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BOUNDS FOR SIMULATION 
 

 
N.M. van Dijk and E. van der Sluis 

University of Amsterdam, Fac. of Economics and Business 
Roetersstraat 11, NL-1018 WB, Amsterdam, The Netherlands 

Abstract. To support the simulation of production line structures a modification approach is pro-
moted and illustrated which provides analytic performance bounds. For a number of reasons 
these bounds can be useful for simulation. 

1 Introduction 
A variety of simulation models, such as for manufacturing, telecommunications and ser-
vice logistics includes serial structures of successive service stations. These service sta-
tions quite generally have finite capacity limitations on the number of jobs that they can 
accommodate. Unfortunately, analytic expressions, most notably so-called product-forms, 
are usually not available under finite capacity constraints. 

Nevertheless, by modifying the system, for the purpose of its evaluation, an analytic 
solution might be regained which may lead to rough but secure performance bounds, such 
as for a loss probability, throughput or mean delay. This approach has been described in 
[1], Chapter 4, and extended in [2] to queuing networks with finite clusters of stations. 

So far, however, this approach has not been advocated for the purpose of simulation. 
More precisely, despite their inaccuracy, these analytic performance bounds can be useful 
for simulation such as for: 

• determining secure orders of magnitude 
• verification purposes 
• optimization 

In addition, under specific service disciplines, such as a multi-server or processor shar-
ing discipline, these product form bounds are also insensitive, i.e., they only depend on 
the service distributions by their means. Sensitivity analysis on the effect of service vari-
ability is thus not required. 

This note therefore simply aims to promote and illustrate this modification approach as 
of possible interest to support the simulation for systems of a sequential or production 
line structure. 

2 An instructive example 
This section provides an instructive and generic example to illustrate the modification ap-
proach and the nature of its results. In the next section four more examples are briefly 
presented. A more extended outline and formal support of the approach can be found in 
[1] and [2]. 
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Consider a simple assembly line structure with 4 service stations, numbered 1,…,4 and 
finite capacity constraints T1 for the total number of jobs at stations 1 and 2 (cluster1) and 
T2 at stations 3 and 4 (cluster 2).  

T1 T2B

Finite cluster Finite cluster

T1 T2B

Finite cluster Finite cluster

The system has an arrival rate of λ jobs per unit of time and assume that station i has 
(an exponential) service rate µi(k) when k jobs are present. Let ni denote the number of 
jobs at station i, i = 1,…,4 and tj the total number of jobs at cluster j, j = 1, 2. (t1 = n1 + n2 
and t2 = n3 + n4). When the first cluster is saturated (t1 = T1) an arriving job is lost. When 
the second cluster is saturated (t2 = T2) the service at cluster 1 (that is at both stations) is 
stopped. 

As simple as the system may look to analyze, there is no simple expression for the loss 
probability B or the throughput H = λ(1-B). 

As outlined in [2], in order for a system to exhibit a closed product-form expression, a 
notion of both balance per station (as also presented in [1]) and of balance per cluster 
(that is, as if a cluster is regarded as one aggregated station) is to be satisfied. But clearly, 
both notions are violated in the present example, since when t1 < T1 but t2 = T2, 

• the out-rate of stations 1 and 2 and the out-rate of cluster 1 are necessar-
ily equal to 0 while the in-rate for station 1 (and possibly also for 2) and 
for cluster 1 are positive. 

The following artificial modification to enforce these notions can therefore be sug-
gested. 

• When cluster 2 is saturated (t2 = T2): stop the input. 
• When cluster 1 is saturated (t1 = T1): stop cluster 2 

(that is, both stations at cluster 2).  

Indeed, with n = (nl, n2, n3, n4) the state description, ei the unit vector for the ith compo-
nent and 1{A} the indicator of event A, under the above modification one easily verifies 
the station balance equations at SU the set of admissible states:  

SU = {n | tl = n1+n2 ≤ T1; t2 = n3+n4 ≤ T2; t1+t2 ≠ T1+T2} 

as 
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with c a normalizing constant. Clearly, the modification leads to an upper bound BU ≥ B 
for the loss probability. Conversely, also a lower bound product-form modification BL 
can be suggested. Hence, 

 
1 1 2 2{ | } ( )U t T or t T Uπ= == ∑ n nB  (3) 

Below some numerical results are given for the case of single server stations. Here µi 
represents the service speed of station i, BL and BU are the easily obtained lower and up-
per bound for the blocking probability, Bav = (BL + BU) / 2 and B is obtained by numerical 
computation. 

