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Chapter 1

Introduction

This thesis investigates parameterized in�nite-horizon non-convex dynamic optimization prob-

lems on one-dimensional state spaces. Such problems often occur in environmental economics,

see Brock and Starrett (2003), Mäler et al. (2003), Schefferet al. (2001), Scheffer (2009).

Non-convex problems may exhibit multiple equilibria, that occur or disappear as the param-

eters vary. Among those equilibria more than one can be optimal to converge to, depending

on the initial state of the system. There is a body of work in different areas of economics de-

voted to multiplicity of optimal solutions, see for instance Sethi (1977), Skiba (1978), Dechert

and Nishimura (1983), Tahvonen and Salo (1996), Sethi and Thompson (2000), Caulkinset al.

(2001), Brock and Starrett (2003), Haunschmiedet al. (2003), Wagener (2003), Dawid and

Deissenberg (2005), Haunschmiedet al. (2005), Caulkinset al. (2007), Crepin (2007), Kos-

sioriset al. (2008), Zeileret al. (2009), Kiseleva and Wagener (2010).

The presence of multiple equilibria can make solving a non-convex optimal control prob-

lem quite complicated. In problems with linear or convex dynamics small changes have small

effects on the solution structure. In contrast, for problems with non-convex dynamics slight

modi�cations of the system parameters can change this structure not only quantitatively but

also qualitatively. In this thesis methods are developed for non-convex optimal management

problems that allow to obtain the global solution structure of the problem and also to indicate

the critical parameter values that correspond to qualitative changes of this structure.
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In the theory of dynamical systems there is a branch - bifurcation theory - focusing on

obtaining qualitative information about solutions of parameterized dynamical systems. The

basic idea is to determine persistent properties of systems. Examples of such properties are the

number and the type of equilibria, the presence of periodic orbits etc. If slight changes of the

system parameters cause a change in one of these properties, then the dynamical system is said

to undergo a bifurcation.

Bifurcation theory is based on and is a rami�cation of the theory of structural stability of

dynamical systems, which has a long history. It has been anticipated by Poincaré at the end

of the 19th century. The concept of structural stability was �rst introduced as `roughness' by

Andronov and Pontrjagin in 1930s. It took off in the 1960s together with the development of

the theory of differentiable dynamical systems, and was further developed and popularized by

Peixoto, Smale, Thom, Zeeman and Arnol'd in 1960s and 1970s.

In this thesis ideas from dynamical systems theory are used to develop bifurcation theory

for in�nite horizon optimal control problems. The solution of such a problem can be expressed

as an optimal vector �eld, which gives the state dynamics under the optimal policy. It turns

out that qualitative changes of the optimal vector �elds are connected to qualitative changes of

the canonical state–costate system. This provides a way to link bifurcation theory of dynamical

systems to the theory of bifurcating optimal vector �elds.

The results of a bifurcation analysis are usually expressed in a bifurcation diagram, which

shows the `shapes', or types of the structure, of the optimal vector �eld for all values of the

parameters as well as the bifurcation set where the shape changes. The structure of a generic

(i.e. Kupka-Smale) one-dimensional vector �eld is characterized by the number and the types

of its steady states; they can either be attractors or repellers. Optimal vector �elds also feature

`indifference points' that are particular to control problems. At such a point a system manager

is indifferent between two strategies implying two different long run outcomes. An indifference

point acts as a repeller in the sense that trajectories starting near it move away, though it is not

a steady state of the dynamics.

An example of a bifurcation diagram is given in Figure 1.1 (taken from Chapter 3). It shows
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Figure 1.1: Bifurcation diagram for the shallow lake model with respect to the parameters:
relative costs of pollution and discount rate. The �gure is taken from Chapter 3.

the bifurcations of the shallow lake system (introduced in Chapter 3) that describes the prob-

lem of optimal management of water pollution. In the model the social planner limits usage of

arti�cial fertilizers on farmlands surrounding a shallow lake. The phosphorus contained in the

fertilizers is washed into the lake by underground �ows and is the main pollutant of the water.

The optimal policy of the planner depends upon the model parameters: cost of pollution and

discount rate. From Figure 1.1 the structure of the optimal solution can immediately be deter-

mined for any value of the parameters. The shapes of the optimal vector �eld are shown as well.

It can be seen from Figure 1.1 that the shallow lake system has three qualitatively different con-

�gurations of optimal paths depending on the values of the two parameters: (I) the optimal state

dynamics converges to the unique steady state; (II) depending on the initial value the optimal

state dynamics converges to one of the two attractors, separated by an indifference point; (III)

depending on the initial value the optimal state dynamics converges to one of the two attractors,

separated by a repeller. The solid lines that separate regions corresponding to different solu-

tion structures are bifurcation curves of the problem. A point on such a curve determines the
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parameter values for which dynamics under optimal management of the shallow lake system

is structurally unstable; a slight deviation of the parameters yields qualitative changes of the

solution structure. The dashed lines in Figure 1.1 correspond to bifurcations in the associated

state-costate system of the problem that do not correspond to bifurcations of the optimization

problem.

In region (I) there is a unique socially optimal equilibrium. The pollution level at the equi-

librium continuously depends on the parameter values: for a �xed discount rate the higher the

cost of pollution the lower the equilibrium pollution level. In region (II) the initial pollution

level determines which of the two equilibria, `clean' or `polluted', is socially optimal. If ini-

tially the lake is clean then it is optimal to keep it clean: the social planner puts a low quota on

usage of fertilizers and steers the lake to the `clean' equilibrium. If initially the lake is polluted

then the planner lets farmers enjoy high bene�ts and steers the lake to the `polluted' equilib-

rium. In region (III) there are three optimal steady states: `clean', `intermediate' and `polluted'.

The scenarios of convergence to the `clean' and `polluted' equilibria are the same as in region

(II). The `intermediate' equilibrium is a repeller, thus it is optimal only for one single initial

pollution level - the pollution level at the `intermediate' equilibrium.

The next natural step is to extend the bifurcation methodology for optimal vector �elds to

stochastic problems. However, several dif�culties present themselves. First of all, the corre-

sponding Hamilton-Jacobi-Bellman equation is a singularly perturbed differential equation and

requires special solution methods. Chapter 4 develops a method that allows to compute an

approximate solution of such an equation. The method is based on considering the stochastic

problem as a singular perturbation of the corresponding deterministic one (for singular pertur-

bation theory see Fleming and Souganidis (1986) and Verhulst (2005)). This assumption allows

to approximate the value function of the stochastic problem by the quantities computable from

the deterministic value function.

Also, concepts like bifurcation and indifference points cannot be adapted from the deter-

ministic context directly. A bifurcation is a qualitative change of persistent properties of a

system. For deterministic systems that means for instance a change in the number or the type of

4



equilibria of the optimal vector �eld. For stochastic systems optimal vector �elds are however

not well de�ned. Instead, qualitative changes in a certain geometrical invariant of the resulting

controlled stochastic process, the so-called transformation invariant function (see Wagenmak-

erset al. (2005)), are considered in Chapter 5. A stochastic bifurcation is then understood as

a qualitative change of the shape of this function, such as the change from unimodality to bi-

modality. Local maxima of the transformation invariant function are then stable steady states

of the stochastic process; its local minima are called regime switching thresholds. A regime of

a system is an interval in a state space bounded by such thresholds. When the boundaries are

crossed due to a large shock, the regime of the system changes. A regime switching threshold is

a stochastic analog of a deterministic threshold point in the sense that they both separate basins

of attraction of stable steady states of the optimally controlled process. However there is an im-

portant difference between them: at a threshold point there can exist multiple optimal controls

whereas at a regime switching threshold there exists a unique optimal control.

Figure 1.2: Bifurcation diagram for the stochastic lake problem with respect to the noise inten-
sity (bottom �gure) is shown together with the corresponding transformation invariant function.
The solid and dotted lines correspond to maxima and local minima of the transformation invari-
ant function respectively. The �gure is taken from Chapter 5.

5



Using the new bifurcation concept, a bifurcation analysis of a stochastic lake model is per-

formed (see Chapter 5). This model is an extension of the deterministic shallow lake model

where the pollution dynamics equation is perturbed by a stochastic term. Figure 1.2 displays a

bifurcation diagram with respect to the noise intensity as well as the associated transformation

invariant function. The �gure shows that the transformation invariant function of the problem

is bimodal for low levels of noise; it becomes unimodal when the noise level increases. The

dashed lines indicate the levels of the noise intensity for which the transformation invariant

functions are plotted. The stable steady states of the controlled process are located at solid lines

in the parameters plane and correspond to maxima of the transformation invariant function. The

regime switching thresholds are located on the dotted line and correspond to local minima of the

transformation invariant function. Such a point separates two regimes, `clean' and `polluted', of

the pollution dynamics in the shallow lake. When the lake is in `clean'(`polluted') regime, the

pollution �uctuates around the `clean'(`polluted') stochastic steady state. Transitions between

the regimes occur due to large shocks in the pollution stock.

Figure 1.2 shows that as the noise intensity in the lake system increases the transformation

invariant function becomes unimodal with a mode at the `clean' equilibrium. It is a demon-

stration of the precautionary principle: facing the uncertainty the social planner acts to avoid

serious or irreversible potential harm to the environment.

The next section provides a short outline of the thesis.

Outline of the thesis

The results of this thesis are presented in four chapters, each of which is mostly self-contained.

Some basic notions and de�nitions are brie�y restated in subsequent chapters.

In Chapter 2 parameterized families of deterministic optimal control problems with two di-

mensional state-control space are studied. The concept of anoptimal vector �eldcorresponding

to such a problem is introduced. It is a one-dimensional multivalued vector �eld that describes

the state dynamics under the optimal policy. The families of optimal vector �elds can bifur-
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cate. A classi�cation of all possible bifurcations of optimal vector �elds up to codimension 2 is

obtained.

In Chapter 3 the theory of bifurcations of one-dimensional vector �elds developed in Chap-

ter 2 is applied to the shallow lake model. This model serves as a prototype of an optimal

management problem with con�icting intertemporal interests, short-term bene�ts and long-

term costs, that features in many economic-ecological problems. A bifurcation analysis of the

shallow lake problem is given with respect to all system parameters: natural resilience, relative

importance of the resource for social welfare and future discount rate. In particular, it is shown

how the increase of the discount rate affects the parameter regions where an oligotrophic steady

state, corresponding to low pollution level, is either globally or locally stable under optimal dy-

namics. A modi�ed version of Chapter 3 constitute a paper published in Journal of Economic

Dynamics and Control.

In Chapter 4 stochastic optimal control problems with small noise intensities are studied.

A method of constructing approximate solutions to such problems is developed, based on sin-

gular perturbation theory.

In Chapter 5 a concept of stochastic bifurcation and a stochastic analog of a deterministic

threshold point are introduced. A bifurcation analysis of the stochastic lake model with respect

to the noise intensity parameter is performed. Particularly, it is shown that the mode of the

transformation invariant function associated with the `polluted' steady state vanishes when the

noise intensity in the system increases.
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Chapter 2

Bifurcations of one-dimensional optimal

vector �elds

The investigation of an economic dynamic optimization problem that features a globally attract-

ing steady state reduces mostly to a quantitative quasi-static analysis of this state, determining

the rates of change of the position of the steady state and the value of the objective functional as

certain key parameters are varied. In contrast, if there are more than one attracting steady state

in the system, or more generally, more than one attracting set, the question arises towards which

of these the system is driven by the optimal policy. Put differently, in the presence of a single

globally attracting steady state, optimal policies can differ only in degree; if there are multiple

attracting states, they may also differ in kind.

Since the late 1970's, optimal policies that are qualitatively different have been found in

many economic models: in growth theory they have been used to explain poverty traps (Skiba

(1978), Dechert and Nishimura (1983)); in �sheries, they can model the coexistence of con-

servative versus overexploiting policies (Clark (1976)); there are environmental models where

both industry-promoting but polluting as well as ecologically conservative policies are optimal

in the same model, depending on the initial state of the environment (Tahvonen and Salo (1996),

Mäleret al. (2003), Wagener (2003), Kiseleva and Wagener (2010)); in migration studies, ac-

tive relocation as well as no action policies occur in the same model (Caulkinset al. (2005));
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optimal advertising efforts may depend on the initial awareness level of a product (Sethi (1977,

1979)); the successful containment of epidemics may depend on the initial infection level (Sethi

(1978), Rowthorn and Toxvaerd (2011)); in the control of illicit drug use, high law enforcement

as well as low enforcement and treatment of drug users (Tragleret al. (2001), Feichtinger and

Tragler (2002)) can depend on the initial level of drug abuse; in R&D policies of �rms, the

optimal decision between high R&D expenditure investment (Hinloopenet al. (2010)) to de-

velop a technology versus low investment to phase a technology out may depend on the initial

technology level.

In all such models, there is for certain parameter con�gurations a critical state where both

kinds of policy are simultaneously optimal, and where the decision maker is consequently in-

different between them. These points will be calledindifference pointsin the following, though

they go by many other names as well1.

Usually, the presence of an indifference point is established numerically for a �xed set of

parameter values of the model. In order to study the dependence of the qualitative properties

of the optimal policies on the system parameters, it is possible in principle to do an exhaustive

search over all parameter combinations. Such a strategy, while feasible, would however be very

computing intensive.

A different approach is suggested by the theory of bifurcations of dynamical systems: to

identify only those parameter con�gurations at which the qualitative characteristics of the solu-

tions change. For instance, in Wagener (2003) it was shown that indifference points disappear

if a heteroclinic bifurcation of the state-costate system occurs. This mechanism, for which we

propose the termindifference-attractor bifurcation, relates the change of the solution structure

of the optimal control problem to a global bifurcation of the state-costate system.

The present article conducts a systematic study of the bifurcations of in�nite horizon optimal

control problems on the real line that are expected to occur in one- and two-parameter families.

The theory developed here has already been applied in several places (Wagener (2003), Caulkins

et al. (2007), Graß (2010), Kiseleva and Wagener (2010)).
1For instance Skiba points, Dechert-Nishimura-Skiba points, Dechert-Nishimura-Sethi-Skiba points, regime

switching thresholds, Maxwell points, shocks etc.
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2.1 Setting

2.1.1 De�nitions

Let X � R be an open interval, andU � Rr a closed convex set with non-empty interior.

Let � > 0 be a positive constant andf : X � U ! R, g : X � U ! R be in�nitely

differentiable, orsmooth, in the interior ofX � U, and such that all derivatives can be extended

continuously to a neighborhood ofX � U. Finally, let� 2 X .

Set

H = g(x; u) + pf (x; u)

and assume that
@2H
@u2

(x; p; u) < 0 (2.1)

for all (x; p; u) 2 X � R � U

Consider the problem to maximise

J (x; u) =
Z 1

0
g(x(t); u(t))e� �t dt (2.2)

over the space of state-control trajectories (or programs)(x; u) that satisfy

1. the functionu : [0; 1 ) ! U is locally Lebesgue integrable over[0; 1 ) and essentially

bounded; that is,u 2 L1 ([0; 1 ); U)

2. the functionx : [0; 1 ) ! X is absolutely continuous and satis�es

_x = f (x; u) (2.3)

almost everywhere;

3. the initial value ofx is given asx(0) = � .

This problem will be referred to asin�nite horizon problemin the following. A solu-

tion (x; u) to the problem is usually called amaximizeror amaximizing trajectory.
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Assumption 2.1.1.In the in�nite horizon problem, for every� 2 X there exists at least one

maximizer(x; u) satisfyingx(0) = � .

Maximizing trajectories enjoy the following time invariance property, which is commonly

known as the dynamic optimization principle.

Theorem 2.1.1. If the trajectory(x(:); u(:)) solves the in�nite horizon problem with initial

condition� , then for any� > 0, the time shifted trajectory(x(� + :); u(� + :)) solves the in�nite

horizon problem with initial conditionx(� ).

De�ne themaximized Hamiltonianas

H(x; p) = max
u2 U

f g(x; u) + pf (x; u)g

Assumption (2.1) implies that the maximum is taken at a unique pointu = v(x; p), wherev

depends smoothly on its arguments; consequently, the functionH is smooth as well.

For a maximizing state trajectoryx, there exists a continuous costate trajectoryp satisfying

the reduced canonical equations

_x = F1 = H p; _p = F2 = �p � H x ; (2.4)

which de�ne the reduced canonical vector �eldF = ( F1; F2). Moreover,x andp satisfy the

transversality condition

lim
t !1

e� �t p(~x � x) � 0 (2.5)

for all admissible trajectories~x. Trajectories of the state-costate equations (2.4) are classi-

cally calledextremal. Extremal trajectories that satisfy the transversality condition (2.5) will be

calledcritical in the following. Note that a noncritical trajectory cannot be a maximizer.

Recall that thepower setP(S) of a setS is the set of all subsets ofS.

De�nition 2.1.1. The optimal costate ruleis the set valued mappo : X ! P (R) with the

property that if� 2 po(� ), then the solution of the reduced canonical equations with initial
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value

(x(0); p(0)) = ( �; � )

maximizes the integralJ . Associated to it are theoptimal feedback rule

uo(x) = v(x; po(x)) ;

and theoptimal vector �eld

f o(x) = H p(x; po(x)) = f (x; uo(x))

which are both set-valued as well.

A mapx : [0; 1 ) ! X is a trajectory of an optimal vector �eld if

_x(t) 2 f o(x(t))

for all t � 0.

The solution trajectories of an optimal vector �eld solve the associated maximization prob-

lem. Note that an optimal vector �eld is commonly called a `regular synthesis' in the literature.

Theorem 2.1.2.The setspo(x(t)) andf o(x(t)) are single-valued for allt > 0.

Proof. See Fleming and Soner (2006), p. 44, corollary I.10.1.

2.1.2 Indifference points

The following de�nition is one of the possible interpretations of the notion of `Skiba point'.

De�nition 2.1.2. If � 2 X is such that there are maximisersx1, x2 of the in�nite horizon

problem withx1(0) = x2(0) = � andx1(t) 6= x2(t) for somet 2 [0; 1 ), then� is called an

indifference point. The totality of indifference points form theindifference set; its complement

in X is thedomain of uniqueness.

13



In one-dimensional problems an indifference point is an initial point of two trajectories that

have necessarily different long run behavior. It is worthwhile to note that this is not true for

problems with higher dimensional state spaces, or for discrete time problems (see Moghayer

and Wagener (2009)).

De�nition 2.1.3. The ! -limit set ! (x) of a state trajectoryx is given as

! (x) = f � 2 X : x(t i ) ! � for some increasing sequencet i ! 1g :

Using! -limit sets, threshold points can be de�ned.

De�nition 2.1.4. A point� 2 X is a threshold point, if in every neighborhoodN of � there are

two states� 1; � 2 2 N that are initial states to state trajectoriesx1; x2 such that the respective! -

limit sets are different:! (x1) 6= ! (x2).

Threshold points are boundary points of basins of attractions.

De�nition 2.1.5. A setB is thebasin of attractionof another setA, the attractor, if for ev-

eryx 2 B the! -limit set ofx is equal toA: ! (x) = A for all x 2 B.

Unlike the situation for `ordinary' dynamical systems, a threshold point can be an element

of one or more basins of attraction, and basins can overlap.

De�nition 2.1.6. A point � 2 X is anindifference thresholdif it is both an indifference point

and a threshold point.

