finite sample
distribution.

The outline of the paper is as follows. The second section discusses GMM and states as-
sumptions. The third section states he higher order expressions of the 2-step Wald, CUE Wald,
LM and K-statistics under different limit sequences of a GMM concentration parameters and
the number of instruments. It shows that an Edgeworth approximation of the finite sample
distribution of the 2-step Wald and LM statistic does not remove the sensitivity to higher order
elements. The fourth section discusses misspecification statistics. The fifth section shows that
an Edgeworth expansion of the K-statistic can be constructed so the finite sample distribution
of the K-statistic can be further improved upon by usage of the bootstrap. In the sixth section,
we conduct a size and power comparison of the different statistics to test the autoregressive pa-
rameter in a panel autoregressive model of order 1. For the K-statistic, we use both asymptotic



and bootstrap critical values. The seventh section concludes.
Throughout the paper we use the notation: a = vec(A) for the column vectorization of the

n X m matrix A such that for A = (ay---a,,), vec(A) = (ay---al)), I, is the m x m identity

matrix, ijy = Y(X/Y>71X/, PX = PX,X and Mij = IT - Pij, MX = IT - PX for full rank

(13 b

T x m dimensional matrices X and Y. Furthermore, “—” stands for convergence in probability
p

and “7” for convergence in distribution.

2 Generalized Method of Moments

We consider the estimation of the m x 1 dimensional parameter vector § = (6, ...60,,)’, whose
parameter region is the R™, for which the [ x 1 dimensional moment equation
E[io(8o, Y2) L] = 0 (1)

holds. The expectation, indicated by E, in (1) is taken with respect to the information set I
at observation t. The data vector Y; is observed for observation ¢t. The [ x 1 dimensional vector
function ¢ of @ is finite for finite values of #, continuous and twice continuous differentiable. The
specific true value of #, at which (1) holds, is equal to #. To estimate the parameter 0 in (1),
we use Hansen’s (1982) GMM framework. We involve a k-dimensional vector of instruments X;
that is such that ky (= kl) exceeds m. The instruments span that part of the information set I;
which is of importance for the estimation of § and are uncorrelated with ¢(6o,Y;),

E [Xvp(0o, Y2)'| 1] = E [Xp(6o, Y2)'] = 0. (2)
For a data-set (Y;, X;, t = 1,...,T), the objective function in the GMM framework reads
Q0) = [r(0.Y) Vs (0) " fr(0,Y), (3)
with fr(6,Y) = 3", £i(0),
fi(0) = vec (Xy0(0,Y7)) = (¢(0, Y1) ® Xy), (4)

and V};(0) is the covariance matrix of fr(0,Y) with f,(0) = f;(0) — E(f:(0)),

. T T F(\F
Vis(0) = limpoo B {4 X0, X7, FO)F5(6) | (5)
To construct higher order expressions of test statistics, we make an assumption about the be-
havior of f;(f) and its derivative with respect to 6.
Assumption 1. The ks x 1 dimensional derivative of fi(0o) with respect to 6;,

pia(fo) = 2L - ky x 1, i=1,...,m, (6)

1s such that
Dit(bo) = Aigi+(0o) (7)



with pi+(0o) = pit(0o) — E(pit(00)), qit(0o) @ ki x 1, Git(0o) = ¢ie(00) — E(gie(00)) and A; a
deterministic full-rank kg x k; dimensional matriz, k; < ky. The behavior of the sums of the
martingale difference series fi(6o) (= fi(00)) and G (0o0) = (q1:(00) - - - Gne(0o)") reads

(0o)
\/_Zt ! ( gﬁ 93 ) = mo+ Op( ). ®)
where mg : (ky + ko) x 1, kg =" ki; and

e (3)

(1)~ nove. (10)

Vi0) V(o)
Vo= (o e ) .

with fo(@) : kf X kf, %f(g) = ‘/fg(gy : 1{39 X k?f, %9(0) : ke X ]{39, and

V(6) = limp .., E {%zf_l ST ( ﬂzg ) ( % >} (12)

The instruments span that part of the information set which is of importance for the estima-
tion of 0 so E [¢;+(0)] = E [q:+(0)|I:] . Hence, ¢(0), t =1,...,T, is a martingale difference series
and Assumption 1 is a central limit theorem for martingale differences. It is therefore satisfied
under weak conditions for f;(fy) and (). Sufficient conditions that ensure such convergence
are that: 1. the r-th moment of the absolute value of f;(6y) and g (6o), i = 1,...,m, is finite
for some r > 2, 2. V(#) is well-defined and 3. the average value of the outer-product of (f;(6y)’
G:(0p)") converges in probability to V' (), see e.g. White (1984).

We use Assumption 1 to determine the convergence rate of the limit behavior of

DT<007 Y) = [ pl,T(907 Y) - Al‘/@f,l(90)vff(90)_1fT<907 Y)
Pim1(00,Y) = AnVarm(00)Vir(00) 7 fr(00,Y) ],
with ngﬂ-(eo) : lfl X ]{f, 1= 1, e, be(@o) = (vaﬂl(eo)/.. .‘/gf’m(eo)/)/, p¢7T<(90,Y) . l{f X 1,
i=1,...,m, pr(60,Y) = (prr(00.Y) ... pmr(00,Y)) , pir(60,Y) = 31, pis(o)-

with Y ky X 1, gt kg x 1,

and

(13)

Lemma 1. When Assumption 1 holds, the behavior of T ’%(””)DT(HO, Y) is characterized by
T=204) Dy (6y,Y) = Do + O,(T~3¢+D), (14)

where Dy = T=0=L 50| E(py(60)|1,) + T72"[(mog, — Alv@fl(eo)vffwo) mo,f) - -+ (Mo, —
AnVorm(0o) fo(90)71m07f)]a mo = (mf),f m6,9> moe = (Mg 01 moe ).

Proof. results directly from Assumption 1 when we note that p; (6, Y) = 3.1, pi+(6o) and
Pit(00) = AiGit(0p). m
The derivative Dr(6y,Y) is constructed in such a manner that Dy has a number of convenient

properties which we state in the following two corollaries. One of these corollaries deals with the
appropriate choice of the convergence rate v.



Corollary 1. When Assumption 1 holds,
vec [T% (T_%(l_V)Do — Ja(eo))] = Mo.f (15)
with
Jo(00) = limr—. £ 377 | Epe(00)|12), (16)
Mog.f = Mo, — be(@@fo(@g)_lmo,f and
mog.f 7 A%.f (17)
where A =diag(Ay, ..., An), Yo = by — Var(00)Vis(6o) s and

Vo.p ~ N(0, Voo.r(60)), (18)
with Vag.£(00) = Voo (00) — Var(00)Vir(0o) " Vie(0o), and vy s is independent of ;.
Proof. see Kleibergen (2001). m

Corollary 1 shows that Dr(y,Y) is an estimator of the Jacobian Jp(6y) whose first order limit
behavior is independent of the first order limit behavior of fr(6y,Y).

Corollary 2. Given Jy(0y), the convergence rate v in Lemma 1 is such that:

1. For a fized full rank value of Jp(0p) : v =1 so Dy — Jy(0y) and
p
DoV (00)™ Do — Jol60)' Vi (60) ™" Ja(0o)- (19)

2. For a weak value of Jy(0y) such that Jy(0o) = Jor, Jor = %C, C : kyxm and rank(C) =
m: V= O, DQ 7 C + (A1¢0.f,1 Ce Amw@f,m) and

DyVi(60) " Do - [C+ (A1 - -Am¢o.f,m)]/Wf(90)_l[C+(A1¢9.f,1 o Antby )] (20)
3. For a zero value of Jy(0o): v =0, Dy - (Ao sy Am¥g pm) and

DoVis(00) ™ Do - (A sy Amtbg r) Vir(00)  (Arg sy - Amtbg ). (21)

Corollary 2 explains the dependence of the convergence rate of Dr(6y,Y) in Lemma 1 on
v. Since the limit behavior of Dy is independent of the limit behavior of mg ¢, the higher order
expressions of statistics that test Hy : § = 6y are polynomials of T —3v, Rothenberg (1984)
constructs the higher order properties of estimators and test statistics in the linear instru-
mental variables regression model as a function of the concentration parameter. The statistic
#DT(HO, Y)'Vi1(00) 1 Dr(6p,Y) has a limit behavior that is independent of mg s and is com-
parable to the concentration parameter in the linear instrumental variables regression model. We
therefore use it to obtain higher order properties of test statistics.

The covariance matrix V() is typically unknown and we therefore replace it with an esti-
mator, V(é’o). To account for the estimated value of the covariance matrix in the higher order
expressions that we construct next, we make an assumption about the convergence properties of
the covariance matrix estimator V (6p).



Assumption 2: The convergence of the covariance matrixz estimator V(@o) s such that
T3vec(V(0) — V(6o)) = ug + Op(T721), (22)

with p the convergence rate of the covariance matrixz estimator and ug (=vec(Uy)) converges to
a normal distributed random variable,

Uog 7 ¢u7

where S, 1y, Yy ~ N(0,W(0o)), with S - 7% % [34(j + 1)] a selection matriz that selects the
unique elements of the vectorization of a symmetric j x j matriz and W (0y) is the covariance
matriz.

Assumption 2 does not specify the covariance matrix estimator and therefore allows for para-
metric as well as non-parametric covariance matrix estimators, see e.g. Andrews (1991) and
Newey and West (1987b). These estimators lead to different convergence rates p. Also Dy (6y,Y)
depends on Vj;(fy) so we use the covariance matrix estimator V(o) for Dr(o,Y) which we
indicate by Dr(6,Y).

3 Higher Order Properties of Statistics that test Hy: 0 =
6.

We analyze the higher order properties of four statistics that test Hy : 8 = 6y:
1. GMM-Wald statistic evaluated at the 2-step GMM estimator, sy, see e.g. Hansen (1982):!

Was(00) = (D2 = 00)' [£pr(020, Y)Y Vs (02) pr(02s, Y) | (B — 00)

F1r(00,Y) Vi (02) " pr (B, Y) [pr(Bs, V) Vi (Bo) pr (B, Y )|
pr(0as, Y) Vi (625) " fr (00, Y).

-1

(23)

Q

~

2. GMM-Wald statistic evaluated at the continuous updating estimator (CUE), 0., of Hansen
et. al. (1996):

Wcue (00) -

—~

écue - 00)1 [%ﬁT(écuea Y)Ivff(écue)ilﬁT(écuea Y)] (écue - 00)

N N N N N N N N N —1
%fT(007 Y)Ivff<00ue)7lDT(‘90ue7 Y) [DT(‘9011eu Y),fo(ecue)ilDT(gcuea Y>:|
DT(chea Y>/fo(€cue)71fT(007 Y)

Q

(24)
The first order condition for a minimal value of Q(6) is: Dy(8,Y ) Vi (6) ' fr(6,Y) = 0
SO DT(@cue, YY) Vf f(écue)_l fT(écue, Y) = 0, see Kleibergen (2001). This explains the second
part of (24), which results from a Taylor approximation, that we use to obtain the higher
order properties of Wy (o).

!The second expression of Wy (6g) results from a Taylor approximation of fr(fg,Y). We use this expression
to obtain the higher order properties of Was ().



3. GMM-Lagrange multiplier (LM) statistic, see Newey and West (1987a):

LM(0p) = % fr(00,Y ) Vy(00) " pr(6o,Y) [pT(QoaY)'fo(QO)_lpT(QO,Y)]_I

. (25)
pT(H(), Y)Ivff(go)ilfT(QOa Y)
4. K-statistic, see Kleibergen (2001):
. . . . . -1
K(0o) = 7/r(00,Y) Vy(6o) 7" Dr(6s,Y) [DT(Q(»Y)'fo(eo)*lDT(HmY)} (26)

Dr(00,Y) Vi (00) 7 fr(6o,Y).

Under a fixed full rank of Jp(0g), Was(6p), Weue(6) and LM(6y) have a x2(m) zero-th order limit
distribution, see e.g. Newey and McFadden (1994). The zero-th order limit distribution of K(6y)
is x?(m) regardless of the value of Jy(6y), see Kleibergen (2001).

We construct higher order expressions of Was(6p), Weye (o), LM(0g) and K(6y) as functions of
the convergence rates of Dy (g, Y)'Vy(60) " Dr(6o,Y) and V (6). We also consider a convergence

process where the number of observations and the number of instruments jointly converge to
infinity as in Bekker (1994).

3.1 Fixed number of instruments

Theorem 1 states the higher order expressions, see e.g. Nagar (1959), that result from Assump-
tions 1 and 2, of Was(0p), Wewe (o), LM(6p) and K(6p) in case of a fixed number of instruments.
Theorem 1 specifies the higher order expressions as functions of the parameters v and p that
characterize the convergence rates of Dp(6y,Y), T-24) and V(0,), T2~

Theorem 1. When the number of instruments k is fixed, Assumptions 1 and 2 imply higher
order expressions for Was(00), Wewe(0o), LM(0o) and K(0y) under Hy : 0 = 0y that are charac-
terized by:

no+ :zero-th order
“\;VQS(zO) T~ 5n, + T Vng, + T2 ng,+ :Dr(6o,Y)
fﬁiﬁf% = TS+ T gt V(05) (27)
K(QE) 75" Ny + T7%(2V+H)n2u+n + Tﬁ%(wr%)nwr%_" rmixed
_3,
| 0p(T72Y),
where:



1. for Was(6p) : k= min(v, u) and

ng = spGytso
n, = sleso + sly 1G So + SOG 31,, 1
Dr(6o,Y) Noy = 51y 1Q150 + SOQISIV 1+ 811, 1G0 S1v,1
ngy, = 31V1Q181y1
V(@O) N, = slﬁlG 80 + SOG 5141 (28)
Now = 51,1Go 101
Nytr = Slzx,lGO S1k,1 T+ Sﬁn,lGalslwl + 81,1 Q150 + $6Q15 1014+
(Sy+n,1 + SZ/+/1,2)/G6130 + 36G61<Sy+n,1 + 31/+/1,2)
mixed Nov4k = 8’11,,1@17811;@,1 + 5'1,@,1Q181y,1 + (Sy—f—m,l + Su+n,2)'G6151y,1+
S1v,1Go (Svtna + Svsn2)
Ny+tor = (Sy+n,1 + Sy+n,2)/Galslﬁ,1 + 5,1571G61(Sl/+l{,1 + Su+n,2)+
\ S;/+2n,1G6130 + 36G615u+n,1 + 81,1 @151,1-

2. for Wewe(bo) : K = min(v, p), all terms that result from Dr(0o,Y) : 1y, noy, N3y and Moy p
are equal to zero and

ng = s,Gytso
V(& ) Ny, = 50Q130 + 51,‘g 1G0 So + SOGO 5141 (29)

0

Moy = 51,.; 1G0 S1k,1 T 51;{ 1Q150 + Sleslm 1
1
Nytr = u+n Gy 50 + SoGo Svtr,1
. ) . 1

mlxed . n,,+2,.€ — V—Hi 1G Sl’{/ 1 + 31’{ 1G0 Sy+,§ 1 + SV+2[{ 1G0 S0 + SOGO 8V+2,{ 1+

SOleu—f—n,l + SV+/€,1Q180
3. for LM(0y) the elements are identical to those for Was(6p) in (28) but with k = p
4. for K(0y) the elements are identical to those for W ...(6o) in (29) but with k = p

and for all statistics:
so = myg Vir(6o) ™ Do
swa = mpVig(00) I [pr(0,Y) — Dr(0,Y)]}

DT(HO, Y) : = mf)’fof(@o)fl[AlVaf,l (90) o 'Am‘/@f,m(eo)]
[ @ Vi(00) "1 ]
V() { swea= TEml [Vps(00) ™ = Vis(66)]Dy (30)

([ svina = T30 Vig(00) [ Dr(6.Y) = Dr(0.Y)]
= T3%mj Vyr(00) " {[A1Vora(00) - - A Vasm(00)][ L @ Vy(00) Y]
—[ Ve (o) -+ A mVorm(00)][Ln @ Vip(00) " 1} HIm ® mo ]
Svem2 = T3%mp ([Vyp(00) ™ = Vip(00) "M [A1Vora (00) - - A Vosm(0o)]
[Ln ® Vi (00) o] A
| Srang = T30y [Vip(00) ™ = Vip(00)~1[Dr(60,Y) — Dr(60. V)],

with Go = DyVy(00) Do and the expressions for the remaining G and @ matrices are given
in the Appendiz.

mixed




Proof. see the Appendix. m

~

The Dr(60,Y), V(0y) and mixed terms in Theorem 1 indicate where the higher order terms
orginate from. Unlike the convergence rate p of the covariance matrix estimator, the convergence
rate v of Dp(0,Y) is unknown. The higher order expressions in Theorem 1 therefore depend on
the unknown convergence rate of the concentration parameter. The parameter x in Theorem 1
indicates that the convergence rate of the covariance matrix estimator depends on the involved
value of . The Wald statistics, Wo,s(0p) and W,.(6p), use the covariance matrix estimator at
the estimated value of 6, 6. The convergence rate of the covariance matrix estimator for the Wald
statistics is therefore equal to the minimum of the convergence rate of 9, T%”, and ‘7(00), T2H ,
which we indicate by T2% with x = min(u, ). The Lagrange multiplier statistics LM(fy) and
K(6p) use the covariance matrix estimator evaluated at 6. The convergence rate of the covariance
matrix estimator in these statistics is therefore equal to T3*, Hence, k = i for these statistics.

