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Abstract

Many popular tests for residual spatial autocorrelation in the context of the linear regression model

belong to the class of invariant tests. This paper derives a number of exact properties of the power

function of such tests. In particular, we extend the work of Krämer (2005, Journal of Statistical Planning

and Inference 128, 489-496) by characterizing the circumstances under which the limiting power, as the

autocorrelation increases, vanishes. More generally, the analysis in the paper sheds new light on how

the power of invariant tests for spatial autocorrelation is affected by the matrix of regressors and by the

spatial structure. A numerical study aimed at assessing the practical relevance of the theoretical results

is included.

Keywords : Cliff-Ord test; invariant tests; linear regression model; point optimal tests; power; similar

tests; spatial autocorrelation.

JEL Classification : C12, C21.

1 Introduction

Testing for residual spatial autocorrelation in the context of the linear regression model (e.g.,

Cliff and Ord, 1981, Anselin, 1988, Cressie, 1993) is now recognized as a crucial step in much

empirical work in economics, geography and regional science. The present paper is concerned

with finite sample power properties of tests used for this purpose. More specifically, our main

objective is to understand how power is affected by the regressors and by the spatial structure.

So far, the power properties of tests for residual spatial autocorrelation have received much

less attention than those of tests for residual serial correlation, and have mainly been studied

by Monte Carlo simulation (see Florax and de Graaff, 2004, and references therein). Very few
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very helpful comments and to Anurag Banerjee for providing GAUSS routines for the Imhof’s procedure.

1



attempts have been made to derive exact properties of such tests, two notable exceptions being

King (1981) and Krämer (2005). The former paper has established that the most popular test

for spatial autocorrelation in regression residuals, the Cliff-Ord test, is locally best invariant

for an important class of alternatives. The latter paper has generalized some results previously

available for tests of serial autocorrelation (see Krämer, 1985, and Zeisel, 1989); in particular,

Krämer (2005) has shown analytically that there are cases in which the power of some tests for

spatial autocorrelation (namely, those whose associated test statistics can be expressed as ratios

of quadratic forms in the regression residuals) can vanish as the spatial autocorrelation in the

data increases. In general, it is fair to state that, while there is some evidence in the literature

that the properties of tests for spatial autocorrelation can be very sensitive to the regressors

and to the spatial structure, little is known about which combinations of regressors and spatial

structures lead to low or high power.

Of course–given the popularity of the linear regression model and the pervasiveness of the

issue of spatial autocorrelation in many empirical investigations–a large number of procedures

are available for the purpose of testing for residual spatial autocorrelation, and one can choose

among them on the basis of the suspected form of autocorrelation or on the basis of the desired

properties of the testing procedure. In this paper, we confine ourselves to a rather simple, but

extremely popular, framework. We assume that the regression errors follow a (first-order) spatial

autoregressive process (e.g., Cressie, 1993) and we focus on invariant tests (e.g., Lehmann and

Romano, 2005). Even in this simple setup the analytical investigation of exact power properties

of tests is complicated. Because of the availability of many approximating techniques for power

functions, this is not necessarily a problem when interest lies in the properties of a test in the

context of a given model, i.e., when both the matrix of regressors and the spatial structure

are fixed. However, when interest is, as in this paper, in how the properties of a test depend

on the regressors and on the spatial structure, none of the available numerical or analytical

approximations is likely to yield conclusive results. One feature of our approach is that some

new properties of the power function of invariant tests are deduced directly from the density of the

pertinent maximal invariant avoiding the need for complicated expressions for power functions

or approximations to them.

Our contributions are as follows. Firstly, we extend the results of Krämer (2005) in several

directions: we formulate conditions, that are in general very simple to check, for the limiting (as

the autocorrelation increases) power of any invariant test to be 0, 1, or in (0, 1); we prove that, for

any given spatial structure and irrespective of the size of the tests, there exists an infinite number

of subspaces spanned by the regressors such that the limiting power of a locally best or point
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optimal invariant test vanishes; we characterize such “hostile” subspaces. Secondly, we discuss

some conditions that are sufficient for unbiasedness of invariant tests for spatial autocorrelation

and for monotonicity of their power function. Such conditions are not necessary, but they help

to understand the causes of undesirable properties of the tests.

These results call for caution in interpreting the outcome of tests for residual spatial auto-

correlation, especially when the number of degrees of freedom is low and large autocorrelation

is suspected. The results have also implications outside a formal hypothesis testing framework,

because they imply that there are circumstances in which the practice of interpreting the Cliff-

Ord statistic, or even the Moran statistic when the model does not contain regressors, as an

autocorrelation coefficient (e.g., Cliff and Ord, 1981, Anselin, 1988) cannot be justified.

The remainder of the paper is organized as follows. Section 2 presents the theoretical frame-

work of the paper, i.e., the testing problem and the tests considered. Section 3 analyzes the

limiting power of invariant tests for spatial autocorrelation. This is done by first considering

the general case of a model with arbitrary regressors, and then specializing the results to zero-

mean models. A numerical study of the practical relevance of the results is included. Further

insights into the role played by the regressors and the spatial structure in determining the power

of invariant tests of autocorrelation are gained in Section 4, by analyzing the conditions for unbi-

asedness of the tests and monotonicity of their power functions. Section 5 concludes. All proofs

are collected in the Appendix.

2 The Setup

2.1 The Testing Problem

Consider a fixed and finite set of n observational units, such as the regions of a country, and let

y = (y1, ..., yn)
0, where yi denotes the random variable observed at the i-th (according to some

arbitrary ordering) unit. We assume that y is modelled according to a Gaussian linear regression

model, i.e.,

y ∼ N(Xβ, σ2Σ(ρ)), (1)

whereX is a non-stochastic n×k matrix of rank k < n, β is a k×1 vector of unknown parameters,
σ2 is an unknown positive parameter and ρ is a scalar unknown parameter belonging to some

connected subset Ψ of the set of values of ρ such that Σ(ρ) is positive definite. We assume that

the function ρ → Σ(ρ) is differentiable, and that the parameters of the model are identified (in
the sense that the parameter space of the model does not contain two distinct points indexing
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the same distribution) and functionally independent. In this paper, we will often refer to the case

of a general Σ(ρ), but will be mostly concerned with the specific covariance structures implied

by spatial autoregressive process.

There are two distinct classes of Gaussian spatial autoregressive processes: conditional au-

toregressive (CAR) processes and simultaneous autoregressive (SAR) processes. They are both

discussed extensively in many books and articles in the statistics and econometrics literature

(e.g., Whittle, 1954, Besag, 1974, Cliff and Ord, 1981, Anselin, 1988, Cressie, 1993), to which

we refer for details concerning the construction and interpretation of the models. Here, we only

briefly define the covariance matrices implied by the models. As in most of the theoretical and

empirical literature on spatial autoregressive processes, we confine ourselves to first-order (or

one-parameter) processes. Such processes are specified on the basis of a fixed n × n (spatial)

weights matrix W , chosen to reflect a priori information on relations among the n observations.

Typically, the (i, j)-th entry of W is set to zero if i and j are not neighbors according to some

metric that is deemed to be relevant for the phenomenon under analysis, and is set to some

non-zero number, possibly reflecting the degree of interaction, otherwise. For instance, if the

observational units are the regions of a country, one may set W (i, j) = 1 if i and j share a

common boundary, W (i, j) = 0 otherwise.

Let I denote the n × n identity matrix. Provided it is symmetric and positive definite, the

matrix Σ(ρ) implied by a CAR specification is

Σ(ρ) = (I − ρW )−1L, (2)

where L is a fixed n× n diagonal matrix such that L−1W is symmetric (σ2L(i, i) represents the

variance of yi conditional on all the remaining random variables in y). We remark that, even

without reference to CAR models, structure (2) constitutes a very natural framework in which

to study tests for autocorrelation; see, e.g., Anderson (1948), Kadiyala (1970), Kariya (1980),

King (1980).

On the other hand, provided that I − ρW is nonsingular, a SAR process implies

Σ(ρ) = (I − ρW )−1V (I − ρW 0)−1, (3)

where V is a fixed n× n symmetric and positive definite matrix.

For both CAR and SAR models, we assume:

(i) W (i, i) = 0, for i = 1, ..., n;

(ii) W (i, j) ≥ 0, for i, j = 1, ..., n;
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(iii) W is an irreducible matrix (e.g., Gantmacher, 1974, Ch. 13).

Condition (i) is required by the way CAR models are constructed, and is assumed for SAR

models merely for convenience. Condition (ii) is not required by the definition of the models, but

is virtually always satisfied in empirical applications. Condition (iii) is a natural assumption in a

spatial context; in graph theoretic terms, it amounts to requiring that the graph with adjacency

matrix W (that is, the graph with the n observational units as vertices and an edge from i to j

if and only W (i, j) 6= 0) is strongly connected, i.e., has a path between any two distinct vertices
(e.g., Cvetkovíc et al., 1980, p. 18). Observe that (non-circular) AR(1) models are not in our

class of SAR processes, because the matrix W necessary to write the covariance matrix of an

AR(1) process as in equation (3) would be triangular and hence reducible. Also note that, as a

consequence of the symmetry of L−1W , in CAR models W (i, j) = 0 if and only if W (j, i) = 0,

for i, j = 1, ..., n. This implies that, in CAR models, W can be assumed to be irreducible without

loss of generality, because otherwise the model could be decomposed into the product of (at least)

two processes.

In the context of model (1), we wish to test the null hypothesis ρ = 0 versus the one-sided

alternative ρ > 0 (here and throughout, ρ > 0 stands for R+ ∩Ψ, i.e., we leave it implicit that ρ
must belong to the parameter space of the model). The choice of a one-sided alternative rather

than a two-sided one is dictated by the fact that the former is more relevant in the context of

many popular specification of Σ(ρ), including those implied by CAR and SAR processes, due to

the interpretation of ρ in such processes (see below).