Equivalently, an indifference threshold is a point that is contained in more than one basin

of attraction. In the literature, both threshold and non-threshold indifference points have been

called `Skiba points'. A more precise terminology seems to be desirable.

Dynamical systems on a one-dimensional state space that are de�ned by a vector �eld have

typically two kinds of `special' points: attractors and repellers, which are both steady states; the

knowledge of these special points is suf�cient to reconstruct the �ow of the system qualitatively.

Analogously, an optimal one-dimensional vector �eld hasoptimal attractorsandoptimal

repellers, which are both optimal equilibria; in addition it has indifference points. Again, the

knowledge of the optimal equilibria and the indifference points is suf�cient to reconstruct the

qualitative features of the solution structure of the in�nite horizon problem.
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2.2 Bifurcations of optimal vector �elds

The analysis of bifurcations of a parameterized family of optimal vector �elds is performed in

terms of the reduced canonical vector �eld, but it is perhaps worthwhile to point out that the

latter is an auxiliary construct.

The optimal vector �eld de�nes a continuous time evolution on the state space, that is well

de�ned for all positive times. When the state space is one-dimensional, the evolution has cer-

tain special properties: trajectories sweep out intervals that are bounded by optimal attrac-

tors and optimal repellers or indifference points. At a bifurcation, the qualitative structure of

these trajectories changes. For instance, in a saddle-node bifurcation, an attractor and a re-

peller coalesce and disappear, together with the trajectory that joins them. Analogously, in an

indifference-attractor bifurcation, an indifference point and an attractor coalesce and disappear,

again together with the trajectory joining them. It is clearly impossible that a repeller and an

indifference point coalesce, for the trajectory which should be joining them could have no! -

limit point. However, there is a third possible bifurcation scenario: a repeller may turn into an

indifference point. This also changes the solution structure, the constant solution that remains

in the repelling state has no equivalent in the situation with the indifference point.

The indifference-attractor bifurcation and the different kinds of indifference-repeller bifur-

cations have obviously no counterpart in the theory of dynamical systems: they are typical

for optimization problems. Instances of indifference-attractor bifurcations have been analysed

in Wagener (2003, 2006).

2.2.1 Preliminary remarks.

If N is a bounded interval ofR with endpointsa < b, let the outward pointing `vector'� (x) be

de�ned as

� (a) = � 1; � (b) = 1 : (2.6)
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Notions from optimal control theory

The reduced canonical vector �eldF of the in�nite horizon problem under study is given as

F = ( F1; F2) = ( H p; �p � H x ):

Assumption (2.1) implies that the strong Legendre-Clebsch condition

H pp(x; p) > 0 (2.7)

holds for all(x; p).

One of the implications of this condition is that eigenspaces of equilibria of the reduced

canonical vector �eld are never vertical. More precisely, the following lemma holds.

Lemma 2.2.1.If the strong Legendre-Clebsch condition holds, all eigenvectorsv of DF can be

written in the formv = (1 ; w).

Proof. The lemma is implied by the statement that ifH pp 6= 0, thene2 = (0 ; 1) cannot be an

eigenvector of

DF =

0

B
@

H px H pp

�H xx � � H px

1

C
A :

This is easily veri�ed.

Lemma 2.2.2. Assume that the strong Legendre-Clebsch condition holds. Ifv1 = (1 ; w1)

andv2 = (1 ; w2) are two eigenvectors ofDF with � 1 < � 2, thenw1 < w 2.

Proof. The �rst component of the vector equationDFv i = � i vi reads as

H px + H ppwi = � i :

As H pp > 0, the lemma follows.

The value of the objectiveJ over an extremal trajectory can be computed by evaluating the

maximized Hamiltonian at the initial point (see for instance Skiba (1978), Wagener (2003)).
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Theorem 2.2.1.Let (x(t); p(t)) be a trajectory of the reduced canonical vector �eldF that

satis�es lim t !1 H(x(t); p(t))e� �t = 0, and letu(t) = v(x(t); p(t)) be the associated control

function. Then

J (x; u) =
1
�

H(x(0); p(0)):

Notions from dynamical systems

Recall the following notions from the theory of dynamical systems: two vector �elds are said

to betopologically conjugate, if all trajectories of the �rst can be mapped homeomorphically

onto trajectories of the second; that is, by a continuous invertible transformation whose inverse

is continuous as well.

An equilibrium �z of a vector �eld f is calledhyperbolic, if no eigenvalue ofDf (�z) is situ-

ated on the imaginary axis. The sum of the generalized eigenspaces associated to the hyperbolic

eigenvalues is the hyperbolic eigenspaceE h, which can be written as the direct sum of the stable

and unstable eigenspacesE s andE u, associated to the stable and unstable eigenvalues respec-

tively. The sum of the eigenspaces associated to the eigenvalues on the imaginary axis is the

neutral eigenspaceE c. The center-unstable and center-stable eigenspacesE cu andE cs are the

direct sumsE c � E u andE c � E s respectively.

The center manifold theorem (see Hirschet al. (1977)), ensures the existence of invariant

manifolds that are tangent to the stable and unstable eigenspaces.

Theorem 2.2.2(Center Manifold Theorem). Let f be aCk vector �eld on Rm , k � 2, and

let f (�z) = 0 . Let E u, E s, E c, E cu and E cs denote the generalized eigenspaces ofDf (�z)

introduced above. Then there areCk manifoldsW s and W u tangent toE s and E u at �z, and

Ck� 1 invariant manifoldW c, W cu andW cs tangent toE c, E cu andE cs respectively at�z. These

manifolds are all invariant under the �ow off ; the manifoldsW s andW u are unique, whileW c,

W cu andW cs need not be.

Invariant manifolds can be used to choose convenient coordinates around an equilibrium

point of a vector �eld. For instance, letf (0) = 0 , let E 1 andE 2 be two linear subspaces such
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that

E 1 � E 2 = Rm ;

and letW 1 andW 2 be two invariant manifolds that are locally around0 parameterized as the

graphs of functions

w1 : E 1 ! E 2; w2 : E 2 ! E 1;

satisfyingDw1(0) = 0 , Dw2(0) = 0 . For a suf�ciently small neighborhoodN of 0 and

for (z1; z2) 2 U � E 1 � E 2, de�ne the coordinate transformation

(� 1; � 2) = ( z2 � w1(z1); z1 � w2(z2)) :

In the new coordinates, the vector �eld has necessarily the form

f (� ) =

0

B
@

A1� 1 + � 1' 1(� )

A2� 2 + � 2' 2(� )

1

C
A ;

where' i (� ) ! 0 as� ! 0.

For a hyperbolic equilibrium of a vector �eld on the plane, a much stronger result is avail-

able, theC1 linearization theorem of Hartman (see Hartman (1960, 1964), Palis and Takens

(1993)).
Theorem 2.2.3(Hartman'sC1 linearization theorem). Let f : R2 ! R2 be aC2 vector �eld in

the plane, and letz = 0 be a hyperbolic equilibrium off . Then there is a neighborhoodN of 0

and coordinates� onN , such that

f (� ) = Df (0)�

in these coordinates.

2.2.2 Codimension one bifurcations

In this subsection, the codimension one bifurcations of optimal vector �elds are treated: these

are the bifurcations that cannot be avoided in one-parameter families. These are the indifference-
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repeller, the indifference-attractor and the saddle-node bifurcation.

It turns out that there are two con�gurations of the state co-state system that can give rise to

indifference-repeller bifurcations of the optimal vector �eld; they are referred to as type 1 and

type 2, respectively.

A general remark on notation: the codimension of a bifurcation will be denoted by a sub-

script, whereas the type is indicated, if necessary, by additional information in brackets. For

instance, the abbreviation IR1(2) denotes a codimension one indifference repeller bifurcation of

type 2.

IR1(1) bifurcation

Consider the situation that the reduced canonical vector �eldF has an equilibriume = ( xe; pe) 2

R2 with eigenvalues0 < � u < � uu . Let E uu denote the eigenspace associated to� uu . As this

eigenspace is invariant under the linear �owDF (0)z, by Hartman's linearization theorem there

is a one-dimensional differentiable curveW uu , thestrong unstableinvariant manifold, that is

invariant underF and tangent toE uu ate.

De�nition 2.2.1. A pointe = ( xe; pe) is a (codimension one) indifference repeller singularity

of type 1, notation IR1(1), of an optimization problem with reduced canonical vector �eldF , if

the following conditions hold.

1. The eigenvalues� u; � uu of DF (e) satisfy0 < � u < � uu .

2. On some compact interval neighborhoodN of xe, there is de�ned a continuous func-

tion p : N ! R such that

po(x) = f p(x)g:

for all x 2 N , and such thatpe = p(xe).

3. LetW uu denote the strong unstable manifold ofF at e, parameterized as the graph ofw :

N ! R. Also, let� (x) be the outward pointing vector ofN . There is exactly one�x 2 @N

such that

p(�x) = w(�x); (2.8)
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whereas forx 2 @Nandx 6= �x, we have that

� (x)
�

p(x) � w(x)
�

< 0: (2.9)

The de�nition is illustrated in Figure 2.1b.

Theorem 2.2.4.Consider a family of optimization problems, depending on a parameter� 2 Rq,

that has for� = 0 an IR1(1) singularity. Assume that there is a neighborhood� � Rq of 0 such

that the following conditions hold.

1. For all � 2 � , there ise� 2 R2 such thatF� (e� ) = 0 , and such that the eigenvalues

of DF � (e� ) satisfy0 < � u
� < � uu

� . Let the strongly unstable manifoldW uu
� of e� be

parameterized as the graphp = w(x; � ) of a differentiable functionw : N � � ! R.

2. There is a functionp : @N� � ! R, differentiable in its second argument, such that

po
� (x) = f p(x; � )g

for all x 2 @Nand all � 2 � .

3. The function

� (� ) = � (�x)
�
p(�x; � ) � w(�x; � )

�
;

for which� (0) = 0 by (2.8), is de�ned onN and satis�es

D� (0) 6= 0:

Then the optimal vector �eldf o restricted toN is for � (� ) < 0 topologically conjugate to

Y(x) = f xg
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whereas for� (� ) > 0 it is conjugate to

Y(x) =

8
>>>>>><

>>>>>>:

f� 1g; x < 0;

f� 1; 1g; x = 0;

f 1g; x > 0;

The theorem is illustrated in Figure 2.1. Shown is a neighborhood of a repelling equilib-

rium of the state-costate equation. The dotted lines are the linear unstable eigenspaces of the

equilibrium; the strongly unstable eigenspace corresponds to the line with the largest gradient.

Approaching the equilibrium are two phase curves, drawn as solid black lines. The thick part

of these curves denote the optimal costate rule.

The indifference point is marked as a vertical dashed line. At the top of the diagrams,

the corresponding situation in the state space is sketched; solid black circles correspond to

equilibria of the optimal vector �eld, squares to indifference points. In this case, all equilibria

of the optimal vector �eld are repelling.

At the bifurcation, the relative position of the optimal trajectories and the strongly unstable

manifold changes: for� (� ) < 0 the backward extension of the optimal trajectories are tangent

to E u at either side of the equilibrium. This ensures that the equilibrium itself corresponds to an

optimal repeller. For� (� ) > 0, the backward extensions are tangent toE u at the same side of

the equilibrium. One of them necessarily intersects the linex = xe, which implies thatecannot

be an optimal trajectory.

Proof. Let E uu = Rvuu andE u = Rvu be the eigenspaces spanned by the eigenvectorsvuu =

(1; wuu ) andvu = (1 ; wu) of DF (r ) corresponding to the eigenvalues� uu and� u respectively.

Note thatwuu > w u as a consequence of lemma 2.2.2.

For a suf�ciently small neighbourhood ofe introduceC1 linearizing coordinates� = � (z),

with C1 inversez = z(� ) = ( x(�; � ); p(�; � )) , such that� (e) = 0 , such that the linear

mapD� (0) mapsvuu to (1; 0) andvu to (0; � 1), and such that in these coordinates the vec-
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(a) � (� ) < 0

(b) At bifurcation:� (� ) = 0

(c) � (� ) > 0

Figure 2.1: Before, at and after the indifference-repeller bifurcation point.

22



tor �eld F takes the form

_� =

0

B
@

� uu 0

0 � u

1

C
A �:

As a consequence of these choices, the map� is orientation preserving and

x � (0; 0) = � 1Dz(0)

0

B
@

1

0

1

C
A = � 1vuu = 1 > 0;

x � (0; 0) = � 1Dz(0)

0

B
@

0

1

1

C
A = � � 1vu = � 1 < 0;

where� 1 : R2 ! R denotes the projection on the �rst component, and wherex � denotes partial

derivation with respect to� etc. By continuity, there is a neighbourhoodV of 0 such that

x � > 0; x � < 0; and detDz > 0

onV.

Let �x i , i = 1; 2 be such that

N = [�x1; �x2] (2.10)

and set

�zi = (�x i ; �pi ) = (�x i ; p(�x i ; � )) ; (2.11)

as well as

�� i = ( �� i ; �� i ) = � (�x i ; �pi ):

Assume that�x = �x2, that is

� (� ) = p(�x2; � ) � w(�x2; � );

the proof in the case�x = �x1 is similar.
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The trajectoryz1(t) = ( x1(t); y1(t)) of F through�z1 has in linearizing coordinates the form

� 1(t) =
� �� 1e� uu t ; �� 1e� u t

�
;

with �� 1 < 0 and�� 1 > 0 for all � . Note that it satis�es

_x1 =
d
dt

x(� 1(t)) = x �
�� 1e� uu t � uu + x � �� 1e� u t � u

= e � u t
�
�� 1� ux � + �� 1� uu e(� uu � � u )tx �

�

As �� 1 > 0 , x � < 0 and

lim
t !�1

e(� uu � � u )tx � (� 1(t)) = 0 ;

it follows that there is a constantT < 0 such that_x1 < 0 for all t < T and all � in a small

neighbourhood� of 0. If necessary by choosing" > 0 smaller, it may be assumed thatT = 0.

By assumption, the point

�z2 = z( �� 2; �� 2)

can be written as

x( �� 2; �� 2) = �x; p( �� 2; �� 2) = �p = w(�x) + �: (2.12)

Note that for� = 0, the point�p is onW uu , and therefore�� 2 = 0. To establish the dependence

of � on � , derive �rst (2.12) with respect to� to obtain

x �
� �� 2

�
�

+ x � (�� 2)� = 0; p�
� �� 2

�
�

+ p� (�� 2)� = 1:

Solving for(�� 2)� yields

(�� 2)� =
x �

detDz

from which it follows that

(�� 2)� > 0:
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The trajectoryz2(t) through�z2 has in linearizing coordinates the form

� 2(t) =
� �� 2e� uu t ; �� 2e� u t

�
:

Note that�� 2 > 0 for all � , and that

�� 2 = �� 2(� (� ))

with �� 2(0) = 0 . As before

_x2 = e � u t
�
� u �� 2x � + �� 2� uu e(� uu � � u )tx �

�
:

If � � 0, then �� 2 < 0. Fromx � < 0 it then follows that_x2 > 0 for all t. By continuity, it

follows also that_x2(0) > 0 if � > 0 is suf�ciently small. Note however that

lim
t !�1

_x2e� � u t = �� 2� ux � (0; 0) < 0:

Consequently, for� > 0 there is, by the intermediate value theorem, at least onet < 0 such

thatx2(t) < �x and _x2(t) = 0 . Let t � denote the largest of theset if there are several.

Note that for� � 0, the continuous curve formed by the union of the trajectoriesz1, z2 and

the pointe intersects each leaff x = constg exactly once, and de�nes therefore a continuous

functionx 7! po
� (x), which is necessarily the optimal costate map.

If � > 0, then the trajectoryz2 is tangent to the leafL = f x = x2(t � )g at z2� = z2(t � ),

andz2 cuts all other leavesf x = constg transversally fort � < t � 0. The leafL is cut byz1

at z1� . Since_x = H p = 0 atz2� andH is strictly convex inp, it follows that

H(z2� ) < H(z1� ):

Since� 1(0) = � , there ist � 2 (t � ; 0) such thatx2(t � ) = 0 . Again by convexity ofH in p, it

follows that

H(z2(t � )) > H(e) = lim
t !�1

H(z1(t)) :
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Consequently there is~t 2 (t � ; t � ) such that

H(~z1) = H(~z2);

where~zi = (~x; ~pi ) = ( x i (~t); pi (~t)) , and~x is an indifference point by theorem 2.2.1.

IR1(2) bifurcation

An indifference-repeller singularity of type 2 occurs in certain situations when the dynamics

of the repeller is a Jordan node. Speci�cally, consider the situation that the vector �eldF

on R2 has an equilibriume = ( xe; pe), that its linearizationDF (e) has two equal positive

eigenvalues� 1 = � 2 = � > 0, and such that its proper eigenspaceE pu is only one-dimensional.

By the Hartman theorem, there is aC1 curve W pu, the proper unstable invariant manifold,

which is the image ofE pu in general coordinates; trajectoriesz(t) in W pu are characterized by

the requirement that

lim sup
t !�1

kz(t) � eke� �t < 1 :

De�nition 2.2.2. A pointe = ( xe; pe) is a (codimension one) indifference repeller singularity

of type 2, notation IR1(2), of an optimization problem with reduced canonical vector �eldF , if

the following conditions hold.

1. The pointe is an equilibrium ofF such that the eigenvalues� 1; � 2 of DF 0(e) satisfy

� 1 = � 2 = �
2 .

2. On some compact interval neighbourhoodN of xe, there is de�ned a continuous func-

tion p : N ! R such that

po(x) = f p(x)g:

for all x 2 N , and such thatpe = p(xe).

3. LetW uu denote the strong unstable manifold ofF at e, parameterized as the graph ofw :

N ! R. Also, let� (x) be the outward pointing vector ofN . For all x 2 @N, we have
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that

� (x)
�

w(x) � p(x)
�

> 0: (2.13)

This singularity also gives rise to an indifference repeller bifurcation, as in the previous

case, but through a different mechanism. See Figure 2.2: at bifurcation, the equilibrium of the

reduced canonical vector �eld is a Jordan node. When the eigenvalues move off the real axis, it

turns into a focus. This precludes the possibility of an optimal repeller. When the eigenvalues

remain on the real axis but separate, two independent eigenspacesE uu andE u are generated.

Condition (2.13) then implies the existence of an optimal repeller.

Theorem 2.2.5.Consider a family of optimization problems, depending on a parameter� 2 Rq,

that has for� = 0 an IR1(2) singularity. Assume that there is a neighbourhood� � Rq of 0

such that the following conditions hold.

1. For all � 2 � , there ise� 2 R2 such thatF� (e� ) = 0 . Let D(� ) and T(� ) denote the

trace and the determinant ofDF � (e� ).