We analyze the higher order expressions from Theorem 2 for both » = 0 and v = 1. We first
discuss v = 1 which, as shown in Corollary 2, corresponds with the traditional case of a fixed full
rank value of Jy(6p). Afterwards we discuss v = 0 which leads to a first order limit distribution
of some of the statistics that depends on nuisance parameters.

3.1.1 Identified parameters or v =1

When v = 1, the zero-th order limit distribution is the same for all statistics in Theorem 1,
no = spGy'so - X2 (m). (31)

The higher order elements in Theorem 1 effect the accuracy of the approximation of the finite
sample distribution by the limit of its zero-th order element. Higher order Edgeworth approx-
imations have therefore been proposed to obtain a more accurate approximation of the finite
sample distribution, see e.g. Bhattacharya and Ghosh (1978), Sargan (1980), Gotze and Hipp
(1983), Rothenberg (1984) and Phillips and Park (1988). Under a set of regularity conditions,
Rothenberg (1984) states that a statistic S whose higher order properties are characterized by

S= so+ ﬁsl(é‘o,yo) + %52(507%) + Op(%)» (32)

with gy a vector of sample moments that converges to a random variable different from the
random variable where sy converges to, has a second order Edgeworth approximation to its finite
sample distribution that reads

Pr[S <s|~ F [S — =51(8) + 37 {251(5) [F51(9)] + cls)on(s) + [Sui(s)] — 282(5)}} , (33)

where F is the distribution function of the limiting distribution of sy, c(s) = £ log[£ F(s)],
s1(8) = Eyy(s1(s0,50)|s0 = ), s2(s) = Eyy(s2(s0,%0)|50 = ) and vi(s) =vary,(s1(so, yo)|so = ).
The second order Edgeworth approximation (33) removes the approximation errors of the finite
sample distribution up to the second order. Hence, the difference between the finite sample
distribution and the second order Edgeworth approximation is Op(T’%) while the difference
between the finite sample distribution and the approximation by the limit of its zero-th order
element is O,(T2).



When we assume that @ = 1 and that the regularity conditions for the second order Edge-
worth approximation are satisfied, which imply that » = 1, we can construct the second order
Edgeworth approximation for the statistics in Theorem 1. For Wy, (6y) and LM(6y), it amounts
to obtaining the conditional expectation of n,, no,, n., na, and n,.,. given nyg. We just show
that the second order Edgeworth approximation does not perform adequately for Wag(6y) and
LM(fy). We therefore only construct the conditional expectation of n, and ns, and explain why
these expressions imply a unsatisfactory performance of the second order Edgeworth approxi-

mation. In order to construct the conditional expectations of n, and ns,, we adapt Assumption
2.

Assumption 2*. The limiting distribution 1, from Assumption 2 is independent of ;.

A sufficient condition for Assumption 2* to hold is that the covariance matrix estimator
consists of the residuals of the projection of the moment equations on the instruments. To discuss
the properties of the second order Edgeworth approximation, we first obtain the limit expressions
of the conditional expectations of 1, and ng, given p = (DyVy(0o) ' Do) DoVys(6o) '1b; so
limy_0o no = p' DyV31(600) "' Dop. Because of the law of iterated expectations,

Ellimy o i o/ DyVi(00) ™ Dop = ol = ELEllimg—o n3, 0]/ DyVis(00) ™ Dop = mol. (34)

Hence, Elimr_o n,|p] and E[limy_, ng,|p| are involved in the second order Edgeworth approx-
imation.

Lemma 2. When p=v =1 and Assumptions 1 and 2, 2* hold, the conditional expectations of
the limit expressions of n, and ng, given p = (DGVys(0o) ™" Do)~  DyVis(60) b = (p1- - pm)
read:

Ellimg . n,|p| =

33y i DV (00) " AiVizi(00) Vig(00) ' Dop+ (35)

m kf—m kf—m —_

23l Yk {[(DIO,Lfo(QO)DO,J-) o [D(I),LAi%f,i(QO)DO,L]nj}>

with Doy : kg x (kf —m), Dy Do =0, Dy Dot = Iy, and [(Dy, Vir(60)Dor) ] and

in
[Dg. 1 AiViy,i(00) Do, 1] jn are the jn-th elements of the respective matriz; and

Ellimy o noy|p] = a1 + ax + ag + as+
Sy 2o lagg + bij + cij + dij + e} (D Vi (00) ™ Do)y

ij

(36)

with

ar = p'DyVis(00)  [A1Vos1(00) -+« AmVosm(00)][Im @ Vi(60) ™' Dop)(DyVis(00)~ Do)~
DV (00) " [A1Vara(0o) - - - A Vasm (00)][Im @ Vi (00) ™ Doplp,

a; = tr([p®@ DM][ngm(Dg’lfo(QO)DO,L);lp’D()fo(00)*1141‘/9,51(90),- K
S " e {(Df Vi (00) Do )i 0/ DyVip(00) ™ A Vo m (00):) (D Vi £ (B0) = Do) ™ DV (60) !
[A1Var1(0o) - - - AmVagm(60)]),

az = E{tr([p® Do (D Vis(00) Do) Dy 1 [AiVera(6o) - - - AmVarm(00))]
[ @ Vi £(00) =" Dopl (Do Vi (00) Do)~ DoV (00) " [A1Vasa(0o) - - - AmVasm(00)]),

ag = [tr(Do (DG Vis(00) Do) "Dy | AiVisa(6o)) - - - tr(Do L (D Vis(00) Do) Dy A
Vorm(00)1Dg Vs (00) ' Do)~ DoV (00) " [A1Vara(6o) - - - AmVagm(00) I @ Vi(60) ' Doplp,

2We note that when v =1, Dy — Jp(0o).
P
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aij = {[P'Dévff(90)_1AiV0f,z'(90)fo(‘90)_1Doﬂ][P’Dévff(@o)_lAijf,j(90)fo(‘90)_1170/)]
bij = 2[p'DoVis(00) " AiVr.i(00) Vi (00) "' Dopltr[Do L (Dg  Vif(6o) Do)~ Do 1A Vor,i(00)]
iy = 3zif‘1’”[<Davaf<eo>Du> #Dj,1 AVagi(00) Do.1. (D5, Viy(00) Do) 32+
25 S 1”;17&1[(1) 1 Vi1(00)Do, 1)~ /DE),LAZ%f,Z(HO)DO,J-ED 1 Vi1(00)Do, 1)~
[(Dyg Lfo(Qo)Do 1)72' Dy AV i(00) Do, 1 (D Vig(00) Do, 1)~ 2505+
23 S (D5 V3(00) Do) ¥ Dh , AiVig(60) Do (Dh Vs (00) Do)
[(DOkLfo(QO)DO,J-) "Dy, 1 A;jVoy.i(00) Do, J-(Dé)Lfo<00)D0 1) 2t
25 S 31#1[(170 L Vi#(80)Do,1) "' Dy | AiViagi(00) Do, (Dy  Vy(00) Do 1) "],
(D4, Vi#(00)Do,1) "' Dy | AjVy.;(60) Do, (Df J_fo(HO)DO 1)
dij = p'DyVys(00) " AVs.i(00) Dot (Do, Vi(06) Do,) " Do, 1 Var i (B0) A5 Vy4(05) " Dop
eij = 20/ DyVip(00) AiViyi(00) Do, (Do, 1 Vif(00) Do, 1)~ Do, 1 Vay,j(00) A3V (00) ! Dop.

=

]ilil

(SIS

]i1j1

Proof. see the Appendix. m

Lemma 2 states the conditional expectation of n, and ns, given p. Because lim,, o, ng =

' DyVi(00) ' Dop, we can specify p as p = nO%h with & : m x 1 and W DyV;p(0p) ' Doh = 1.
To obtain the conditional expectation for the second order Edgeworth approximation, the law
of iterated expectations (34) then implies that we construct the expectation of the conditional
expectations of n, and ns, from Lemma 2 with respect to h.

Corollary 3. Lemma 2 implies that the limiting expressions of the conditional expectations of
ny, and ng, given ng read

Ellimy_o ny|no] = ER[E[limy_ o n,|p] =0 (37)

and

Elimr, o0 ngy|no] = Elh [E[limy o0 12, |p]] = )
Enlag +ag +aalp =ngh] + 30, 7 (DoVis(60) " Do)yt {%‘ + Elbij + dij + e5lp = ng h]}
(38)
Proof. Because ng has a x?(m) limiting distribution and p is normally distributed with mean

zero, the first and third order moments of h are zero. The expectations of a; and a;; from Lemma
2 with respect to h are therefore equal to zero. m

The elements of the conditional expectation of ng, given ng (38) are proportional to (DjVys(6y) ™
Dy)~! which can be estimated by (7 Dr(60, Y)'Vy(60) " Dr(0,Y))". The second order Edge-
worth approximation (33) therefore contains, for example, the second order term

. . R -1

T 2ot 2o [%DT(eovY)'fo(QO)_lDT(eoaY) y Cij (39)
which is part of “—£s5(s)” in (33) and that assumes that v = 1. The assumption that v = 1
is a high level assumptlon which we can not verify. If v = 0, (39) becomes a zero-th order
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term and the second order Edgeworth approximation then no longer removes all second order
approximation errors. The second order Edgeworth approximation thus only removes second
order approximation errors when v = 1 which we need to assume a priori and does not have to
hold for the analyzed data.

Alongside the sensitivity of the second order Edgeworth approximation to the value of v
also the number of instruments k; (= kl) is of importance for the accuracy of the second order
Edgeworth approximation. The ¢;; elements in (38) consist of (k; — m)? components and are
thus proportional to kj% When kj% is large and proportional to T, the second order term of
the Edgeworth approximation becomes a zero-th order term and the second order Edgeworth
approximation does then not remove all second order approximation errors.

The sensitivity to the value of v and the number of instruments k¢ shows that a second order
Edgeworth approximation does not remove the second order approximation error of the finite
sample distribution of Wo,(fy) and LM(f) in all instances. This indicates that the Edgeworth
approximation will not perform satisfactorily for Wa,(6y) and LM(6y) since the improvement of
the distributions depends on the unknown parameters of the analyzed model. The n, and ns,
elements are not present in the higher order expressions of W, (6y) and K(6y). When v = 1, the
quality of the approximation of the finite sample distribution of these statistics by their zero-th
order element is therefore less sensitive to the number of instruments. This corresponds with
Brown and Newey (1998) and Newey and Smith (2001) where it is shown that the bias of the
CUE smaller than that of the 2-step GMM estimator and is much less affected by the number
of instruments. Also Donald and Newey (2000) show that the bias of the CUE is smaller than
that of the 2step estimator since the CUE works like a jackknife. Weu.(0y) and K(6y) are both
based upon the CUE and show that the results of Brown and Newey (1998), Donald and Newey
(2000) and Newey and Smith (2001) extend to such statistics. These statistics thus contain a
considerable part of the corrections that the second order Edgeworth approximation of W, (6g)
and LM(6y) applies.

Corollary 3 is not only helpful for the analysis of the Edgeworth approximation but also shows
that ng, is proportional to kj% When k; and 7" jointly converge to infinity and k]% is proportional
to T, ng, therefore becomes a zero-th order term. Hence, in order to preserve the limiting
distributions of Wyy(6y) and LM(6) in limiting sequences where k; and 7' jointly converge to
infinity, limz ek, oo k—;’ = 0 has to hold. We note that the Edgeworth approximation should
remove this distortion of the zero-th order behavior of Wy, (6y) and LM(6).

3.1.2 Weak/non-identification or v =0

The higher order elements of WCUE(QO)A and K(fg) in Theorem 1 are identical when v = 1. When
v = 0, the GMM estimators @25 and 6.,. converge to random variables, see e.g. Phillips (1989)
and Stock and Wright (2000). The covariance matrix estimators involved in the Wald statistics,
Wos(6o) and W, (6p), are then evaluated at a random variable and are thus inconsistent. The
convergence rate k£ (= min(u, v)) in Theorem 1 then equals zero for these statistics and indicates
the inconsistency. The covariance matrix estimators involved in LM(fy) and K(fy) are evaluated
at 0y and still converge to the true covariance matrix with convergence rate ;. The convergence
rate xk in Theorem 1 is therefore equal to p for these statistics and we can obtain the limit
expression of the zero-th order term of the higher order expression when v = 0. This expression
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is given in Corollary 4.

Corollary 4. For weak and zero values of Jy(0y), for which v = 0, and a fixred number of
instruments, Theorem 1 implies higher order properties for Was(0o) and W eue(0o) under Hy :
0 = 0y that are characterized by:

W, (6 .
2 ( 0> =Ny + ny + Ny + Nyt + Nay + Nok + Noy+xk + Ny42k + N3y, UJZt]'L K= 07 (40)
Wcue(90>
for LM(0y) :
LM(0o) = 1o + ny + 12y + 13y + T2 (N + N + Novsn) + T (2w + Nuyon), with k= p,
(41)
and for K(0,) :
K(GO) =ng + Tﬁ%(nm + ny+/{) + T_R(nQIi + nV+2K)7 with Kk = H, (42)

where the different n-elements are defined in Theorem 1. Given Dy, the zero-th order limiting
distribution of LM (o), or limiting distribution of ng + n, + ng, + ng,, reads

LM (0o) — ViVi(00) " { Do + [A1Var1(6o) - - - AmVogm(00)] (I @ Vig(00) "4 ;) H{ Do+

[A1Var1(60) - - AmVorm(00)](Im @ Vip(00) ™ 40 1) Y Vip (60) ™ {Do + [A1Vora (6o) - - - AmVosam (60)]
(I @ Vip(00) "0 1) Do 4 [A1Vas1(00) - - - AmVogm (00))(In @ Vg (00) " 40 ¢) }Vip(00) " 0y,
(43)
while the zero-th order limiting distribution of K(0y) is x*(m).

We do not give the expressions of the zero-th limiting distributions of Wag(6y) and W, (0o)
when v = 0. These Wald statistics involve inconsistent covariance matrix estimators, since the
covariance matrix estimators are evaluated at the inconsistent estimator of 6, 0. Hence, we could
only give limit expressions that involve the inconsistent estimators. The limit distribution of
LM(6p) in (43) is no longer x?(m) and depends on nuisance parameters. The distortion of the
limit distribution of LM(6y), compared to its x*(m) limit distribution when v = 1 is caused by
the higher order terms of the limit distribution when v = 1. As shown in Corollary 4, some of the
higher order terms when v = 1 become zero-th order terms when v = 0 and distort the zero-th
order limit distribution. The higher order terms of K(f) when v = 1 remain higher order terms
when v = 0 and do therefore not distort the zero-th order limit distribution. The K-statistic is
thus a higher order correction of LM(6y) which overcomes the change of the zero-th order limit
distribution of LM(#y) when v = 0. Unlike higher order Edgeworth corrections as in (33), the
K-statistic does involve the expectation over random variables that are independent, like the
conditional expectations of n,, ng, and ng, given ng, but conditions on the realized values of
these independent random variables.