We assume–and this is an important point for the reading of the present paper–that Σ(0) =

I. Since, as far as our testing purposes are concerned, this does not involve any loss of generality,

from now on and unless otherwise specified we reserve the term “CAR model” to refer to the

family of distributions

N(Xβ, σ2(I − ρW )−1), (4)

(for a fixed W ) and the term “SAR model” to refer to the family of distributions

N(Xβ, σ2 [(I − ρW 0)(I − ρW )]
−1
), (5)

(again, for a fixed W ). The normalization to Σ(0) = I emphasizes a crucial difference between

CAR and SAR models, with regards to our testing problem: for CAR models there is no loss

of generality in assuming that W is a symmetric matrix, whereas for SAR models we have

to allow explicitly the possibility of a nonsymmetric W . In fact, we shall see that there are

substantial differences between SAR models with a symmetric weights matrix, henceforth referred
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to as symmetric SAR models, and SAR models with a nonsymmetric weights matrix–henceforth

referred to as asymmetric SAR models. The most popular nonsymmetric weights matrices in

applications are those obtained by row-standardizing a preliminary matrix (e.g., Anselin, 1988).

In the rest of the paper, a row-standardized W is one that can be written as W = D−1A, where

A is a symmetric (0 − 1) matrix and D is the diagonal matrix with D(i, i) =
Pn

j=1A(i, j),

i = 1, ..., n.

By the Perron-Frobenius theorem, W admits a positive eigenvalue that is (algebraically and

geometrically) simple and non-smaller in modulus than any other eigenvalue. We denote such an

eigenvalue by λ. For both CAR and SAR models we take the set R+∩Ψ to be the interval (0, λ−1).
Such a restriction is necessary for positive definiteness of the covariance matrix of a CAR model.

For a SAR model, it is not necessary, but has the advantage of guaranteeing connectedness of the

parameter space and of avoiding some undesirable properties of the covariance structure implied

by the model.

When 0 < ρ < λ−1, it is easily established (e.g., Gantmacher, 1974, p. 69) that conditions

(ii) and (iii) imply that the covariance between any two variables yi and yj in both CAR and

SAR models is strictly positive (similarly, it can be shown that when ρ < 0 the covariances may

be positive or negative, but not all of them are positive in a left neighborhood of λ−1). Thus, the

hypothesis ρ > 0 represents positive spatial autocorrelation, a much more common phenomenon

in practice than negative spatial autocorrelation.

2.2 The Tests

This paper is concerned with invariant tests (see, e.g., Lehmann and Romano, 2005). Roughly

speaking, these are the tests that preserve the symmetries satisfied by the testing problem in

question. More precisely, a test is said to be invariant with respect to a certain group of transfor-

mations of the sample space if it is based on a test statistic that is constant on each orbit of that

group. A necessary and sufficient condition for this type of invariance is that the test statistic is

a function of a maximal invariant under that group.

Our problem of testing ρ = 0 against ρ > 0 in model (1) is invariant with respect to the

group of transformations y → ay +Xb, where a ∈ R+ and b ∈ Rk (e.g., Kariya, 1980, or King,
1980). A maximal invariant under this group is v = Cy/ kCyk, where C is an (n− k)×n matrix

such that CC0 is the identity matrix of order n− k and C 0C is M = I −X(X 0X)−1X 0, and k·k
denotes the Euclidean norm. For some positive integer m, let Sm = {v ∈ Rm : kvk = 1} denote
the unit m-dimensional sphere. The distribution of v depends on the single parameter ρ, and
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has density, with respect to the normalized Haar measure on Sn−k,

pdf(v; ρ) = |CΣ(ρ)C0|− 1
2

h
v0 (CΣ(ρ)C 0)−1 v

i−n−k
2

(6)

(see Kariya, 1980, equation (3.7)). Since pdf(v; ρ) does not depend on v when ρ vanishes, testing

ρ = 0 in N(Xβ, σ2Σ(ρ)) by means of an invariant test reduces to testing uniformity of v on Sn−k.

Besides the “principle of invariance”, there are at least two other reasons why invariant tests

are particularly appealing for our testing problem. Firstly, invariant tests can be implemented

easily. Since an invariant test statistic must depend on y only through v, its distribution under

the null (and also under the alternative) is free of nuisance parameters, and hence critical values

can, in general, be obtained accurately by Monte Carlo or other numerical methods. In fact, the

class of similar tests for ρ = 0 coincides with that of invariant tests (Hillier, 1987). Secondly,

expression (6) turns out to be proportional to the marginal likelihood of ρ, which has often

been found to provide a better basis for inference about ρ than the full likelihood of model (1)

(particularly when k is large with respect to n); see, for instance, Diggle (1988), Tunnicliffe

Wilson (1989) and Rahman and King (1997).1

Despite the elimination of the nuisance parameters achieved in (6), it is well known that, in

general, a uniformly most powerful invariant (UMPI) test does not exist for the testing problem

under consideration. In such a situation, one can resort to a test that is optimal according to

some exact criterion (see, for instance, Cox and Hinkley, 1974, p. 102), or to a test that has less

clear-cut optimality properties but performs well in general, such as a likelihood ratio test (which

is an invariant test, as proved for instance in Cox and Hinkley, 1974, p. 173) or its restricted

version based on pdf(v; ρ). The present paper is particularly concerned with the tests–named

point optimal invariant (POI) tests by King (1988)–that are the most powerful amongst all

invariant tests against a specific alternative ρ = ρ̄ > 0, and with the locally best invariant (LBI)

test, which is obtained as the limiting case for ρ̄ → 0. In general, and certainly for our testing

problem, the locally most powerful test coincides with the test maximizing the slope of the power

function at ρ = 0 (see Lehmann and Romano, 2005, p. 339). The choice of POI and LBI tests

is mainly motivated by the fact that POI tests define the upper bound (the so-called power

envelope, see below) to the power attainable by any invariant test of a fixed size, and by the

popularity of LBI tests, especially in the context of the spatial models we are concerned with in

this paper.

The size of a critical region (henceforth c.r.) is denoted by α and, to avoid trivial cases and

1The literature on the comparison between maximum likelihood and restricted maximum likelihood, REML,

is also relevant here, although REML usually refers to the marginal likelihood of all the covariance parameters,

i.e., both ρ and σ2 in our case.
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unless otherwise specified, is assumed to be in (0, 1). The critical value for a size-α test will be

denoted by cα. The POI (or best invariant) c.r. at the point ρ̄, obtained by application of the

Neyman-Pearson Lemma to the density (6), is defined by

v0 (CΣ(ρ̄)C0)−1 v < cα. (7)

Denoting by πρ̄(ρ) the power of such a c.r., the power envelope of size-α invariant tests is the

function that associates the value πρ(ρ) to each ρ ≥ 0. When needed, we will emphasize the

dependence of πρ(ρ) on X by writing πρ(ρ,X). The LBI c.r. for testing ρ = 0 against ρ > 0 is

defined by

v0CA0C0v < cα, (8)

where A0 = dΣ−1(ρ)/dρ
¯̄
ρ=0

(King and Hillier, 1985). When −A0 is equal to some spatial
weights matrix W (or to W +W 0), as it is in the case of CAR or SAR models, the LBI test is

known in the literature as Cliff-Ord test (see Cliff and Ord, 1981, and King, 1981). The Cliff-Ord

test represents the generalization to regression residuals of the Moran test (Moran, 1950), and

is, by far, the most popular test for spatial autocorrelation in regression models.2

Before we continue, some notation is in order. For a q × q symmetric matrix Q, we denote

by λ1(Q), ..., λq(Q) its eigenvalues, labeled in non-decreasing order of magnitude; by mi(Q) the

multiplicity of λi(Q), for i = 1, ..., q; by f1(Q), ..., fq(Q) a set of orthonormal (with respect to the

Euclidean norm) eigenvectors of Q, with the eigenvector fi(Q) being pertinent to the eigenvalue

λi(Q); by Ei(Q) the eigenspace associated to λi(Q), for i = 1, ..., q. In all of the above quantities,

we suppress the reference to Q when Q is a (symmetric, with q = n) weights matrix. Thus, for

a symmetric W , λn = λ.

3 Limiting Power

This section contains the main results of the paper. Broadly speaking, they concern the role of

the regressors in determining power properties of invariant tests for autocorrelation. In Section

3.1, we discuss some preliminary results in the context of the general model (1). Then, we focus

on the limiting behavior of the power function, as the autocorrelation increases, in CAR and SAR

models, with general regressors in Section 3.2, and without regressors in Section 3.3. Finally,

2Being based on only the first derivative of Σ (ρ), the LBI tests for Σ (ρ) = I have generally non-trivial power

against a large class of alternative specifications of Σ (ρ), which is at the same time a strength and a weakness of

such tests. In any case, this does not detract from the fact that it is important to study their performance against

particular alternatives, spatial autoregressive models in our case.
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in Section 3.4 we report results from numerical experiments aimed at assessing the practical

relevance of the theoretical results.

3.1 Preliminaries

Consider the issue of how X in N(Xβ, σ2Σ(ρ)) affects the the power properties of invariant tests

of ρ = 0 versus ρ > 0, for some covariance structure Σ(ρ). The following proposition sets the

scene for the analysis to follow. It is concerned with comparing the envelope πρ(ρ,X), for an

X 6= 0, with the envelope when X = 0 (here and throughout a zero matrix is simply denoted by

0).