2. The function� : � ! R, de�ned by

� (� ) =
T(� )2

4
� D(� )

and for which� (0) = 0 , satis�es

D� (0) 6= 0:

3. There is a functionp : @N� � ! R, differentiable in its second argument, such that

po(x) = f p(x; � )g

for all x 2 @Nand all � 2 � .
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(a) � (� ) < 0

(b) � (� ) = 0

(c) � (� ) > 0

Figure 2.2: Before, at and after the type 2 indifference-repeller bifurcation point.
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Then the optimal vector �eldf o restricted toN is for � (� ) < 0 topologically conjugate to

Y(x) =

8
>>>>>><

>>>>>>:

� 1 x < 0;

f� 1; 1g x = 0;

1 x > 0:

whereas for� (� ) > 0 it is conjugate to

Y(x) = x:

Proof. There is a linear mapC0 such that

C � 1
0 DF 0(e)C0 =

0

B
@

�
2 1

0 �
2

1

C
A :

Arnol'd's matrix unfolding theorem (Arnold (1988)) then implies that there is a family of

mapsC(� ), smoothly depending on� , such thatC(0) = C0 and such that

A � = C(� )� 1DF � (e� )C(� ) =

0

B
@

�
2 1

� �
2

1

C
A ;

where� = � (� ). The eigenvalues ofDF � (e� ) and consequently also those ofA � take the form

� u =
�
2

�
p

�; � uu =
�
2

+
p

� ;

the corresponding eigenvectors ofA � take the form

vu = (1 ; �
p

� ); vuu = (1 ;
p

� ):

Note that for� > 0, these eigenvectors have the same ordering as the corresponding eigen-
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vectors ofDF � (e); cf. lemma 2.2.2. It follows that the matrixC(� ) is necessarily orientation

preserving for� > 0 and, by continuity, for all other values of� .

De�ne �x i , �pi and�zi as in (2.10) and (2.11).

When� < 0, the eigenvalues are complex, and the trajectoriesz1 andz2 emanating from�z1

and�z2 respectively spiral towardse ast ! �1 . Let t � be the largestt � such that_x2(t) = 0 .

Then necessarily

x � = x2(t � ) < x e:

The trajectoryz2, restricted to[t � ; 0], can be parameterized as the graph of a continuous func-

tion p2 : [x � ; �x2] ! R. In the same way, ift � < 0 is the largestt such that_x1(t) = 0 , thenz1

restricted to[t � ; 0] can be parameterized as the graph of the functionp1 : [�x1; x � ] ! R, where

x � = x1(t � ) > x e:

Moreover, asH is strictly convex andH p(x � ; p2(x � )) = 0 , it follows that

H(x � ; p2(x � )) < H(x � ; p1(x � ));

likewise

H(x � ; p2(x � )) > H(x � ; p1(x � )) :

By continuity, there is a point~x 2 [x � ; x � ] such that

H(~x; p1(~x)) = H(~x; p2(~x)):

By Theorem 2.2.1, this is an indifference point.

Point 2 of De�nition 2.2.2 implies that for� = 0, the setspo(x) contain a single ele-

mentp(x) for all x 2 N . Necessarily, the graph ofp is formed by two trajectories ofF0 as well

as the equilibrium pointe. These trajectories intersect the linesf x = constg transversally and

they are tangent toE pu at xe; put differently, the graph ofp is tangent to the proper unstable
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manifoldW pu at e. By point 3 of the de�nition,p(x) > w (x) if �x1 < x < x e andp(x) < w (x)

if xe < x < �x2.

For � (� ) > 0, there is a familyW uu
� of strong unstable manifolds, depending continuously

on � , and parameterized as the graph of a family ofC1 functionsw� aroundxe. In particular,

if N and� suf�ciently small

� (x) (w� (x) � p(x; � )) > 0

for all x 2 @Nand� 2 � . By continuity, the backward trajectories through�z1 and�z2 intersect

all linesf x = constg transversally and are tangent to the weak unstable directionE u atxe. But

this implies that they form, together with the equilibriume, the graph of aC1 functionp� that

is de�ned onN , and for which

po
� (x) = f p� (x)g:

IA 1 bifurcation

De�nition 2.2.3. A pointe = ( xe; pe) is a (codimension one) indifference attractor singularity,

notation IA1, of an optimization problem with reduced canonical vector �eldF , if the following

conditions hold.

1. The pointe is an equilibrium ofF such that the eigenvalues� s; � u of DF (e) satisfy� s <

0 < � u.

2. On some compact interval neighbourhoodN of xe, there is de�ned a continuous func-

tion p : N ! R such that

po(x) = f p(x)g:

for all x 2 N , and such thatpe = p(xe).
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3. LetW s andW u denote respectively the stable and the unstable manifold ofF at e, pa-

rameterized as the graph of functionsws; wu : N ! R. If @N= f �x1; �x2g, then

p(�x1) = wu(�x1); p(�x2) = ws(�x2): (2.14)

Note that this de�nition does not require the points�x1 and�x2 to be ordered in a certain way.

Theorem 2.2.6.Consider a family of optimization problems, depending on a parameter� 2 Rq,

that has for� = 0 an IA1 singularity. Assume that there is a neighbourhood� � Rq of 0 such

that the following conditions hold.

1. For all � 2 � , there ise� 2 R2 such thatF� (e� ) = 0 , and such that the eigenvalues

of DF � (e� ) satisfy� s
� < 0 < � u

� . Let the stable and the unstable manifoldsW s
� andW u

�

of e� be parameterized as graphp = ws(x; � ) andp = wu(x; � ) of differentiable func-

tionsws; wu : N � � ! R.

2. There is a functionp : @N� � ! R, differentiable in its second argument, such that

po(x) = f p(x; � )g

for all x 2 @Nand all � 2 � .

3. The function

� (� ) = � (x1)
�
p(x1; � ) � w(x1; � )

�
;

for which� (0) = 0 by (2.14), is de�ned on� and satis�es

D� (0) 6= 0:

4. For all � 2 � such that� (� ) < 0, the equality

p(x2; � ) = ws
� (x2)
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holds.

Then the optimal vector �eldf o restricted toN is for � (� ) < 0 topologically conjugate to

Y(x) =

8
>>>>>><

>>>>>>:

f� xg; x < 1;

f� 1; 1g; x = 1;

f 1g; x > 1;

whereas for� (� ) > 0 it is conjugate to

Y(x) = f 1g

The theorem is illustrated in Figure 2.3. As for the IR1(1) bifurcation, at the bifurcation the

relative position of the optimal trajectories and the `most unstable' invariant manifold changes.

If � (� ) < 0, the backward extension of the optimal trajectory through the point�z1 =

(�x1; p(�x1; � )) has a vertical tangent at a certain point. Past this point, the trajectory cannot

be optimal, even locally. It follows thatxe is locally optimal. For� (� ) > 0, the trajectory

through�z1 intersects the linex = xe. Theorem 2.2.1 then implies that the constant trajectorye

cannot be optimal at all in this case.

In many applications, the optimal trajectory through�z1 is on the stable manifold of another

equilibrium e0. For � (� ) = 0 , we have also that�z1 is in the unstable manifold ofe, and

the trajectory ofF through�z1 then forms aheteroclinic connectionbetweene ande0. In this

form, the indifference-attractor bifurcation was investigated in Wagener (2003). The present

formulation in terms of the optimal costate rule is more general as it captures, for instance, also

the situation that the optimal trajectory through�z1 tends to in�nity ast ! 1 (cf. Hinloopen

et al. (2010)).

Proof. Restricted to a neighbourhood of the saddle, in linearizing coordinates the vector �eldF�

takes the form

_� =

0

B
@

� u 0

0 � s

1

C
A �:
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(a) � (� ) < 0

(b) � (� ) = 0

(c) � (� ) > 0

Figure 2.3: Before, at and after the indifference-attractor bifurcation point.
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The coordinates are chosen such that the coordinate transformation is orientation preserving;

moreover, the direction of the axes is chosen such that

x � > 0; x � < 0:

Note that the unstable and stable manifolds are in these coordinates equal to the horizontal and

vertical coordinate axes respectively.

As in the proof of theorem 2.2.4, set�x i , �pi and�zi as in (2.10) and (2.11).

Assume that�x of point 2 of De�nition 2.2.3 satis�es�x = �x2; the opposite situation can be

handled analogously. If�� 2 and�� 2 are de�ned as

x( �� 2; �� 2) = �x; p( �� 2; �� 2) = w(�x) + �;

then it follows as in the proof of theorem 2.2.4 that

(�� 2)� > 0

and�� 2 = 0 if � = 0.

The trajectoryz2(t) = ( x2(t); p2(t)) through�z2 has in linearizing coordinates the form

� 2(t) = ( � 1(t); � 1(t)) =
� �� 2e� u t ; �� 2e� s t

�
:

It follows that

_x2 = e � s t
�
� s �� 2x � + � u �� 2x � e(� u � � s )t

�
: (2.15)

If � (� ) > 0, then �� 2 > 0; as both� sx � > 0 and � u �� 2x � > 0, it follows from (2.15)

that _x2 > 0 for all t. That is, the trajectoryz2 intersects each linex = const exactly once, and

therefore de�nes aC1 functionx 7! p(x; � ), which then necessarily satis�es

po
� (x) = f p(x; � )g
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for all x 2 N .

Consider now the case that� (� ) < 0. By equation (2.15), if� (� ) and hence�� 2 is suf�ciently

close to0, then _x2(0) > 0. Let T� < 0 be such that� 2(T� ) = � �� 2. Then

T� =
1
� s

log
�� 2

(� �� 2)

and equation (2.15) yields

_x2(T� )e� � s T� = � s �� 2x � + � u �� 2x �

�
� �� 2

�� 2

� 1+ � u =j� s j

= � s �� 2x � + o(�� 2):

This is negative if�� 2, and hence� (� ), is suf�ciently close to0. For such values of� , there

existst < 0 such that_x2(t) = 0 . Let t � denote the largest value oft with this property, and

introduce

x � = x2(t � ):

For x � � x � �x2, the trajectory(x2(t); p2(t)) parameterizes the graph of a functionp2(x).

As _x = H p along trajectories, note that

H p(x � ; p2(x � )) = 0 :

Let p1 : N ! R be such that its graph parameterizes the stable manifoldW s of s. Strict

convexity ofH implies the inequality

H(x � ; p2(x � )) < H(x � ; p1(x � )) : (2.16)

De�ne functionsV1 onN andV2 on [x � ; �x2] by

V1(x) =
H(x; p1(x))

�
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and

V2(x) =
H(x; p1(x))

�
:

Then

V2(x � ) < V1(x � ):

To establish the opposite inequality for somex � 2 [x � ; �x2], consider the situation for� (� ) =

0, when�z2 2 W u. ThenV2 is de�ned for allxs < x < �x2. Moreover,

lim
x#xs

V2(x) = V1(x):

Note that sinceV 0
i (x) = pi (x) and

p2(x) > p 1(x)

for all xs < x < �x2, it follows that

V2(x) � V1(x) =
Z x

xs

(p2(� ) � p1(� )) d� > 0

for all x > x s. This implies in particular that

H(x; p2(x)) > H(x; p1(x))

for all x > x s, if � (� ) = 0 .

Fix x � 2 (x � ; �x2). Then for� (� ) < 0 suf�ciently close to0, by continuity

H(x � ; p2(x � )) > H(x � ; p1(x � )) : (2.17)

As a consequence of (2.16) and (2.17), there is~x 2 (x � ; x � ) such that

H(~x; p1(~x)) = H(~x; p2(~x)):
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By theorem 2.2.1, it follows that~x is an indifference point.

The saddle-node bifurcation

The saddle-node bifurcation of dynamical systems has a natural counterpart as a bifurcation of

optimal vector �elds.

Recall that a family of vector �eldsf � : Rm ! Rm can be viewed as a single vector

�eld g : Rm+1 ! Rm+1 by writing

0

B
@

_x

_�

1

C
A = g(x; � ) =

0

B
@

f � (x)

0

1

C
A :

Consider the situation that for� = 0 the point�z is an equilibrium off 0, and thatDf 0(�z) has a

single eigenvalue0. ThenDg(�z;0) has two eigenvalues zero and an associated two-dimensional

eigenspaceE c. The center manifold theorem applied tog implies that there is a differentiable

invariant manifoldW c of g that is tangent toE c at (�z;0). The manifoldW c can be viewed as a

parameterized family of invariant manifoldsW c
� , which are de�ned for� taking values in a full

neighbourhood of� = 0. Note that the center manifolds need not be unique.

De�nition 2.2.4. A point e = ( xe; pe) is a (codimension one) saddle-node singularity, nota-

tion SN1, of an optimization problems with reduced canonical vector �eldF , if the following

conditions hold.

1. The pointe is an equilibrium ofF such that the eigenvalues� 1; � 2 of DF (e) satisfy� 1 =

0, � 2 = � .

2. There is a compact intervalN of X containingxe and a functionp : N ! R such that

po(x) = f p(x)g

for all x 2 N , and such that the graph ofp is a center manifoldW c of F at e.
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3. The restriction

F c(x) = F1(xe + x; p(xe + x)):

of F to W c satis�es

F c(0) = 0 ; (F c)0(0) = 0 ; (2.18)

and

(F c)00(0) 6= 0: (2.19)

Theorem 2.2.7.Consider a family of optimization problems, depending on a parameter� 2 Rq,

that has for� = 0 a SN1 singularity. Assume that there is a neighbourhood� � Rq of 0 such

that the following conditions hold.

1. There is a functionp : N � � ! R such that

po
� (x) = f p(x; � )g

for all (x; � ) 2 N � � .

2. For � 2 � , the graphs ofx 7! p(x; � ) form a family of center manifoldsW c
� of F at e.

3. If F c
� is

F c
� (x) = ( F� )1 (xe + x; p(xe + x; � ))

then the function

� (� ) = F c
� (0)

satis�es

D� (0) 6= 0:

Then the optimal vector �eldf o
� restricted toN is for � 2 � topologically conjugate to

Y� (x) = f � (� ) � �x 2g
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where� 2 f� 1; 1g is given as

� = sgn(F c
0 )00(0):

Proof. This is a direct consequence from the usual saddle-node bifurcation theorem.

2.2.3 Codimension two bifurcations

Most codimension two situations are straightforward extensions of the corresponding codimen-

sion one bifurcations. The results in this subsection will in most cases be stated more brie�y

and less formally. An exception is made for the indifference-saddle-node bifurcation.

A model case: the IR2(1,1) bifurcation

De�nition 2.2.5. A pointe = ( xe; pe) is a (codimension two) indifference repeller singularity

of type (1,1), notation IR2(1,1), of an optimization problem with reduced canonical vector �eld

F , if all conditions of de�nition 2.2.1 hold, but with(2.8) and (2.9) replaced by the condition

that

p(x) = w(x)

for all x 2 @N.

Theorem 2.2.8.Consider a family of optimization problems, depending on a parameter� 2

Rq, that has for� = 0 an IR2(1,1) singularity. Let all the conditions of Theorem 2.2.4 hold,

excepting point 3, which is replaced by the following.

The function

� (� ) =
�
� (x1)

�
p(�x1; � ) � w(�x1; � )

�
; � (x2)

�
p(�x2; � ) � w(�x2; � )

��
:

for which� (0) = (0 ; 0), is de�ned on� and satis�es

ranD� (0) = 2 :
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Then the optimal vector �eldf o restricted toN is topologically conjugate to

Y(x) = x

if � 1(� ) � 0 and� 2(� ) � 0, whereas it is conjugate to

Y(x) =

8
>>>>>><

>>>>>>:

� 1 x < 0;

f� 1; 1g x = 0;

1 x > 0:

if � 1(� ) > 0 or � 2(� ) > 0. In particular, the curves� 1(� ) = 0 , � 2(� ) < 0 and � 2(� ) = 0 ,

� 1(� ) < 0 are codimension one indifference-repeller bifurcation curves.

The proof is a simple modi�cation of the proof of the codimension one case and is therefore

omitted.

Other indifference-repeller and indifference-attractor bifurcations

Looking at the de�nition of the IR1(2) bifurcation, it is clear that bifurcations of higher codi-

mension are obtained when condition (2.13) is violated at a boundary point. If this happens at

one of the boundary points, a codimension two situation is obtained where an IR1(1) and an

IR1(2) curve meet in a IR2(1,2) point. If it happens at both boundary points, a codimension

three situation arises, denoted IR3, where two IR1(1) and a IR1(2) surface meet. In order to

avoid unnecessary repetitions, the exact de�nitions for these bifurcations are not formulated;

they can all be modeled on De�nition 2.2.5 and Theorem 2.2.8. Their bifurcation diagrams are

given in Figures 2.4(b) and 2.5.

Likewise, a codimension two bifurcation is obtained if condition 2.14 is replaced by

p(x1) = wu(x1); p(x2) = wu(x2): (2.20)
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(a) IR2(1,1) bifurcation diagram (b) IR2(1,2) bifurcation diagram

Figure 2.4: Indifference-repeller bifurcations of co-dimension two.

This a two-sided or double indifference attractor bifurcation, denoted DIA2. Its bifurcation

diagram is given in Figure 2.6.

Degenerate saddle-node bifurcations

The degenerate saddle-node bifurcations like the cusp (SN2), the swallowtail (SN3) etc. can be

treated entirely analogously to the saddle-node itself.

The indifference-saddle-node bifurcation

The indifference-attractor and indifference-repeller bifurcations correspond to global bifurca-

tions involving hyperbolic equilibria of the reduced canonical vector �eld; in contrast, the

saddle-node bifurcation corresponds to a local bifurcation. The �nal bifurcation to be con-

sidered is the indifference-saddle-node bifurcation, which corresponds to a global bifurcation

involving a nonhyperbolic equilibrium.

De�nition 2.2.6. A pointe = ( xe; pe) is a (codimension two) indifference-saddle-node singu-

larity, notation ISN2, of an optimization problem with reduced canonical vector �eldF , if the

following conditions hold.

1. The pointe is an equilibrium ofF , such that the eigenvalues� 1, � 2 of DF (e) satisfy� 1 =

0, � 2 = � .
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Figure 2.5: IR3 bifurcation diagram.

Figure 2.6: DIA2 bifurcation diagram.
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2. On some compact interval neighbourhoodN of xe, there is de�ned a continuous func-

tion p : N ! R such that

po(x) = f p(x)g

for all x 2 N , and such thatpe = p(xe).

3. LetW u denote the unstable manifold ofF at e, parameterized as the graph of a func-

tion wu : N ! R. There is a unique�x 2 @Nsuch that

p(�x) = wu(�x): (2.21)

4. There is a center manifoldW c of F at e, parameterized as the graph ofwc : N ! R,

such that forx 2 @Nandx 6= �x, we have that

p(x) = wc(x): (2.22)

5. The restriction

F c(x) = F1(xe + x; wc(xe + x))

of F to W c satis�es

F c(0) = 0 ; (F c)0(0) = 0 ;

and

(F c)00(0) 6= 0:

Theorem 2.2.9.Consider a family of optimization problems, depending on a parameter� 2 Rq,

that has for� = 0 an ISN2 singularity. Assume that there is a neighbourhood� � Rq of 0 such

that the following conditions hold.
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Figure 2.7: ISN2 bifurcation diagram.

1. There is a functionp : @N� � ! R, differentiable in the second argument, such that

po
� = f p(x; � )g

for all (x; � ) 2 @N� � , and such that

� 2(� ) = p(�x; � ) � p(�x; 0)

satis�es

D� 2(0) 6= 0:

2. There is a family of center manifoldsW c
� , parameterized as the graphs of functionsx 7!

wc(x; � ), such thatp(x; 0) = wc(x; � ) if x 2 @Nnf �xg.
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3. LetF c
� be the restriction

F c
� (x) = ( F� )1 (xe + x; wc(xe + x; � ))

of F to W c. Then the function

� 1(� ) = F c
� (0)

satis�es

D� 1(0) 6= 0:

4. Let� (� ) = ( � 1(� ); � 2(� )) . ThenranD� (0) = 2 .

Then there is a differentiable functionsC(� 2) such thatC(0) = C0(0) = 0 andC00(0) 6= 0, and

such that the problem has an indifference-attractor bifurcation if

� 1 = C(� 2); � 2 > 0;

an indifference-repeller bifurcation if

� 1 = C(� 2); � 2 < 0;

and a saddle-node bifurcation curve if

� 1 = 0; � 2 < 0:

Proof. Assume without loss of generality that(F c)00(0) > 0.