3.2 Number of instruments that goes to infinity

When the number of instruments is proportional to the number of observations, the higher order
expressions from Theorem 1 are invalid. We therefore construct higher order expressions when
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both the number of observations and the number of instruments jointly converge to infinity as in
e.g. Bekker (1994). In order to do so, we make an assumption about the convergence behavior
of the number of instruments k relative to that of the number of observations 7.

Assumption 3. The joint convergence of the number of instruments k and the number of
observations T is such that
limy, 700 T—ka =c, (44)

with ¢ a fixed finite constant.

We construct the convergence rates of the different elements involved in the statistics by means
of a sequential convergence scheme in which we first let 7' converge to infinity and afterwards k.
Given a fixed value of k, we have shown in Theorem 1 that all elements converge appropriately
when T goes to infinity. Lemma 6 of Phillips and Moon (1999) therefore applies and we can let
T and k converge to infinity sequentially, so first 7" and then k.

When we construct the higher order expressions with a number of instruments that converges
to infinity, we maintain the properties of Assumption 1 that

77 Dr(00,Y) Vi (00) ' Dr(00,Y) = DyViy(00) ™' Do + 0,(1) (45)

and
T f1(00,Y ) Vi (00) ' Dr(00,Y) = mp ;Vip(60) " Do + 0,(1). (46)

Because
Dr(00,Y) = [ prr(00,Y) — A1Vos1(00)Vis(60) ™ fr(0o,Y) (47)
pm,T(007 Y) - Amvbf,m<90)vff(00)71fT(00a Y) } )

and

%m{)‘/(&))_lmo = (m —+ 1)l —+ Op(l), (48)

since k; = kl, we do have to assume, however, that ¥ > « since (45) and (46) can not hold
otherwise. Bekker (1994) constructs the limit distribution of the CUE in the linear instrumental
variables regression model under a limit sequence where the number of instruments is proportional
to the number of observations, so o« = 1, and

L [Sh B@lo)I10)] Virt00) [ Eulbo)l1)

goes to a constant when k and 7" converge to infinity. Lemma 1 shows that

T—%(Hy) Dr(60,Y) = iy Yoy E(pe(00) 1)+ (19)
2

T=2"[(mog, — A1Vora(00)Vis(60)~'mo ) -+ (Mo, — AmVagm(00)Vis(60) " mo.s)].
Because of (48), the convergence scheme of Bekker (1994) corresponds with o =1 and v =1 in
our specification.

Theorem 2 states the higher order expressions of Wag(6p), Weue(6o), LM(0y) and K(6y) when
the number of instruments gets large according to Assumption 3.
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Theorem 2.

When the number of instruments k converges to infinity according to Assumption

3 with v > «, Assumptions 1 and 2 imply higher order properties of Was(60), W ewe(6o), LM(0y)
and K(0y) under Hy : 0 = 0y that are characterized by:

WQS(QO)
Wcue(eo) o
LM(6y) (
K(6o)
where:

( no+
T_ V7220¢
Tﬁ(yia)n@(ufa)'}_
T7"n,+

T 5n, + T "nou+

Ny—2q + Tﬁ(yia)n%l/—a) + Tﬁ(ui?a)ﬂZ(V—2a)+

Tﬁ%(y+ni2a)nu+nf2a + Tﬁ%(y+ﬁ)nu+n+

_'_Tf % (v+2(k—a))

1. for Was(6p): k= min(u,v), and

o

Dr(6o,Y)+

instruments

Dr(60,Y)

A

V(6o)

mixed

2. for Wee(fo):

= s,Gytso
Ny—9aq = 3272a,1G6180 + 36G613u72a,1
n2(y—2a) = S;j—2a71GalsV720[71
n2(l/7a) = 8;/72%1@180 + 3{)@151/72%1
{ ny, = S,OQISO

) ny+2(ﬁ—a)+
T_?(2V+H_2a)n2y+572a + T—(V+H—Oé)n2(y+n_a)—|—
T—5m+2(l/—2a)nn+2(y_2a) + T_(V+H_2a)n2(y+ﬁ—2a))

/ —1 /1 —1
Ny S1.1Go S0 + 850Gy Sk
_ / Gfl
Mok = S15,100 Sik,1
=1 ! -1

(Sy+n—2a,1 + SV+K—204,2) GO S0 + S]/—20471G0 Sln,1+
/=1 l -1
SOGO (Su+n—2a,1 + 5V+n—2a,2) + 31,.;71G0 SV—20¢,1

Nyt k—2a =

Nyt+r =
Ny42(k—a) =

Nov4k—2a0 =
N2(v+k—a) =

Nkr2(v—2a) =
\ "2(v4+r—2a) =

KR = min(ﬂ7lj)7 Ny—2a = NMN2w—2a) = v = NMytx = N2v—a) = N2w+k—2a =

51.1Q150 + 50Q1514,1

: zero-th order

Dr(6o,Y)+

" instruments

: DT<Q0, Y)

N

. V(eo)

: mixed

(50)

11—1 ! —1
<5y+n—2¢i4,1 + Su+m—2a,2) GO S1k,1 + Sy+2;{172a,1G0 Sot+
! — ! =
51,{71G0 <Sy+/~s—2a,1 + Su+n—2o¢,2) + SOGO Sl/+2l~1:—2a,1
! !
(Su+ﬁ72a,1 + Su+n72a,2) QISO + 30Q1(3u+/172a,1 + Su+nf2a,2)

/ /
SV+2(H—O¢),1Q180 + <Sy+/~s—2a,1 + Su+n—2o¢,2) Q181K71+

Slln,lQl(sV+H—2Oé71 + Sutn-202) + 50Q15042(r—a),1

/
SV—Qa,lleu—Qa,l

<Sy+/~c—2a,1 + Su+n—2a,2),Gal(3y+m—2a,l + Sy+ﬁ—2a72)
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n2(1/+/s—o¢) = nlﬁ+2(lj—20¢) - 07

! —
no = syGytso
A Ny = 30Q130 + S1n, 1G0 50+ pGotS1k1
V(eo) : Moy = 81,i 1G0 S1k,1 + Sln lleU + SOQ1$1,€1 (52)
N3k = 815,162131&,1
! -1 1 =1
Nytk—20 = Sl/+/172a,1G0 So + SOGO Sv+r—2a,1
! -1 ! -1 !
ixed Ny42(k—a) = Sl/+/172a,1G0 S1k,1 t Sln,lGO Sytr—2a,1 T Sy+nf2a,1Q150+
THIXe shQ1s + s Gylsy + s,Gyls
(I l/+1472ai1 v+2k—20,10 ©0 oY 0 °v+2k—2a,l
— / —
Noy+rk—2a = Sy+ﬁ;72a71GO Sl/+/172a,1‘

3. for LM(0y) the elements are identical to those for Waos(6p) in (51) but with k = p

4. for K(0y) the elements are identical to those for W ...(6o) in (52) but with k = u
and for all statistics

S0 = mf)fof(@o)’ o
Sy—20,1 = mo fof<90) 1{ —[pr(0,Y) — Dr(0,Y)]}
mo fof(QO) [Alvef,l(eo) - A Vo gm(00)][Im @ Vis(60) "o ]

S1r,1 Tf mi [Vys(0)~t = Vip(00) 1] D
Sv+k—2a,1 = T?Rmo fof(Qo) {[Al‘/ﬁf,l(eo) T Amvef,m(eo)] Lm ® fo(gﬂ)fl] (53)

~[A1Vor1(00) - A Vogn(00)][ 1 @ Vip(00) 1} m @ mo g
Svin-zan = 2o f[fo(eO> — Vi(00)[A1Var1(00) - - - AmVsan(00)]
U ® Vi (60)"mo,y]

T2 (26—1)

Sy42(r—a),l = ——mp ;[Vy(00) 7t — Vi1 (00) [ Dr(00,Y) — Dr(6,Y)],

with Go = DyVs(00) "t Dy and the remaining expressions of the G and @ matrices are given in
the Appendizx.

Proof. see the Appendix. m

When o = 0, the higher order expressions in Theorem 2 are identical to those in Theorem
1 that were constructed for a fixed number of instruments. An important difference with the
elements of the higher order expressions in Theorem 1 results from the convergence of

Sv—san = 1M Vir(00) A1Vor1(00) - - - AmVarm(00)][Lm @ Vip(00) o ). (54)

When k and T converge to infinity,
Sy—2a,1 — w(90)7 (55)
p
where w(fy) = (w1(fp) - .. wm(fp)) and

wi(fo) = limyg oo ptr(Vr(60) ™" AiVaysi(6o))- (56)
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The convergence of s,_2,1 towards a constant implies that v needs to exceed 2« for the X2 (m)
limiting distribution to remain valid for Wy, (6y) and LM(6y). Otherwise, Wy,(6y) and LM(6,)
converge t0 lim g 7—0on2(—24) = W(0)'Gg'w(fo) because 2(v —2a) < (v—2a) when v < 2av. This
sensitivity to the number of instruments of Wyg(6y) and LM(6y) is also indicated by Corollary
3 where the conditional expectation of higher order elements of Wa () and LM(6y) depends
on the number of instruments. Theorem 2 further emphasizes this sensitivity to the number of
instruments of Wa,(6y) and LM(6p). Even for values of v that correspond with a well-identified
6o, v > 1, the limiting distributions of Wa,(fy) and LM(6y) can be affected by the number of
instruments.

Theorem 2 assumes that v > «. The number of instruments can therefore affect the limiting
distribution of W,.(6y) and K(6y) when oo > . Corollary 5 states these distortions for a stylized
setting in which v =a =pu = 1.

Corollary 5. When v = «a = pu =1, the higher order expressions of W . (0o) and K(0y) that
result from Theorem 2 read

} = N + Nutr—2a + N2(vtr—2a) T T3 (s + Nuga(n—a)) + T ' +0,(T71)  (57)

where the expressions of the n-elements are stated in Theorem 2.

Corollary 5 shows that additional zero-th order elements, i.e. 1,4x—24 + No@w+r—24), appear
when v = o = p = 1. Both n,, 2, and nox—24) consists of, alongside sg, 5,4x—2q4,1. We
therefore state the limiting distribution of s,4,_2,1 in Lemma 3.

Lemma 3. When k and T converge to infinity, and Assumption 1, 2, 2* and 3 hold, the
convergence of S,4x—2a.1 defined in Theorem 3 is characterized by

Sy+k—2a,1 7 )\7 (58)

where A ~ N(0,%(0o)) and independent of v, with %(0y) = {0;(00) }ij=1

-----

0ij(0o) = limy o0 [ﬁﬂ/f‘/ff(@o)*l ® ﬁ?ﬂ}vff(@o)*lfli] Wi;(60)

LV (00) ™ © L4,V (60) VA )
[\/Ed}f 1£(00) ™" @ = Vir(Oo) a}

with

Wij(0o) = limy.oo E[vec(Upsi — Var,i(00)Vis(00) "' Usp)vec(Uns; — Vayr,j(00)Vi(00) " Usys)'],
(60)
which expression results from Assumption 2.

Proof. see the Appendix. m

Lemma 3 indicates that the zero-th order term from Corollary 5 does not have a x?(m)
limiting distribution when v = ;1 = a = 1. We can account for the distortion of the x?(m) limiting
distribution by including an estimate of () in the covariance matrix estimators involved in
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Wewe(00) and K(6p). Bekker (1994) proposes such a covariance matrix estimator for W,.(6p) in
the linear instrumental variables regression model for a limit sequence with v =y = a = 1.

The elements 0,;(6y) (59), that we need to incorporate in W,.(6y) and K(6y) to preserve
their x%(m) limit distributions in a limit sequence with v = y = a = 1, are of order T?*™#
(= k*T*). In case k is fixed, so @ = 0, v = 0 and p = 1, this order equals 7" and is identical to
the convergence rate of Dr (0, Y)'Vy;(00) " Dr(6o,Y"). The robustness of the limiting distribution
of Weue(0o) and K(6p) to limit sequences where v = p = a = 1 comes therefore at the price
of non-robustness of the limiting distribution of W,.(0y) and K(fy) to limit sequences where
v = a = 0, see also Bekker and Kleibergen (2003). The limiting distribution of W,,.(fp) is
non-robust to such limit sequences but the limiting distribution of K(6) is robust to these limit
sequences. Hence, robustifying K(6y) to allow for » = yu = a = 1 means losing the robustness to
v = a = 0. Without adapting the covariance matrix estimator, the limiting distribution of K(6y)
remains x%(m) when p > a.

4 Higher Order Properties of Statistics that test H,
E(fi(0)) =

Alongside tests of hypothezes specified on the parameter 6, like Hy : 6 = 0, it is customary
to test whether Assumption 1 holds so the model is not misspecified: H, : E(f:()) = 0 or to
conduct a joint test of Hy and H,. For the latter kind of joint hypothezes, we can use the objective
function evaluated at 0y, which is Stock and Wright’s (2000) S-statistic:

S(00) = % fr(00,Y) Vi1 (00) " fr(00,Y). (61)

Under Hy and H,, S(6p) has a x*(ky) limit distribution regardless of the value of Jy(6).

To obtain that part of S(6y) that tests H., we can use a J-statistic, see e.g. Hansen (1982),
that results from substracting one of the statistics Was(0p), Weue(fo), LM(6p) or K(6p) from
S(Qo) .

Jas(0o) = S(0o) — Was(bo)
que(g()) = S(QO) Wcu ( ) (62)
Jrar(00) = S(6o) — LM(0)
Jic(0o) = S(0o) — K(6o).
Under Hy and H,, all J-statistics in (62) have Xz(kf — m) limiting distributions when J(6y)

has a fixed full rank value. Only Jx(6y) has a x*(k; — m) limiting distribution for any value
of Jy(6y), see Kleibergen (2001,2002b). When Jy(6y) has a fixed full rank value, the J-statistics
that are commonly used, i.e. Jo (é28> and que(écue), have under H, only a x?(k; — m) limiting
distribution. Theorem 3 states the higher order expressions of the S and J-statistics for a fixed
number of instruments. Because the S and J-statistics have limiting distributions that depend on
the number of instruments, we do not construct their higher order expressions in a limit sequence
where the number of instruments and the number of observations jointly converge to infinity.

Theorem 3. Assumptions 1, 2 and Theorem 1 imply higher order expressions for the S-statistic
(61) and J-statistics (62) that read:

S(0g) = no+ngL + Tﬁ%wu + Op(T7%)> (63)
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with w, = T¥mpy ([Vi;(00)™ = Vis(00) Mmooy, no = mpy Vys(00) ™ Do(DyVis(06) ™ Do)~ D
Vig(0o)"mo.p and no 1 = mg ;Do 1 (D Vip(0o) Do) ' Dy moy , where Do : ky x (ky —m),
Dy Do =0, Dy Doy = Iy and

J2s(60)
Jewe(0) \ _ s [ TR+ T S+ T 0y + Ty + T et
JLM(Q()) 0,1 Y T—%(21/—|—,‘-€)77’2”_"_"i + T‘—%(1/-}-2/@)””_"_2)i + T_g”ngl, + 0p (T_%V>,
Jx (6o)

(64)

where the specification of the different n-elements for a specific statistic is given in Theorem 1.
Proof. see the Appendix. m

Theorem 3 shows that the J-statistics (62) possess similar higher order properties as the
statistics whose properties are stated in Theorem 1. Since

no.L — (ky —m),

all J-statistics converge to a x?(k; —m) distributed random variable when v = 1 but only Jk (o)
converges to such a random variable when v = 0. Identical to the statistics in Theorem 1, the
distortion of the limit distribution when v = 0 results from elements that are of higher order
when v = 1. These elements are not present amongst the higher order elements of Jx () and can
therefore not alter the limit distribution of Jx(6y) when v becomes equal to zero. We conclude
from Theorems 1 and 3 that the statistics whose higher order properties do not depend on v, i.e.
S(6p), K(0p) and Jx(6y), are also optimal from a higher order perspective since they posses less
and “smaller”, in a bias or variance sense, higher order elements.