Proposition 3.1 Consider testing ρ = 0 versus ρ > 0 in model N(Xβ, σ2Σ(ρ)). For any X 6= 0,
any ρ > 0, and any α,

πρ(ρ,X) ≤ πρ(ρ, 0). (9)

In (9) equality is attained if and only if, for some i = 2, ..., n − 1, col(X) ⊆ Ei(Σ(ρ)) and

α = Pr(v0Σ−1(ρ)v < λ−1i (Σ(ρ)).

The conditions for equality in (9) are extremely restrictive, because they pose very severe

constraints on X, α, and Σ(ρ). Proposition 3.1 asserts that, except when these conditions are

met, the presence of any X 6= 0 in N(Xβ, σ2Σ(ρ)) has a detrimental effect (with respect to the

case X = 0, and as long as β is unknown) on the maximum power achievable by an invariant

test for testing ρ = 0 versus ρ > 0.

Two comments arise naturally from Proposition 3.1. The first comment is that the comparison

in the proposition involves models (the one with X = 0 and the one with an X 6= 0) with different
degrees of freedom. An interesting question is which matrices X of a fixed dimension n× k are

favorable, and which are less favorable, to our testing purposes (from the point of view of the

maximum power achievable by invariant tests). Such a question is a difficult one, because, for a

given matrix Σ(ρ), in general the answer depends on ρ and α. Some partial answers are available

in the literature for regression models with AR(1) errors; see, e.g., Tillman (1975). The second

comment is that, in practice, one is usually more concerned with the power of a specific test than

with the power envelope. For a general Σ(ρ), Proposition 3.1 does certainly not imply that the

power function of a particular test when X = 0 is uniformly (over ρ > 0) non-smaller than when

X 6= 0 (it is interesting, however, that such an implication does hold when Σ(ρ) is that of a CAR
model and the test in question is a POI or LBI test, because for a zero-mean CAR model the
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POI c.r. (7) does not depend on ρ̄, i.e., there exists a UMPI test, and hence the power function

of any POI or LBI test coincides with πρ(ρ, 0)).

To deal with the issues raised in the previous paragraph, we will focus on large values of ρ

in CAR and SAR models. Exact power properties of invariant tests will be deduced directly

from the density of the maximal invariant v. For convenience, we now list some fundamental

properties of pdf(v; ρ), valid for any fixed ρ. Let Ωρ = CΣ(ρ)C 0, and let Ẽi(Ωρ) = Sn−k∩Ei(Ωρ),

1 ≤ i ≤ n − k. The density pdf(v; ρ) is antipodally symmetric (that is, pdf(v; ρ) = pdf(−v; ρ))
and, more specifically, is constant on the regions of constant v0Ω−1ρ v (geometrically, such regions

are the intersection of the surfaces of a sphere and of an ellipsoid in Rn−k). It follows immediately

that:

(i) pdf(v; ρ) is maximized over Sn−k when v0Ω−1ρ v is minimized, that is, when v ∈ Ẽn−k (Ωρ).

Note that Ẽn−k (Ωρ) consists of two antipodal points if and only if mn−k (Ωρ) = 1;

(ii) pdf(v; ρ) is strictly decreasing as v moves from Ẽi(Ωρ) to Ẽj(Ωρ) along any geodesic of

Sn−k, for any 1 ≤ j < i ≤ n− k;

(iii) upon rotation to a coordinate system provided by a set of n− k orthogonal eigenvectors of

Ωρ, pdf(v; ρ) is invariant to the sign of each component of the vector v.

Property (i) will be used to derive some of the results to follow. Property (ii) implies that any

invariant c.r. that is not centrally symmetric (we say that an invariant c.r. Φ ∈ Sn−k is centrally

symmetric if t ∈ Φ implies −t ∈ Φ) is dominated uniformly over ρ (in terms of power) by a
centrally symmetric c.r. of the same size. Because of this reason, from now on we assume that an

invariant c.r. is centrally symmetric. This corresponds to enlarging the group of transformations

with respect to which we require invariance to include also the transformation y → −y. Property
(iii) is not exploited directly in this paper, but is very useful when thinking geometrically about

our testing problem, for it implies that the study of pdf(v; ρ) can be limited to a single orthant

of Sn−k.

The following preliminary result links the limit, as ρ approaches some positive value a (from

the left, and with a an accumulation point of Ψ), of the power function of an arbitrary invariant

c.r. to the limiting eigenstructure of Ωρ. We denote lim
ρ→a
Ωρ by Ω, the limit being taken entrywise.

Lemma 3.2 Suppose that Σ(ρ) is positive definite for ρ ∈ (0, a) and for ρ→ a. If λn−k (Ω) is fi-

nite, then the power of any invariant c.r. for testing ρ = 0 against ρ > 0 in model N(Xβ, σ2Σ(ρ))

tends, as ρ→ a, to a number strictly between 0 and 1. If λn−k (Ω) is infinite and simple, then the
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power of an invariant c.r. for the same testing problem tends, as ρ→ a, to 1 if the c.r. contains

fn−k (Ω), to 0 otherwise.

Lemma 3.2 holds for a very general class of matrices Σ(ρ), including CAR and SAR models,

and the (time-series) stationary AR(1) model. For the latter model, the power of the Durbin-

Watson and some related tests as ρ → 1 has been investigated extensively; see Krämer (1985),

Zeisel (1989) and Bartels (1992). Lemma 3.2 shows how some results on the power of such tests

can be extended to any invariant (similar) test for serial correlation.

Of course, when a ∈ Ψ the power of any c.r. must be in (0, 1), and this is reflected in Lemma
3.2 by the fact that λn−k (Ω) is finite when a ∈ Ψ. The possibility that, in the setting of Lemma
3.2, the power of a certain c.r. vanishes as ρ goes to the boundary of Ψ should be regarded as a

problem of the statistical model, rather than of a particular test. A simple geometric argument

clarifies this point. Let ν = n − lim
ρ→a

{rank(Σ−1(ρ))}, with Σ(ρ) as in Lemma 3.2. Note that
for λn−k (Ω) = ∞ it is necessary that ν > 0. When ν > 0, the model N(Xβ, σ2Σ(ρ)) tends,

as ρ → a, to a family of (improper) distributions defined on a ν-dimensional subspace, say Sν ,

of Rn. This is easily seen by observing that the contours of N(Xβ, σ2Σ(ρ)) are the ellipses

(y −Xβ)0Σ−1(ρ)(y −Xβ) = k, which also shows that, for any fixed β, Sν is the translation of

lim
ρ→a

{En(Σ(ρ))} by Xβ. It is then clear that the limiting power, as ρ→ a, of a certain test–not

necessarily invariant–depends on the position of the c.r. in Rn relative to Sν (if the test is

invariant, the relative position does not depend on β). In particular, the power of a test vanishes

whenever the intersection between Sν and the c.r. has 1-dimensional Lebesgue measure zero. In

CAR and SAR models (when a = λ−1) and in stationary AR(1) models (when a = 1), ν = 1.3

Note that the stationarity assumption on the AR(1) model is not superfluous, in that generally

v = 0 otherwise. On the contrary, for the CAR and SAR models considered in this paper v is

always 1. This represents an important difference between time-series and spatial autoregressive

models, from the point of view of testing for residual autocorrelation.

Clearly, the above geometric argument does not depend on the normality assumption, but

holds for any elliptically symmetric distribution. It also holds for any c.r.; when the c.r. is

invariant, the conditions in Lemma 3.2 can be exploited. Moreover, further progress can be

made by focusing on a specific class of matrices Σ(ρ), those implied by CAR and SAR models in

3A very similar situation occurs in regression models such that Σ(ρ), rather than Σ−1(ρ), tends to a singular

matrix as ρ tends to some vale a. In this case, the distributions are defined, as ρ → a, in a subspace of Rn

of dimension lim
ρ→a

{rank(Σ(ρ))}. Examples are a spatial moving average model (i.e., a model with covariance
matrix equal to the inverse of that of a SAR model), and a fractionally integrated white noise, with ρ being the

differencing parameter and a = 1/2 (see Kleiber and Krämer, 2005).
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the rest of this section.

3.2 Main Results

In this subsection we focus on the power of invariant tests in CAR and SAR models when ρ→ λ−1

(from the left). Accordingly, from now on, by “limiting power” we mean the limit of the power

function as ρ → λ−1. The restriction to the case ρ → λ−1 is of practical relevance, because (a)

it corresponds to studying power when it is most needed, i.e., when the autocorrelation in the

data, and hence the inefficiency of the OLS estimator of β, is large; (b) often, in order to fit real

data, spatial autoregressive models require a large value of ρ (e.g., Besag and Kooperberg, 1995).

In order to state the key result of this section some new notation is needed. Henceforth, an

invariant critical region defined as a subset of Sn−k is denoted by Φv, whereas its image on the

sample space Rn is denoted by Φy. The column space of the matrix X, often referred to as

the “regression space”, is denoted by col(X). The entrywise positive and normalized eigenvector

of W pertaining to λ is denoted by f . Existence and uniqueness of f are guaranteed by the

Perron-Frobenius theorem.

Theorem 3.3 In CAR and SAR models, the limiting power of an invariant c.r. Φy for testing

ρ = 0 against ρ > 0 is:

— in (0, 1) if f ∈ col(X);

— 1 if f ∈ Φy\ col(X);

— 0 otherwise.