The system is �rst put, by an orientation preserving transformation, in coordinates� = ( �; � )

such that the center manifoldW c
� corresponds to� = 0 for all � close to� = 0, and the unstable

manifoldW u corresponds to� = 0 at � = 0. In these coordinates, the system, augmented by
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the parameter equation_� = 0, takes the form

_� = � 1(� ) + f 0(�; � )+ �f 1(�; � ); (2.23)

_� = �� + �g 1(�; � ); (2.24)

_� = 0 (2.25)

where by assumptionf 0(�; � ) = c(� )� 2 + O(� 3) with c(0) > 0, and whereD� 1(0) 6= 0.

These conditions imply that a saddle-node bifurcation occurs at(�; � ) = (0 ; 0) if � 1(� ) = 0 ,

generating a family of hyperbolic saddle and one of hyperbolic unstable equilibria ofF .

The saddle equilibria have associated to them unique unstable invariant manifoldsW u
� ; the

unstable equilibria have associated to them strongly unstable manifoldsW uu
� , which are also

unique. An indifference-attractor bifurcation occurs if(x; p(x; � )) 2 W u
� ; an indifference-

repeller bifurcation occurs if(x; p(x; � )) 2 W uu
� . The main thing to prove is that the mani-

foldsW u
� andW uu

� can be parameterized as graphs of differentiable functions

x 7! wu(x; � ); x 7! wuu (x; � ):

This is not automatic, for the functionwu andwuu will not be differentiable as functions of� ,

having necessarily at� = 0 a singularity of the order
p

� .

In the following, it will however be shown that the closure of the invariant set

W =
[

�

W u
� [ W uu

�

forms a differentiable manifold. From �gure 2.8, it seems likely thatW can be described as the

level set

W : � 1(� ) = � f 0(�; � ) + �w (�; �; � );

wherew is a function yet to be determined. The condition thatW is invariant under the �ow

of (2.23)–(2.25) leads to a �rst order partial differential equation for the functionw; this equa-
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Figure 2.8: The manifoldW

tion is singular for� = 0.

To solve this equation using the method of characteristics, introducew = w(t) as an inde-

pendent variable by setting

�w = � 1 + f 0(�; � ):

Deriving with respect to time and using equations (2.23)–(2.25) yields

� _w = � _�w �
@f0
@�

_� = � w(� + g1)� +
@f0
@�

(w + f 1)�:

Dividing out � formally, an equation for_w is obtained. Together with equations (2.23)–(2.25),

the following system is obtained:

_� = �w + �f 1; _w = � �w � wg1 �
@f0
@�

(w + f 1);

_� = �� + �g 1; _� = 0:
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Linearizing the new system at(�; �; w; � ) = (0 ; 0; 0) yields
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Again invoking the center manifold theorem, we �nd that there is an invariant center-unstable

manifold W cu that is tangent to the center-unstable eigenspaceE cu = f w = 0g. Let this

manifold be parameterized, in a neighbourhood of the origin, as

W cu : w = wcu(�; �; � ):

Thenwcu is the function we have been looking for.

A �nal note on W: as for� = 0 the unstable manifoldW u is tangent to� 1 = 0 at � = 0,

the functionw in

W : � 1(� ) = � f 0(�; � ) + �w (�; �; � ); (2.26)

has to satisfyw = � 2 ~w.

Indifference-attractor or indifference repeller bifurcations occur if(�x; p(�x; � )) 2 W. The

equations

x = �x; p = p(�x; 0) + � 2

take in(�; � )-coordinates the form

� = c1� 2 + O("2 + � 2
2); � = c21� 2 + c22" + O("2 + � 2

2):

Note however that if� = 0, thenW is given by� = 0. Moreover, by assumptionp(�x; 0) 2 W;

therefore the equations actually read as

� = � 2 (c1 + O(" + � 2)) ; � = c21� 2 + c22" + O("2 + � 2
2):
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Substitution in equation (2.26) yields the indifference-attractor and indifference-repeller bifur-

cation curves

� 1 = c(� )c2
1� 2

2 + O(� 3
2):

Taken together with the saddle-node curve

� 1 = 0;

this yields the bifurcation diagram. Finally, note that ifp(�x; � ) > w uu (�x), the saddle node

bifurcation does not correspond to a bifurcation of the optimal vector �eld.

DISN3 bifurcation

It is possible that a `double' ISN singularity, denoted DISN3, occurs if conditions (2.21) and (2.22)

of de�nition 2.2.6 are replaced by the condition that

p(x) = wu(x)

for all x 2 @N. This is clearly a codimension three situation.
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Chapter 3

Bifurcations of optimal vector �elds in the

shallow lake model

In the present chapter1 ideas from bifurcation theory, developed in Chapter 2, are used to an-

alyze the effects of varying parameters in the shallow lake pollution problem, introduced in

Brock and Starrett (2003), M̈aleret al. (2003). This is an optimal pollution management prob-

lem where a social planner faces a trade-off between interests of farmers, who indirectly bene�t

from polluting the lake by using fertilizers that are washed into it, and interests of �shermen,

tourists and water companies, who bene�t from high quality of the lake water. The shallow lake

model contains three parameters:b, the rate of loss of pollutant due to sedimentation, represent-

ing biological properties of the lake;c, the relative costs of pollution, modeling the trade-off

between farmers' and tourists' interests;� , the discount rate, representing the intertemporal rate

of substitution. The main idea of the bifurcation analysis is to study dependence of the solution

structure upon the parameters of the model. This model exhibits non-convexities for some pa-

rameter values which causes the existence of multiple local optima of the water pollution level

and thereby history-dependent optimal pollution policies, see Brock and Starrett (2003), Mäler

et al.(2003). In Wagener (2003) the genesis of history-dependent optimal management policies

in the shallow lake model has been connected to the occurrence of heteroclinic bifurcations of
1A modi�ed version of this chapter constitute a published paper in Journal of Economic Dynamics and Control

(see Kiseleva and Wagener (2010)).
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the associated state-control system.

This chapter completes the bifurcation analysis of the shallow lake model. The dependence

of the solution structure on the system parameters is studied. As a result, two types of planar

cuts of the parameter space are obtained: �rst, the biological propertiesbof a lake are held �xed

while the socio-economic parametersc and� vary; second, the discount rate� is �xed and b

andc vary. This provides a fairly complete picture of how the optimal pollution policy for an

eco-system responds to changes in the degree of its resilience, social preferences and economic

factors.

With the performed analysis the trade-off between the relative cost of pollutionc and the

time discount factor� is quanti�ed. In particular for several values ofb, two-parameter bifur-

cation diagrams with respect toc and � are computed; they show that if� is decreased, the

minimal preference for the environmentc that implies that theoligotrophic solutionis optimal

is decreased proportionally; this solution is characterized by high quality of the lake water and

low level of agricultural activity in the long run regardless of the initial pollution level. Thus

the oligotrophic solution can be globally optimal in a less environmentally friendly society, if

the social planner is suf�ciently foresighted.

The outline of the chapter is as follows. Section 3.1 describes the shallow lake model. Sec-

tion 3.2 introduces the concept of the optimal vector �elds and gives examples of optimal vector

�elds in the shallow lake model. Section 3.3 presents a fairly complete bifurcation analysis of

the shallow lake system with respect to all three parameters: the natural rate of pollutant out�ow

b, the relative costs of pollutionc and the discount rate� . Finally, Section 3.4 concludes.

3.1 The shallow lake model

The shallow lake problem is an optimal pollution management problem solved by a social plan-

ner. This social planner maximizes a social utility functional, which models con�icting interests

of two types of lake users: farmers and `water users', such as tourists, water companies and �sh-

ermen. Farmers get bene�ts from using fertilizers that contain phosphorus; the phosphorus runs
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off the �elds and is eventually washed into the lake. Surplus of phosphorus in water causes

growth of aquatic plants that �ll the entire water column or that concentrate much of their

biomass in the upper water layer. When these plants become dominant the bottom vegetation,

which stabilizes the sediment, collapses due to light limitation. As a result surface waves can

stir up the sediment - the lake is shallow - and the lake becomes polluted. The drop of water

quality leads to losses for the lake users.

The shallow lake model consists of two parts: the pollution dynamics and the social welfare

functional. Letx(t) be proportional to the amount of phosphorus in the lake at timet. The

value ofx(t) may change due to the input of more phosphorus due to farming activities,u(t), as

well as due to sedimentation and the internal biological processes of production of phosphorus.

Mäleret al. (2003) proposed to model the pollution dynamics of a shallow lake as

_x = u � bx+
x2

1 + x2
; x(0) = x0; (3.1)

whereb � 0 is the coef�cient that is proportional to the rate of loss of phosphorus due to

sedimentation, and where the last term models the biological production process. For more

detailed analysis and the biological background of equation(3:1) see Scheffer (2009).

The second part of the shallow lake model is the social welfare functional. Society in this

model consists of lakes users of two types: farmers, who bene�t from polluting the lake, and

water users, who bear losses when the pollution level increases. The farmers' bene�ts, or the

farmers' utility, is assumed to be an increasing concave function ofu, taken here as2 logu. The

costs of pollution, or the disutility of the water users, is assumed to increase quadratically with

the pollution level. Thus the social welfare at timet is logu(t) � cx2(t), wherec is a nonnegative

parameter which models the relative cost of pollution.

The total welfare is given by

B[u] =
Z 1

0

�
logu � cx2

�
e� �t dt; (3.2)

2Results that are obtained in this chapter are expected to be fairly robust to the choice of this utility function.
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where� is a discount factor andx is de�ned by (3.1). The optimal control problem of the social

planner is to �nd the dumping controlu� that maximizes the social welfare functionalB given

the initial level of pollutionx0 and the pollution dynamics (3.1). A solution to this optimization

problem is a pair(~x; ~u), such that~u is an admissible control, meaning that~u is piecewise

continuous and~u(t) � 0 8t � 0, and~x continuous and piecewise continuously differentiable,

(3.1) is satis�ed andB(~u) � B (u) if (x; u) satis�es (3.1).

The standard way of solving such a problem is to introduce the current value Hamiltonian

H (x; p; u) = log u � cx2 + p
�

u � bx+
x2

1 + x2

�
; (3.3)

which has to be maximized with respect to the control variableu 2 R+ . The additional variable

p 2 R is called theco-stateand represents the shadow costs of pollution. According to Pon-

tryagin's Maximum Principle, ifu : [0; 1 ) ! (0; 1 ) is an optimal solution, thenp(t), x(t) and

u(t) satisfy three conditions:

1) u(t) maximizes the functionh(u) = H (x(t); p(t); u) for eacht. In the shallow lake

model this implies the following one-to-one correspondence between the costatep and

the controlu

u = U(p) = �
1
p

; (3.4)

de�ning the so-calledmaximized Hamiltonian

H(x; p) = H (x; p; U(p)): (3.5)

2) x(t) andp(t) are solutions of the reducedcanonical system

8
><

>:

_x =
@H
@p

(x; p)

_p = �p �
@H
@x

(x; p)
(3.6)
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3) the transversality condition

lim
t !1

e� �t p(t) = 0 if lim inf t !1 x(t) > 0: (3.7)

is satis�ed3.

Using (3.5) and (3.4) the system (3.6) reads as

8
>><

>>:

_x = �
1
p

� bx+
x2

1 + x2

_p = 2cx + p
�

� + b�
2x

(1 + x2)2

�
:

(3.8)

The system(3:8) is called theshallow lake system.Due to the one-to-one correspondence (3.4)

between the costatep and the controlu the shallow lake system(3:8) can be rewritten in the

state-control form 8
>><

>>:

_x = u � bx+
x2

x2 + 1

_u = �
�

� + b�
2x

(x2 + 1) 2

�
u + 2cxu2:

(3.9)

The shallow lake system(3:9) is a system of parameterized differential equations. Typically

in such systems changing the value of the parameters may cause qualitative changes of the

solution structure: equilibria may lose stability, new equilibria or attracting sets may appear, etc.

Such qualitative changes of the solution structure due to smooth variations of the parameters are

calledbifurcations. Some bifurcations of the dynamical system (3.9) affect the optimal pollution

policy and consequently the long run pollution levelx under the optimal policy. Therefore

knowledge of bifurcation values of the system parameters can shed light upon the long run

behavior of the system (3.9) when the optimal policy is applied.

In the next section the notion of optimal vector �elds is shortly recalled. Also the corre-

spondence between bifurcations of the optimal vector �elds and bifurcations of the dynamical

system (3.9) is studied.

3For trajectories such thatlim t !1 x(t) = 0 the transversality condition is given bylim t !1 e� �t p(t) � 0.
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3.2 Optimal vector �elds in the shallow lake model

This section shortly presents, in an improved form, the results of the bifurcation analysis of the

shallow lake system obtained in Wagener (2003) and connects them to the concept of optimal

vector �elds.

Solutions to the problem of maximizing (3.2) subject to (3.1) for �xedx(0) = x0 can be

represented as a set of initial costatespo(x0) � R such that ifp0 2 po(x0) then(x(0); p(0)) =

(x0; p0) is an initial condition to an optimal trajectory(x(t); p(t)) in the state-costate space.

Then the pair(x(t); u(t)) = ( x(t); U(p(t))) solves the optimal control problem of the social

planner. The set-valued functionpo(x) is called theoptimal costate rule. The corresponding

set-valued functionuo(x) = f U(p) : p 2 po(x)g is called theoptimal policy rule.

For problems with one-dimensional state spaces and in�nite time horizons the points(x0; p0)

with p0 2 po(x0) are usually situated on the stable manifolds of a steady state of the state-costate

system. Ifpo(x0) contains more that one element, then the state is an indifference state. It fol-

lows from the principle of optimality thatpo(x(t)) is single-valued for allt > 0.

De�nition 3.2.1. The multivalued vector �eld

f o(x) =
@H
@p

(x; po(x))) ; (3.10)

is called theoptimal vector �eld.4

The notion of optimal vector �eld is general and not restricted to the shallow lake problem,

see Chapter 2. The optimal vector �eld determines the direction and the speed of the state �ow

under the optimal policy. Optimal state trajectories are solutions of

_x(t) = f o (x(t)) ; x(0) = x0: (3.11)

Remember though that the optimal policy and consequently the optimal vector �eld depend

upon the system parameters. Hence they may bifurcate when the parameters are varied.
4Boltyanskii (1966) calls these vector �elds `synthesized'.
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The main result of Wagener (2003) is the bifurcation diagram of the shallow lake system

with respect to the parametersbandc for the �xed value� = 0:03of the discount rate . However

this bifurcation diagram is incomplete, as there are bifurcation curves missing. In this chapter

the complete version of it is presented in Figure 3.1(a), which shows the parameter plane(b; c)

divided into four regions, labeled respectively:Unique equilibrium, Oligotrophic, Region of

history dependenceandEutrophic. Those regions correspond to four different types of solu-

tions of the shallow lake problem, differing in number of equilibria of the state-control system

(3.9) as well as the long run pollution level under the optimal policy. In Figures 3.1(b)-3.1(h)

phase portraits of the state-control system (3.9) for different values of the parameters are given.

Optimal trajectories are represented by thick curves, other trajectories by solid curves. In the

upper parts of the phase diagrams the phase plots of the optimal vector �elds are given. At-

tractors of the optimal vector �elds are represented by bullets, indifference thresholds by black

squares. Later, in Figures 3.1(b)-3.1(h), repellers of the optimal vector �elds are denoted as

circles. These notations are held throughout the chapter.

Unique equilibrium

For the values of the parametersbandc in this region the state-control system (3.9) has a unique

equilibrium. It is a saddle, see Figure 3.1(b) and 3.1(h). The graph of the optimal solution is

always situated on the stable manifold of this saddle5. The long run pollution level depends

then on the values of the parametersc andb, changing within the region.

The rateb of natural sedimentation of pollution is relatively high in the region `Unique

equilibrium'. This means that most of the pollution coming into the water sediments on the

bottom of the lake, which implies that the lake can bear even a heavy pollution load without

collapsing regardless of its initial pollution level. For any �xed value ofbin the region `Unique

equilibrium', the water pollution level in the long run smoothly decreases whenc increases:

higher cost of pollution imply more restrictive pollution policies.

5For the proof see Wagener (2003).
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Multiple equilibria

In cases with multiple equilibria of the state-control system (3.9) there are always two saddles,

denoted asP = ( xP ; uP ) andQ = ( xQ; uQ). The steady state pollution levelxP in P is sig-

ni�cantly lower than the pollution levelxQ in Q; they are calledoligotrophic andeutrophic

steady states of the lake, respectively. The oligotrophic steady state corresponds to a high level

of water services and a low level of agricultural activities, whereas the eutrophic steady state

corresponds to a high level of agricultural activities and a low level of water services.

It has been proved in Wagener (2003) that the optimal solution of the social planner op-

timization problem is situated on the stable manifold of one of the saddles. In the case with

multiple equilibria of (3.9) the social planner has to choose whether to `jump' to the stable

manifold of the oligotrophic equilibriumP or to the stable manifold of the eutrophic equilib-

rium Q. Regarding to the choice of the social planner the following three cases are possible:

- the oligotrophic steady state is globally optimal; independently of the initial pollution

level of the lake the social planner steers the lake to the clean equilibriumP;

- the eutrophic steady state is globally optimal; independently of the initial pollution level

of the lake the social planner steers the lake to the polluted equilibriumQ;

- the oligotrophic steady state and the eutrophic steady state are locally optimal; the long

run pollution level depends on the initial level of pollution.

Oligotrophic region In the oligotrophic case the optimal trajectory is the stable manifold of

the saddleP, and the optimal policy is a smooth continuous function of the state, see Fig-

ure 3.1(c). The optimal policy steers the lake to the clean equilibriumP independently of the

initial level of the pollution; the clean steady state is globally optimal. The one-dimensional

phase diagram of the optimal vector �eld is drawn in the upper part of the Figure 3.1(c); it has

one attractor, denoted by a bullet.
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(b) Unique equilibrium,
c = 0 :7

(c) Oligotrophic solution,
c = 0 :55

(d) Lower heteroclinic con-
nection,c = 0 :53523

(a) Bifurcation diagram

(e) History-dependent so-
lution, c = 0 :5

(f) Upper heteroclinic con-
nection,c = 0 :47379

(g) Eutrophic solution,
c = 0 :3

(h) Unique equilibrium,
c = 0 :2

Figure 3.1: Figure 3.1(a) shows the bifurcation diagram of the shallow lake system in the
(b; c)-parameter space for� = 0:03. Dashed lines represent saddle-node bifurcation curves,
separating the region of parameters for which there is a unique equilibrium in the system from
the region of multiple equilibria. Solid lines indicate heteroclinic bifurcation curves. Phase
portraits of state-control system and of the optimal vector �elds are given forb = 0:65 and
selected values ofc. Optimal trajectories are represented by thick curves, other trajectories are
represented by solid curves. Optimal solutions are always situated on the stable manifold of one
of the saddles. In the upper parts of the phase diagrams the phase plots of the optimal vector
�elds are drawn. Attractors of the optimal vector �elds are denoted by bullets, indifference
points by squares.
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Eutrophic region In the eutrophic case, see Figure 3.1(g), the optimal trajectory is the stable

manifold of the saddleQ. Regardless of the initial level of pollution, the optimal policy steers

the lake to the polluted equilibrium. The optimal vector �eld, drawn in the upper part of the

Figure 3.1(g), has a unique attractor with the whole state space as a basin of attraction; the

polluted steady state is globally optimal.