The higher order properties of the commonly used J-statistics, Jgs(@QS) and que(écue), are
similar to those of Jas(6p) and Jeue(6p) in Theorem 3. A x?(k; — m) limiting distribution is
therefore only valid for these statistics when v = 1 and thus for full rank values of Jy(f). Because
Jos(02s) results from Wag(6p) that can be severly biased when the number of instruments and/or
the correlation is large, we also for other reasons have to be careful with the use of J25(925).

Theorems 1 and 3 show that the limiting distributions of K(fy) and Jx(fy) are robust to
the value of v. Since K(6y) is a score or Lagrange multiplier statistic, it suffers from a spurious
power decline around values of 6 where the objective function is maximal or has an inflexion
point. The J-statistic Jx () has discriminatory power at these values of 6 and is since its
limiting distribution is independently distributed from K(6y) ideally suited to be combined with
K(6p), see Kleibergen (2001,2002b). These statistics can be combined in a unconditional or in
a conditional manner. A unconditional manner implies that we use fixed significance levels for
K(#y) and Jx(0y), ax and ay,, that add up to the significance level a by which we want to
test, « = ax + ay,. A conditional manner implies that we use an additional independently
distributed statistic to combine K(y) and Jx(6y). The conditional likelihood ratio statistic of
Moreira (2003) in the linear instrumental variables regression model with m = 1 operates in
such manner. Its conditional limiting distribution is the sum of the limiting distributions of
K(0o) and a weighted value of Jk (6o). It uses Dr(6o,Y ) Vi¢(0) " Dr(6p,Y) as the independently
distributed conditioning statistic. When Dz (6o, Y)'Vi(0) ' Dr(60,Y) is large, the conditional
limiting distribution is identical to that of K(fy) while it resembles K(6y)+Jx(6o) (=S(6o))
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when Dp(6o,Y )V (0) "t Dr(00,Y) is small. Because the conditional likelihood ratio statistic
has a conditional limiting distribution, it is less straightforward to show that its robustness to
the value of v results from higher order elements. Furthermore, we can only approximate the
conditional likelihood ratio statistic in GMM, see Kleibergen (2001,2002b). We therefore refer
from constructing the higher order properties of Moreira’s (2003) conditional likelihood ratio
statistic.

5 Bootstrapping robust statistics

Theorems 1 and 3 show that the zero-th order elements of some of the statistics that we consider
depend on the value of v. For these statistics we can therefore not use the bootstrap to approxi-
mate the finite sample distribution. The zero-th order elements of K(6y), Jx(6o) and S(6y) do not
depend on v. The higher order expressions of these statistics in Theorems 1 and 3 indicate that
we can construct a higher order Edgeworth approximation of the finite sample distribution. The
higher order Edgeworth approximation indicates if the bootstrap improves upon the approxima-
tion of the finite sample distribution by its zero-th order element, see e.g. Horowitz (2001). We
therefore analyze the Edgeworth approximation of the statistics whose zero-th elements do not
depend on v, i.e. K(0y), Jx(0y) and S(fy). We also discuss how the bootstrap can be implemented
for these statistics.

5.1 Edgeworth Approximation of the finite sample distribution of
K(QQ), JK(Q()) and S(eo)

The specification of the covariance matrix estimator V(QO) determines the convergence rate p.
The higher order expression of K(6) in case of a fixed number of instruments is stated in Theorem
1:

V42K

K(6y) = mno+ T—3%n,, + T_iz’&nwr,.i + T " "noe +T772 Nyyon + T=5na, + o,(T~

), (65)
with x = p. The higher order expression (65) depends on the value of v which indicates the
convergence rate of Dp(6,Y), see Lemma 1. Because the limit behavior Dy of T2+ Di(6,,Y')
is independent of the limit behavior of ng, as shown in Corollaries 1 and 2, we can condition on
Dy and consequently v in the higher order expression (65) to specify it as

K(0) = no+T72%(ng + T 2 nyp) + T (N + T30y 0) + T~ F g, + 0,(T75).  (66)

Higher order expression (66) is identical to (32) when x = 1. Hence, we can construct a 2k-
th order Edgeworth approximation of the finite sample distribution of K(6y) by using (33). It
amounts to constructing the expressions of the different elements of (66) and their conditional
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. . . . 1
expectations and variances given ng. For example, the expression for n, + 7~2"n, . reads,

M+ T30, = TE{mi {[Vi(00) ™ — Vis(00) 1 Dr (6o, )+fo(90)7 [Dr(8,Y)—
Dr (00, Y)}Dr(00,Y ) Vif(00) " Dr(60, Y)] " Dr(00, Y ) Vi (00) " mo.s 4 my, fof(Ho)
Dr(00,Y)[Dr(00,Y) Vy1(00) " Dr(00, V)]~ H{[Dr(0,Y) — Dr (00, Y)]Vy(80)~* + Dr (60, Y)
Vi (00)™" = Vir(00) = Iymo.s + mg ¢ Vis (60) = Dr (6o, Y)[Dr (00, Y) Vis (60) =" Dr (6o, )]71DT(907Y)'
Vis(00) ™ = Vis(60) 1D (60, Y) [Dr (6o, Y) Vi s (00) = Dr (00, Y)] =  Dr(00, Y) Vs (o) o f}( |

67
which also shows that v is not present in it. Similar to Lemma 2, it is convenient to use
the law of iterated expectations (34) and first construct the conditional expectation given p =
(DoVis(00) ' Do) ' DyViys(6o) 'b;. Because of Assumption 2*, the conditional expectation of

n, + T’%”nw,i given p equals zero so s1(So, ¥o) in (33) is equal to zero. Since it is also possible
to obtain the expression of s5(sg, o), from which we refrain here, the 2x-th order Edgeworth
approximation to the finite sample distribution of K(fy) can be constructed. We do not construct
the explicit expression of the 2k-th order Edgeworth approximation. We only use that because
of its existence the bootstrap leads to an improvement of the approximation of the finite sample
distribution of K(6y) over the limit of its zero-th order element, see Horowitz (2001).

In an identical manner as outlined above for K(fy), it is possible to obtain 2x-th order
Edgeworth approximations to the finite sample distributions of Jx(6y) and S(6y). Hence, also for
these statistics the bootstrap leads to an improvement of the approximation of the finite sample
distribution.

5.2 Bootstraps

K(#p). To construct a bootstrap approximation of the finite sample distribution of K(6), that
tests Hy : 0 = 0y, we consider the moment condition where K(6) is based on:

E[Jo(00)'Vis(00) 7" fi(00)] = Jo(00)' Vi s (60) =" ELf2(60)] = 0. (68)

The bootstrap uses the empirical distribution instead of the unknown true distribution. When
evaluated using the empirical distribution, the moment condition (68) reads

Dr(0,Y)Vir(6)~ fr(6,Y) =0, (69)

since Dy (0,Y), Vi4(A) and fr(6,Y) are the analogs of Js(6o), Vj;(80) and E[f,(6y)] when evalu-
ated using the empirical distribution. The empirical moment condition (69) holds at the CUE of
0, che We therefore use che to construct bootstrap samples on which we test Hf : 0 = 0, using
K(che) Hence, we replace Hy : 0 = 0y by Hf : 0 = 0., for which the emplrlcal moment condi-
tion (69) is satisfied. Although the empirical moment condition holds at che, we use recentered

moments of ft(écue) : o X R
ft(‘gcue) - ft(gcue) - %Z?:l fj(‘gcue)7 (70)

to obtain bootstrap samples of K(f.). We need to use the recentered moments (70) because
the theoretical moment condition E[f;(fy)] = 0 does not hold for the empirical distribution.
The covariance matrix involved in K(f.,.) would therefore be in error when we do not use the
recentered moments (70), see e.g. Hall and Horowitz (1996). Depending on whether [f;(0)" ¢:(0)"],
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t=1,...,T, are independently distributed, we can use several different manners to construct a
bootstrap sample of K(6y). Because GMM does not make any assumptions about the distribution
of [fi(0) ¢(0)]),t=1,...,T, we only use the empirical distribution of [f;(0)" ¢(0)),t=1,...,T,
in the bootstrap.

When [f;(0)" ¢(0)], t = 1,...,T, are independently distributed, two different manners to
obtain a bootstrap distribution of K(fy) are:

1. (a) Obtain bootstrap sample {1fiOcie) Gt (Ocne)), t = ., T} by drawing from {[f, (0w’
¢t(0cue)], t =1,..., T} with replacement.
(b) Construct: V(@cue)7 DT(@cue, Y) and fT(écue, Y') from the bootstrap sample {| ft(@cue)’
Qt(gcue)/]lv t= 17 cee 7T}-
(¢) Compute:

A ~ A

K(che> - Tg cue Y) fo(ecue> DT(00u67 Y)[DT(éAcuea viff(écue)il
T(90u67 Y)] lDT(‘gcue7 Y) fo(gcue> lfT(gcuea Y)

Tl

(a) Obtain bootstrap sample {f(fee), t = 1,...,T} by drawing from {f,(fue), t =
1,...,T} with replacement.

(b) Construct: fo(écue) and fT(écue, Y') from the bootstrap sample {ft(@cue), t=1,...,T}.
(c) Compute:

Y) fo(gcue> 1[)T(@cue»y)[]j (é Y)‘? (écue) !

K(écue> - gAc \ € T\Y
T ecueyy)] 1DT(‘90ue7Y),fo(gcue> f (gcueay)

Ll

The first bootstrap algorithm incorporates the construction of DT(HCW, Y’) while the second
bootstrap algorithm treats DT(che, Y) as fixed and exogenous. Because of the independence of
the first order behavior of D, from ng, the approximation error of both bootstrap algorithms
of the finite sample distribution of K(fy) is of the same order and both should perform in a
similar manner. We illustrate the performance of the bootstrap algorithms in Section 6 for a
dynamic panel data model. When [f;(0)" ¢:(0)"], t = 1,...,T, are dependent, we draw blocks
of consecutive realizations of [f;(0cwue)’ G1(0cue)’]’ in step a of the bootstrap algorithms, see e.g.
Hall and Horowitz (1996). By drawing blocks of the appropriate length, we incorporate the
dependence of [ft(@cue)’ qt(écue)’]’, t=1,...,T, into the bootstrap.

When we analyze time-series data and lagged observations are used as instruments, we
generate the instruments by the bootstrap as well and adapt step a of the bootstrap algo-
rithms. Instead of sampling [fi(0cue)” Gi(0cue)’)’, either as a single realization or as a block of
consecutive realizations, from {[f;(Ocue)’ Gt(Ocue)’ ]/ t=1,...,T } with replacement, we then
sample [P(0cue, V) vec] 2 @(Ouse, Vo) Y] from {[@(Oeue, Y2)' Vec{ag, (Ooue, YOV, t = 1,...,T}
with replacement. From the generated [p(0 ey, Y;) vec] = o(0 Oene, Y2) Y], we construct [f;(0 e )
G(0cue)] = {[@(Ocue, ) Vec{%ﬂ@we,}/})}’]’ ® X;) and solve for future values of the boot-
strapped instruments, X; 5, h = 1,..., H, from [g’b(@cue, Yi) mc{%@(@cue,}/})}’]’.
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S(fp). The S-statistic S(fy) is based on tests of the theoretical moment:

E[fi(60)] = 0. (71)

Because there is no value of #, where this moment condition is satisfied when we use the corre-
sponding empirical moment

7F1(00,Y) = 7 X fil0o), (72)
we use the value of ¢ that leads to the minimal value of (72), when scaled by its covariance
matrix estimator Vy;(6), which is the CUE, 6.,.. We then use the recentered moments f;(6..) to

obtain bootstrap samples of S(écue). When f,(fewe), t = 1,...,T, are independent, a bootstrap
distribution of S(6..) is constructed by means of:

1. (a) Obtain bootstrap sample {fi(feue), t = 1,...,T} by drawing from {f,(0ue), t =
1,...,T} with replacement.

(b) Construct: f/ff(écue) and fT(écue, Y') from the bootstrap sample {ft(@cue), t=1,...,T}.
(c) Compute:

~

S(che) =

fT(écu& Y)/fo(

cue)ilfT(écuw Y)

>

Si=

_ When f_t(@cue), t=1,...,T, are dependent, we generate blocks of consecutive realizations of
Jt(0cue) in step a of the above bootstrap algorithm.

Ji(00). The J-statistic Jx(6p) is based on the moment condition:
J(60)' E[fe(00)] = 0, (73)

with J(0o)1 : kg x (kg—m), J(00)' J(00) =0, J(00)' J(00) L = Ii;—m. Its corresponding empirical
moment condition,

ﬁT(Qo,Y)lfT(eoay) =0, (74)

with ﬁT(go,Y)L : kf X (]Cf — m), DT<60,Y)IJ_DT(¢90,Y> = O, DT(Q(),YYJ_DT(Q(),Y)L = ka_m, is

not satisfied for any value of 6. We therefore use the value of f that leads to the minimal value of

this empirical moment when scaled by its variance. This value of ¢ is the CUE, 0,.,.. We recenter

the moments based on the CUE:

ft* (9cue) - ft(écue> - fo(écue>ﬁT<écuea Y)L{DT(écuea Y),J_fo(écue)ﬁT(écuea Y)L]ile(écuea Y),J_ft(écue>

R R (75)

and f5(0cue,Y) = Zle [ (0cue). For the recentered moments, the empirical moment condition

(74) is satisfied at the CUE. An algorithm for obtaining a bootstrap distribution of Jx (), when

[£:(0) q.(0)), t=1,...,T, are independently distributed, then reads:

1. (a) Obtain bootstrap sample {[f7 (Ooue) Gt (Oeue)], t = 1, ..., T} by drawing from {[f;(Oeue)’

qt(@cue)’]’, t=1,...,T} with replacement.
(b) Construct: V(Aeue); Dr(feue,Y) and f:(Aeye, Y) from the bootstrap sample {[f7 (O eye)’

A

G(Bee)), t=1,...,T}.

23



(c) Compute:
JK<écue) -

Ni=

(a) Obtain bootstrap sample { ﬂ*(@cue), t =1,...,T} by drawing from { f;“(@cue), t =
1,...,T} with replacement.

(b) Construct: f/ff(écue) and (0 e, Y) from the bootstrap sample { fy(feue), t = 1,..., T}

(c) Compute:

~

~7*“(‘§cu67Y)/DT(écueyY)L[DT(écumY)Ij_vff<écue>71DT(‘§cue7Y) ] 1DT( cue)

YL fi (0

JK(che): %f;‘(écu&Y)/DT(écumY)J_[DT<écue>Y)Ij_vff(écue>71DT(écue7Y) ] 1DT( cues )J_fT(

In case of dependent data, we replace the generation of a single realization in step a of the
bootstrap algorithms with a block of consecutive realizations. The recentered realizations ft( Cue)
are also used to compute K(che) in the algorithm for the bootstrap distribution of Jx (che)

6 Power comparison for Panel AR(1) Model

Panel AR(1) model. We compare power curves of different statistics to test hypotheses on
the autoregressive parameter in a panel autoregressive model of order 1 (AR(1)). For K(6y), we
use both critical values that result from the limiting distribution of its zero-th order element and
from the bootstraps from Section 5. An elaborate literature on panel autoregressive (AR) models
exists, see e.g. Anderson and Hsiao (1981), Arellano and Bond (1991) and Arellano and Honoré
(2001). In panel data models the cross-section dimension N exceeds the time series dimension
T'. In line with the literature on panel data models, we therefore indicate the sample size by N.
In the previous sections, the sample size was indicated by 7.