 
 µ1 µ2 µ3 µ4      T1 T2 BL BU  Bav  B 
  1 1 1 1 
  1 1 1 1 
  1 1 1 1 
  2 2 1 1 
  1 2 3 2 
1.1 2 3 2 

     3 5 
     6 6 
     8 8 
   10 10 
   10 10 
  10 10

.33 .52 

.25 .40 

.20 .33 

.10 .17 

.054 .101 

.021 .065

.43 .42 

.33   .30 

.27 .24 

.14 .12 

.078 .084 

.048 .049 
Table 1. Lower and upper bounds of the loss probability B  

(and throughput H by H = λ(1-B) ) for finite two-cluster tandem example. 

Remark 2.1 (Insensitive bounds) 
Product form results are also known to be related to the so-called insensitivity property, 
provided specific service disciplines are in order such as a multi-server or processor shar-
ing discipline. This property states that the steady state distribution only depends on the 
service distributions by their means. 

For example, pure multi-sever or for processor sharing disciplines, the product form 
expression (2) remains valid for arbitrary service distributions with means 1/µi. Simula-
tion can thus be restricted to one or at most a few service distributions to get a ‘good’ or-
der of accuracy. 

3 Further Illustrative Examples 
In this section, we provide some more examples, in line with the instructive example in 
section 2. For each of these there is no analytic expression known while the modifications 
guarantee closed product form expressions similar to (2). These in turn will lead to easily 
computable bounds similar to (3). Some numerical results will be provided which indicate 
the possible usefulness for simulation. 

3.1 A Nested Blocking Structure 

As a nested analogue of the example from section 2, in addition to the total cluster con-
straints T1 and T2, we can also allow capacity constraints Ni for each individual station i, 
i = 1, ..., 4.  

T2T1B
N2 N3 N4N1

T2T1B
N2 N3 N4N1

 -- 3 --  
 



Bounds for Simulation 

The following modification now secures (2): 

• When t1 = T1 stop both stations 3 and 4. 
• When t2 = T2 stop both stations 1 and 2 and arrivals. 
• When ni = Ni, stop arrivals and all other stations j ≠ i. 

Clearly, this modification leads to an upper bound BU for the loss probability B. Con-
versely, a lower bound BL can be suggested. Some numerical results are presented below 
with µi the service parameter of single server station i. 

 
 µ1 µ 2 µ3 µ4 µ5 µ6 µ7 µ8  N1 N2 N3 N4   T1 T2  BL   BU    Bav   B 
 1 1 1 1 1 1 1 1 
 2 3 4 5 1 2 3 4 

 3 2 4 2  4 5 
 3 2 4 2  4 5 

 .471 .724
 .158 .398

 .598 .572 
 .278 .204 

Table 2. Results for the nested blocking structure (λ = 1). 

 

3.2 A Cluster With Parallel Stations 

This example contains a random routing to either one of two stations in parallel within 
one cluster with a capacity constraint T for the total number of jobs at stations 2 and 3, 
next to capacity constraints Ni at each station i, i = 1, ..., 4. 

1

2

4

3

T

p2

p3

B

1

2

4

3

T

p2

p3

1

2

4

3

T

p2

p3

B

By regarding the cluster as one aggregated station as in section 2, the following modi-
fications lead to product-form expressions: 

• Stop arrivals and all stations either when one of stations (ni = Ni) or the 
cluster (n2 + n3 = T) is saturated, or 

• Stop arrivals when the total number of jobs is equal to N1 + T + N4 = S, 
while each station may contain up to S jobs. 

Clearly, the first modification leads to an upper bound BU and the second to a lower 
bound BL for the loss probability B of the original system. Some numerical results are 
shown below. 