Note that in both cases, oligotrophic and eutrophic, the optimal vector �eld is single-valued

for all initial states.

Region of history dependence History-dependent solutions are distinguished from the other

ones by the presence of threshold values of the initial pollution levelx: if the initial pollution

level is below that threshold level then the oligotrophic steady state is optimal, whereas if the

initial pollution level is above that threshold level then the eutrophic steady state is optimal. The

type of history-dependent solution is determined by the type of the threshold point which can

be either a repeller or anindifference point6.

Indifference points are initial statesx = x �
0 for which the social planner is indifferent be-

tween steering the lake to the clean or to the polluted state; for these states there exist two

optimal controlsu�
1 andu�

2, both maximizing the social welfare functional(3:2). In the case

when the threshold is an indifference point the optimal policy is a smooth single-valued func-

tion everywhere, except from a point where it takes two values. That point is the indifference

point. The optimal vector �eld is also multivalued at that point. The indifference point in

Figure 3.1(e) is marked by a black square.

In the case when the threshold is a repeller the optimal policy is a smooth function; it as well

as the optimal vector �eld is everywhere single-valued. This case is not shown in Figure 3.1, it

will be illustrated in the next section.

Threshold points separate two basins of attraction of the optimal dynamics: the states below

that point constitute the basin of attraction of the clean equilibrium, and the states above that

point constitute the basin of attraction of the polluted equilibrium. Note that the indifference

6Indifference points are also called Skiba points, DNS points or DNSS points. For the naming see Grasset al.
(2008) p.238.
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point lies in both basins, whereas the repeller lies in neither of them. The history-dependent

pollution policy steers the lake to the clean equilibrium only if the lake is initially not very

polluted, otherwise it steers the lake to the polluted equilibrium.

One can see from Figure 3.1 that in all cases except the history-dependent case the optimal

vector �eld has only one attractor, whereas in the history-dependence case it has two attrac-

tors and one threshold point. Those optimal vector �elds correspond to different values of the

parameterc, hence as the parameterc varies the optimal vector �eld undergoes a bifurcation.

Since the optimal vector �elds depend upon the optimal policies, bifurcations of the optimal

vector �elds are connected with bifurcations of the state-control system. A bifurcation of the

state-control system is calledessentialif it corresponds to a bifurcation of the optimal vector

�eld, otherwise it is calledinessential. In Figure 3.1 the critical parameter values corresponding

to essential and inessential bifurcations of the state-costate system are located on the solid and

the dashed bifurcation curves respectively.

3.3 Bifurcations of optimal vector �elds in the shallow lake

system

This section studies the dependence of the optimal vector �elds upon the system parameters: the

natural rate of sedimentationb, the relative weight of ecological services (or cost of pollution)

c and the discount rate� . The bifurcation analysis described in the previous section is applied

to compute two-parameter bifurcation diagrams. Such a diagram is a partition of the parameter

plane into 2D regions of structural stability of a dynamical system, 1D bifurcation curves and

bifurcation points. Different regions of the parameter-plane correspond to qualitatively different

types of the solution structure of the dynamical system. In the shallow lake system the solution

structure de�nes the type of the optimal solution and therefore the type of the optimal vector

�eld. Hence different regions of bifurcation diagrams correspond to structurally different opti-

mal solutions and structurally different optimal vector �elds. Moreover bifurcation curves of the
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shallow lake system itself and bifurcation curves of the optimal vector �elds are distinguished

from each other.

3.3.1 No discounting case

First, the shallow lake model without discounting, i.e.� = 0 in (3.6), is considered. In this case,

overtaking optimality7 is used as the optimality criterion. Recall that an admissible controlu�

is calledovertaking optimalif, for any admissible controlu, there is aT(u) such that for every

T � T(u)

BT (u) � BT (u� );

where

BT (u) =
Z T

0

�
logu � cx2

�
e� �t dt:

and wherex satis�es (3.1).

For � = 0 the shallow lake system becomes Hamiltonian. Then trajectories of (3.8) are level

curves of the maximized HamiltonianH(x; p) given in (3.5) and steady states are critical points

of H(x; p). Due to the one-to-one state-costate correspondence (3.4) the level curves ofH(x; p)

correspond to the level curves ofH(x; � 1=u) in the state-control space(x; u).

For solutions on the stable manifolds ofP or Q the following holds

BT (u) = H(P)T + o(T) asT ! 1

and

BT (u) = H(Q)T + o(T) asT ! 1 :

Since optimal solutions converge to eitherP or Q overtaking optimality is determined by the

valuesH(P) = log uP � cx2
P and H(Q) = log uQ � cx2

Q. More precisely, the trajectory

converging toP will be preferable in the sense of overtaking optimality ifH (P) > H(Q) and

vice versa.
7For a detailed discussion of this criterion see Grasset al. (2008).
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Figure 3.2 shows the bifurcation diagram of the shallow lake system (3.9) for� = 0. Due

to the fact that the system is Hamiltonian there is only one curve of heteroclinic bifurcations,

which ends at the cusp point `SN2'. The vertical branch of the indifference-attractor bifurcation

Figure 3.2: Bifurcation diagram of the shallow lake system for� = 0.

curve `IA1' is located on the straight lineb= 1=2 and separates two regions: the oligotrophic

region and the region of history-dependent optimal policies.

Let us compare phase plots of the shallow lake system (3.9) forb = 0:6 andb = 0:4 while

other parameters are held �xed� = 0, c = 0:5. First, �x b = 0:6. In this case the shallow

lake system has three equilibria with non-zero control: two saddles and one center, see Fig-

ure 3.3(left). Since the only candidates for the optimal solution are the stable manifolds of the

two saddlesP andQ, the valuesH(P) andH(Q) have to be compared to choose the largest one.

Note that the stable manifold ofP covers the whole state space, therefore it can be presented

as a smooth continuous functionu = ws
P (x) with the propertyH(x; ws

P (x)) = H(P). Since for

(x; u) such thatu < bx � x2=(1 + x2) the following holds@H(x; u)=@u <0, which implies

that H(P) = H(xQ; ws
P (xQ)) > H(Q) and the stable manifold ofP is the optimal trajectory,

see Figure 3.3(left).
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Figure 3.3: Phase plots of the shallow lake system for� = 0, c = 0:5, b= 0:6(left),
b= 0:5(middle) andb= 0:4(right). Solid lines represent invariant manifolds of the two sad-
dlesP andQ, dashed lines represent the isoclines_x = 0 and _u = 0. The optimal solution is
represented by thick curves.

Now let us �x b= 0:4. Recall that forb < 1=2 the shallow lake system is irreversible,

meaning that the lower heteroclinic connections of the saddles are impossible. For this value of

b the shallow lake system has two equilibria with non-zero control: the two saddlesP andQ.

The only candidates for the optimal solution are their stable manifolds. The stable manifold of

the oligotrophic saddleP does not cover the whole state space. In fact, it covers the interval

[0; x̂], wherex̂ =
�
1 �

p
1 � 4b2

�
=(2b) is the smallest positivex-coordinate of intersection of

the isocline_x = 0 and the axisu = 0. If the initial level of pollutionx(0) � x̂ then it is not

possible to steer the lake to the oligotrophic steady state. In order to �nd the optimal trajectory

Figure 3.4: Average value �ows corresponding to the optimal solutions of the shallow lake
model for� = 0, c = 0:5 andb= 0:6(left), b= 0:5(middle),b= 0:4(right). In case of history-
dependent optimal policy the average value �ow is discontinuous.
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the valuesH(P) andH(Q) have to be compared. Analogously to the caseb= 0:6 these values

for x located in the left neighborhood ofx = x̂ are compared. This implies thatH(P) > H(Q)

implying that the stable manifold ofP is the optimal trajectory. However the corresponding

optimal policy is available only forx < x̂, and forx � x̂ the optimal solution lies on the stable

manifold of Q, see Figure 3.3(right). The pointx = x̂ in this case is called anirreversibility

threshold. In Figure 3.3 this point is denoted by a black triangle.

It is important to note here that in case of no discounting the value function corresponding

to the optimal solution is in�nite. Instead theaverage value �owsis considered

v = lim
T !1

1
T

BT (u) = H(u1 ):

The average value �ows corresponding to the optimal solutions are discontinuous if� = 0 and

(b; c) take values in the `Region of history dependence'. Figure 3.4 shows the average value

�ows for the three types of the optimal solution presented in Figure 3.3. Forb = 0:5 and

b= 0:4 they are discontinuous at the irreversibility threshold point.

3.3.2 Cost of pollution versus discounting

Now the value of the decay rateb is �xed and the cost of pollutionc and the discount rate�

are taken as bifurcation parameters. This kind of analysis allows to study the dependence of

the optimal pollution policy upon social preferences, while the biological properties of the lake

are assumed to be given. The bifurcation diagram, given in Figure 3.5, displays the results of

a `comparative dynamics' analysis of the system, as it indicates how the total solution struc-

ture changes with the parameters. All the curves in Figure 3.5 are bifurcations curves of the

shallow lake system, but as it is mentioned above some bifurcations of the state-control system

are irrelevant to the optimal vector �eld. To distinguish such irrelevant bifurcation curves they

are drawn as dashed curves. The solid bifurcation curves represent curves of essential bifur-

cations, that is, bifurcations of the optimal vector �eld. In Figure 3.5 essential curves divide

the parameter space into three separate regions. In the outer region, the optimal vector �eldf o
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Figure 3.5: The bifurcation diagram of the shallow lake system in the(c; � )-parameter space
for b = 0:65. Solid lines represent bifurcation curves of the optimal vector �eld, dashed lines
represent bifurcation curves of the state-control system, that are not bifurcation curves of the
optimal vector �eld.

has a unique global attractor. For parameters taking values in the lower inner region,f o has

two attractors, separated by an indifference point. In the small upper inner region, there are

again two attractors but separated by a repeller. All three steady states are engaged in the cusp

bifurcation which marks the point with the largest value�� (b) of � in the inner region, which is

the supremum of values of� such that the optimal vector �eld can have three equilibria.

The union of the two inner regions is the region where there are multiple long-term steady

states: it is called the region of history-dependence. Consider what happens when� = 0:05

and c decreases fromc = 1 towardsc = 0. If c is large, it is always optimal to steer the

lake towards a clean `oligotrophic' long-term steady state. Then atc � 0:61, the region of

history-dependence is entered: if the lake is initially suf�ciently clean, it is still optimal to

steer it towards a clean state. However, if the lake is initially already too polluted, this is not

worthwhile any more. Finally, atc � 0:54, the basin of attraction of the oligotrophic state

collapses, and the region is entered where there is again a single long-term optimal steady state,
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but now a polluted `eutrophic' one.

Increasing the discount rate� has the same effect as decreasing the economic weightcof the

lake. This is according to our intuition, since both increasing the discount rate and decreasing

the weight of the stock-damage term in the utility functional decreases the importance attached

to long-term effects. For parameters in the region� > �� , there is always a single, globally

attracting steady state, which depends continuously onc and� > �� .

Effects of varying the natural rate of decay The parameter space can be divided into four

regions, according to the values ofb: b 2 I i , i = 1; : : : 4, whereI 1 = [0; 1=2], I 2 = (1 =2; b�
1],

I 3 = ( b�
1; b�

2), I 4 = [ b�
2; + 1 ), with

b�
1 =

�
75� 43

p
3
� p

� 3 + 2
p

3

8
�
� 161 + 93

p
3
� � 0:5505; (3.12)

b�
2 =

3
p

3
8

� 0:6495: (3.13)

For b 2 I 4, the regeneration functiong(x) = � bx + x2=(1 + x2) in the state dynamics

equation_x = u � g(x) is monotonic. In this case, to everyconstantloading level�u, satisfying

�u = g(�x) there corresponds a unique pollution level�x, and�x depends continuously on�u. For

b2 I 1 [ I 2 [ I 3 the regeneration function is not monotonic, and there catastrophic jumps in the

pollution level are possible as the constant level�u gradually increases, see Mäleret al. (2003)

and Wagener (2009). However forb2 I 2 [ I 3 catastrophic shifts in the pollution can be reversed

by decreasing�u suf�ciently, while for b 2 I 1 they are not reversible as the self-cleaning ability

of the lake is insuf�cient for these values ofb.

Figure 3.6 displays the bifurcation diagram of the shallow lake system forb = 0:55. With a

decrease inbthe saddle-node bifurcation lines move away from each other, expanding the lower

region of history-dependence. It can be shown that the upper region of history-dependence

is unbounded, because there does not exist a cusp point forb � b�
1. For the proof see Ap-

pendix 3.A. This implies that the region where the optimal vector �eldf o has a unique global

attractor is now separated into two regions. It can be shown that for any nonnegative value
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Figure 3.6: The bifurcation diagram of the shallow lake system in the(c; � )-parameter space
for b = 0:55. Solid lines represent bifurcation curves of the optimal vector �eld, dashed lines
represent bifurcation curves of the state-control system, that are not bifurcation curves of the
optimal vector �eld.

� = � � of the discount rate the pollution level is lower for(c; � � ) in the right lower region than

for (c; � � ) from the left upper region. Note also that for any positive value of the parameter

c there exists a value of the discount rate� such that the shallow lake system ends up in an

equilibrium with a relatively high pollution level.

Finally, the case of an irreversible system, i.e.b 2 I 1, is considered. In Figure 3.7 the

bifurcation diagram of the shallow lake system forb = 0:45 is displayed. One can immedi-

ately notice that the saddle-node bifurcation curve corresponding to the genesis of the eutrophic

equilibrium, that is the right `SN1' curve in Figure 3.6, and the indifference-attractor bifurcation

curve corresponding to the lower heteroclinic connection of the saddles, that is the right `IA1'

curve in Figure 3.6, are absent in Figure 3.7. The disappearance of the `SN1' curve is explained

by the following proposition.

Proposition 3.3.1.The saddle-node bifurcation curves in the(b; c)� plane that correspond to

the genesis of the eutrophic equilibrium have a vertical asymptoteb = 1=2 for any positive
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Figure 3.7: The bifurcation diagram of the shallow lake system in the(c; � )-parameter space
for b = 0:45. Solid lines represent bifurcation curves of the optimal vector �eld, dashed lines
represent bifurcation curves of the state-control system, that are not bifurcation curves of the
optimal vector �eld.

value of� .

Proof. See Appendix 3.B.

A more detailed discussion of this fact is given in the next subsection. The disappearance

of the `IA1' curve can be explained by the impossibility of a lower heteroclinic connection of

the two saddles. Recall that if the system is reversible it is possible to steer the lake to the clean

equilibriumP starting in a neighborhood of the polluted oneQ, as in Figure 3.1(d). However

in case of irreversibility the stable manifold ofP cannot be connected to the unstable manifold

of Q.

Therefore, forb < 1=2, the eutrophic equilibrium is not involved in any saddle-node bifur-

cation, meaning that it always exists, nor in any indifference-attractor bifurcation, meaning that

it is always locally optimal. This explains why there is only one saddle-node bifurcation curve

and only one indifference attractor bifurcation curve in Figure 3.7.
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3.3.3 Cost of pollution versus natural rate of decay: the discounted case

Figure 3.8 shows the bifurcation diagram of the optimal vector �eldf o for � = 0:03and its blow

up near the cusp point `SN2'. The indifference-repeller bifurcation curves `IR1(1)' and `IR1(2)'

are situated in the very corner between the saddle-node bifurcation curves `SN1'. The `IR1(1)'

curves are almost coinciding with these in the vicinity of the `ISN2' points, see Figure 3.8(right).

As � increases the `ISN2' points move away from the cusp point `SN2' along the saddle-node

Figure 3.8: The bifurcation diagram of the optimal vector �eldf o in the (b; c)� plain for � =
0:03(left) and its blow up near the cusp point (right).

bifurcation curves.

In fact there exist three saddle-node bifurcation curves of the shallow lake system in Fig-

ure 3.8(left): two of them meet at the cusp point `SN2'. The third one exists only for large

values of the parameterc; therefore it is not visible in Figure 3.8. However when� increases it

moves down, as shown in Figure 3.9, where it appears in the upper left-hand corner.

Figure 3.9 displays the bifurcation diagram in the(b; c)� plane for� = 0:245. For this

value of� the bifurcation curves divide the parameter plane into three regions that correspond

to qualitatively different optimal vector �elds. The inner region, which is bounded by two

`IR1(1)', one `IR1(2)' and one `IA1' curve, corresponds to a history-dependent solution with an

indifference point as a threshold. This region, together with two others that are located between
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Figure 3.9: Bifurcation diagram of the shallow lake system with respect to the parametersband
c for � = 0:245.

`SN1' and `IR1(1)', `IR1(2)' curves, and that correspond to a history-dependent solution with a

repeller as a threshold, form a region that is called aregion of history dependence. The outer

region is called theregion of uniqueness. In the region of history dependence the optimal vector

�eld f o has two attractors separated by either a repeller or an indifference point, implying

history dependence of the long run pollution level under the optimal policy. In the region of

uniqueness the optimal vector �eldf o has a unique attractor. The bifurcation diagram can be

interpreted as follows. Assume that relative cost of pollutionc is high, which implies relatively

low phosphorus loading. If the natural out�ow of the pollutant in a lake is a fast process, i.e.b

is high, then the lake is able to sustain low phosphorus loading for any initial level of pollution.

But if bis low then the pollutant accumulates in the water, and even an initially clean lake is not

able to remain clean in presence of constant phosphorus loading. Now assume that relative cost

of pollution c is low, then the initial state of a lake does not affect its long run pollution level

due to heavy phosphorus loading.

For the critical parameter value� = 1=4 the saddle-node bifurcation curves which exist
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for b � 1=2 meet each other, see Figure 3.10(left), and for� > 1=4 they split again but in

Figure 3.10: Bifurcation diagram of the shallow lake system in the parameter plane(b; c) for
� = 0:25(left) and for� = 0:251(right).

a different manner, see Figure 3.10(right), giving rise to a separate saddle-node bifurcation

curve, the dashed curve in the low left-hand corner in Figure 3.10(right). These bifurcations

are irrelevant to the optimal vector �eld, as it is a curve of saddle-node bifurcations of the

state-control system (3.9) which do not cause any bifurcations of the optimal vector �eldf o.