The theorem asserts that, to some degree, the limiting power of Φy is determined by which

of three mutually disjoint subsets of the sample space f belongs to. Of course, the result can

be restated on the space Sn−k of the maximal invariant, in which case f must be replaced by

Cf/ kCfk and the three subsets become {0}, Φv\{0} and Φv ∪ {0}.
Theorem 3.3 is strongly related to Theorems 1 and 2 in Krämer (2005), the most important

differences being: (a) the class of tests considered there (i.e., tests that can be expressed as ratios

of quadratic forms in the regression residuals) and the class considered in the present paper (i.e.,

invariant tests) are different, although they certainly intersect; (b) our result does not require

symmetry of W . We stress that Theorem 3.3 holds for any invariant (similar) c.r., regardless

of the analytical form of the associated test statistic. Thus, it also holds for tests whose test

statistics are analytically complicated, or, as in the case of a likelihood ratio test based on the

full or the marginal likelihood, unavailable in closed form.
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The practical usefulness of Theorem 3.3 is in providing simple conditions for the limiting

power of any invariant c.r. to vanish, given any matrices X and W . Consider an invariant c.r.

that rejects ρ = 0 for small values of some statistic T (y), i.e.,

Φy = {y ∈ Rn : T (y) < cα} . (10)

Theorem 3.3 asserts that the limiting power of such a c.r. is 0 if T (f) < cα, 1 if T (f) ≥ cα,

in (0,1) if f ∈ col(X). These conditions are typically very simple to check because, in most
cases, (i) f is either known (e.g., it is a vector of identical entries when W is row-standardized)

or can be computed efficiently (e.g., by the power method); (ii) since Φy is similar, cα can be

obtained accurately by simulation methods. For instance, it is readily verified that, for CAR or

SAR models, the limiting power of a POI test is 0, 1, or strictly between 0 and 1, depending on

whether

f 0 (Σ(ρ̄)Mρ̄ − cαM) f (11)

is respectively positive, negative, or zero (zero occurring if and only if f ∈ col(X)). Analogously,
the limiting power of a LBI test is 0, 1, or strictly between 0 and 1, depending on whether

f 0 (MA0M − cαM) f (12)

is respectively positive, negative or zero. Note that, since they refer to test statistics that are

ratios of quadratic forms in y, the conditions based on (11) and (12) reduce, in the case of a

symmetric SAR model, to conditions given in Krämer (2005). The specific form of the test

statistics also implies that, for POI or LBI tests, cα can also be obtained by exploiting one of

the many approximations available for the distribution of a quadratic form in a vector uniformly

distributed on a hypersphere.

Further remarks concerning Theorem 3.3 follow.

Remark 1 The condition f ∈ col(X), under which the limiting power of an invariant test is in
(0, 1), is satisfied whenever W in a CAR or SAR model is row-standardized and an intercept is

included in the regression, because row-standardization implies that f has identical entries. Note

that here whether W refers to a model before or after normalization to Σ(0) = I is irrelevant,

because the condition f ∈ col(X) is invariant under any invertible linear transformation of

y ∼ N(Xβ, σ2Σ(ρ)), where Σ(ρ) is that of a CAR or SAR model. For any weights matrix that

is not row-standardized, in general f /∈ col(X), with the consequence that the limiting power of
an invariant test is either 0 or 1.
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Remark 2 An important and immediate consequence of Theorem 3.3 is that, in CAR and SAR

models, the limit of the envelope πρ(ρ) as ρ→ λ−1 is 1 if f /∈ col(X), and is in (α, 1) otherwise.
Hence, as ρ → λ−1 in CAR and SAR models, the null hypothesis ρ = 0 can be distinguished

(by means of an invariant tests) from the alternative hypothesis ρ > 0 with zero type II error

probability only if f /∈ col(X).

Remark 3 Consider an invariant test, constructed on the basis of some assumed weights ma-

trix. By Theorem 3.3, whether its limiting power is 0, 1, or in (0, 1) depends on the “true” W

appearing in the CAR or SAR model only through f (which, for instance, is the same for any

row-standardized W ), and does not depend on whether the model is a CAR or a SAR model.

This property implies some robustness of invariant tests to model misspecification, when the

spatial autocorrelation is large.

In the rest of this subsection we take a close look at the case in which the limiting power

vanishes, and, consequently, we restrict attention to the case f /∈ col(X).
Suppose that, for a given CAR or a SAR model, one finds, by application of Theorem 3.3,

that the limiting power of a certain c.r. Φy vanishes. Theorem 3.3 itself guarantees that if Φy is

enlarged so as to include f , then its limiting power jumps to 1. From a practical point of view, a

question of concern is how large Φy must be in order to avoid the vanishing of the limiting power.

We define (allowing, for convenience and contrary to what is done elsewhere in the paper, α to

take the value 1):

Definition 1 For an invariant c.r. for testing ρ = 0 against ρ > 0 in a CAR or SAR model, α∗

is the infimum of the set of values of α ∈ (0, 1] such that the limiting power does not vanish.

When f /∈ col(X), α∗ is a measure of the distinguishability between the null hypothesis ρ = 0
and the alternative ρ→ λ−1. A large α∗ indicates that a large size is necessary to avoid the zero

limiting power problem; α∗ = 1 means that the limiting power is 0 for any α; α∗ = 0 indicates

that the limiting power is 1 for any α.4

When an invariant c.r. is in form (10) (and f /∈ col(X)), α∗ is the probability that T (y) < T (f)

under the null hypothesis y ∼ N(Xβ, σ2I), or, by invariance,

α∗ = Pr(T (y) < T (f); y ∼ N(0, I)). (13)

4Recall that we are here focusing on the case f /∈ col(X). If f ∈ col(X), α∗ is always zero, by Theorem 1,

and hence uninformative. In order to study the power of invariant tests when f ∈ col(X), one could define α∗ as
the infimum of the set of values such that the limiting power is greater than some positive value, but this is not

pursued in the present paper.
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Thus, α∗ can be computed accurately by simulation or other numerical methods. We stress that

α∗ depends on X (through col(X), because of the invariance property of the tests),W , the choice

of test and the choice between a CAR and a SAR specification. In particular, for a given error

process, a given test, and a given k, α∗ may depend to a very large extent on col(X). Numerical

examples will be given in the next subsection. In the following, we will explore the dependence of

α∗ on col(X) by studying the circumstances in which α∗ = 0 and those in which α∗ = 1. We will

first give a lemma that holds for any test based on a quadratic form in the maximal invariant,

and then we will apply the lemma to POI and LBI tests. Extensions of the analysis below to

more general tests (a likelihood ratio test, say) are possible, but may be more involved.

Consider an invariant c.r. of the form

Φv(B) = {v ∈ Sn−k : v0Bv < cα}, (14)

where B is an (n−k)× (n−k) known symmetric matrix independent of α. For instance, any c.r.
based on a ratio of quadratic forms in the OLS residuals can be written in this form. Typically B

will depend on X andW (but could depend on a weights matrix different from the one appearing

in CAR models, thus allowing for the possibility of misspecification of W ). We have:

Lemma 3.4 Consider, in the context of CAR or symmetric SAR models, testing ρ = 0 against

ρ > 0 by means of a c.r. Φv(B). Provided that f /∈ col(X), α∗ = 0 if and only if Cf ∈ E1(B),

and α∗ = 1 if and only if Cf ∈ En−k(B).

Lemma 3.4 implies that, in a CAR or SAR model and for a c.r. Φv(B), α∗ ∈ (0, 1) as long
as Cf is not an eigenvector of B associated to the smallest or the largest eigenvalue of B. The

important question remains of whether the extremes α∗ = 0 and α∗ = 1 are attainable, and,

if so, in which circumstances. In particular, it is of interest to understand whether for a fixed

W in a CAR or SAR model, α∗ has a non-trivial (i.e., smaller than 1) upper bound as col(X)

ranges over the set of all subspaces of Rn of low (with respect to n) dimension. Obviously, given

a certain model and a certain c.r., one would hope that α∗ is small, since the limiting power

vanishes whenever α∗ > α.

To answer the above question we focus on POI tests (B = Ω−1ρ̄ ) and LBI tests (B = CA0C
0).

First, we consider the case α∗ = 0. Two conditions that are easily seen to lead to α∗ = 0 (i.e.,

to Cf ∈ E1(B)) for POI and LBI tests are (i) W symmetric and X = 0 and (ii) W symmetric

and f ⊥ col(X). More generally, the following sufficient condition can be established.

Proposition 3.5 Consider, in the context of CAR or symmetric SAR models, testing ρ = 0

against ρ > 0 by means of a POI or LBI c.r. Provided that f /∈ col(X), α∗ = 0 if En−k(Ωρ) does
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not depend on ρ for ρ > 0.

Remark 4 Although the condition in Proposition 3.5 is not necessary, a simple geometric argu-

ment suggests that when the condition is not met α∗ is 0 only in very special circumstances. Let

the center of the c.r. Φv based on a certain test statistic be the set of points of Sn−k that are in Φv

for any α. For instance, the center of Φv(B) is E1(B)∩Sn−k. Clearly, for a certain c.r., α∗ = 0 if
and only if, as ρ→ λ−1, pdf(v; ρ) vanishes anywhere outside the center of that c.r. Now, as long

as f /∈ col(X), pdf(v; ρ) tends, as ρ → λ−1, to be concentrated in the direction of v = Cf (see

Section 3.1). Thus, for a POI test (B = Ω−1ρ̄ ), α∗ = 0 if and only if Cf ∈ E1(Ω
−1
ρ̄ ) = En−k(Ωρ̄).

This is the case if En−k(Ωρ) does not depend on ρ for ρ > 0 (by Proposition 3.5), but, otherwise,

poses a strong restriction on the trajectories described on Sn−k by the eigenvectors in En−k(Ωρ̄).