For individual n at time ¢, the panel AR(1) model reads

yt,n:/vtn—l—gyt—lm,—'—gt,n t:1,...,T,n:1,...,N. (76)

The disturbances €;,, are assumed to be independent with mean zero. We take first differences
to remove individual specific constants:

Ayt,n :HAyt—Ln"‘AEt,n t:2,...,T, n = 1,...,N, (77)

with Ay, = Yt.n — Yi—1.,. Estimation of the parameter ¢ in (77) by means of least squares leads
to a biased estimator in samples with a finite value of T', see e.g. Nickel (1981). We therefore
estimate it using GMM. The moment equation (1) for the panel AR(1) reads

E(o(8, o)1) = E(Agyn|l) = E(Ayn—0Ay_1 L) =0  t=2,....,T, n=1,...,N. (78)

A common choice of the instruments is to use all two period and more lagged level values of v, ,,,
i.e. Xen = (Yt—2n---Y1n), see e.g. Arellano and Bond (1991). This leads to the specification of
the moment equation f,(0),

fa(0) = Xo0,(0) : (T = 1)(T—2) x 1 n=1,...,N, (79)
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with ¢, (0) = (Ays, — 0Aya, ... Ayry, — 0Ayr_1,)" and

Yim 0...0 0
0 0
X, = Yin (2(T—1)(T —2) x (T —2). (80)
0 0...0 :
Yr—2.n

Besides the independence of €, ,, and finite fourth order moments, we make no assumptions about
the covariance structure of ¢;,,. We therefore use White’s (1980) covariance matrix estimator:

Vip(0) = 2S00 fa(0) £u(0) : 3(T = 1)(T = 2) x LT = 1)(T - 2). (81)

We also use White’s (1980) non-parametric covariance matrix estimator for V() which is
involved in K(6y) :

Vor(8) = & noy Xulggen(0) — E(Zen(O)|Xa) fu(8) = 5(T — 1)(T —2) x 3(T — 1)(T — 2),

(82)
with
Ay2,n Y1.n01
5590 (0) — E(550,(0)|1X,) = — : , (83)
Anyl,n - (y1,n . -ny2,n) Qr_2
where &1 : 1 X 1,..., 67 9: (T —2) x 1, and
dl Ay2,n
N A .
= <Zn:1 Xan) Zn:l Xn . (84)
Qp_g AyT—l,n
The derivative 2¢,(0) = —(Ays...Ayr_1,) is a white noise series when § = 1. The
parameter 6 is therefore not identified when it is equal to one. Weak identified values of 6 then
occur when it is close to one relative to the sample size, i.e. when IT_G is small. It implies that the

statistics in Theorem 1 whose zero-th order elements depend on v become size distorted when
0y is close to one relative to the sample size. We analyze this by computing power curves for the
different statistics for various values of 6y and V.

Power comparison. We use the moment equations and covariance matrix estimators for the
panel AR(1) model to conduct a size and power comparison of the different statistics discussed
previously. We therefore compute power curves for Wos(6y), Weue(6o), LM(60y) and K(6p) that
test Ho : 0 = 6y with the covariance matrix estimators (81)-(82) and a 95% asymptotic critical
value that results from the limiting distribution of the zero-th order term. We also compute the
power curve of K(fy) when we use the 95% critical values that result from the two bootstrap
procedures discussed in Section 5.

We compute power curves of the different statistics using a data generating process that
has independent disturbances ¢;, which are generated from a student ¢ distribution with 10
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degrees of freedom and mean zero and variance one. The bootstrap critical values are computed
using 100 bootstrap realizations from the empirical distribution for each simulated dataset. The
number of simulated datasets equals 1000. Panel 1 shows the power curves when N = 50, Panel
2 when N = 100 and Panel 3 when N = 250. The number of time periods is equal to six in all
three panels, T" = 6. All three panels contain the power curves for hypothezes that test for four
different values of 6 : 0.5, 0.7, 0.9 and 0.95.

Panel 1 shows the power curves for data sets with T'= 6 and N = 50. It is clear from Panel
1 that Wa,(0g) and W,e(0g) are size distorted when N = 50 and T' = 6. The size distortion
becomes more prominent for larger values of . This is in line with the deteriorating degree of
identification of @ when it converges to one. Because of the absence of correlation between f,,(6)
and % fn(0), Weye(6p) does not necessarily improve upon Wo,(fy) which is expected from the
higher order expressions in Theorem 1. The size distortion of LM(fy) is much smaller than that
of Wys(6p) and W,,.(0y) and is also increasing when 6 approaches one. This indicates that a
considerable part of the size distortion results from the covariance matrix estimator V(6) (81).
LM(0y) evaluates \7(6’) at 0y while Wa,(0p) and W,.(6p) evaluate it at 095 and 0., resp.. Hence,
a large part of the size distortion results from evaluating V/(f) at an estimate of 0 instead of
the true value, see also Bond and Windmeijer (2003). The size distortion of K(fy) when we use
the asymptotic critical value is again smaller than that of LM(fy) as is to be expected from the
higher order expressions in Theorem 1. Also the size distortion of K(fy) is somewhat increasing
when 6, approaches one. This again results from V(6) whose importance for the size of K(6)
increases as 6y approaches one. When we use either one of the two bootstrap critical values
instead of the asymptotic critical value, the size distortion of K(fy) only minorly depends on the
value of 6. Both bootstrap critical values therefore improve the size of K(6y). The power curves
of K(6y) using the bootstrap critical values are identical. The two bootstrap procedures from
Section 5 therefore both perform adequately in correcting the size of K(6y).
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Panel 1: Power curves of Wy,(6y) (solid with stars), W, _(6y) (solid with plusses), LM(6,)
(dashed), K(0y) (solid) that test H : 6 = 6, with 95% significance using asymptotic critical
value and bootstrap critical values 1 (dashed-dotted) and 2 (dotted) for K (6y), "= 6, N = 50.

1 T T T T T 1

09 il 09

0.8

Rejection frequency
Rejection frequency
o o o o
kS 2 > S
T T

o
w

o
N

01

Figure 1.1: o = 0.5 Figure 1.2: 6, = 0.7

Rejection frequency

Rejection frequency
)
o

T k
| |

I I I I I I I I I I I I I I
05 0.55 0.6 0.65 0.7 0.75 08 0.85 09 0.95 1 07 0.75 0.8 0.85 09 0.95 1
] L]
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Panels 2 and 3 show that the size distortion of the different statistics reduces when N in-
creases. The size of K(6) with the bootstrap critical values remains the same but its power has,
because of the larger number of observations, increased. Still the size distortion of most statistics
remains considerable when N = 100 and for large values of 6y when N = 250. The power of these
statistics, Was(6o), Wewe(0o) and LM(6y), is also distorted at # = 1 where 6 is non-identified so
the power should equal the size of 5%. The power of Wao(6p), Weue(6o) and LM(6y) for all values
of Ay in Panels 1-3 does not equal 5% at 6 = 1 and is therefore erroneous. Panels 1-3 show that
this erroneous power depends only to a minor extent on the sample size N. For large values of
values N, we can, although their size-distortion becomes rather small, therefore still not interpret
Wos(0o), Weue(fo) and LM(6p) in a trustworthy manner. The power of K(f) is approximately
equal to the size at § = 1 when we use the asymptotic critical value. Panels 1-3 show that the
approximation error between the power at § = 1, when we use the asymptotic critical value,

27



and the size reduces when NN increases. It is also hardly present when we use bootstrap critical
values instead of asymptotic ones. This shows that the bootstrap works adequately in reducing
the error in the size of K(6y). Panel 3 shows that, as expected, the power curves of K(fy) that
result from using asymptotic or bootstrap critical values become indistinguishable when N gets

large.

Panel 2: Power curves of Wy,(6y) (solid with stars), W, _(6y) (solid with plusses), LM(6,)
(dashed), K(0y) (solid) that test H : 6 = 6, with 95% significance using asymptotic critical
value and bootstrap critical values 1 (dashed-dotted) and 2 (dotted) for K (6y), 7T"= 6, N = 100.
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Panel 3: Power curves of Wy,(6y) (solid with stars), W, _(6y) (solid with plusses), LM(6,)
(dashed), K(0y) (solid) that test H : 6 = 6, with 95% significance using asymptotic critical
value and bootstrap critical values 1 (dashed-dotted) and 2 (dotted) for K (0y), T"=6, N = 250.
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7 Conclusions

Appendix

Proof of Theorem 1.

We construct the higher order properties of the statistics (1, 2, 3 and 4) in a sequence of
steps. First, we obtain the higher order properties of the score vectors involved in the different
statistics, step a. Secondly, we obtain the higher order properties of the inverse of the covariance
matrix, step b. We combine the different elements of the score vectors and the covariance matrix
to obtain the higher order properties of the statistics, step c.
la. Higher order properties of fr (0, Y)’fo(é%)*lpgp(@%, Y) used in Wy, (6y). To obtain
the higher order elements for the 2-step Wald-statistic, we use that

(é - 90) ~ [pT(é%a Y)'fo(é%)_lp:r(é%, Y)]_lpT<92s; Y)/fo(@Qs)_lfT<907 Y)-
We specify pT(égs, Y) as
pT(9287 Y) - DT<007 Y) + pT(éQSa Y) - ﬁT(éQ& Y) + -DT<é287 Y) - DT(007 Y)?

with . o
pr(fas,Y) — Dr(025,Y)
= |:A1‘/9f,1(923)fo<92s)_1fT(‘9237 Y) e Am‘/@f,m<92s)fo(‘92s)_1fT(9237 Y)
= [A1Vasa (B2) - AV (02)] [T © V5 (B2) 7 fr(Bs, Y )]
and V(f,) = V(00) + [V (B25) — V(00)] + [V (00) — V(6)] = V(00) + [V (02s) — V (0a)] + [V (0as) —
V(6o)]. The convergence rate of Vi¢(0) — Vir(6o) and Dy(6ss,Y) — Dr(6p,Y) is therefore equal
to 772", with x = min(p, v).
Using Assumption 1, %fT(QO, Y)Y Vi(025) [T 205 pr (B, Y)] then reads

ﬁfT(gm Y)'fo(é%)_l[T_%(HV)]?T(@S, V)= so+T 281,10+ T 2511+
T_%(V—’_ )(Su-i-n 1 + 31/-}—& 2) + T 2(V+2 )5V+2H,1 + Op(T_%)7

with x = min(u, v) and

Sp = ma’fof(Qo)ilDO R o
swa = mpy Vir(0o) H{=lpr(0,Y) — Dr(6,Y)]}
m'o,fvff(QO)_l[Alv 71(00) -+ AV (00)| L @ Vi(00) ' mo ]
Siml = T2mof[fo(90) = Vip(60) 7' Do
Sut1 = Tj” 17”0fof(90) [Dr(0,Y) = Dr(6s,Y)]
= T3"my Vs (00) " {[A1Var1(00) - -+ AV (00)][ I ® Vy(00) "]
—[A1Vas1(00) - - AmVosm (00)][Im @ Vi (60) 1} © mo,s]
Svina = T3" m0f[fo(90) —fo(90) [ALVos1(00) - - AnVogm(00)] L @ Vip(60) " mo ]
3= Vmg Vg (00)™" = Vis(00)[Dr(00,Y) — Dr(6p,Y)),

)

Sv42k,1 =
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We also used that

mp Vi (00) " [Dr(8,Y) = Dr(60,Y)] = ) ) )
mo Vir(00) = pr(8,Y) = pr(Bo, )] +mp Vir(00) ™ {[A1Vora(0) - - AmVagm(0)][m @ Vi (0) )=
[A1Vora(00) -+ AmVosm(00)][Lm @ Vi(00) " [}l © Vis(60) o).

The convergence of pr(0,Y) — pr(fo,Y) is of order T2 and therefore T2 [pp(0,Y) —
pr(0o,Y)] is of a lower order, T-(1+%) than the other elements. We have therefore left it out. The
convergence rate of mf (Vir(6o) " [A1Vas,1(00) - - - A Vosm(00)][Im @ Vis(0o) " mo s] results from

E[hmT_,oo %(fT(Qo, Y), ® fT(Qo, Y),)] = Vec[E(limT_}oo %fT<60, Y)fT(Q(), Y)’] = VeC[fo(go)],
so we obtain the expression for the limiting expectation:

E{limy oo 7 f7(00, Y ) Vi (00) " [A1Var.1(0o) - - - AmVasm(00)][Im @ Vi (00) ' fr(0o,Y)]}
= { I @ {Ellimr—oo 7. fr(00,Y) @ fr(00,Y)]}}
vec[Vyp(00) " [A1Var1(00)Vir(0o) ™" - AnVogm(00) Vi (60)~M])'
= {Ln @ vec[Vi1(00)] yvec[Vif(00) " [A1Vor1(00)Vif(0o) ™" - -+ AmVagm(00) Vip(00) ]
= vec[Viz(00) " [A1Var1(60) - - - AmVosm(00)]];

which shows the appropriate convergence rate. o
2a. Higher order properties of fr(00,Y ) Vif(Oeue) ' Dr(Opue,Y) used in W, (6p).

~ N

%fT(e(b Y)/fo<écue)71[Tﬁ%(l+y)[)T<ecuea Y)] = S0 + Tﬁ%Sln,l + Tﬁ%(y+ﬂ)su+n,l+
Tﬁ%(y+2’{)slj+2l€,l _|_ Op(Tié),

with k£ = min(v, u).
3a. Higher order properties of f1(6o,Y ) V;;(00) 'pr(6o,Y) used in LM(6y).

ﬁfT(Go, Y)/fo<00)7l[T_%(H—V)pT(QOu V)= so+T 281,10+ T 2511 + T_%(V+H)<Su+n,1 + Spir2)t+
Tﬁ%(y+2n)su+2n,l + Op(Tié)a

with k = p since we evaluate all elements in 6y only.
4a. Higher order properties of f(6y,Y ) V;;(00) ' Dr(6o,Y) used in K(6,).

LfT(Qou Y),fo(eo)fl[T_%(HV)DT(@oa Y)] = so+ T_%Sln,l + T_%(V+K)Su+n,1+

VT .
—= 2
T2 (v+2x) Su4+2k,15

with x = u since we evaluate all elements in 6 only. R
1b. Higher order properties of pr(0,Y) Vi (0) 'pr(0,Y) used in Wa,(6p).