The region of history-dependent optimal policies shrinks and moves up as the discount

factor � increases, see Figure 3.11. One can see that the right boundary of this region hardly

moves, whereas the left boundary moves quickly as� increases. This fact can be explained as

follows. Assume the natural rate of decay to be small, i.e.b � 1=2, meaning that the lake

accumulates most of the pollutant coming in. With an increase in� the social planner becomes

more myopic. The more myopic optimal policy allows for heavier pollutant loading. Thus,

due to the low self-cleaning ability of the lake and the heavy phosphorus loading, the pollution

level rapidly converges to a high steady level regardless of its initial value. However, ifc is

high enough, i.e. the society is suf�ciently concerned about the ecosystem quality, the optimal

policy becomes history-dependent, and thereby the initial state of the lake determines its long

run pollution level. To see this, note that the saddle-node curves that band the region of history-

dependence on the left have an asymptoteb = 0; this is proved in Appendix 3.B. This implies
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that for any0 < b � 1=2 and� > 0 there is a value ofc, possible large, such that(b; c; �) is in

the region of history-dependence.

Figure 3.11: Regions of history-dependent optimal policy for different values of the discount
rate� .

3.4 Concluding remarks

This chapter applies the tools of exploring dynamic optimization problems with multiple equi-

libria to the shallow lake model. These tools, the notion of optimal vector �elds and the theory

of bifurcating optimal vector �elds, has been introduced and described in Chapter 2. The present

chapter illustrates how they work for a particular optimization problem. These tools however

can be applied to a wide class of economic problems.

With the help of the proper bifurcation analysis the analysis of the shallow lake model started

in Wagener (2003) has been completed. The full picture of all possible qualitatively different

optimal pollution policies depending on the type of an eco-system, social preferences and eco-

nomic factors has been obtained. Moreover the boundaries of the regions in the parameter space

that correspond to different types of optimal policies have been computed. Each point in the
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parameter space determines a particular optimization problem. A certain type of the optimal

solution corresponds to a point in a particular region, and an intermediate degenerate situation

between two types of the optimal solution corresponds to a point on a boundary.

Roughly speaking there are three types of the optimal solution: 1) steering a system to

an equilibrium level regardless of its initial state; 2) steering a system to either of two existing

equilibria depending on its initial state; 3) steering a system to either of the two equilibria unless

the initial state is not at its intermediate steady state level. The last two types of the optimal

solution are called history-dependent optimal policies.

The two types of history-dependent optimal policies are distinguished only by the type of

the threshold point: it is either an indifference point or a repeller of the optimal vector �eld.

In the shallow lake model, in the �rst case if the initial pollution level is at the threshold value

then the social planner is free to decide which equilibrium, oligotrophic or eutrophic, the lake

will be steered to; both policies are optimal. In the second case the threshold pollution level is a

repelling equilibrium level; thus the optimal policy keeps that pollution level once started there,

otherwise it steers the pollution level away from it.

Another important contribution of the present chapter to the analysis of the shallow lake

model is ascertained trade-off between social preferences and economic factors. It can be seen

from the bifurcation diagrams with respect to the two parameters:c, relative costs of pollution,

and� , the discount factor, see Figures 3.5-3.6. A decrease inc may radically change the long

run pollution level. In order to keep it at the same value the social planner has to become less

myopic,� has to be decreased proportionally.

Appendix 3.A Asymptotic behavior of the cusp

bifurcation curve

This Appendix proves that the projections of the cusp bifurcation curve onto the(b; c)� and

(b; � )� planes have the vertical asymptoteb=
� p

9 + 6
p

3
�

=8and its projection onto(c; � )� plane

has the asymptote� = Kc + L, whereK andL are given by (3.20)-(3.21).
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The shallow lake system in state-control form is given by the following system of differential

equations 8
>><

>>:

_x = u � bx+
x2

x2 + 1

_u = �
�

� + b�
2x

(x2 + 1) 2

�
u + 2cxu2:

(3.14)

By solving the following system

8
>><

>>:

u � bx+
x2

1 + x2
= 0

�
�

� + b�
2x

(x2 + 1) 2

�
u + 2cxu2 = 0

for u > 0 the manifold of equilibria of the system (3.14) is obtained in the cartesian product

R � R3 of state space and parameter space

s(x; b; c; �) = �
�

� + b�
2x

(x2 + 1) 2

�
+ 2cx

�
bx �

x2

1 + x2

�
= 0: (3.15)

From the de�nition of cusp bifurcation it follows that the cusp bifurcation curve is a solution of

the following system 8
>>>><

>>>>:

s(x; b; c; �) = 0

sx (x; b; c; �) = 0

sxx (x; b; c; �) = 0 :

(3.16)

The system (3.16) has to be solved with respect to the parametersb, c and� to obtain an explicit

expression for the cusp curve in the parameter space. For that solvability of (3.16) with respect

to the parameters has to be checked. The Jacobian of (3.16) is given by

@(s; sx ; sxx )
@(b; c; �)

= �
8cx2(� 3 + 6x2 + x4)

(1 + x2)3
:

For c > 0, x > 0 and x 6=
p

2
p

3 � 3, which is the only positive root of the equation

� 3 + 6x2 + x4 = 0, the system (3.16) can be solved with respect tob, c and � . Therefore
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the cusp bifurcation curve can be parameterized as the image of the map

� : x 7! (bcusp(x); ccusp(x); � cusp(x)) ;

where

bcusp(x) =
� 3x � 8x3 + 9x5 + 6x7

(1 + x2)2(� 1 � 10x2 + 15x4)
(3.17)

ccusp(x) =
1 + 10x2 � 15x4

x2(1 + x2)( � 3 + 6x2 + x4)
(3.18)

� cusp(x) =
2x

(1 + x2)3
�

5x
(1 + x2)2

+
15x

4(1 + x2)
� bcusp(x) +

x3

4
ccusp(x) (3.19)

All the parameters in the model are assumed to be nonnegative; the inequalitiesbcusp(x) � 0,

ccusp > 0 and� cusp � 0 imply thatx 2 (�x1; �x2), where

�x1 =
q

2
p

3 � 3 � 0:68; which is the root of the equation3 � 6x2 � x4 = 0;

�x2 � 0:8233; which is a root of the equation� cusp = 0:

Forx 2 (�x1; �x2) the functionsbcusp(x), ccusp(x) and� cusp(x) are monotone functions satisfying

the following properties

b(�x1) =
1
8

q
9 + 6

p
3 � 0:5505;

lim
x#�x1

c(x) = + 1 ;

lim
x#�x1

� (x) = + 1 :

That proves that the projection of the cusp bifurcation curve� both on(b; c) and(b; � )-planes

has a vertical asymptoteb=
� p

9 + 6
p

3
�

=8.

In order to prove that the projection of the cusp bifurcation curve on the(c; � )-plane has an

76



Figure 3.12: The cusp bifurcation curve and its asymptote in the parameter space(b; c; �).

inclined asymptote the following limits are computed

K = lim
x#�x1

� (x)
c(x)

=
1
4

�
2
p

3 � 3
� 3

2
; (3.20)

L = lim
x#�x1

(� (x) � Kc(x)) =
1
4

q
2
p

3 � 3: (3.21)

That proves that the cusp bifurcation curve has the asymptote in(c; � )� plane, given by

� = Kc + L: (3.22)

Appendix 3.B Asymptotic behavior of the saddle-node bifur-

cation curves

This Appendix proves that the saddle-node bifurcation curves in the(b; c)� plane have two

vertical asymptotesb= 0 andb= 1=2.

The shallow lake system in state-control form is given as

8
>><

>>:

_x = f (x; u; b; c; �) = u � bx+
x2

x2 + 1

_u = g(x; u; b; c; �) = �
�

� + b�
2x

(x2 + 1) 2

�
u + 2cxu2:

(3.23)
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Saddle-node bifurcations occur for points that are solutions of the following system

8
>>>><

>>>>:

f (x; u; b; c; �) = 0

g(x; u; b; c; �) = 0

D(x; u; b; c; �) = 0

(3.24)

whereD(x; u; b; c; �) = det ( @(f; g )=@(x; u)). It can be shown that the system (3.24) can

always be solved with respect to the parametersb, c and � and the saddle-node bifurcation

surface can be parameterized as image of the map

� : ( x; u) 7! (bsn(x; u); csn(x; u); � sn(x; u)):

Solving (3.24) yields

bsn(x; u) =
x2 + u(1 + x2)

x(1 + x2)
(3.25)

csn(x; u) =
3x2 � 1

(1 + x2)(2u � x2 + 4ux2 + x4 + 2ux4)
(3.26)

� sn(x; u) =
2x

(1 + x2)2
+ 2uxcsn(x; u) � bsn(x; u) (3.27)

Intersection of the saddle-node bifurcation surface with the plane� = � 0 can be computed by

solving the following equation

� sn(x; u) = � 0 (3.28)

with respect tou for � 0 > 0. (3.28) is formally equivalent to a quadratic equation inu. Let us

denote solutions of (3.28) aŝu1(x; � 0) andû2(x; � 0). Then the intersection of the saddle-node

surface�( x; u) with the plane� = � 0 is de�ned as the two following curves


 1 :x 7! �( x; û1(x; � 0)) ;


 2 :x 7! �( x; û2(x; � 0)) :
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In order to determine the vertical asymptotes in the(b; c)� plane of the saddle-node curves
 1(x)

and
 2(x), anx � � 0 has to be computed such that

lim
x! x �

bsn(x; ûi (x; � 0)) = b� < 1 ; (3.29)

lim
x! x �

csn(x; ûi (x; � 0)) = 1 ; (3.30)

lim
x! x �

� sn(x; ûi (x; � 0)) = � 0: (3.31)

As x converges tox � csn diverges to in�nity, butbsn and� sn have �nite limits; the equation

(3.27) implies that eitherx � = 0 or limx! x � ûi (x) = 0 or both together have to hold.

Let us consider the three possible cases:

� x � = 0 andlimx! x � ûi (x) 6= 0

Together with (3.25) this implies thatlimx! � bsn(x; ûi ) = 1 , contradicting (3.29).

� limx! x � ûi (x) = 0 andx � > 0

Together with (3.26) and (3.30) this implies thatx � = 1. The solution of (3.28) forx � x �

can be written as

� for � 0 < 1=4

û1(x) =
�

1
4

� � 0

�
�

�
� 0 +

1
4(1 � 4� 0)

�
(x � 1) + o

�
(x � 1)2

�
; (3.32)

û2(x) =
� 0

1 � 4� 0
(x � 1) + o((x � 1)2): (3.33)

� for � 0 > 1=4

û1(x) =
� 0

1 � 4� 0
(x � 1) + o((x � 1)2); (3.34)

û2(x) =
�

1
4

� � 0

�
�

�
� 0 +

1
4(1 � 4� 0)

�
(x � 1) + o

�
(x � 1)2

�
: (3.35)
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For � 0 < 1=4

lim
x! x �

û1(x) = 1 =4 � � 0 > 0;

contradicting the assumption. Hence the solutionû1(x) can be disregarded for� 0 < 1=4.

This implies that

lim
x! x �

bsn(x; u2(x)) = bsn(1; 0) = 1=2:

For � 0 > 1=4

lim
x! x �

û2(x) = 1 =4 � � 0 > 0;

contradicting the assumption. Hence the solutionû2(x) can be disregarded for� 0 > 1=4.

This implies that

lim
x! x �

bsn(x; u1(x)) = bsn(1; 0) = 1=2:

For � = 1=4

lim
x! x �

û1(x) = lim
x! x �

û2(x) = 0 ;

implying that

lim
x! x �

bsn(x; u1(x)) = lim
x! x �

bsn(x; u2(x)) = bsn(1; 0) = 1=2:

� limx! x � ûi (x) = 0 andx � = 0

The solutions of the equation (3.28) forx � x � can be written as

û1(x; � 0) =
1
2

x2 �
1

2� 0
x3 + o(x4);

û2(x; � 0) = � � 0x +
1

2� 0
x3 + o(x4):

Sincelimx! x � bsn(x; û2(x)) = � � 0 and sinceb is positive, the solution̂u1(x) gives the
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Chapter 4

Stochastic optimal control problems with

small noise intensities

In this chapter stochastic optimal control problems with one-dimensional non-convex state dy-

namics are considered. To solve such a problem at a given noise intensity" means to �nd the

value functionV(x0; ") and the optimal controlu(x0; ") for every initial statex0. The value

function V(x0; ") satis�es a second order Hamilton-Jacobi-Bellman equation, which for van-

ishing noise" = 0 reduces to a �rst order differential equation.

Kushner (1967) shows, under suitable assumptions, that the solution of the Hamilton-Jacobi-

Bellman equation exists for" > 0 and is of classC2. Fleming and Souganidis (1986) obtain

an asymptotic expansion forV(x; " ) in regions of strong regularity, that is for subregions of

the state space where the value function of the corresponding unperturbed problemV(x; 0)

is smooth. The convergence ofV(x; " ) to V(x; 0) together with its �rst derivative is shown

as" ! 0. Note that Fleming and Souganidis consider the stochastic control problem over a

bounded region withV(x; " ) satisfying a Dirichlet boundary condition. This chapter considers

problems over an unbounded domain with possibly a �nite number of interior regularity regions.

For each regularity region two conditions are needed to determine the solution of the Hamilton-

Jacobi-Bellman equation, which cannot be derived from the Dirichlet conditions of the original

problem.
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A method is provided of deriving conditions needed to determine the solution of the dynamic

programming equation in regularity regions. It is also shown how to obtain an asymptotic series

of its solution over the whole state domain.

The structure of the chapter is as follows. In Section 4.1 a stochastic control problem is

formulated. Section 4.2 describes the method of approximating its value function when the

value function of the corresponding deterministic problem is smooth and there are no irregular-

ity points. In Section 4.3 a method of constructing an asymptotic series forV(x; " ) is proposed

whenV(x; 0) is not strongly regular everywhere. Section 4.4 concludes.

4.1 Formulation of the problem

Let x(t) andu(t) denote the state of a system and the control applied to the system at timet

respectively. It is assumed thatx 2 X whereX � R is an open set andu 2 D whereD � R

is a compact convex set. Let the state evolve according to the following stochastic differential

equation

dx = f (x; u)dt +
p

2"� 2(x)dw (4.1)

wherew(t) is a one dimensional Wiener process," denotes the noise level, and wheref and�

satisfy the following conditions:

1. f satis�es a uniform Lipschitz condition jointly inx andu;

2. f is linear inu: f (x; u) = A(x) + B(x)u, where the functionsA; B are bounded onX

together with their �rst order derivatives;

3. � satis�es a uniform Lipschitz condition inx;

4. � (x) 6= 0 8x 2 X .

The reader is referred to Fleming (1971) and Kushner (1967) for a detailed discussion of these

conditions.
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The statex(t) is assumed to be completely observable at each timet. Thus the control

policy may be represented as a function of the stateu = u(x). The controlu = u(x) is called

admissibleif u takes values in a compact convex setD and is locally Lipschitz.

The bene�t functional associated with eachu is given by

B[x0; u] = Eu
x0

Z 1

0
g(x; u(x)) e� �t dt (4.2)

where the discount rate� > 0, and whereEu
x0

is the conditional expectation operator given

the initial statex(0) = x0 and the controlu. The integrandg(x; u) is supposed to satisfy the

following conditions:

1. g(x; u) is bounded in any compact set for any admissibleu;

2. g(x; u) is locally Lipschitz jointly inx andu;

3. 9c < 0 such that
@2g(x; u)

@u2
� c (4.3)

for all admissibleu.

The problem is to �nd an admissible controlu�
" = u� (x; " ) that maximizes the bene�t

functional (4.2) given the state dynamics equation (4.1) and the initial statex(0) = x0. This

problem is denoted byG(").

Introduce the value function

V(x0; ") = sup
u

Eu
x0

Z 1

0
g(x; u)e� �t dt (4.4)

and the current value Hamiltonian

H (x; p; u) = g(x; u) + pf (x; u); (4.5)

wherep is a costate variable.
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For eachx andp 2 R consider themaximized current value Hamiltonian

H(x; p) = max
u

H (x; p; u) = max
u

[g(x; u) + pf (x; u)] = H (x; p; U(x; p)); (4.6)

where

U(x; p) = argmax
u

[g(x; u) + pf (x; u)] : (4.7)

The functionU(x; p) is well de�ned asH is strictly concave inu because of (4.3).

The following theorem of Kushner (1967) gives the existence of an optimal maximizing

control.

Theorem 4.1.1.Let the functionsf; � and g satisfy the conditions above. For every" > 0

there exists an optimal controlu� (x; " ) for G("). The corresponding value functionV(x; " ) has

continuous second derivatives w.r.t.x in any compact set and solves the following equation

"� 2(x)Vxx (x; " ) + H(x; Vx (x; " )) � �V (x; " ) = 0 : (4.8)

Equation (4.8) is the Hamilton-Jacobi-Bellman equation of the stochastic optimal control

problemG("). If V solves this equation then the optimal control policy is given by

u� (x; " ) = U (x; Vx (x; " )) : (4.9)

According to Theorem 4.1.1 solvingG(") is reduced to solving the second order ordinary

differential equation (4.8). The fact that the highest order derivative in (4.8) is multiplied by the

perturbation parameter" makes it a singularly perturbed differential equation: for" = 0 this

term vanishes and the order of the equation changes. This chapter focuses on constructing ap-

proximate solutions to such equations using methods of singular perturbations (see for example

Holmes (1995) and Verhulst (2005)).

In the case when the solution of (4.8) for" = 0 is smooth, an approximate solution of (4.8)

can be constructed for small" > 0 as in Fleming and Souganidis (1986). However two con-

ditions are needed to determine the solution. Judd (1998) derives the boundary conditions for
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such a problem by a Taylor approximation ofV in x and" at the steady state of the determinis-

tic problem. In contrast, this chapter expandsV(x; " ) as a series of" . The next section shortly

describes the method.

4.2 Problems without thresholds

First consider the case thatG(0) has a continuously differentiable solution. That is, there exists

aC1 functionV(x; 0) that satis�es the dynamic programming equation ofG(0) for anyx

H(x; Vx (x; 0)) � �V (x; 0) = 0: (4.10)

The so-calledoptimal vector �eldis then given by

_x = f o(x) =
@H
@p

(x; Vx (x; 0)): (4.11)

It determines the state dynamics under the optimal policy. In this section it is assumed that the

optimal vector �eldf o of the problemG(0) has a unique global attractorx = x � .

It is assumed (see Fleming and Souganidis (1986)) that for small" the solutionV(x; " ) to

G(") can be expanded as

V(x; " ) = v0(x) + "v1(x) + "2v2(x) + : : : : (4.12)

Following Fleming and Souganidis (1986), (4.12) is substituted into (4.8) and terms with the

same orders of" are collected. This yields a series of equations, the �rst two reading as

H(x; v0
0(x)) � �v 0(x) = 0 ; (4.13)

� 2(x)v00
0(x) + H p(x; v0

0(x))v0
1(x) � �v 1(x) = 0 : (4.14)

Equation (4.13) is the dynamic programming equation of the unperturbed problemG(0); it is
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solved byv0(x) = V(x; 0). Any subsequent equation is a �rst order linear differential equation

for the functionvk with coef�cients depending onvk� 1. This allows us to determine thevk

recursively.

As these equations are �rst-order differential equations, each requires one condition to de-

termine a free parameter in the family of solutions. In order to obtain such a condition for

(4.13), the equation is differentiated with respect tox and terms are rearranged as follows

v00
0(x) =

�v 0
0(x) � H x (x; v0

0(x))
H p(x; v0

0(x))
: (4.15)

Equation (4.11) implies that equilibria of the optimal vector �eldf o are zeros ofH p(x; v0
0(x)) .