We now turn to characterize the case α∗ = 1 for POI and LBI tests. Theorem 1 of Krämer

(2005), contains the crucial statement that, in symmetric SAR models, “given any matrix W

of weights, and independently of sample size, there is always some regressor X such that for

the Cliff—Ord test the limiting power disappears” (note that here “some regressor X” means

k = 1). Now, from Theorem 3.3 it is clear that whether or not a particular X (with k ≥ 1)

causes the limiting power to disappear depends on α. Thus, if interpreted as holding for any

α (less than 1), the above statement would imply that for any W there exist some particularly

hostile regressors that cause a zero limiting power even when the size of the Cliff-Ord c.r. (i.e.,

the LBI c.r.) is very large. This is clearly an extremely strong property, in a negative sense, of

a c.r. Unfortunately, whether it holds or not for the Cliff-Ord test in the context of a symmetric

SAR model remains to be established, because the proof of Krämer’s theorem holds only when

α→ 0.5 The next theorem settles the issue and places it in a more general context. Recall that

m1 denotes the multiplicity of λ1, for a symmetric W . Unless W satisfies particular symmetries,

generally m1 = 1 (see, for instance, Biggs, 1993).

Theorem 3.6 Consider, in the context of CAR or symmetric SAR models, testing ρ = 0 against

ρ > 0 by means of a POI or LBI c.r. For any fixed W , there exist m1-dimensional regression

spaces such that the limiting power of the selected c.r. vanishes, irrespective of α. For instance,

when m1 = 1, let X be a vector proportional to f1+bf , for some b ∈ R. Then, the limiting power
of POI and LBI tests vanishes, irrespective of α, if |b| ≥ b∗, where b∗ is a threshold that depends

5This is because d1 in equation (12) of Krämer (2005) is not necessarily positive for any W , unless α → 0.

As a consequence, the regressors that Krämer constructs in his proof do not need to cause the limiting power to

vanish when d1 < 0.
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on the model and on the c.r. Namely, letting

b1 =

µ
λ− λ2
λ2 − λ1

¶ 1
2

, b2 =
1− ρ̄λ1
1− ρ̄λ

, b3 =
2− ρ̄(λ+ λ2)

2− ρ̄(λ2 + λ1)
,

b∗ is equal to b1
√
b2 for a POI c.r. in a CAR model, b1b2b3 for a POI c.r. in a symmetric SAR

model, b1 for a LBI c.r. in both models.

Theorem 3.6 establishes that, for any fixed W in a CAR or symmetric SAR model, there are

m1-dimensional regression spaces such that α∗ = 1. In the presence of such regression spaces, the

zero limiting power problem cannot be solved by increasing α. Note that if an m1-dimensional

regression space causes a zero limiting power (of a POI or LBI test in a CAR or symmetric SAR

model), then also all the k-dimensional regression spaces, with k ≥ m1, that contain it but do

not contain f will yield a zero limiting power, as an obvious consequence of the fact that the

power of an invariant test does not depend on β.

We now aim to show that, in the context of Theorem 3.6, the vanishing of the limiting power

is not an event of measure zero (in a sense to be specified). In order to do so, it is convenient to

introduce some new notation. Let Gk,n denote the set, known as a Grassmann manifold, of all

k-dimensional subspaces of Rn, and let Hk(α) ⊆ Gk,n, for 0 < α < 1, be the set of k-dimensional

col(X) such that the limiting power of a POI or LBI c.r. of size less than α vanishes (for some

CAR or symmetric SAR model). Clearly, Hk(α1) ⊆ Hk(α2) for any α1 ≥ α2.

A natural measure of the size of Hk(α) is the probability that col(X) ∈ Hk(α), as col(X)

ranges overGk,n according to some probability distribution (with respect to the invariant measure

on Gk,n, as given in James, 1954). Such a probability, which we denote by zα, can be interpreted

as the probability of a zero limiting power of a size-α POI or LBI test, in a CAR or symmetric

SAR model (we stress that, for each realization of X, POI and LBI tests are derived by treating

X as fixed). We have:

Proposition 3.7 Consider, in the context of CAR or symmetric SAR models, testing ρ = 0

against ρ > 0 by means of a POI or LBI c.r. If col(X) has density that is almost everywhere

positive on Gk,n, k ≥ m1, then zα > 0, for any W and regardless of how large α or n− k is.

Clearly, in some circumstances zα can be very small (e.g., zα is usually small when n− k or

α are large). The important point made by Proposition 3.7 is that, under the stated conditions,

zα is never zero. In Section 3.4 we will compute z0.05 numerically for some choice of W and of

the probability distribution of col(X).

We now provide an interpretation of the m1-dimensional regression spaces col(X) that, ac-

cording to Theorem 3.6, are particularly hostile for testing ρ = 0 versus ρ > 0 when ρ is large.
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Starting from m1 = 1, Theorem 3.6 asserts that the set of such regression spaces is a region,

defined by b∗, of the plane spanned by f1 and f ; for a POI test, it is easily seen that, as ρ̄

increases, this set becomes smaller and more concentrated in the direction of f . Generalizing to

m1 ≥ 1, the set of the hostile regression spaces is a certain region of the (m1 + 1)-dimensional

subspace of Rn spanned by the vectors f1, ..., fm1 , f (see the proof of the theorem). Consider

the Moran statistic x0Wx/x0x associated to a vector x ∈ Rn and a symmetric W (the standard

version of the Moran statistic would include a normalizing factor and a correction for the sample

mean of x that are not relevant here). By the Rayleigh-Ritz theorem (e.g., Horn and Johnson,

1985), f represents a vector that is most autocorrelated according to the Moran statistic, and

f1, ..., fm1 represent vectors that are least autocorrelated. Note that λn, the value of the Moran

static when x = f , is positive by the Perron-Frobenius theorem, and λ1, the value of the Moran

static when x = f1, ..., fm1 , is negative for tr[W ] =
Pn

i=1 λi = 0 by assumption. Thus, Theorem

3.6 asserts that in CAR and symmetric SAR models it is difficult, or even impossible, to detect

large positive spatial autocorrelation in the presence of regressors that can be expressed as the

sum of a strongly positively autocorrelated component and a strongly negatively autocorrelated

component, with the former component being the dominant one.

We mention an extension of Theorem 3.6 that is directly related to the interpretation just

given, and can be proved similarly to Theorem 3.6. If fj + bf ∈ col(X), with fj /∈ En−1 and

fj /∈ En, the limiting power of a LBI test in a CAR or symmetric SAR model is 1 for any α (i.e.,

α∗ = 0) provided that

|b| ≤
µ
λ− λn−1
λn−1 − λj

¶ 1
2

.

Expressions of this sort can be used to infer how W affects (through its spectrum, under Gaus-

sianity) the power properties of tests of ρ = 0. For instance, if W is such that λ− λn−1 is large,

then any vector X in a large region of the plane spanned by fj and f yields α∗ = 0.

Some further remarks concerning Theorem 3.6 end this section.

Remark 5 With regards to the statement from Krämer (2005) reported above, Theorem 3.6 (i)

establishes that the statement is correct when m1 = 1; (ii) provides a generalization to the case

m1 > 1; (iii) provides a generalization to POI tests and to CAR models.

Remark 6 The strongest implication of Theorem 3.6 is perhaps that regression spaces such that

the limiting power of a POI test vanishes exist even when ρ̄ is large (i.e., close to λ−1) and α is

large. This is surprising because, by Proposition 4.1 below, the power at ρ̄ of a POI test must

be larger than α. Since, if f /∈ col(X), πρ(ρ)→ 1 as ρ→ λ−1 (see Remark 2), it also holds that
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the supremum–as col(X) ranges over the set of all k-dimensional, k ≥ m1, subspaces of Rn–of

the maximum shortcoming (e.g., Lehmann and Romano, 2005, p. 337) of any POI or LBI c.r. is

always one, for any W and any α.

Remark 7 For POI and LBI tests and for any W , T (f), regarded as a function from Gk,n to R,

is continuous. Thus, by (13), α∗ is itself a continuous, and generally smooth, function of col(X),

which implies, in particular, that the regression spaces that are sufficiently close (according to

some distance on Gk,n) to regression spaces yielding a large (resp. small) α∗ yield a large (resp.

small) α∗.

Remark 8 We have not attempted to generalize Theorem 3.6 to asymmetric SAR models, for

two reasons. Firstly, such models generally do not satisfy the condition f /∈ col(X) necessary
for the zero limiting problem. This is because the nonsymmetric weights matrices generally

used in SAR models are row-stochastic, implying, as already noted above, that f ∈ col(X) as
long as an intercept is included in the regression. Secondly, although the proof of Theorem

3.6 suggests that regression spaces (of low dimension) such that the limiting power of a POI

or LBI c.r. vanishes for any α always exist also in the context of asymmetric SAR models,

the exact characterization of such regression spaces appears to be more involved. It should be

noted, however, that an approximated characterization can be obtained from Theorem 3.6, by

approximating an asymmetric SAR model by a CAR model with Σ−1(ρ) = I − ρ(W +W 0) (i.e.,

omitting terms in ρ2).

3.3 Zero-Mean Models

In this subsection we specialize some of the above results to zero-mean (or constant-mean, by

obvious extension) CAR and SAR models. For our purposes, setting X = 0 in the models

analyzed above has two main advantages. Firstly, it clarifies–by direct comparison with the

regression case–the role played by the regressors in determining power. Secondly, it allows to

focus on the effect of the specification of W on power.

Let us start from the following corollary of Theorem 3.3.

Corollary 3.8 In zero-mean CAR and SAR models, the limiting power of an invariant c.r. Φy

for testing ρ = 0 against ρ > 0 is 1 for any α if f ∈ Φy, 0 otherwise.

It is instructive to relate Corollary 3.8 to the Moran statistic y0Wy/y0y. In the context of

CAR and SAR models, the Moran statistic is usually interpreted as an autocorrelation coefficient.

In view of this interpretation, the result in Corollary 3.8 is precisely what one would expect when
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W is symmetric, since in that case y = f maximizes the Moran statistic. The same cannot

be said when W is nonsymmetric, because in that case the Moran statistic is not, in general,

maximized by f .