(T30 (B, YY) Vig(020) (T30 pr (820, V)] = Go+ T~ 5 Gy + TG+
T7Goy1 + T2V Gy + Guana) + T2 (G%m,g + Govin2)+

—Lwtak —(v+k —2vtde —Lv
T2 G, 1 + T (Gopamn + Gawama) + T 2 Gapggen + Op(T7220 1),
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with £ = min(v, ) and

G(): Défo(Qg)le
G = DyVis(0o)™ [Alvef,l(‘%) - AV sm(00)][Im @ Vi £(00) = mo ¢]+
[[ ® V(o)™ mo,f]’[Alvef,l(QO) - A Vor.m(00)]'Vi£(60) ™" Do
Greg = TEDH[Vis(00) ™ — Vi (60) "' Do
Goi = [In ®fo(90) "mo ) [A1Vaga(6o) - - - AmVarm(00)] Vip(6o) ™"
[A1Vo7.1(00) - - AV (00)] L © Vi (00) " mo ]
Guimr = T2Dy[Vis(00) ™" = Vig(0o) [ A1Vosa(00) - AmVagm(00)|[Lm @ Vig () mo g+
T3 (I @ Vig(00) " mo,s) [A1Vasa (6o) -+ AmVagm (00)) Vg (60) ™ = Vip(60)~'] Do
Guing = T3 V[Dy(0,Y) — Dr(00,Y)|'Vy(00) ™ Do+
=V DGVis(00) 7 Dr(00,Y) — Dr(0o,Y))] )
Ln @ Vi (00) "'mo ¢ [A1Vasa(00) - - - AmVasm(00)]' Vi (00) ™ — Vi (6o) '
0f1(90) - AV rm (00)][Im @ Vi (00) " mo ]

|

Kﬁ.ﬁw
<ﬁ

GQV—H@I -

Govinz = T3 D[Dy(00,Y) — Dr(00,Y)]'Vy(00) [A1Vasa(00) - - A Vogm(00)]
L @ Vi4(80) " mog] + T2 D1, @ Vy1(00) " 'mo s) [A1Vos.1(60) - - AmVogm(60))
Vis(60) " [Dr(00,Y) = Dr (6, Y)]
Gurons = T2 V[Dr(6,Y) = Dr(00, V)| [V(60) ™ = Vi(6o) ™" Do+
T%@”*l)%[vff(@f))_l = Vi1 (00)7'][Dr (00, Y) — Dr (00, Y)]
G2u+2/¢,1 = T%(z’frl {DT<00, Y) DT(HO, Y)] [fo(@g)_ V}f(@o)_l][Al‘/gfl(e ) .. Am%ﬁm(go)]
L ® fo(9o) mo.¢] + T2 DL, @ Vi p(0o) o 1) [A1Vosa (00) - - - AmVosm(60))
[fo(eo) — Vs (60) [Dr(6o,Y) — Dr(6o,Y)]
Goviang = T D[Dr(6y,Y) — DT(QO,Y)]'fo(go)fl[DT(eo,Y) - DT(QQ,Y)]
Govyaet = T2 D(Dr(0,Y) = Dr(6o, V)| [Vir(0)™ = Vis(60) ][Dr(8,Y) — Dr(6,Y)]
Hence,
T [pr(8,Y ) Vip(Bo) ' pr(0,Y)] " = Go' + T2 Qy,
with
Q1=-Gy' (G +T 2H) ' + T‘%G‘l]*lGo‘l,

where H = _%(R_y) (GUJrn,l +GV+I{,2)+T <G21/+/1 1+G21/+/1 2)+T 2'% v) Gl/+2/<;,1+
3K

T_K<G2(V+H)7l + GQ(V+H),2) + T_TGQV—&—&%AJ- ) .

2b. Higher order properties of pr(6,Y)'V;(0) 'pr(0,Y) used in W, ().

(T2 pr (0, Y ) Vi (0) T2 pr(0,Y)] = Go+ T3 Gy + T 309G, gt
T (u+2m G vi2el T- V+H)G2 (),2 4+ T (2y+3m G2u+3n L+ O ( ——(2u+1))’

with x = min(v, ). Hence,
70+ [pT(é7 Y),fo(é)_lpT(éa Y)]_l = Go_l + T_%Qb
with

Q1= —Gi'[(Grea +T 2H) +T72G;'7'Gy,
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where H = T73"Gy o + T "CGhron + T2 2 Gos 0 + T 303Gy, g, ).
3b. Higher order properties of py(6y,Y) Vis(6)~! (GO,Y) used in LM(6,).

[T7%(1+l’)pT<90, Y)],fo(eo):1 [Tﬁ%(l%ﬂ/)pT(eOa Y)] = Go +1T7%G1V’1+
Ti?Gm,l +T1T7"Goy1 + TﬁE(VJrH)(GwH,l +Gryn2) +T72 e (G 1+ G, 2)+
T=30429G, 1 + T~ (Gaimyr + Gawiny2) + T3 439Gy, g1 + Op (T334,

with x = u. Hence,
T [pr(6y, Y),fo(eo)_lpT(Qo, V) =G+ TTEQ,

with
Q1= —Go'(Guea+T 2H) '+ T 2G;'7'Gy Y,

r@2u

where H =T~ Gl,{ 1—|—G2V 1+T G (Gy+;§;’1+Gy+/{’2)—‘I_T_%K/<G2y+/{,1+GU+K/72)+T_%(2R_V)Gy+2;{71+
T_K<G2(y+n),1 + GQ (v+k),2 ) + T__G2uj3/1,17 R R
4b. Higher order properties of Dr(6y,Y ) Vs (00) ' Dr(6p,Y) used in K(6y).

[T_l(HV)DT(QO Y)J f £(00)~ [T_%(HV)DT(QO; V)] =Go+T 2G1 +T~ 3(+w) Guir2 + T_%(V”K)Guwn,ﬁ
~(vn )Gz (tr)2 17 3(20+3r) Goyisna + Op( __(2V+1))7

with k = p. Hence,
N ~ N —1 o
T(1+v) [DT(eo, Y)Y V;1(60)" D (6o, Y)] =Gl T5Q,

with
Qr= —Gy'(Grea +T5H) '+ T73G;71Gy Y,

where H = T2 "G, o+ T72Gyons + T Gopynya + T2 Gopiaes.
lc. The higher order components of Wy, () that result from mg in Assumption 1 can be
specified as:

Waos(0o) = no+T 2n, + T 2n, + T =N “Nype + T 719y + T "ngy
T 2(V+2K)nl/+2rc+0( 3v)

with
ng = shGy'so
n, = slesg —l— 511/ 1G0 S() + s0Gy 131V1
N, = 51% 1G0 S0 + SOGO S1p, !
Nyrw = $1,1Go 101 + 81, 1G0 S1v,1 + 81,1Q150 + 50Q181, 4kt
(SV+K 1 + Sy—s—n 2) Go S0 + SOG() I(Sy—s—ﬁ 1 + Su+)§72)
Noy = 8, 1Q150 + 50Q1515,1 + 81, Gyt S1v,1
Nak = 51V,KG0 S1k,1
Noy+k = Sllu,/leslm,l + S’ll{,llell’71 + (Sy—i—n,l + Su+n,2),Galsly,1 + Slly,lG(;l(Sl/—l—n,l + SV—}—R,Q)
Nyt2rk = (Su—&-ml + 5u+m72),G6151m,1 + Sllm,lGal(SV-i—m,l + 51/-1—5,2) + 5;+2n,1G8150+

! —1 /
$0Go Sutn1 811 @151k,1
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and k = min(v, p).
2c. The higher order components of W,,.(fy) that result from mg in Assumption 1 can be
specified as:

3K

Wcue(HO): n0+T 2nn+T 2 nu+n+T n2/~£+T 2 nl/+2l{+T 2 n3/£+0p(T T)

with
ng = spGg'so

ne = $4Q180 + $1,.1Go 50 + 560Gy s10
Ntk = Syin, 1Go o+ 855Gy Supm

Now = slﬁlGolle +8151Q130+50Q18151
Nytor = 1/+)€ 1Go 181;-; 1+ Slm 1G0 Sv+n 1+ 30G0_15V+2H71

Slesy—&-m 1+ Su—l—m 1@150 + Su+2/-s IG So
N3, = 51;@,1Q151n,1

and £ = min(u, v).
3c. The higher order components of LM(6y) that result from mg in Assumption 1 can be specified
as:
M(6y) = no—l—T Sny 4+ T 50, + T Ny + TNy + T e
4T~ (2V+I'€)n2 . LT 2(1/—1—21'6)71 ion + O ( _§V)

with k = p and

no = spGy'so
n, = 30Q130 + 1. 1Gotso + shGo s
1
Ny = 31,{ 1Gotso+ SOGO S1k,1
1 1
Nygr = Sly 1Go St + 811G S0+ 81,.1Q150 + $6Q151k,1+
1
V+H 2G S0 + SOG Sv+k,2
1
Ny = Sly 1G0 S+ Sll/ 1Q130 + 50Q151u 1
Noy = 51,.; 1G0 S1k,1
Novtr = Sy, 1Q151u 1+ 8, 1@1815 1+ Sy% 2Q150 + Sy 2G Sw.1 + 30@18u+n 2+ 51,1Go S
/
Nu+2k = Spyqax, 1G0 S0 + SOGO Sy42r,1 T Sm 1Q151k,1 + SZ/+I{ 2G0 S1k1 T Slm 1G0 Sv+k,2

4c. The higher order components of K(6y) that result from mg in Assumption 1 can be specified

as:
_3 _3x
K(0y) = no+T 2n,+T~ N Nyir + T 0o + T~ =5 “Nyroe + T 203, +0,(T~2)
with k = p and
_ /G—l
_ / -1 1 =1 !
n, = Slfi,lGO So + SOGO 81571 + SOleo
_ / —1 /1 —1
Nytr = Sy-m 1G0 50 + SOGO Sv+ik,1
Noy = 51,.i 1Go Sm 1+ 515 1@150 + 5@@151m 1
-1
Nyt2r = l/+2n 1G0 So + SOGO Sy42r,1 T Squn 1G0 S1k,1 T Sln 1Go Sunat
S()ley—s—ﬁ,l + SU+H’1QISO
_ /
N3k = 31,@,1@151;@,1-
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Lemma 2. We construct the conditional expectation of the limit expressions of n, and ng,
given p when the number of observations converges to infinity. We begin with n, which consists
of two parts: 7, Gy " so and sjQ1so :

st,1Gg 'so : We specify 1, as

Vip(00) 720, = Vis(00) "2 Dop + Vis(60)2 Do,

with p = (D{)fo(90)71D0)71D6‘/ff(90)71¢f and \ = (D()’J_fo(80)D07L)71D6’J_77/}f and D(),J_ : ]{ff X
(kf=m), Dy Do = 0, Dy | Do, = Iy;—m 50 p and X are independent and p ~ N (0, (DoVy(6o) " Do) ™1),
A~ N(0,(Dg Vis(Bo)Do,.)~"). This implies that limT_ms’ly’lGalso can be specified as:

limp_ o S/1V71G6150

= Vir(00) " [A1Vora(60) - - - A Vasm (00)][Im @ Vip(0o) " bylp

= [N'Dg .+ p'DoVip(00) M [A1Vasa(0o) - - - AmVarm(00)llp @ {Vi5(00) " Dop + Do 1 A}

= tr{[p @ {Vy7(00) "' Dop + Do N[N DGy | + ' DoVis(6o)[A1Vosa(6o) - - - AmVarm(60)]},

since [, @ djc = [d'c; ... d¢y) = [c ® d] with c and d m x 1 and ky x 1 vectors. Because

E{[p @ {Vy;(00) "' Dop + Dot N[N Do, + 0 DyVis(60) |0}

= E{p @ Vi;(00) " DopX' Do, L|p} + E{p @ V;(00) ' Dopp' DoV (60) | p}+
E{p® Do 1 AN Dy _1|p} + E{p ® Do 1 \p' DtV (60) " p}

= E{p @ V;1(00) " Dopp’ DoVis(00) ' p} + E{p ® Do AN Dy | |p}

= [p® Vy(00) ™ Dopp' Dy Vi (00) ] + [p @ Do, (Dy 1 Vi(00) Do) D 1]

where we used that E(\) = 0, E(p|p) = p and E(AX') = (Dgy  Vi(00)Do,1 )", we obtain that

Ellimy o 3/11/,1G0_150’p]
= tr{[p ® Vi;(00) " Dopp’ DoV (00) " 1[A1Vor1(0o) - - - A Varm(0o)]}+
tr{[p ® Do, (Dfy , Vi§(0o)Do,1) " Df | [[A1Vas1(00) - - - AnVas.m(00)]}
= > tr{p;Vis(00) " Dopp’ DyVis(00) L AiVari(6o) }+
;211 tr{p; Do, (Df  Vif(0o)Do, 1) ' Dy | AiVayi(0o)}
= i PiP’DB‘k/ff(90)_k114i‘/bf,z'(90)fo(90)_1170/)+
P ol (Do Vi (B0) Do), (D6, 1 AiVer.i(80) Do, L]ng,

where [(D(J,LVJ‘J‘(QO)DO,L)ALH and [Dfy | A;iVyyi(00) Do, 1]jn are the jn-th element of the respective
matrix.
spQ1sp: We assume that v = p =1,

My oo Q1 = limy oo G (Gru1 + G1e1)Gy " = (DyVy4(00) "1Do) H[DyVy4(0) "
[A1Vor1(00) - - - A Vasrm(00)][Im @ {Vi£(60) " Dop + Do 1 A} + L @ {Vi£(60) " Dop + Do 1 A}
[A1Var1(00) - - - A Vasm(00)]' Vi (00) ™ Do + Dy, Do) (Do Vs (6o) Do)~

and

limTHoo S6Q1$0 =

P{IDVr(00) " [A1Vora(0o) - - - AV (00)] [Lm @ {Vif(00) " Dop + Do L A+

[T @ {V£(60) " Dop + Do i AH'[A1Vir1(6o) - - - AnVagm(00)]' Vi (00) ' Do + Dy ¥, Do} p

= p' DoV (00) " [AiVas1(00){Vi(00) " Dop + Dot A} - - AnVorm(00){Vi1(00) "' Dop + Do i Ap+
P 1AV (00){Vis(00) ™ Dop + Dot A} -+ A Vosm(00){Vi s (60) " Dop + Do L A}|'Vyf(00) ™ Dop+
p' DoV Dop.
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The conditional expectation of p' DV, Dyp, given p equals zero because, by Assumption 2, ¥,
is independent of ;. The conditional expectation of the remaining part of s;Q15o,

E[p'{DuVis(00) " [A1Var1(60) - - - AmVogm(00)|[Im @ {Vy£(60) " Dop 4 Do, L A} }plp]
= ' DVis(00) " [A1Vasr1(00) - - - AmVagm(60)l[p @ Vif(00) ™' Dop]
= > PP Do Vi (00) " AiVayi(00) Vi (60) " Dop,

which we have shown for the expression of s}, G sg so

limy o0 E[sqQ150lp] = D ity pi’ DoV (00) 7 AiVzi(00)Vis(0o) ™ Dop
and

limr_.o Elny|pl = 3327, PiP’lzf)fo(on)flAz‘Vef,z’(Qo)fo(Qo)leonL
23 i i L (Do Vi (B0) Do)t (D5, 1 AiVari(00) Do, g

ng, consists of 51, Q150 and s, ;G 's1,.1. We construct the limit expressions of the conditional
expectations of both of these expressions given p.
$1,1Qi80. We assume that v = p =1,

liInT—>c><> Ql - 11InT—>c><> Gal(Gly,l + Gln,l)Gal

= (DoVis(00) " Do)~ [Dy Vi £ (00) " [A1Vas.1(00) - - - AmVasm (00)][Im @ { Vi (60) " Dop + Do L A}]
I @ {Vi£(00) " Dop + Dot A} [A1Vesa(0o) - - - AmVogm(00)]' Vi (60) ' Do+

Dy, Dol (DyVyf(00) ™ Do)~

SO

1iII1T_>OO 8/1%162180 =

= 4 Vi(00) M ALVor1(00) - - - AV s (00)][Tm @ Vi(00) " 0 5] (DgVi£(60) =" Do)~ { DoV (60) ™"
[A1Var1(00) - -+ A Varm(00)] [Im @ Vip(00) ™ b 4] 4 [In @ Vip(0o) by

[A1Vasa(0o) - -+ AnVasm(00)]'Vi¢(00) " Do + DyW, Do} p.