From the assumption about existence of the unique global attractor off o, it follows that there

exists a uniquex = x � such thatH p(x � ; v0
0(x � )) = 0 . If a solution of (4.13) is to be smooth, it

is also required that

�v 0
0(x � ) � H x (x; v0

0(x � )) = 0 : (4.16)

The equations (4.16) and (4.13) yield the value ofv0(x) at x = x � , which gives a condition to

determinev0(x) in (4.13).

Let us rewrite (4.14) as follows

v0
1(x) =

�v 1(x) � � 2(x)v00
0(x)

H p(x; v0
0(x))

: (4.17)

If v0
1 is to be smooth, it is required that

v1(x � ) =
� 2(x � )v00

0(x � )
�

; (4.18)

which yields a condition for equation (4.14) determiningv1(x). Proceeding in the same way

v2(x); : : : ; vk(x) are obtained iteratively. Thek� th order approximation to the solution of (4.8)

is then given by

Vk(x; " ) =
kX

j =0

" j vj (x): (4.19)
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4.3 Problems with thresholds

Now consider the situation that the optimal vector �eldf o of the deterministic problem has mul-

tiple equilibria. As every equilibrium off o gives rise to a condition for the equations (4.13),

(4.14) etc, for every such equilibrium an approximation of the form (4.19) of the solution to the

Hamilton-Jacobi-Bellman equation (4.8) is obtained. These approximations are usually de�ned

only on neighborhoods of the corresponding equilibria. In order to get a global approximation

they have to be `glued' together in such a way that the resulting function is smooth and approxi-

mates the value functionV(x; " ) over the whole state space. This can be done using the method

of matched asymptotic expansions, which is described next.

The equation (4.13) is a �rst order differential equation, but its solutionv0(x) has to satisfy

more than one condition. This implies that there exist points of non-differentiability ofv0(x);

these are indifference points of the deterministic problem (see Chapter 2). They divide the state

domain intoouter layers1, that is subdomains where (4.8) is approximated by (4.13), where

v0(x) is differentiable andV(x; " ) converges tov0(x) uniformly with its derivative as" ! 0.

The next step is to introducean inner layeraround each indifference point. Each inner layer

contains a point of non-differentiability ofv0(x), therefore the smooth functionVx (x; " ) needs to

change fast in order to approximate the discontinuous functionVx (x; 0). This implies that in an

inner layer (4.8) is not well approximated by (4.13) asVxx (x; " ) will be large and the term"Vxx

in the stochastic Hamilton-Jacobi-Bellman equation (4.8) will not be negligible. To capture this

fact, in each inner layer a suitable local variable is introduced. Writing (4.8) in local variables,

a second order equation for the nondeterministic correction term which has a solution with two

free parameters is obtained. The missing conditions needed to determine the parameters are

obtained by matching the approximate solutions of the Hamilton-Jacobi-Bellman equation (4.8)

in the inner and outer layers. This is done in the third step by introducing so calledtransition

layers- the intervals where the outer and the inner layers overlap. As a result a collection of

approximate solutions to (4.8) in the inner and outer layers is obtained. In the fourth step all

1In Fleming and Souganidis (1986) these subdomains are called regions of strong regularity.
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approximations are combined in such a way that the resulting function is smooth and solves

(4.8) over the whole domain up to a term that tends to 0 as" ! 0.

Step 1: Outer layer

If f o has two attracting equilibria,xL andxR , then two approximations ofV(x; " ) are obtained

using the method described in Section 4.1. LetV L; 1(x; " ) = vL
0 (x) + "v L

1 (x) andV R;1(x; " ) =

vR
0 (x) + "vR

1 (x) be the �rst order approximations ofV(x; " ) with conditions derived atx = xL

andx = xR respectively. The indifference pointx = x̂ is determined by the condition

vL
0 (x̂) = vR

0 (x̂): (4.20)

DenotevL
0 (x̂) = vR

0 (x̂) = v̂. Theouterapproximation ofV(x; " ) is then given by

V outer; 1(x; " ) =

8
><

>:

V L; 1(x; " ) for x < x̂;

V R;1(x; " ) for x � x̂:
(4.21)

However, the functionV outer (x; " ) is generally not of classC2; it might be even discontinuous

at x = x̂. It is therefore not a good approximation of the solution toG(") in a neighborhood of

x = x̂. Therefore an inner layer is introduced atx = x̂ and (4.8) is considered in local variables

aroundx = x̂.

Step 2: Inner layer

Introduce the local variable

� � =
x � x̂

" �
; (4.22)

where0 � � � 1 is a constant. Rewriting (4.8) in terms of� � and denoting the solution in the

inner layer asV inner (� � ; ") yields

"1� 2� � 2(x̂ + " � � � )(V inner )00+ H(x̂ + " � � � ; " � � (V inner )0) � �V inner = 0: (4.23)
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De�ne V inner;� (� � ) = v̂+ " � W� (� � ). It turns out that the appropriate expansion ofV inner (� � ; ")

is

V inner (� � ; ") = V inner;� (� � ; ") + o(" � ): (4.24)

Then (4.23) reads as follows

"1� � � 2(x̂ + " � � � )W 00
� + H (x̂ + " � � � ; W0

� ) � � v̂ � �" � W� = o(" � ): (4.25)

In order to determine the value of� the following cases are considered:

1) � = 0 : if " ! 0 then (4.25) becomes

H(x̂ + � 0; W0
0) � � (v̂ + W0) = 0; (4.26)

2) 0 < � < 1 : if " ! 0 then (4.25) becomes

H(x̂; W 0
� ) � � v̂ = 0; (4.27)

3) � = 1 : if " ! 0 then (4.25) becomes

� 2(x̂)W 00
1 + H(x̂; W 0

1) � � v̂ = 0: (4.28)

Note that for� = 0 the leading terms of the inner expansionV inner; 0(� 0; ") = v̂ + W0(� 0)

and in the outer expansion

V outer; 0(x; " ) =

8
><

>:

vL
0 (x) for x < x̂;

vR
0 (x) for x � x̂;

coincide, compare (4.13) and (4.26). Note also that for� = 1 the inner expansionV inner; 1(� 1; ")

approximates the solutionV(x; " ) in the inner layer, as� = 1 is the distinguished limit for
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(4.25). Therefore for0 < � < 1 the expansionV inner;� (� � ; ") approximates the solution in

thetransition layers2- two regions (left and right) where the outer layers overlap with the inner

layer. This implies that the leading terms in the two approximations must coincide if both are

rewritten in� � � coordinates and the limit" ! 0 is taken. This gives us two conditions that are

needed to determine the solution of (4.28): one condition is derived from matching the inner

and the outer expansions at the left transition layer, another one from matching them at the right

transition layer. The process of matching is done in the next step.

Step 3: Matching

Outer and inner solutions are matched by writing the two solutions in the transition layers'

coordinates and equating their values. If the outer solutions are rewritten in the transition layers

coordinates

� � =
x � x̂

" �
= " � � � 0 = "1� � � 1 (4.29)

then from (4.21) the following is obtained

V outer (� 0) = V outer (" � � � ) =

8
><

>:

vL
0 (x̂ + " � � � ) + "v L

1 (x̂ + " � � � ) for � � < 0

vR
0 (x̂ + " � � � ) + "vR

1 (x̂ + " � � � ) for � � > 0

=

8
><

>:

v̂ + ( vL
0 )0(x̂)" � � � + "v L

1 (x̂) + o(") for � � < 0

v̂ + ( vR
0 )0(x̂)" � � � + "vR

1 (x̂) + o(") for � � > 0
(4.30)

Rewriting the inner solution in the transition layer coordinates yields, using (4.24) and (4.29)

V inner;� (� 1) = V inner;� (" � � 1� � ) = v̂ + "W1(" � � 1� � ) + o("): (4.31)

2This follows from theoverlap hypothesis(see Verhulst (2005)), which assumes that if there are two neigh-
boring expansions, then there exists a common subdomain where both expansions are valid. Equation (4.26) is
obtained from (4.27) for� ! 0, and equation (4.28) is obtained from (4.27) for� ! 1.
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The values of the inner and the outer expansions in the transition layers have to be matched,

therefore it is required that

v̂ + "W1(" � � 1� � ) =

8
><

>:

v̂ + ( vL
0 )0(x̂)" � � � + "v L

1 (x̂) + o(") for � � < 0

v̂ + ( vR
0 )0(x̂)" � � � + "vR

1 (x̂) + o(") for � � > 0;
(4.32)

which implies for �xedx two asymptotic conditions forW1

lim
" ! 0

�
W1(" � � 1� � ) � (vL

0 )0(x̂)" � � 1� � � vL
1 (x̂)

�
= 0; for � � < 0 (4.33)

lim
" ! 0

�
W1(" � � 1� � ) � (vR

0 )0(x̂)" � � 1� � � vR
1 (x̂)

�
= 0; for � � > 0: (4.34)

Write w = W 0
1. Equation (4.28) takes the form

� 2(x̂)w0+ H(x̂; w) � � v̂ = 0: (4.35)

If w(�; C ) designates the general solution of (4.35), wherew(0; C) = C, then (4.33), (4.34) can

be rewritten as follows

W1(0) �
Z 0

�1

�
w(�; C ) � (vL

0 )0(x̂)
	

d� = vL
1 (x̂); (4.36)

W1(0) +
Z + 1

0

�
w(�; C ) � (vR

0 )0(x̂)
	

d� = vR
1 (x̂): (4.37)

From equalities (4.36), (4.37) the conditionsW1(0) andW 0
1(0) = C needed to determine the

solution of (4.28) are obtained.

Step 4: Composite expansion

The description of the solution consists of two partsV outer andV inner , which now have to be

combined to form acomposite expansion. This is done by adding the expansions and subtracting
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common parts. Thus the �rst order approximation of the solution to (4.8) is given by

V1(x; " ) =

8
>><

>>:

vL
0 (x) + v̂ + "W1

�
x � x̂

"

�
� v̂ �

�
vL

0

� 0
(x̂)(x � x̂); for x < x̂

vR
0 (x) + v̂ + "W1

�
x � x̂

"

�
� v̂ �

�
vR

0

� 0
(x̂)(x � x̂); for x � x̂

=

8
>><

>>:

vL
0 (x) + "W1

�
x � x̂

"

�
�

�
vL

0

� 0
(x̂)(x � x̂); for x < x̂

vR
0 (x) + "W1

�
x � x̂

"

�
�

�
vR

0

� 0
(x̂)(x � x̂); for x � x̂

(4.38)

The functionV1(x; " ) given by (4.38) is continuous and smooth atx = x̂ as the following is

true

lim
x" x̂

V1(x; " ) = lim
x#x̂

V1(x; " ) = v̂; (4.39)

lim
x" x̂

(V1)x (x; " ) = lim
x#x̂

(V1)x (x; " ) = W 0
1(0): (4.40)

4.4 Concluding remarks

In this chapter a solution approximation method for stochastic optimal control problems with

one-dimensional state space and in�nite time horizon has been developed. This method is gen-

eral and can be applied to problems with small noise intensities. The algorithm of constructing

a solution approximation involves solving a number of ordinary differential equations and inte-

gral equalities, which can be implemented ef�ciently numerically. In Chapter 5 this method is

applied to a stochastic lake model.
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Chapter 5

Regime switching thresholds in stochastic

optimal control problems

Recall from Chapter 2 that an indifference point for a deterministic optimal control problem

corresponds to an initial state where there are two optimal controls yielding different long

run outcomes. This notion of indifference point cannot be extended in a straightforward way

to problems with noise as the optimal controls in stochastic problems are always univalued .

Therefore a new concept is needed. There has been one attempt in this direction: Dechert and

O'Donnell (2006) consider a stochastic control problem in discrete time with a one-dimensional

state space and bounded stochastic shocks. They introduce the notion of a stochastic indiffer-

ence set, which is a stochastic equivalent of a deterministic indifference point, as `a transient

set between two basins of attraction [...] where there is a positive probability that the dynamics

will end up in the lower basin of attraction, and a positive probability they will end up in the

upper basin of attraction'. The authors analyze numerically the dependence of such sets on the

noise level in the context of a stochastic dynamic game. In Bultmannet al. (2010) the authors

adopt this concept and apply it to a model of illicit drug consumption. They show numerically

that these indifference sets expand with the noise variance and that the optimal policy becomes

a continuous function of the state for suf�ciently high levels of the variance. Unfortunately,

the concept of stochastic indifference set is not applicable to models with continuous time and
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unbounded shocks; for such systems a different notion is needed.

This chapter proposes a concept of stochastic thresholds for one-dimensional continuous

time optimal control models, which is invariant with respect to coordinate transformations. The

presence of stochastic indifference thresholds implies regime switching behavior of the system.

This type of behavior is characterized by persistent state �uctuations around one of the steady

state until a large shock forces the system to pass the threshold between the regimes. After

that the system �uctuates around another equilibrium until the next large shock hits the system

again.

The methodology of obtaining an asymptotic series for the solution of the Hamilton-Jacobi-

Bellman equation, developed in Chapter 4, and the concept of stochastic thresholds developed

in this chapter are applied to a stochastic model of optimal water pollution control.

5.1 The concept of regime switching thresholds

This section introduces stochastic bifurcations as bifurcations of a certain geometric invariant

of the optimally controlled process - the transformation invariant function (see Wagenmakers

et al. (2005)). Regime switching thresholds are introduced as its local minima.

5.1.1 Processes with constant diffusion

Consider �rst a stochastic processx(t) with a constant diffusion satisfying the following stochas-

tic differential equation

dx = f (x)dt + �dw; (5.1)

wherew is a Wiener process and� is constant. It is assumed that given an initial distribution' 0

of x(0), ' t exists for allt � 0. It is well known that' t (x) satis�es the Fokker-Plank equation1

@'t
@t

= �
@

@x
[f ' t ] +

1
2

@2

@x2
�
� 2' t

�
: (5.2)

1Also known as the Kolmogorov forward equation.
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When a stationary solution' (x) of (5.2) exists, it is unique and given as the solution of

0 = �
d

dx
[f ' ] +

1
2

d2

dx2

�
� 2'

�
: (5.3)

By integrating (5.3) once, the following is obtained

� f ' +
1
2

d
dx

�
� 2'

�
= C1: (5.4)

To obtain a probability density,C1 has to equal 0. Then (5.4) reads as

� 2

2'
d'
dx

= f: (5.5)

From (5.5) the following is derived

log' (x) =
2
� 2

Z x

x0

f (� ) d� + C2; (5.6)

where the constantC2 is determined from the normalization condition
R

' = 1. Thus the

probability density function' (x) of the stationary distribution of the processx(t) is given by

' (x) =
exp

n
2

� 2

Rx
x0

f (� ) d�
o

R
X exp

n
2

� 2

R�
x0

f (� ) d�
o

d�
: (5.7)

Equation (5.5) implies that zeros of the drift functionf correspond to critical points of' ,

i.e. modes and antimodes of the stationary distribution. The modes of' indicate the most

frequent states of the system. Such a state acts as an attractor: if the system slightly deviates

from it, the drift f forces it to come back, asf = 0 andf 0 < 0 at such a point. On the contrary,

a local minimum of' , separating two modes, acts as a repeller, asf = 0 andf 0 > 0 at such

a point. Therefore it seems reasonable to associate the critical points of' with the stochastic

equilibrium states, see Figure 1. However, critical points of the stationary density function'

are not invariant under transformations of the processx(t), which will be shown in the next
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Figure 5.1: Correspondence between the deterministic drift functionf (x) and the probability
density function' (x) for a process with a constant diffusion� . Stochastic stable steady states
correspond to modes of' (x), which are zeros off (x) where it changes its sign from positive
to negative. Whereas stochastic regime switching thresholds (RST) correspond to antimodes of
' (x), which are zeros off (x) where it changes its sign from negative to positive.

subsection.

5.1.2 Transformation invariant function

Now consider a stochastic processy(t) with non-constant diffusion strength satisfying the fol-

lowing equation

dy = g(y)dt +
p

2"� 2(y)dw; (5.8)

where the diffusion strength is not necessarily constant. Note that any one-dimensional process

with non-constant diffusion strength can be transformed into a process with a constant diffusion

by a suitable coordinate transformation. Letz = r (y) be a transformation of the processy(t).

Then It̂o's differential rule implies

dz = r 0(r � 1(z))dy + "� 2(r � 1(z))r 00(r � 1(z))dt

=
�
r 0(r � 1(z))g(r � 1(z)) + "� 2(r � 1(z))r 00(r � 1(z))

�
dt +

p
2"r 0(r � 1(z)) � (r � 1(z))dw

= ~g(z)dt +
p

2" ~� (z)dw: (5.9)
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Let r (y) satisfy the following differential equation

r 0(y) =
A

p
2"� (y)

; (5.10)

whereA > 0 is a constant. Then from (5.9) it follows that the processz(y) has a constant

diffusion strength which is equal toA.

Let  (y) and' (z) denote the stationary solutions of the Fokker-Plank equations correspond-

ing to the processy(t) andz(t) respectively. The following then holds

' (z) =
 (r � 1(z))
r 0(r � 1(z))

: (5.11)

From (5.11) it follows that the stationary density function is not invariant under coordinate

transformation. This implies that (y) and' (z) can have different number of critical points and

therefore different number of stochastic stable steady states and regime switching thresholds.

This means that the stationary density function is not a proper measure of the equilibrium points

of a stochastic process.

The non-invariance under coordinate transformations of stationary density functions has

been pointed out by Zeeman (1988). In Wagenmakerset al. (2005) the authors suggest to

considerthe transformation invariant functiongiven by

I (y) = � (y) (y); (5.12)

which is invariant under diffeomorphic transformations of coordinates. To see this, let us com-

bine (5.9) and (5.11) and derive the following

~� (r (y)) ' (r (y)) = r 0(y)� (y)
 (y)
r 0(y)

= � (y) (y): (5.13)

Note, that for processes with a constant diffusion the transformation invariant function is pro-

portional to the stationary density function.
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5.1.3 Stochastic bifurcations

The transformation invariant functionI , introduced above, is a geometrical invariant of the

processy. The number of critical points ofI is therefore a property of the stochastic processy

and not only of its representation in a given coordinate system. The following de�nitions can

then be introduced:

De�nition 5.1.1. Lety be a stochastic process that satis�es (5.8), with transformation invariant

functionI (y). A local maximum ofI is calleda stochastic attractorof y.

As mentioned above, for systems with constant diffusion the functionI is proportional to

the stationary density function. Therefore, for such systems local maxima ofI indicate most

likely states of the processy.

De�nition 5.1.2. Lety be a stochastic process that satis�es (5.8) with the transformation invari-

ant functionI (y). A local minimum ofI is calleda regime switching thresholdof the process

y. Any interval in the state space bounded by such thresholds is called a regime of the process

y(t).

Each regime ofy contains one attractor and is characterized by �uctuations of the process

around it. A large shock may change the regime of the process.

De�nition 5.1.3. Let y be a stochastic process that satis�es (5.8) with the transformation in-

variant functionI (y). A change in the number of critical points ofI (y) indicatesa stochastic

bifurcation of the processy.