 
 µ1 µ2 µ3 µ4  N1 N2 N3 N4  T p2  p3  BL  BU   Bav   B 
 2 2 2 2 
 10 10 10 10 
 1 1 1 1 
 1 1 1 1 

 2 2 2 2  3 0.5 0.5 
 2 2 2 2  4 0.5 0.5 
 5 5 5 5 10 0.5 0.5 
 10 5 5 10 10 0.75 0.75 

0.03 0.30
0.00 0.02
0.10 0.30
0.06 0.17

0.16 0.16 
0.01 0.01 
0.18 0.20 
0.12 0.10 

Table 3. Results for the finite cluster with parallel stations (λ = 1). 
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3.3 An Overflow Example 

Consider two finite clusters in parallel with arrivals at cluster 1.  If a job cannot enter 
cluster 1 it is rerouted to cluster 2. Each cluster consists of two finite stations in tandem. 
In addition to the total cluster constraints T1 and T2, we also allow capacity constraints Ni 
for each individual station i, i = 1, ..., 4. We assume that µ1 ≤ µ3 and µ2 ≤ µ4. 

T2

T1
N1 N2

N3 N4

B

T2

T1
N1 N2

N3 N4

B

For this example, the so-called notion of cluster balance is violated when cluster 2 is 
busy while cluster 1 is not saturated. In that case the outflow at cluster 2 is positive, but 
the inrate is 0. The following two modifications are therefore suggested: 

• Stop both stations in cluster 2 when cluster 1 is not saturated (t1 < T1), or 
• Assign arriving jobs randomly to either one of the clusters proportional 

to the free buffer capacity at the two clusters. 

By the first modification cluster 2 is slowed down and kept more congested. The arri-
val loss probability will thus be enlarged which leads to an upper bound BU for the loss 
probability B of the original system. With the second modification, the faster overflow 
cluster is used more frequently than in the original system, which leads to a lower bound 
BL. 

 
 λ µ1 µ2 µ3 µ4  N1 N2 N3 N4   T1 T2    BL  BU   Bav   B 

 1 1 1 1 1 
 2 1 1 4 4 
 3 1 1 4 4 

 1 1 1 1 2 2 
 3 3 1 1 6 2 
 3 3 2 2 6 4 

 0.095 0.444 
 0.005 0.174 
 0.023 0.126 

 0.270 0.300 
 0.090 0.075 
 0.075 0.063 

Table 4. Results for parallel finite clusters with overflow. 

3.4 Breakdown Model 

Reconsider two finite clusters in tandem, which are both subject to breakdowns. In addi-
tion to the cluster constraints T1 and T2, we assume repair and breakdown rates γ10 and γ11 

for cluster 1, and similarly, γ20 and γ21 for cluster 2. 

T1 T2

0 / 1 0 / 1

B T1 T2

0 / 1 0 / 1

B

 

Clearly, cluster balance is violated when either cluster is down. The following two 
modifications are therefore suggested: 
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• Stop both stations in cluster i when cluster j is down (j ≠ i), or 
• The breakdown rate for both clusters is 0 (breakdowns do not take place). 

Again, the first modification leads to an upper bound BU and the second to a lower bound 
BL for the loss probability B of the original system. Some numerical results are shown be-
low. 

 
 µ1 µ2 µ3 µ4  N1 N2 N3 N4   T1 T2 γ10 γ11 γ20 γ21    BL  BU   Bav   B 
 2 2 2 2 
 2 1 2 1 

 2 2 1 1 4 4 50 1 50 1 
 2 4 2 4 6 6 50 1 50 1 

 0.04 0.42 
 0.16 0.48 

 0.23 0.20 
 0.32 0.28 

Table 5. Results for finite clusters with breakdowns (λ = 1). 

3.5 An Optimal Design Example 

Reconsider the finite cluster tandem example from section 2 in which the numbers T1 and 
T2 are still be determined by trading off capacity costs (T1+T2)2 and opportunity losses  
1000B due to rejections. Based on the lower and upper bounds for the loss probability, 
lower and upper bound curves for the costs are easily computed. Despite the large dis-
crepancy between the lower and upper bound values, the qualitative curving behavior 
seems to almost pinpoint the same optimal number (9 or 10). A simulation can thus at 
first instance be restricted to these numbers. If one wishes to simulate more, in any case 
one can be 100% sure that the optimal number is within the region 4-16. 

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20 T1 + T2 

Costs 

Evaluation 

• This technical note advocated the use of a simple analytic approach to support the 
simulation of production type systems. 

• The approach leads to secure analytic (lower and upper) bounds for system per-
formance. 

• These bounds can also be insensitive for service distributional forms. 
• The approach is based on simple balance insights (to provide analytic modifica-

tions for systems that are analytically unsolvable). 
• The approach is illustrated and numerically supported by a number of simple but 

generic structures, which indicate a possible practical usefulness for simulation. 
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