In fact, the differences between models with symmetricW (CAR and symmetric SAR models)

and models with nonsymmetric W (asymmetric SAR models) are not only a matter of interpre-

tation. We provide an example in the context of possibly the simplest SAR model; the same

model was used by Whittle (1954) in his seminal paper on spatial autoregressions.

Example 1 A random variable is observed at n units placed along a line and, in the context of

a zero-mean SAR process, it is to be tested whether ρ = 0 or ρ > 0. Suppose that it is believed

that there is only first-order interaction and that the interaction amongst first-order neighbors is

stronger in one direction than in the other. Accordingly, W is chosen so that W (i, j) is equal to

some fixed positive scalar w 6= 1 if i−j = 1, to 1 if j− i = 1, and to 0 otherwise, for i, j = 1, ..., n.
In Figure 1, we plot the power function of the LBI test, i.e., the Moran test, and the envelope

πρ(ρ) for n = 6, w = 10 and α = 0.01. The power has been computed numerically, via the Imhof

method (Imhof, 1961), and is plotted against ρλ, which ranges between 0 and 1.

Figure 1: The power function of the Moran test (solid line) and the envelope πρ(ρ) (dashed line) for

the zero-mean asymmetric SAR model described in Example 1.

Although it is based on a model with an artificial W (for more practically relevant models,

see Section 3.4), Figure 1 illustrates the theoretically important point that in a SAR model with

nonsymmetric W , the limiting power of the Moran test may vanish even when the model is not

contaminated by regressors. On the contrary, when W is symmetric, the power function of the

Moran test always goes to 1 as ρ→ λ−1 (by Lemma 3.4) and–as we shall see in Proposition 4.3
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below–is monotonic. Note that this feature of the power function of the Moran test entails that

there are zero-mean asymmetric SAR models in which the interpretation of the Moran statistic

y0Wy/y0y as an autocorrelation coefficient cannot be justified, because for such models there

exist values 0 < k < λ−1 such that Pr(y0Wy/y0y > k) is not increasing over 0 < ρ < λ−1. The

next result gives further insights into the problem.

Proposition 3.9 In zero-mean SAR models, the limiting power of a POI or LBI c.r. for testing

ρ = 0 against ρ > 0 is 1 for any α if and only if f is an eigenvector of W 0.

The weights matrices W satisfying the condition in Proposition 3.9 are those such that λ is

perfectly well-conditioned (e.g., Golub and Van Loan, 1996, p. 323). In practice, it turns out

that the condition is very restrictive when W is nonsymmetric (whereas it is trivially satisfied

when W is symmetric), and hence that in asymmetric SAR models typically α∗ > 0 even when

X = 0. For row-standardized W ’s–the most popular, by far, nonsymmetric weights matrices in

SAR models–the restrictiveness of the condition is emphasized by the following result.

Corollary 3.10 In zero-mean asymmetric SAR models with row-stochastic W , the limiting

power of a POI or LBI c.r. for testing ρ = 0 against ρ > 0 is 1 for any α if and only if

W is doubly stochastic.

Clearly, a nonsymmetric row-stochastic weights matrix W is doubly stochastic, i.e., has not

only all rows but also all columns summing to 1, only in very special cases.6 The condition in

Proposition 3.9 remains very unlikely to be satisfied also for nonsymmetric W ’s that are not

row-stochastic. This is essentially because, given any choice of the neighborhood structure of a

set of observational units (i.e., any choice of the pairs of units deemed to be neighbors) the choice

of weights yielding a well-conditioned λ is typically a very particular one,7 and corresponds to

some relevant notion of distance amongst the units only in exceptional cases.

Having argued that the condition in Proposition 3.9 is generally not satisfied, the interesting

issue becomes to understand which (nonsymmetric) matrices W are associated to large values of

α∗. Let us return to our example of a SAR model defined on a line.

6Formally, this can be deduced from Birkhoff ’s theorem on doubly stochastic matrices, which states that any

such matrix must be a convex combination of permutation matrices; e.g., Horn and Johnson, 1985. We remark

that the doubly stochastic weights matrices used in SAR models by Pace and LeSage (2002) are symmetric.
7That such a choice exists can be seen by starting from a (nonsymmetric) matrix W , and transforming it

to S−1WS, where S is a diagonal matrix with S(i, i) = (fi/li)1/2, with l denoting the left eigenvector of W

associated to λ.
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Example 2 For the case of Example 1 above, the Imhof method (or some other numerical

approximation to the null distribution of the Moran statistic) can be used to verify that α∗ is

decreasing in n and increasing in |w − 1|. For the particular case of Figure 1, α∗ is about 0.056.
Note that if one closes the line to form a circle (by setting W (1, n) = w and W (n, 1) = 1),

then W becomes a scalar multiple of a doubly stochastic matrix, and consequently α∗ = 0 by

Proposition 3.9.

Numerical investigations not reported here show that, typically, for a fixed n, large values

of α∗ are associated to matrices W such that W (i, j)/W (j, i) is large for at least one pair (i, j)

(we note that this type of asymmetry yields large values of α∗ even when X 6= 0). This suggests
that the asymmetry introduced by using row-standardized weights matrices W = D−1A (see

Section 2.1) does not yield very large values of α∗ in zero-mean SAR models, because for such

matrices W (i, j)/W (j, i) ≤ u(A), i, j = 1, ..., n, where u(A) denotes the ratio of the largest to

the smallest row-sum of A. Note that the largest possible value of u(A) over all n× n matrices

A is n − 1, obtained for the adjacency matrix of a star graph (i.e., a graph with one vertex
having n − 1 neighbors, and all other vertices having 1 neighbor). One can check that, even in
this case, the value of α∗ associated to the corresponding row-standardized W is very small, and

decreasing in n.8 For instance, for the Moran test, when W is the row-standardized version of

the adjacency matrix of a star graph, α∗ > 0.01 only when n < 6. Thus, to summarize, in SAR

models asymmetry of W may cause the limiting power of POI and LBI tests to disappear even

when X = 0; for row-standardized W ’s, however, this typically occurs only for very small values

of α or n.

3.4 Numerical Examples

In this subsection we report numerical results aimed at illustrating how X andW affect the exact

power of tests for residual spatial autocorrelation. More specifically, the objective is to show how

sensitive power can be to X when ρ is large but not necessarily in a small neighborhood of λ−1,

in some situations of practical interest. For simplicity, we restrict attention to the power, which

we denote by πLBI(ρ), of the Cliff-Ord test in the context of a SAR model. Related numerical

investigations are contained in Krämer (2005).

For some selected specifications ofW , we conduct Monte Carlo experiments whereX is drawn

8 Interestingly, the effect of the asymmetry of a row-standardized weight matrix D−1A (or any other non-

symmetric matrix that is similar to a symmetric matrix) can always be eliminated by suitably selecting V in (3).

In fact, model (3) with W = D−1A and V = D−1 is reduced, upon normalization to Σ(0) = I, to a SAR model

with symmetric weight matrix D−1/2AD−1/2.

22



from some probability distribution, and the power is computed by the Imhof method. Because

of its invariance property, the power of the Cliff-Ord test depends on X only through col(X). A

natural choice for the distribution of X would then be to take vec(X) ∼ N(0, Ink), because this

would imply that col(X) is uniformly distributed on the Grassmann manifold Gk,n (see James,

1954, for the definition of uniform distribution onGk,n). Since, however, an intercept is in practice

always included in the regression, we prefer to take X = [ι | X1]), with vec(X1) ∼ N(0, In(k−1))

(the effect on power of including an intercept will be discussed below). In the results reported

below, k = 2, i.e., the regression includes just an intercept and an i.i.d. standard normal variate.

The simulation is based on 106 replications of X. All computations are done in GAUSS v7. We

set α = 0.05.

We construct weights matrices from the maps of the n = 17 counties of Nevada and the

n = 23 counties of Wyoming. We consider both a binary W , specified according to the queen

criterion (i.e., W [i, j] = 1 if counties i and j share a common boundary or a common point,

W [i, j] = 0 otherwise), and its row-standardized version. The average number of neighbors of a

county is 4.35 in Nevada, 4.52 in Wyoming, whereas the sparseness of W (as measured by the

percentage of zero entries) is 74.40 for Nevada and 80.34 for Wyoming. We shall see that, despite

their similarities, these two spatial configurations are very different with respect to our testing

purposes.

Firstly, in order to show how sensitive πLBI(ρ) is to X, in Table 1 we display the percentage

frequency distribution of πLBI(ρ), with W as described above. We report values for ρ = 0.9λ−1

and ρ = 0.95λ−1, which represent points at which low power is particularly troublesome (because

of the large inefficiency of the ordinary least squares estimator of β), but that are not too close

to λ−1. Note that, by Theorem 3.3, in our experiment limπLBI(ρ) (as ρ→ λ−1) is either 0 or 1

when W is binary (as in that case f /∈ col(X) almost surely), whereas it is in (0, 1) when W is

row-standardized (as in that case f = ι ∈ col(X)). It appears from Table 1 that in the case of

Nevada πLBI(ρ) depends to a very large extent on X, even at points that are relatively far from

λ−1. The dependence is less pronounced in the case of Wyoming.