Because of the independence of ¥, and p, the conditional expectation of the part of s}, Q150
that contains ¥, equals zero and can be left aside. We construct the conditional expectation of

36



the remaining two parts of s}, ;@150 given p:

E{sVi(00) " [A1Vos.1(00) - - - A Vorm (00)] I @ Vig(00) = 1) (Do Vi (60) ™" Do) ™"
DoV (00)  [A1Vas,1(00) - - AmVasm(00)][Im @ Vis(00) b lplp}

= E{p' DoV (00) " A1 Visa(0o) - - - AV gm (00)][Lm @ Vi (00) " 0 (] (Dg Vi (00) Do)~
DV (00) ' [A1Vas1(00) - - - A Vasm(00)][Im @ Vip(0o) b lplp}+

E{NDg  [A1Visa(0o) - - AnVogm(00)][Im @ Vi (00) = 4 (] (D Vi (00) = Do)~ Do Vi (600)
[A1Var1(00) - -+ A Vosm(00)][Im @ Vip(60) " b 4] plp}

= E{p' DoV (00)  A1Visa(0o) - - AV gm (00)][Im @ Vi (00) "' Dopl (D Vi (60) ' Do)~
DoV (00)  [A1Vs,1(00) - - AmVasm(00)][Im @ Vis(00) "0 lplp} + E{p' DyVi(0o) !
[A1Var1(00) -+ - A Vs (00)][Im © Dot AJ(DoVi(60) ™ Do)~ DoV (60)

[A1Vor1(00) - - AnVosm(00)][Im @ Vip(00) " 4lplp} + E{N Dg , [A1Vora(0o) - - - AmVosm(60)]
[ @ Vi(00) " Dopl (Do Vis(00)~ Do)~ DoVip(00) " [A1Vasa(6o) - - - AmVigsm(60)]

[ @ Vi (00) ¢l plp} + E{NDg | [AiVora(00) - - - A Vipr.m(00)][In © Do 1 A
(DVi(00) " Do) DoV (00) " [A1Vas1(00) - - - A Vosm(00)] [Im ® Vi (00)~ 0] plp}

= p'DoVip(00)  [A1Vasa(0o) - - - AV rm (00)] I @ Vip(00) " Dopl(Dg Vs (00) " Do)~
DoVis(00)~H A1Vas1(60) - - - A Vasm(00)][Im @ Vir(6o) " Doplp + E{p' DV (0o) ™
[A1Var1(00) - - - AnVagm(00)][Im @ Do L A|(DoVis(00) Do)~ DoVi(6o) !

[A1Vor1(00) - AnVosm(00)][Im @ Dot N plp} 4+ E{N Dj | [A1Vosa (o) - - - AmVasm(60))
[Im @ Vi £(00) ™ Dopl (D V5 (00)~ Do)~ DoV (00) " [A1Vasa(6o) - - - A Vogm(00)]

[Im ® Do 1 Alplp} + E{N Dg | [A1Vera(00) - - AV gm(00)][Im ® Do 1 A]
(DV5(00) Do) DoV (00) " [A1Vas,1(00) - - - A Vasm(00)] [Im ® Vi (00) = Doplplp}
:CL1+G2+CL3+G4,

because all other elements contain first and third order moments of A which are equal to zero.
The expressions for different a-terms read:

a1 = p'DyVis(0o) M A1Vos1(00) - - - A Vasm(00)][Im @ Vi(00) ™ Dopl(DgVis(6o) Do)~
DyVi(0o)~ A1Vas1(00) - - - A Vagm(00)][Im @ Vi (00) " Doplp,

ay = E{p'DoVis(00) " [A1Vara(0o) - - - AmVogm(00)[Im ® Do L N(DVis(00)~ Do)~
DoV (00)  [A1Vas.a(00) - - - AnVarm(00)][p @ Do 1 Nl p}
= E{tr([p ® Do Al[p' DoVis(0o) " ArVasa(00) Dot A -+ o' DoV (60) ™ A Vogm(60) Do, L ]
(DgVi£(00) " Do) DoVif(00)~ [A1Vosa(6o) - - - AmVisr.m(00)]) |0}
= E{tr([p ® Do ][\’ DoVis(0o) "  ArVis,1(00) Dot A= A" DoVi(00) ™ A Vo g.m (00) Do L ]
(DgVis(00) ™" Do)~ DoV (00) " [A1Vosa(6o) - - - AmVarm(60)]) |0}
= tx([p @ Do ][50 " (Do, Vy4(09) Do, 1); 9" DV 4(00) ™ AyVg 1 (0o)s -+
" 40 {( Do, Vi (00) Do, )7 0" DyVi1(00) ™ AV (00)i] (D Vi (80) Do)~ DV (8)
[A1Var1(0o) - -+ AV ym(6o)])
since

EQVA) = EAYLE b)) = X7 " (Do, Vs (60) Do )i b
with b; the i-th element of the (k; —m) x 1 vector b and (Dg  V;7(60)Do1); " the i-th column of
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(Do, . Vys(00) Do, 1)~

= E{)\/D(l),L[Alvé'f,l(HO) - A Vos.m(00)][Lm @ Vi(00) " Dopl(DyVis(0o) ™ Do)~
DyVi(00) " [A1Vas.1(00) - - - A Vasam(00)][In ® Do 1N plp} = E{tr([p @ Do AN Dj |
[A1Vag(00) - - AnVasm(00)] T © Vi (60) =" Dopl (D Vi (60) " Do)~ DV 1(8) "
[A1Vos1(0o) - AmVarm(00)])p} = E{tr([p @ Do, 1 (Do, L Vi(00) Do) ' Dy 1 [A1Vis.a(00) - - - AmVigm(0o)]
[ @ V5 (00) = Dopl (D Vi (00) = Do)~ DoV (00) H [A1Vasa(6) - - - AmVagm(00)]),

and

as = E{N' D | [A1Vora(00) -+ AnVosm(00)][Im @ Do, L A|(DyViy(00) ™ Do) ™

DV (60)" 1A1Vor1(6o) -+ - A Vo (00)][Lm © Vi (60) " Doplplp} =

E{[NDg y AiVos.1(00) Do A -+ N'Djy | A Vg (00) Do L (Do Vi (60) ™ Do)~ Dy Vi (60) ™
[A1Vopa(fo) - A Vefm(eom ® Vi1(80) " Doplplp} =

[tr(Do, 1 (Do, Vif(0o) Do)~ Dy 1 AV (60)) - - - tr(Do 1 (Do, Vif(00) Do) Dy AV (o))
(DoVi£(00) " Do)~ DV (00) A1 Vr.a(00) - - AmVi.m(00)][Im @ V£ (60) = Doplp,

s /
80 limy oo E(s),1Q150|p) = a1 + az + a3 + as.
/ -1 .
SllIJGO Sll/,l .

limy oo 81,1Go 's101 = E{Y)Vi(00)  [A1Vora(00) - - - AmVigm(00)][ I ®fo(90) "]
(DVi£(00) " Do) I @ Vi (00) b4 [A1Vir.a(00) - - - AmVarm(00)]' Vi (00) sl p}

We construct the conditional expectation given p by substituting V;;(6g) 21 1=V #(00)"2Dop+
Vi (80)2 Do, 1),

{1/1}‘/ff(‘90)_1[141‘/bf,1(90) < AV pm (00)][Im © Vip(60) 40 ) (DGVyp(00) ™ Do) ™"

(L ® Vip(6o)~ ¢f] [A1Vas1(00) - - - AnVogm(00)' Vi (00) "l p} =

E{W}fo(go) PAL V1 (00)Vig(60)~ ¢f W Vi(00) " A Vasrm(00) Vi (00) =011 (Do Vs (00) = Do)~
(W Vip(00) P ArVisa(00)Vip(00) by - - 0 Vi (00) " AmVogm(00) Vip(00) "4 Ip} =

=2 im > E{[Y fof(eo) 1Aiv9f,i<60)v}f(‘90)_lwf][wlfvff(eo)_lAijﬁj(HO)Wf(QO)_lwf]|:0}
(DoVys(6o) ' Do)t

=D i1 2 E{[( "DyVip(00) ™ + NDg 1 )AiVasi(00) (Vi (60) " Dop + Do L N)]

[(p"DGVip(00) ™" + N Dgy | )A,; VOfJ(QO)(fo(QO) 'Dop + Do, 1 A)]|p}(Dg fo(go) 'Do);;'

= >y 2 [P DoV (00) = AiVisi(00) Vi (00) ~ Dopl [ Do Vi (6) ' A; %fy(%)vff(@o)_lDopH
2[' DoV (00) ™ AiVay,i(00)Vis(00) " Dopltr[ Do, (Df | Vig(0o) Do) Dpy | AjVay;(6o)]+
E{tr[Do,l)\XD{)yLAngf,i(90)]tr[DO,L)\XD{)?LAJ-ngJ(90)]—|—

[0 DoV (00) " AiVari(00) Do, L [0 Dy Vs (60) ~H A; Vefa(QO)Do,L)\] + 20" Dy Vi (00) " AiViy,i(00) Do, L \]
(N'Dfy | AjVoy.i(00)Vis(00) "  Dopl|p} (Do Vis(0o) "' Do),

= Zz_l Z; 1laij + bij + ¢ + dij + €3] (Dg Vi (6o)~ DO)zg )

38



ai; = {[P/D()fo(eo)flAibe,z’(90)fo(90)71Doﬂ][ﬂ'D()fo(HO)*lAjVef,j(90)‘/ff(90)71D0P]
bij = 2[p’ Dy VJ‘f(HO)_lA Vefz(eo)fo(eo)_lDoﬂ]tl"[Do 1(Dg 1 Vi#(00) Do, 1) " Dgy 1 AjViy (60)]
cii = 30" (D, Vip(Bo) Do) 2Dy | A; Vefz(Qo)Do 1(Dg, 1 Vi(00) Do, 1)~ %]mﬁr
2 Y (Db Vi (00) Do) ¥'Dh  AiVigi(60) Do, (Dj Vi (60) Do)
[(Df 1 Vip(00)Do,1) "' D} A;Vayi(00) Do, L(Dé,Lfo(QO)Do,l)fé]jljl +
2 zlfilm Zflf 1”;1;&“ [(Do vaf(QO)DO L) ,DE) J_A V6’fz(90)D0 L(Dtl) vaf(QO)DO,L)_
[(Do ﬂ/ff(eo)Do 1)7#' D} | AVr(00) Do, L(Do L Vip(00) Do,1) %)+
2211 1 2= &;ﬁzl[(Do,Lfo(QO)Do,L) 3Dy | A; Vof,z(QO)Do,LEDo,Lfo(HO)DO,LV
(Do, Vi£(00) Do, 1) 2" Dy | AjVay,i(00) Do, 1 (Dg 1 Vir(00) Do, 1)~ 2 i
dij = p'DyVip(00) " AiVayi(00) Do, (Do, 1 Vis(00) Do, 1)~ Do, 1 Voy,j(60) A5V (00) " Dop
eij = 20" DoVip(00) = AiVis.i(00) Do, (Do, Vif(00) Do)~  Do,1 Vi, (00) A5V (00) " Dop.

[N

]i1i1

D=

]i1j1

=

]iljl

since all first and third order moments with respect to A are equal to zero and

E{tf[Do,MXDé,LAi%f,i(90)]tr[Do,u\XD6,LAJVef,j(30)]|P} =
E{)\ D{ | A, ngz((%)Do J_)\)\ Do LA; ngJ(QO)DO LA} =
E{C (Dfuvff(‘go)DoL) ’D/o J_A bez(HO)DOMDquff(eO) 0,1 )%C
C(Déﬂ/ff(@o)Do 1) Dy AjVay,i(00) Do L (Dj  Vyf(0o) Dy, L)%C} =
S S S S € Cial(Dh 1 Vip(80) Do) D L AViga(60) Do
(Dy Lfo(Qo)Do 1)? ]%112[(D6J_fo<60)D0 1) D}y | A;jVor,;(00) Do, 1 (D, J_fo(QO)DO 1)2)5ij =
32“ L [(D()vaf(eO)DOL) 2Dy | A %fz(QO)DOL(DMfo(@o)DOL) 22+
23S 177317&11[(17 L Vi7(00) Do, 1)3' D}y | AiVgy.i(00) Do, L(D LVi(00) Do 1)% i,
[(Dé)lvff<60)D0 1) D} | A;jVpz(00) D, L(Do L Vi(00) Do 1)3)5,5,+

2 Y2 (Dl Vi (00) Do) ¥ Dy, AVigi(9) Do.1 (D Vs (00) Do) i
[(Doigj_vfwa)DO,J-) "Dy AjVay,i (0o )DOL( 0.1 Vir(00) Do )2+
2 nfilm Zflf 1m]1¢11[<D0 lfo(ﬁo) ) D6 J_A %fl(QO)DO%(DO,J_fo<60)D0,l)%]iljl
[(Df, Vy(00)Do,1)2' Dy | A; ‘/bfy(eo)Do 1(DG, 1 Vis(00) Do, 1)2 1

where we used that ( = (D/07Lfo(90)D07L)’%)\ ~ N(0,I;_p). Only second and fourth order
moments of the same elements of ( are therefore non-zero.

E{[p'DyVy(80) ' AiVay,i(00) Do, 1 N[ Dy Vi (00) AV ;(80) Do, 1 Al p}
= E{[p"DyVy£(00) " AiVos.i(00) Do, L ][N Do, 1 Viy,(00) A3V 4 (00) =" Dopl p}
= p'DyVi1(00) " AiVay,i(00) Do, L (Do, Vi (00) Do, 1)~ Do, 1 Vayj(00) A3Vis (60) ~ Dop

and

E{[0' DV (00) " AiViz,i(00) Do, L N[N Dj L A;Vir,i(00) Vi (60) ' Dopllp} =
= p' DV (00)~ AiVigs,i(00) Do, (Do 1 Vi (00) Do, ) Do, 1 Vi, (00) A5V (00) ™ Dop.

The conditional expectation of ny, given p therefore reads:

E[limTﬂoo 77,2,,|p] = a1 + (05} -+ as -+ Q4 + ZZ’;I Z;.n:l[aij -+ bij -+ Cl'j —+ dij -+ eij]-
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Proof of Theorem 2.

la. Wy, (th). Because my ; is stochastically bounded and converges to 1, when T goes to
infinity, the results of Lemma 6 of Phillips and Moon (1999) apply and we can let 7" and k
converge to infinity sequentially, so first 7" and then k. We construct the order of the differ-
ent elements of Wos(6y) when T and k jointly converge to infinity for which we assume that
Dr(00,Y)'Vi4(00) 1 Dr(60,Y) is of the order T** and Dy (00,Y)'Vi(00) ™' fr(60,Y) is of order
T%@Jﬂ/).

When k£ goes to infinity proportional to 7% and v > «,

—2«x

== fr (0o, Y)YV (0o) T2y (020, Y] = 50+ T~ 5% Sygan + T~ Fs100+

T=20H0720) (5,1 ga1 + Syan—sa2) + T 3OF2Dg, o0 o,
with £ = min(v, 1) and

so = mp Vis(0o)~ Do A o
Su—201 = Mo Vs (o) {o=lpr(0,Y) — Dr(0,Y)]}
510,V (00) A Vaga(00) -+ A Vagm(00)][Lm @ Vig(60) " mo]
“miy 1 [Vir(0)" = Vi (0) ' Do

K

Svin—2a1 = Le-mpy Vir(00) " {[A1Vor1(00) - AnVagm(00)] L ® Vip(60) 7]
AVosa(0o) -+ - AnVagm(00)] [ @ Vip(00) " }HIm @ mo g

Ea

S1k,1 =

|
NN
LS Ll T

Nl

Svbn—2a,2 = T’fnmé,f[f/ff(%)*l — Vi (00) " [A1Vas1(00) - - - AnVosm(00)] L @ Vi (0o) " mo ]
Su42(k—a),1 = #m&f [Vir(00) ™ = Vi (00) " [Dr(00,Y) — Dr(6o,Y)],

which we obtained by fixing the convergence rate of fr(6o,Y)Vis(00) ' Dy (0, Y) to T2+,
with v > «, and use the results that tmq Vi (60) 'mo s — 1.
' p

2a. Wcue (60) .

%fT(QOa Y)/fo(é)fl[Tﬁ%(lw)DT(é, Y)] = so+ Tﬁ%Sln,l + Tﬁ%(”+'{72a)5u+n—2a,1+

Tﬁé (v+2(k—a)) Sut2(n—).1)

with K = min(v, 1) > a.

3a. LM(6,).

—2a

ﬁfT(Qoy Y)I‘A/ff(eo)*l[T_%(HV)]?T(QO, Y)] =50+ T_UTSV—Qa,l + T 281,01+

T_%(V—’_H_Qa)(su—l—n—%z,l + 5V+n—2a72) + T_%(V+2(K_a))81’+2(ﬁ*a)vl’

with K = p.
4a. K(eo).