5.2 The stochastic lake model

In this section the methods developed in Chapter 4 are applied to analyze a stochastic lake

model. The deterministic lake model, introduced in Mäleret al.(2003), is a prototype for an op-

timal management problem with con�icting intertemporal interests and non-convex feedbacks.
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It has been studied extensively: in Wagener (2003) and Kiseleva and Wagener (2010) a bifurca-

tion analysis of the lake model is performed; Heijnen and Wagener (2008) extended the model

by adding an industry whose activities increase the pollution; Kossioriset al.(2008) considered

a differential lake game on pollution control; Heijdra and Heijnen (2009) studied economic

and environmental effects of public abatement in this model; Salernoet al. (2007) considered a

model of political economy with the underlying lake dynamics. Dechert and O'Donnell (2006)

solved a stochastic lake game numerically; however, as mentioned in the introduction, the au-

thors limited themselves to considering discrete bounded shocks.

In the lake model a social planner controls usage of fertilizers by farmers that pollute a lake

close to the farmers' �elds. The planner's problem is to maximize a social welfare functional

which models the con�icting interests of farmers and tourists: farmers indirectly bene�t from

polluting the lake, and tourists suffer from the polluted lake. If the pollution level at timet is

denoted asx(t), and the loading of more pollution due to farming asu(t) thenthe stochastic

lake problemis given by

max
u

Ex0

Z 1

0

�
logu(t) � cx2(t)

�
e� �t dt (5.14)

dx =
�

u � bx+
x2

1 + x2

�
dt + x

p
2"dw(t); x(0) = x0: (5.15)

The integrand in (5.14) models social utility: the termlogu represents farmers' pro�ts derived

from intensityu of the use of fertilizers, whereas the termcx2 represents tourists' disutility from

the pollution in the lake, where the parameterc > 0 models the relative costs of pollution. The

social planner maximizes the expected social welfare (5.14) subject to the pollution dynamics

equation (5.15), where the parameter2 b > 0 is the coef�cient that is proportional to the rate of

loss of pollution due to sedimentation and where the last term models the biological production

2It is assumed that uncertainty enters the lake model via the biological parameterb: rewriting equation (5.15)
as

dx
dt

= u �
�

b�
p

2"x 2 dW(t)
dt

�
x +

x2

1 + x2

results in the original lake dynamics equation where the parameterb is perturbed by a white noise term.
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process.

De�ne the value function of the stochastic lake problem

V(x0; ") = max
u

Ex0

Z 1

0

�
logu(t) � cx2(t)

�
e� �t dt: (5.16)

It is easy to check that the functions in the model satisfy the conditions of Theorem 4.1.1 if the

controlu takes values in a compact interval3 [m; M ]. Then Theorem 4.1.1 implies that the value

functionV(x; " ) solves (4.8), which here takes the form

"x 2Vxx + max
u

�
logu � cx2 + Vx

�
u � bx+

x2

1 + x2

��
� �V = 0: (5.17)

Solving the optimization problem in (5.17) the optimal policy is obtained

u� (x; " ) = �
1

Vx (x; " )
: (5.18)

Then the value functionV(x; " ) of the stochastic lake problem solves

"x 2Vxx (x; " ) � log(� Vx ) � cx2 � 1 + Vx

�
� bx+

x2

1 + x2

�
� �V (x; " ) = 0 : (5.19)

Now, the method developed in Chapter 4 to approximate the solution of (5.19) can be ap-

plied. For that the parameter values(b; c; �) have to be �xed. Let us �rst consider a case with a

unique optimum of the corresponding deterministic lake problem:b= 0:65; c = 0:7; � = 0:03.

The corresponding stochastic optimal policy and the long run distribution of the state are shown

in Fig. 2. As the noise level" in the model is small, the stochastic optimal policy is almost

indistinguishable from the deterministic one. The long run distribution is unimodal.

To consider a case when the deterministic lake problem exhibits an indifference point, the

parameters are set atb = 0:65; c = 0:5; � = 0:03. As shown in Fig. 5.4(a) the deterministic

optimal policy is discontinuous in this case: a part of the optimal control is formed by a part of

3u is bounded from above byM , whereM >> 1 is an upper limit of the amount fertilizers that land can bear.
And u is bounded from below bym, where0 < m << 1, to assure sustainability of the agricultural sector.
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Figure 5.2: The graph of the optimal policy function for the stochastic lake problem (dotted) and
the corresponding deterministic lake problem (solid). The corresponding long run distribution is
shown at the bottom of the �gure. It is obtained by running the process (5.15) withu = u� (x; " )
for 105 periods after102 transient periods. The model parameters areb = 0:65; c = 0:7� =
0:03; " = 0:001:

the stable manifold of one equilibrium, another part by the stable manifold of another equilib-

rium. The discontinuity is located at the deterministic indifference point, which separates the

basins of attraction with respect to the deterministic optimal vector �eldf o of the two equilibria.

Starting at that point the controller is indifferent between steering the system to either of these

equilibria.

Let us apply the method described in Section 4.3 to solve the corresponding stochastic

lake problem. In Fig. 5.3 the deterministic and stochastic value functions are shown. At the

indifference point the deterministic value function has a kink, whereas the stochastic value

function is smooth and everywhere differentiable.

It is clear from Figure 5.3(a) that the value function of the stochastic problem is located

above the value function of the deterministic problem. It suggests that stochasticity increases

the expected social welfare, at least for small noise levels.

The corresponding optimal policy and the long run state distribution are shown in Fig. 5.4(a).

The discontinuity of the optimal policy at the indifference point in the deterministic model

is smoothed out by uncertainty in the stochastic model and the optimal policyu� (x; " ) is a

continuous differentiable function, see Fig. 5.4(a).
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(a) (b)

Figure 5.3: Figure 5.3(a) shows the deterministic (solid line) and the stochastic (dotted line)
value functions for the stochastic lake model. The deterministic value function has a kink at
the indifference point, whereas the stochastic value function is smooth. Figure 5.3(b) shows
a blow up in a neighborhood of the deterministic indifference point. The model parameters
b= 0:65; c = 0:5� = 0:03; " = 0:003:

(a) (b)

Figure 5.4: Figure 5.4(a) shows the graphs of the deterministic optimal policy (solid discontin-
uous line), the stochastic optimal policy (dotted line) and the long run distribution of the state.
The stochastic regime switching threshold is marked as an empty circle. Figure 5.4(b) shows
the corresponding times series. It is obtained by running the process (5.15) withu = u� (x; " )
for 104 periods after102 transient periods. Figure 5.4(b) shows that the considered stochastic
model exhibits regime switching phenomenon: the system �uctuates around one of the steady
states until it is pushed away to another steady state due to a large shock. The basins of �uc-
tuations are separated by the stochastic regime switching threshold. The model parameters are
b= 0:65; c = 0:5; � = 0:03; " = 0:003.
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The corresponding long run distribution is bimodal. The stochastic regime switching point

acts as a repeller separating two regimes: `clean lake' and `turbid lake', see Fig. 5.4(b).

5.2.1 Bifurcation analysis with respect to the noise level

Figure 5.5(a) shows a bifurcation diagram of the stochastic lake problem with respect to the

noise level parameter" for b= 0:65; c = 0:49; � = 0:03. For small noise levels the long run

distribution of the state is bimodal with the stochastic regime switching point separating two

modes. When the noise level increases the threshold collides with the highest mode and they

both disappear via a saddle-node bifurcation. As the noise level increases further the long run

distribution remains unimodal. The same scenario is illustrated in Figure 5.5(b) forc = 0:52.

Larger costs of pollution yield more restrictive policies, and as a result uniqueness of the `clean

lake' regime for lower values of" .

(a) c = 0 :49 (b) c = 0 :52

Figure 5.5: Bifurcation diagrams of the long run distribution in the stochastic lake model with
respect to the noise level" . Solid lines indicate modes of the transformation invariant function
� (x)' (x), the dashed lines indicates the antimode of� (x)' (x) - the stochastic regime switching
threshold. For small level of noise the long run distribution is bimodal. As the noise parameter
" increases the eutrophic steady state and the stochastic regime switching point merge in a
saddle-node bifurcation and disappear, the long run distribution becomes unimodal. The model
parameters areb= 0:65; � = 0:03.

Figure 5.6 shows average time spent in one regime for different values of the noise param-

eter " . It exponentially declines with the noise level. Of course, as" increases large shocks
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Figure 5.6: Average time (in log) spent by the lake system in a regime before switching to
another regime for different noise levels. The model parameters areb = 0:65; c = 0:5; � =
0:03.

become more likely, pushing the state process out of one basin of �uctuation to the other.

Figure 5.7(a) shows a collection of transformation invariant functions for different values

of " andc = 0:49. For small" the functions are bimodal (see Figure 5.5(a)), the most of the

mass is concentrated around the high steady state, so the lake is polluted most of the time. As

the noise in the system increases the mass is shifted to the regime of the `clean lake'. For large

noise the long run distribution is unimodal with a peak at the `clean' equilibrium. In the face of

uncertainty the planner acts to avoid serious or irreversible potential harm to the environment.

Higher uncertainties in the system yield more restrictive pollution policy when the pollution

level is high, see Figure 5.7(c)-5.7(d).

For c = 0:52, see Figure 5.7(b), the transformation invariant function is bimodal for small

values of" (see Figure 5.5(b)), and the mass is concentrated around the `clean' steady state for

all values of the noise parameter" . It shows that high relative costs of pollutionc force the

decision maker to keep the lake in the `clean' regime.

Figure 5.8 shows the critical values ofc for different values of the noise parameter" that

correspond to the invariant distributions such that the mass concentrated around either of the

regimes is equal to1=2. For values ofc below that curve the lake is turbid most of the time,
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(a) c = 0 :49 (b) c = 0 :52

(c) c = 0 :49 (d) c = 0 :52

Figure 5.7: Transformation invariant functions and optimal control policies for different values
of " andc. The model parameters areb= 0:65; � = 0:03.

and for values ofc above it the lake is clean most of the time. As can be seen from Figure 5.8

(right), the larger the noise in the system the lower the critical value ofc.

5.3 Concluding remarks

This chapter introduces a concept of a stochastic regime switching threshold. From the de�-

nition it follows that such a point separates two basins of �uctuations, or two regimes of the

system. In one regime the system �uctuates around one of the steady states, until it is pushed

away by a large shock to another basin, and the regime changes.
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Figure 5.8: The bifurcation curve in("; c)� parameter space corresponding to the case when the
mass concentrated around each of the regimes is equal to 1/2. For the parameter values below
this curve the processf x tg spends more time in the `turbid lake' regime, and vice versa. The
model parameters areb= 0:65; � = 0:03.

This concept as well as the solution method developed in Chapter 4 are applied to perform

a bifurcation analysis of the stochastic lake model. Approximations of the solution for differ-

ent values of the parameters are obtained, including the case with the indifference point. The

optimal policy function is computed, which is smooth for any values of the model parame-

ters. Stochastic regime switching thresholds are computed for different noise levels, and it is

shown that as the noise increases the threshold point collides with one of the steady states and

disappears via a saddle-node bifurcation.
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Chapter 6

Summary

This thesis is devoted to the study of parameterized families of continuous time in�nite horizon

optimal control problems with one dimensional non-convex state dynamics. Such models often

occur in environmental economics (see Tahvonen and Salo (1996), Schefferet al.(2001), Brock

and Starrett (2003), M̈aleret al.(2003), Scheffer (2009)). All the theoretical results and methods

developed in the thesis are illustrated with the deterministic and stochastic lake model. They

are however general and can be applied to any problem of that type.

The main contribution of the thesis is the development of the bifurcation theory of one-

dimensional optimal vector �elds (see Chapter 2), which allows to obtain the solution structure

of parameterized non-convex optimal control problems. Such problems can exhibit multiple

local optimal attractors and consequently indifference thresholds separating their basins of at-

traction. The theory developed in Chapter 2 allows to locate regions in the parameter space for

which the controlled system exhibits thresholds. This information may suggest reconsideration

of management options or reevaluation of the key system parameters.

Chapter 3 analyzes the shallow lake model using the theory developed in Chapter 2. It is a

model of optimal water pollution management, which serves as a prototype of a con�ict between

ecologic and economic interests. Bifurcation analysis of the model shows the effects of chang-

ing the parameter values in the parameter regions where the clean and polluted steady states are

globally or locally stable under the optimal dynamics. This information can affect evaluation
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of the parameters, such as the discount factor or relative costs of pollution, which are used by

the social planner when designing the optimal policy. A slight change of the discount factor

� can change the optimal policy radically. For instance, for some values of the pollution costs

a decrease of� can imply that an initially clean lake will be steered to the clean equilibrium,

rather than to the polluted equilibrium under the policy with a higher discount factor.

Stochastic optimal control problems with small noise intensities have been studied in Chap-

ter 4. The solution of such a problem reduces to solution of the corresponding Hamilton-Jacobi-

Bellman equation. It is a singularly perturbed second order differential equation. When the

noise is set to zero, it becomes a �rst order dynamic programming equation of the corresponding

deterministic problem. Chapter 4 develops a method of constructing approximate solutions of

the Hamilton-Jacobi-Bellman equation. From these solutions, a geometric invariant - transfor-

mation invariant function - is computed. A stochastic bifurcation in the sense of Wagenmakers

et al. (2005) is then a qualitative change of this function.

Stochastic optimal control problems exhibiting regime switching behavior are of especial in-

terest. These are the perturbations of deterministic problems exhibiting indifference thresholds.

For such stochastic problems multimodality of the transformation invariant function allows to

de�ne regime switching thresholds as its local minima. Transition between different regimes

is realized by crossing these thresholds due to large shocks. Such a model can explain sudden

rapid changes of a state variable, be it an ecosystem or an economy.

This thesis demonstrates the importance and effectiveness of methods of bifurcation theory

applied to studying non-convex optimal control problems. It opens up a new methodological

approach to investigation of parameterized economic models. While standard analytical meth-

ods are not ef�cient and sometimes impossible to apply to non-convex problems, the numerical

geometrical methods developed in the thesis allow to solve and analyze such problems quickly.

More and more deterministic and stochastic non-convex optimal control models occur in eco-

nomics (Caulkinset al. (2001), Brock and Starrett (2003), Stachurski (2003), Crepin (2007),

Heijnen and Wagener (2008), Kossioriset al. (2008), Heijdra and Heijnen (2009), Zeileret al.

(2009), Bultmannet al. (2010)), therefore the development of such methods is essential. In
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fact, some of the research work already take up the methods of the bifurcation theory of op-

timal vector �elds: see Caulkinset al. (2007), Grasset al. (2008), Graß (2010), Hinloopen

et al. (2010) for work on deterministic problems with continuous time, Moghayer and Wagener

(2009) for deterministic one-dimensional discrete time systems, Diks and Wagener (2008) for

stochastic one-dimensional discrete time systems where the authors introduce the dependence

ratio reproducing the transformation invariant function.

Based on the results of this work, possible future research topics include the development of

bifurcation methods for deterministic and stochastic non-convex optimal control problems with

multidimensional state spaces; the generalization of these methods to dynamic games; and the

development of a bifurcation methodology for multidimensional discrete time models.
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Samenvatting (Summary in Dutch)

Dit proefschrift is gewijd aan de studie van geparametriseerde families van continue-tijd op-

timale sturingsproblemen met oneindige planning horizon en eendimensionale toestandsdyna-

mica. Dergelijke modellen komen vaak voor in de milieu-economie. Alle theoretische resul-

taten en methoden ontwikkeld in het proefschrift worden ge�̈llustreerd aan de hand van het

deterministische en stochastische `vlakke-meer model'. Ze zijn echter algemeen en kunnen

worden toegepast op elk probleem van dit type.

De belangrijkste bijdrage van dit proefschrift is de ontwikkeling van de bifurcatietheorie

van eendimensionale optimale vectorvelden (zie Hoofdstuk 2), die het mogelijk maakt om de

oplossingsstructuur van geparametriseerde optimale control problemen te bepalen. De dyna-

mica onder optimale sturing van dergelijke problemen, kort `optimale dynamica', kan meerdere

lokale aantrekkers vertonen. De bijbehorende aantrekkingsgebieden worden ofwel door afsto-

tende evenwichten van elkaar gescheiden, of door onverschilligheidspunten, waar er meer dan

één optimale oplossing bestaat. De theorie ontwikkeld in Hoofdstuk 2 maakt het mogelijk om

de parameterruimte te verdelen in gebieden. Wanneer de parameters variëren binnen een gebied,

verandert het optimale beleid alleen kwantitatief. Alleen als de parameters de gebiedsgrenzen

overschrijden, veranderen ook kwalitatieve karakteristieken van het optimale belied.

In Hoofdstuk 3 wordt het `vlakke-meer model' geanalyseerd met behulp van de theorie ont-

wikkeld in Hoofdstuk 2. Het is een model van optimaal beheer van waterverontreiniging, welk

dient als prototype van een con�ict tussen ecologische en economische belangen. Bifurcatie-

analyse van het model vindt parametergebieden waarover de kwalitatieve structuur van het opti-
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male belied niet verandert. Deze informatie kan gebruikt worden in het politieke beslissingspro-

ces welk de parameterwaarden vastlegt die door de sociaalplanner gebruikt moeten worden. Een

kleine verandering van de disconteringsvoet kan bijvoorbeeld het optimale beleid radicaal ve-

randeren. In het algemeen betekent een daling van de disconteringsvoet dat een meer eerder

naar een niet-vervuild evenwicht gestuurd zal worden.

In Hoofdstuk 4 zijn optimale sturingsproblemen onderzocht onder kleine stochastische ver-

storingen. De oplossing van een dergelijk probleem wordt gereduceerd tot het oplossen van

de bijbehorende Hamilton-Jacobi-Bellman vergelijking, een singulier gestoorde tweede orde

differentiaal vergelijking. Zonder verstoringen wordt dit een eerste orde differentiaalverge-

lijking, de dynamische programmeringsvergelijking van het overeenkomstige deterministische

probleem. Hoofdstuk 4 ontwikkelt een methode om benaderende oplossingen van de Hamilton-

Jacobi-Bellman vergelijking te vinden. Van deze oplossingen wordt een meetkundige invariant

- de transformatie-invariante functie - berekend. Een stochastische bifurcatie in de zin van Wa-

genmakerset al. (2005) is dan een kwalitatieve verandering van deze invariant.

Stochastische optimale sturingsproblemen die regime-overgangen vertonen, zijn van bijzon-

der belang. Voor dergelijke stochastische problemen is de transformatie-invariante functie mul-

timodaal; het analogon van een onverschilligheidspunt in deze context is een overgangdrempel,

gede�nieerd als een lokaal minimum van de invariante functie. Een regime-overgang is dan het

overschrijden van een dergelijke drempel; dit is vaak te wijten aan een grote schok. Een model

kan plotselinge snelle veranderingen van een toestandsvariabele verklaren.

Dit proefschrift toont het belang en de effectiviteit aan van bifurcatietheorie als deze toegepast

wordt op het bestuderen van niet-convexe optimale control problemen. Het opent een nieuwe

methodologische benadering voor het onderzoek van geparametriseerde economische mod-

ellen. De gebruikelijke analyse methoden beperken zich grotendeels tot het vinden van lokale

informatie van een systeem rond een lange-termijn evenwicht, of tot het bepalen van de glob-

ale structuur van de oplossingen voor een klein aantal parameterwaarden. Met de numeriek-

meetkundige methoden ontwikkeld in dit proefschrift kan de globale oplossingsstructuur voor

de hele parameterruimte gevonden worden. Deterministische en stochastische niet-convexe op-
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