Next, we consider the zero limiting power problem more closely, which requires restricting

attention to binary weights matrices (so that f /∈ col(X) almost surely). In Table 2 we display
z0.05 (see Section 3.2), obtained as the frequency of times that (12) (with cα computed by the

Imhof method) is positive in our experiment. Note that z0.05 is very large in the case of Nevada,

whereas it is very small in the case of Wyoming. The table also displays the average shortcoming

(i.e., πρ(ρ)−πLBI(ρ)) of the Cliff-Ord test at ρ = 0.9λ−1 and ρ = 0.95λ−1, when limπLBI(ρ) = 0

and when limπLBI(ρ) = 1. It appears that the impact of the zero limiting power problem is

23



Table 1: Percentage frequency distribution of the power πLBI(ρ) of the Cliff-Ord test, in model y =

Xβ + ε, where ε is a SAR process and X contains an intercept and a standard normal variate. The

power is computed by the Imhof method over 106 replications of X.

πLBI(ρ)

ρλ 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

Nevada

binary W
0.90 0.11 0.25 28.42 71.05 0.17 · ·
0.95 0.29 5.75 36.29 53.43 4.11 0.13 ·

row-st W
0.90 · · 0.02 0.16 41.47 58.35 ·
0.95 · · 0.01 0.05 1.56 98.38 ·

Wyoming

binary W
0.90 · · · 0.02 0.69 99.29 ·
0.95 · · · 0.02 0.10 1.76 98.12

row-st W
0.90 · · · · · 0.50 99.50

0.95 · · · · · · 100

not localized only in a very small neighborhood of λ−1, because, on average, an X causing

limπLBI(ρ) = 0 causes shortcomings at ρ = 0.9λ−1 and ρ = 0.95λ−1 that are significantly larger

than the corresponding shortcomings associated to an X such that limπLBI(ρ) = 1.9

We remark that the probability zα is generally very sensitive to W , n, k, the choice of a test,

α, and the distribution of X. In most situations, zα is small (but positive under the condition

in Corollary 3.7) when n − k is large (although it is possible to construct matrices W , e.g.,

the adjacency matrix of a star graph or a very dense matrix, such that this is not the case).

This suggests that, from a practical point of view, the zero limiting power problem is mainly a

small sample problem. In general, and interestingly, zα is significantly larger when the regression

includes an intercept. This is because, due to the nonnegativity ofW , ι usually (and especially if

the row sums of W are all of similar magnitude) yields a large value of the Moran statistic, and

therefore its presence tends to put more probability mass on the regression spaces close to the

hostile ones defined by Theorem 3.6. When W is defined on a regular grid, one can study how

zα depends on n explicitly (see Table 1 of Krämer, 2005). Note that zα is related to the measure

α∗ by the relation zα = Pr(α
∗ > α) (where the randomness of α∗ is due to that of X). In our

9Note that when m1 = 1, as in the examples we are considering, and col(X) contains the span of a vector

f1 + bf with large b, the power function goes to zero (by Theorem 3.6), but it does so very rapidly, because the

condition f ∈ col(X) is nearly satisfied and therefore the power function tends to be close to that when f ∈ col(X),
which goes to a positive number as ρ→ λ−1.
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Table 2: Probability of zero limiting power (z0.05) and average shortcoming of the Cliff-Ord test, in the

case of a binary W .

av. shortc. at ρλ = 0.90 av. shortc. at ρλ = 0.95

z0.05 πLBI(ρ)→ 0 πLBI(ρ)→ 1 πLBI(ρ)→ 0 πLBI(ρ)→ 1

Nevada 0.77 0.20 0.16 0.32 0.24

Wyoming 5.2·10−4 0.15 0.03 0.26 0.02

experiment, α∗ varied between 2.8 · 10−4 and 0.994 for the case of Nevada, between 2.1 · 10−7

and 0.430 for the case of Wyoming.

The main conclusion of our numerical study is that, in some cases of practical interest, the

probability that the limiting power of the Cliff-Ord test vanishes may well be non-negligible. This

obviously induces a large dependence of the power of the Cliff-Ord test on X when ρ → λ−1,

but the numerical results indicate that both the power and the shortcoming may still depend to

a large extent on X for values of ρ in a rather large neighborhood of λ−1.

4 Unbiasedness and Monotonicity

In this section we discuss some conditions on model N(Xβ, σ2Σ(ρ)) that are sufficient for POI

and LBI tests to be unbiased (for a general Σ(ρ)) and to have power functions monotonic in ρ

(for CAR or symmetric SAR models). The conditions are by no means necessary, but (i) are

important to understand the structure of the testing problem under analysis; (ii) in the case of

spatial autoregressive models, admit a simple interpretation.

We start from the following known, and fundamental, fact: any POI test is strictly unbiased

for testing ρ = 0 against the specific alternative ρ = ρ̄ for which it is constructed to be optimal.

This property, for the general regression model (1), was derived in Theorem 1 of Kadiyala (1970)

by an astute, but somewhat indirect, argument. For convenience, we restate the result in terms

of the power envelope πρ(ρ), and we point out (see the proof) that the result is a straightforward

consequence of the Neyman-Pearson lemma.

Proposition 4.1 In model N(Xβ, σ2Σ(ρ)), the inequality πρ(ρ) > α holds for any ρ > 0.

Proposition 4.1 is a very general result, since it holds for any X and any Σ(ρ). However, it

cannot be used to establish unbiasedness of a particular invariant test for ρ = 0 against ρ > 0,

except of course when a UMPI test exists (which is a very restrictive condition, because it requires
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the c.r. defined by (7) to be independent of ρ̄). Next we formulate two conditions that, when

taken together, lead to unbiasedness of POI and LBI tests.

By a commuting family of matrices it is meant a finite or infinite set of matrices that are

pairwise commutative under standard multiplication.

Condition A The matrices Σ(ρ), for ρ > 0, form a commuting family.

Condition A is particularly relevant in the present paper because it is satisfied by CAR and

symmetric SAR models. Except for very special cases, it is not satisfied by asymmetric SAR

models. A well-known characterization of a commuting family of symmetric matrices is that all

its members share the same eigenvectors. This explains, in view of Proposition 3.5, why α∗ = 0 in

zero-mean CAR and symmetric SAR models, whereas generally α∗ > 0 in zero-mean asymmetric

SAR models. An important advantage of Condition A is that it allows a natural extension of

many properties of the models N(0, σ2Σ(ρ)) to the models N(Xβ, σ2Σ(ρ)) that satisfy the next

condition.

Condition B For a fixed eρ > 0, col(X) is spanned by k linearly independent eigenvectors of

Σ(eρ).
An interpretation of Condition B in CAR and SAR models will be given at the end of this

section. Because of the characterization mentioned above, if Condition A holds, Condition B does

not depend on eρ. Condition B, in any of its many equivalent formulations, has played a crucial
role in the theoretical analysis of regression models with non-spherical errors since Anderson

(1948). Although Condition B is unlikely to be met in practice, in some circumstances one may

expect it to hold approximately (see the end of this section for CAR and symmetric SAR models,

and Durbin, 1970, for the case of serial correlation). There is evidence in the literature that the

power properties of tests for ρ = 0 when Condition B holds exactly are similar to those when

Condition B holds approximately (e.g., Tillman, 1975, p. 971).

Letting col⊥(X) denote the orthogonal complement of col(X), we have:

Proposition 4.2 Assume that Conditions A and B hold. Then, in model N(Xβ, σ2Σ(ρ)), any

POI or LBI c.r. for testing ρ = 0 against ρ > 0 is unbiased. The unbiasedness is strict except

when col⊥(X) is a subset of an eigenspace of Σ(ρ), in which case the power is α for any ρ > 0.

In Proposition 4.2, as in Propositions 4.3 and 4.4 below, “any” means for any α and any

ρ̄. It is worth pointing out that, in general, Conditions A and B are not sufficient for the

existence of a UMPI test for the stated testing problem, and therefore Proposition 4.2 is not a

consequence of Proposition 4.1. An important counterexample in which a UMPI test exists is a
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CAR model satisfying Condition B (the reason why Condition B combines particularly well with

a CAR specification is that the resulting model is an exponential family with number of sufficient

statistics equal to the number of parameters, k + 2). It should also be noted that Conditions A

and B are not sufficient for the monotonicity in ρ of the power functions of the tests in Proposition

4.2, not even when X = 0, because, given a Σ(ρ) satisfying Condition A, a reparametrization

ρ → f(ρ) may destroy the monotonicity of the power function without causing Condition A to

fail. Note that while unbiasedness is a vital property of any c.r., monotonicity of the power

function in ρ is a much stronger property and may or may not be desirable depending on the

specification of Σ(ρ). In general, it is desirable whenever ρ is interpreted as an autocorrelation

parameter. This is the case for CAR and SAR models. We can prove:

Proposition 4.3 Assume that Condition B holds. Then, in CAR and symmetric SAR models

the power function of any POI and LBI c.r. for testing ρ = 0 against ρ > 0 is non-decreasing. It

is strictly increasing except when col⊥(X) is a subset of an eigenspace of W , in which case the

power is α for any ρ > 0.

Proposition 4.3 implies that in CAR and symmetric SAR models having zero mean or, more

generally, satisfying Condition B, the LBI and POI test statistics can be regarded as indexes

of (residual) autocorrelation, in that they are non-decreasing (as any correlation between pairs

of variables in CAR and SAR models) in ρ, over (0, λ−1). Another important consequence of

Proposition 4.3 is the monotonicity of the envelope πρ(ρ), for CAR and symmetric SAR models

satisfying Condition B. One would expect the same property to hold for zero-mean asymmetric

SAR models, but, so far, we have found neither a proof nor a counterexample (by numerical

analysis).

Remark 9 The power functions in Proposition 4.3 are, in fact, typically strictly increasing,

because, unless n− k is small or an eigenspace of W has large dimension (see Example 3 below),

the chances of col⊥(X) falling into an eigenspace of W are very low. In the special case X = 0,

the power functions must be strictly increasing, for col⊥(X) = Rn cannot be an eigenspace of

W .