T_%(Ha)fT(@m Y)/fo(eo)fl[T_%(HV)DT(QO, V)= so+T 21,1 + T_%(V+H_2Q)SV+H—20¢,1+

T % (v +2(k=a)) Sv42(k—a),1;

with K = p.
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1b. W, ().

[T é(1+'/)Z?T(925 Y)) fo(ézs) T30 pr(fa,,Y)) = 5 G02+ T %G1+ T 2Great
V+Ii [
(v—a Gz (v—a)1 + 17 3 (v ) (Goynt + Graro) +T~ <G21/+l€ 2a1 + Govtr—2a,2)+

v42k

T > Guion1 + T (Gopin—ayt + Govin—a)2) + T3 vt3n—a )Gy 3r-20,1

with x = min(v, ) and

Go = D()fo(go)ilDo

G = D/onf(Qo)*l[Albevl(QO) - AV 5.m (00)|[ I @ V4 (60) " mo £]+
(L @ Vi(60) " mo,g]' [AtVag,1(00) - - - AV m(00)]' Vi (00) ™ Do

G = TSD olVir(0)™" = Vir(6o) '] Do

Gao-ayg = FIm @ Vyp(00) 'mo s [A1Voga(00) - - - AmVagm(00)]'Vip(6o) !

[Alvef,l(%) AV g (00)] [T @ V5 (00) " o 4]

Gyirg = TgD'[fo(Q) fo(é’o) H[AWVas1(00) - - - AnVasm(00)][Im @ Vi (0o)~'mo f]+
T3 [Ln @ Vi (00) " mo ) [A1Vosa(00) - -+ A Vigm(00)]' Vi (80) ™' Do

Guirg = 730D [Dr(0,Y) — Dr(00,Y)) Vi (00) ' Do+

12D DV (00) " [Dr(0,Y) — Dy (6o, Y))]
Gavenzas = LT3, 8 V57(00) " mos| [A1Voga(6o) - AnVason (Bo)]

[ f{( )~ = Vip(00) [A1Var1(00) -+ - A Vorm(00)][ I © Vip(00) o g
Govin-zap = LT3 D[Dp(0,Y) — Dr(0o, Y)'Vir(00) [A1Vas.1(00) - - AmVasm(00)]

(I @ Vi4(80) "mo g] + 1 T2 DL, @ Vig(B0) " mo 5
[A1Vora(00) - - - AnVosm(00))'Vis (00) " [Dr(6,Y) = Dr(6o, V)]
Giony = T2 V[Dp(6,Y) - DT(QO»Y)]'Wff(Q);l — Vy#(60) '] Do+
T Dy [V (0) 7" = Vip(60) )[Dr(8,Y) = Dr(6o,Y))
Gavin-oya = T2 D[Dr(0,Y) = Dr(o, Y [Vy7(0)™ = Vis(60) 7]
[Alvﬁf,l(eo) + A Vogm(60)] [ ® fo(90)71mo,f] + T3 D[L,, @ V(o) mo ¢

[A1Vora(00) - - AVosm (00) [V () = Vi1 (00)[Dr(8,Y) = Dr (6o, Y)]

Goin-ae = TV [ T( Y) = Dr(00,Y)|'Vy(00) " [Dr(0,Y) — Dr(60,Y)]

G2u+3m—2a,1 = %TE(?W [ (97 Y) - DT(QOa Y)]I[fo(g)il - vff(QO)il][DT(97 Y) - DT(QOa Y)]
Hence, R R R

T pr(0,Y ) Vig () pr(0,Y)] ™ = Go' + T72Qy,
with
Q1= —Gy'(Gra+H) ' +T2G, 716Gyt

where H = - l,/704)612(1/704),1 + Tﬁ%ﬁ(Gu+n,l + Gu+/-e,2) + T~ V*’“ . (G2u+n 2a,1 +

G2y+/172a,2) + T_HGu+2/1,1 + Tﬁ(élﬂrnia) (GQ(V—FR—O(),I + GQ(V—H;—a),Q) + Tﬁ%(lﬂr&i ¢ G2u+3nf2a,1-
2b. W (0).

(13049 Dy(§,¥)] Vi () 1T304 Dr(0,Y)] = Go + T~ 5Churt
T 30FG, o + T‘ﬁz—HGwzm + T_(V+“—O‘)G2(u+n—a),1 + T 238Gy 3 901,
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with k£ = min(u, v). Hence,
T D0, Y)Y Vip(0) ' Dr(0,Y)] ™ = Go* + T72Qq,

with
Q1= —GytGren + H) '+ T73G1Gyt

where H = T_%”Gwmg +
3b. LM(6y):

pramg + T 0F3m ) Gogn—a)1 + T3 250Gy o a0

(120 (00, Y] Vg (00) T304 Ipr (80, Y] = Go + T 4Gy + T3 G+
1t V+K, a
Tf(yfa)G2(ufa),1 + T2+ )(Gu+nl + GV—i-H 2) + 71" (G2V+” 2a, 1 + GQ'H'F” 2a 2)+

v42K
T_+Gu+2/1,1 + T_(V+H_a)(G2 (r4r—a)1 T Govtr—a)2 2) + T-3(r+3n—a G2u+3572a,1

with k = pu. Hence,

T [pr (6o, Y),fo(QO)_lpT(QOa V)7 =Gyt +T2Q,
with
Ql = —G_l[(Gl,, 1+ H)fl + T_%Gal]flGo_l,

with H = 70 G2(u a1+ 1772 (Gl/+n,1 + Guyra) + 17 B (Govgr—20,1 +

Govin—202) + 1~ Gy+2;<71 T (Grin—a (G2(V+H—a )1+ Gotn—a)2) + T3 3n—a G2u+3n—2a,1-
4b. K(by):

(1204 Dy (00, V)] Vi (00) (T2 D6, Y)] = Go + T~ 3G+
T2 izt + TGy gy o + T 2@ 357Gy, s o,

with k = u. Hence,
N N ~ -1 .
T Dp(0o, Y)Y Vi (00) 1 Dr(60,Y)| =Gyt +T7350Q,
and
Q1= —Gy'[(Gua+H) 7 +T2G; Gy,

with H = T73"Gyina + T~ G o + T_(V+%“_Q)G2(u+n—a),2 F T A2 G, e o
1c. Wgs(go)

—2a

Was(0o) = no+T"2 nysa + T~ ng_ny + T2y, 90y + T 20, + T 20, + T "ng+
T_%(V+ﬂ_2a)ny+m—2a + T_%(V—Hi)nu—l-n + Tﬁ(yia)nﬂu—a) + T_%(V+2(K_a))nu+2(n—a)+

T_%(2V+H_2a)n2u+m—2a + Tﬁ(lﬂmia)nQ(Vﬁ-n—a) + T_%H+2(V_2a)nn+2(u—2a) + Tﬁ(u+ﬁ72a)”2(l/+n—2o¢)7
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with k£ = min(u, v),

no = s,Gg'so
/ -1 / —1
Ny—2a = Su72a,1G0 so + 590Gy Su-20,1
! —1
N2v—20) = Sy-201G0 Sv—20,1
_ /
n, = $oQ10
/ —1 /1 —1
N = 81,1Go 50 + 56Go S1ma
ry—1 1 —1
Ny4r—2a = (Su+nf2a,11+ Sl/+/172a,2) (;’01 50 + SOGO (Su+n72a,1 + Su+nf2a,2)+
/ — / —
Sl/—2a,1G0 S1k,1 T 51n,1G0 Sv—2a,1
/ —1
Nok = 51/4,1G0 S1k,1
/ /
Nytr = 81H,1Q150 + 50Q 15141
_ / /
N2v—a) = Sy_901@150 + 50Q15, 20,1 X X
_ 1 — / —
ny+2(/¢—a) - (3u+nf2a,1 + fzx+/172a,2) Cfo S1k,1 + Sln,lGo (3u+nf2a,1 + Su+/172a,2)+
/ — ’ =
81/+2ri72a,1G0 50 + SOGO Sv42k—2a,1
_ / /
Noy+k—2a = (Su+/-cf2a,1 + Su+n72a,2) QISO + 30Q1<5u+n72a,1 + Su+n72o¢,2)
_ / / /
No(v4k—a) = 3,/4_2(%_@)’1@150 =+ SOQISV—FQ(K—Q),I + (3u+nf2a,1 + Sy+nf2a,2) leln,l—i_
/
Sl/{,lQl(‘SV—‘rK]—QaJ + Su+n—2o¢,2)
_ /
nﬁ+2(y—2a) - 3;/720471@131/7204,1
— r—1
n2(y+/~s—2a) — (3u+nf2a,1 + Sl/+/172a,2) Go (Su+n72a,1 + 3u+nf2a,2)

2c. Wcue (90)2

Wcue (90) = no+ Tﬁ%nn + T_Hn2/1 + Tﬁgnn?m + Tﬁ%(UJrHiQa)nl/Jrana—i_
T_%(V+R_2a)ny+572a + T_%(VJ'_Q(R_O‘))TLV_FQ(H_Q)

with k£ = min(u, v),

no = s,Gg'so
/ ! -1 /=1
TI% — SOQISO + Sl)‘é,lGO SO + SOGO Sll@l
/ -1 ! /
Nox = $1.1Go S1e1 + S1,.1@150 + 50Q 15141
/
N3k = 51,{’1@151%,1
_ ! —1 /1 —1
Nutr—20 = Syip—201G0 130 + 560G 3u+rf2a,1
_ / — / — !/
Myya(s-0) = Sppr-201G0 S1m1 + 81,1Go Sutr—2a,1 T fV+nf2a,lQ150+
/ / — / —
50Q15v+x—20,1 + Syq06201G0 S0 + 50G0 Sv+2r—20,1
_ ! -1
n2(y+nf2a) - Sy+n—2a71G0 Sy+k—2a,1

3c. LM(6,) :

v—2a

LM(00) = no+ T2 nyosa + T g o) + T2y g0y + T 20y + T30y + T gt
Tﬁ%(y+ni2a)nu+nf2a + Tﬁ%(UJrH)nqun + T_(V_Q)HQ(V—OO + Tﬁ%(y+2(ﬁia))nu+2(m—a)+
1 1
T2 tr=20) 20 + T_(V+H_a)n2(u+n—a) + T_5R+2(V_2a)nn+2(u—2a) + Op(T_(VJm_a))

with kK = p,
no = s,Gg's0
Ny_—9q = 82/720416(6150 + 36G615u72a,1
n2(y—2a) — S;/fza,lGalSl/an,l
n, = s5Q10
n, = 81,,1Gy " s0 + 56Gg S
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1—1 / —1
Ny4r—2a = (Sl/+/~s—2a,1 + Sy+/~c—2a,2) Go 50 + SOGO (Su+n—2o¢,1 + Sy+m—2a,2)+
/ —1 / —1
Sl/—2a,1G0 S1k,1 T 31/@,1G0 Sv—2a,1

Nok = 8'1,@71@61815,1
Nyt = SIIH,IQISO + S()leln,l
N2(v—a) = Su 2a, IQISO + SOQISV 20,1
nl/+2(/¢—a) = (Squn 2a,1 + Szx+/1 2« 2) Go S1k,1 + 315 1G0 (3u+nf2a,1 + Su+/172a,2)+
Su+2n 2a, 1GO S0 + SOGO Sv42k—2a,1
Noy+k—2a = (Sll+l-€ 2a,1 + Sv+k— 2a,2) QISO + 30Q1<5u+n72a,1 + Su+n72o¢,2)
No(v4k—a) = 3,,/4_2(%_@)’1@150 =+ SE)QISIJ—FQ(K—O[),I + (3u+nf2a,1 + Sy+nf2a,2),leln,1+
SII/{,IQl(SV-‘r/i—Qa,l + Su+m—2o¢,2)
nn+2(l/—2a) - S:/72a71Q15y—2o¢,1
4c. K(eo) .
K(Qo) = TNy + T‘gn,ﬁ + jjili’l’bg,i + 71_%%713,.i + T_%(”+”_20‘)n,,+,§_2a+
T_%(V+H_2a)ny+n—2a + T_%(V+2(H_a))nu+2(nfa)
with k = p,
ng = spGg'so
ne = syQ150 + $1,.1Gg 0 + 4Gy 's1k
Ny = 8'1,.; 1Go 11+ 81,1Q150 + 56Q15161
N3k = Sln 1@181r@ 1
Nytk—2a = 1/+/§ 20, 1G SO + SOG SV—H@ 2a,1
My42(h-0) = Syir—2a, 1Go st + S, Gy Su+n 20,1 T Swm 20,1 @150+

30Q18u+n 20,1 + 51490 20, 1Golso + s6Go Syt 20,1

Lemma 3. Convergence of

Svtr—2a,1 = TT%Nm/o,fof(QO)_l{[Alvef1(90) A %fm(e I m ®fo(90)_1]
—[A1Var1(00) - - - AnVasm (0oL @ Vi (00) "'} Im @ mo ]

— (Su+n—2oz,1,l .. SV—I—H—Qa,l,m)
with

Syt 201 = k mo SV (00) A [Vori(00)Vip ()71 = Vri(00) Vi (00) mo g
= k (60) " AilVaz.i(00) — Vari(00)] Vs (60) o s—
(

1’f 90) YA Vy1.i(00)Vip(Bo)™ 1[‘A/ff(eo) fo(90)]‘7ff(90)_1mo,f
= —mo,fof(9o AilUps; — bez(%)vff(@o) YU IVip(00) Mo s + 0p(1)

/\wlb—'w

)t
mo fof(Ho) LA Uszfo<00) "o,y + 0p(1)
7m0, Vi (00) ™ @ Jzmg  Vip(60) A vee(Up.p) + 0p(1).

where Up r; = Upgi — Vir.i(00)Uys. Because of Assumption 2%,

Sutn-2a,1i = (=M Vir(0o)™t @ J=mp (Vi(00) ™ Ai)vee(Us.z.i) + 0p(1)
- AZ?
d
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Wlth)\z ~ N(O, 011(90) and aij(«%) = llmkﬁw(ﬁm&f‘/ff(90)_1®ﬁm67f‘/ff(‘90)_1AZ)/I/T/” (90)(#m67f‘/ff(90)_1(

ﬁmf)vaf]%g())ilAj), where

Wi (0o) = limp .o Elvec(Ups; — Vef,z‘(9?)fo(90)71Uff)VeC(Ué)f,j - Vef,j(eo)vff(@cll)*lUff)'L
= El(Wug,r— Vori(00)Vir(00) ™ Skyme1)uss) Wugr — Vori(00)Vig(00) ™ Sk pimany®urr)],

which expression can be further constructed using Assumption 2*.

Proof of Theorem 3. The convergence of S(fy) is characterized by
5(90) = wo+ T_%wu + Op<T_%),

with wy = mafof<60>7lmo_f, wy, = T%m(lf[fo(@o)il—fo(eo)il]mo_f. By decomposing fo(@())_%m&f
as
Vip(00)~=mo s = Vi(60) "2 Dopg + Vi4(60)% Do 1 Ao
with Py = (Défo((go)_lDo)_lDé‘/ff(eo)_lmo_f and \g = (Dé,Lfo(eo)DoyL)_lD()’Lmo.f and DO’J_ :
kr x (ky —m), D(’MDO =0, D(’MDO,L = Ix;—m; we can specify the higher order properties of
S(6p) also by
S(60) = no+noL+T 2w, +0p(T %),
with
no = mp Vs (0o) 7 Do(DoVy(00) ™" Do)~ DyVi(60) " mo.,
no1 = my Do (Dy  Vi(0o) Do)~ Dy mo .
The higher order properties of the J-statistics result from substracting the higher order properties
from Theorem 1 from the S-statistic. Consequently,

JQS(QO)
Jeue (6o) =ng +T 2w, — T=3n, + T 3n, + Tﬁ#nwm + T ng, + T "ngx+
Jrar(0o) 0,L p T3 Ry, 4 T30 2000, o T3y, + 0, (T~ 3),
Jk (0o)

where all the components for the respective statistics are defined in Theorem 1.
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