Remark 10 For CAR models, Proposition 4.3 can alternatively be proved by showing that the

density pdf(v; ρ) has a monotone likelihood ratio under Condition B, and then by using Theorem

3.4.1 of Lehmann and Romano (2005). Such an argument, however, does not extend to symmetric

SAR models.

As it provides a link to the analysis in Section 3, the following result is also of interest.
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Proposition 4.4 Assume that Condition B holds. Then, in CAR and symmetric SAR models

the limiting power of any POI and LBI c.r. for testing ρ = 0 against ρ > 0 is 1 if f /∈ col(X);
strictly between α and 1 if f ∈ col(X) and col⊥(X) is not a subset of an eigenspace of W ;

α otherwise.

We now provide a discussion of CAR and symmetric SAR models satisfying Condition B.

From a practical perspective, the discussion is helpful to understand in which circumstances

Condition B can be expected to hold approximately. We start from some examples. The most

obvious case of a CAR model that satisfies Condition B is a model with mean assumed to be

unknown but constant across observations and with a row-standardized W (see Section 2.1). On

setting L = D−1 and normalizing to Σ(0) = I, the mean of the model becomes proportional

to D
1
2 ι, where ι is the n-dimensional vector of all ones, and the covariance matrix becomes

Σ(ρ) = σ2(I − ρD−
1
2AD−

1
2 )−1. Condition B is then satisfied because D

1
2 ι is an eigenvector of

D−
1
2AD−

1
2 (since ι is an eigenvector of D−1A) and hence of Σ(ρ). When other regressors are

included in the model, a case in which Condition B has some chances of being met in practice is

when the number of eigenspaces of W (and hence of Σ(ρ), for CAR and symmetric SAR models)

is small relative to n. This typically occurs when W satisfies a large number of symmetries, in

the sense of being invariant under a large group of permutations of its index set (e.g., Biggs,

1993). The extreme case of equicorrelation serves as an illustration.

Example 3 In the context of CAR and SAR models, all regression errors are equicorrelated

whenW has constant off-diagonal entries (and zero diagonal entries). In that case,W is invariant

with respect to the whole symmetric group on n elements and has only two eigenspaces, the one

spanned by ι and the hyperplane orthogonal to it. Thus, in the case of equicorrelation, in order

for Condition B to be met it suffices that every regressor in the model satisfies a single linear

constraint, namely, that its entries sum to zero. Interestingly, if X contains an intercept, then

col⊥(X) is a subset of an eigenspace of W , and thus the power function of a POI or LBI c.r. is

flat by Proposition 4.3.

The cases discussed above, albeit theoretically important, are of limited practical relevance in

non-experimental contexts, since other regressors are typically used along with an intercept and

the matrices W are usually not highly regular. We therefore take a more general view. Call two

units i and j neighbors if W (i, j) > 0. Consider, for simplicity, the case when there is only one

regressor, x = (x1, ..., xn)0 say, and let x̄i be the weighted average
P

j 6=iW (i, j)xj of the values

of x observed at units that are neighbors of i (the extension to k > 1 is obvious). For CAR and

symmetric SAR models, the eigenvectors of Σ(ρ) are the same as those of W . Hence, in such
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models Condition B is met if and only if the ratio xi/x̄i does not depend on i, because, by the

definition of an eigenvector of W , such a ratio must, for any i, be equal to the corresponding

eigenvalue. Now, the ratio xi/x̄i may be regarded as a measure of “similarity” (as far as x is

concerned) between i and its neighbors. This suggests that Condition B is approximately met

(and hence the power of optimal invariant tests has desirable properties) when x is such that the

degree of similarity between i and its neighbors does not change substantially with i.

5 Conclusion

The paper has investigated a number of properties of invariant/similar tests for autocorrelation

in the context of a linear regression model with errors following a first-order conditional or

simultaneous spatial autoregressive process. The main message of our analysis is that the power

properties of exact tests for residual spatial autocorrelation may depend to a very large extent on

the regressors, especially when the number of degrees of freedom is small and the autocorrelation

is large. Intuitively, this is largely due to the fact that CAR and SAR models tend, as the

autocorrelation increases, to a family of (improper) distributions on a 1-dimensional subspace of

the sample space. If, in the context of a CAR or SAR model, the regressors are such that the

intersection between such a subspace and a critical region has 1-dimensional Lebesgue measure

zero, then the power of that critical region vanishes in the limit.

More formally, we have characterized the cases when the limiting power of invariant tests

vanishes and we have shown that the minimum size α∗ such that the limiting power of a POI

or LBI test does not vanish may, for some spatial structures, depend on col(X) to a very large

extent. Furthermore, we have established that the sets of regression spaces col(X) causing a zero

limiting power of a size-α POI or LBI test have non-zero (invariant) measure on the set Gk,n of

all k-dimensional subspaces of Rn, for any α, any spatial structure and any k > m1. In fact, in

some circumstances, the probability content of these subsets (according to some distribution on

Gk,n) may be far from negligible.

A remark concerning the distributional assumptions underlying our results is in order. As

is well known (e.g., Kariya, 1980), the density of the maximal invariant (6) remains the same

for any elliptically symmetric distributions of y, so the assumption of Gaussianity is much more

than what is required to study the properties of the test considered in this paper. It should be

noted, however, that while the generalization of SAR models to non-Gaussian distributions is

straightforward, that is not so for CAR models; see Besag (1974).

Two possible extensions of our work are as follows. Firstly, although in this paper we have
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mostly focused on the power as ρ → λ−1, the techniques we have used should also prove useful

to study local power, namely by studying the right derivative of the power function at ρ = 0.

Secondly, an extension to mixed regressive, spatial autoregressive models (e.g., Ord, 1975, and

Lee, 2002), which are not in the class of regression models (1) and therefore have not been

considered in this paper, would be of interest.

Appendix: Proofs

Proof of Proposition 3.1 For some matrix X, denote by GX the group of transformations y →
ay +Xb, with a ∈ R+ and b ∈ Rk, and by ΥX (ρ̄) the size-α POI c.r., defined on the sample space. By

definition, ΥX (ρ̄) is the size-α c.r. that is invariant under GX and has maximum probability content

under N(Xβ, σ2Σ(ρ̄)). Observe that, for any X, the probability content πρ̄(ρ̄, X) of ΥX (ρ̄) under

N(Xβ, σ2Σ(ρ̄)) is the same as under N(0,Σ(ρ̄)), by invariance under GX . It immediately follows that,

for any X 6= 0, any ρ̄ > 0, and any α, πρ̄(ρ̄,X) ≤ πρ̄(ρ̄, 0), because GX is strictly larger than G0 (as

all transformations in G0, i.e. y → ay, are in GX , and there are transformations in GX , i.e., those

with b 6= 0, that are not in G0). Since, by the Neyman-Pearson Lemma applied to pdf(v; ρ̄), Υ0 (ρ̄) is

unique (up to a set of measure zero), a necessary and sufficient condition for πρ̄(ρ̄,X) = πρ̄(ρ̄, 0), X 6= 0,
is that ΥX (ρ̄) = Υ0 (ρ̄), i.e., y0C0[(CΣ(ρ̄)C0)−1 − cαI]Cy < 0 if and only if y0[Σ−1(ρ̄) − cαI]y < 0.

Since rank(C0RC) ≤ n − k for any (n − k) × (n − k) matrix R, ΥX (ρ̄) = Υ0 (ρ̄), X 6= 0, requires

rank(Σ−1(ρ̄) − cαI) ≤ n − k, and hence cα = λ−1i (Σ(ρ̄)), i = 2, ..., n − 1, which is equivalent to
α = Pr(y0Σ−1(ρ̄)y/y0y < λ−1i (Σ(ρ̄)), i = 2, ..., n−2 (the cases i = 1, n are excluded because α is assumed
to be in (0, 1)). It is easily seen that if cα = λ−1i (Σ(ρ̄)), i = 2, ..., n − 1, Υ0 (ρ̄) is invariant under

y → ay +Xb, and hence is equal to ΥX (ρ̄), if and only if col(X) ⊆ Ei(Σ(ρ)). This completes the proof

of the proposition.

Proof of Lemma 3.2 Let p = lim
ρ→a

pdf(v; ρ) = |Ω|− 1
2 v0Ω−1v

−n−k
2 . If all the eigenvalues of Σ(ρ)

tend to a positive value as ρ→ a, then, by the Poincaré separation theorem (e.g., Rao, 1973, p. 64), all the

eigenvalues of Ω are positive. It follows that the term |Ω|− 1
2 of p is positive and finite if λn−k(Ω) <∞, and

it vanishes otherwise. As for the term (v0Ω−1v)−
n−k
2 , this is infinite if λn−k(Ω) =∞ and v ∈ Ẽn−k(Ω),

positive and finite in any other case. Combining the results, we have that if λn−k(Ω) = ∞, then p = 0

when v /∈ Ẽn−k(Ω). Hence, by property (i) of pdf(v; ρ), when λn−k(Ω) is infinite and simple, p must be

infinite when v ∈ Ẽn−k(Ω). Also, we have that 0 < p < ∞ if λn−k(Ω) < ∞. The lemma now follows

straightforwardly, on recalling that we are assuming that any invariant c.r. is centrally symmetric, so

that it contains either both or neither of two antipodal points.

Proof of Theorem 3.3 Nonnegativity and irreducibility of W imply that (I − ρW )−1 is entrywise
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positive, for any ρ > 0 (see, e.g., Gantmacher 1974, p. 69, and recall that when we write ρ > 0 we

implicitly assume ρ < λ−1). It follows that, for both CAR and SAR models and for any ρ > 0, Σ(ρ) is

positive and hence, by Perron’s theorem (e.g., Horn and Johnson, 1985, Theorem 8.2.11), that λn[Σ(ρ)]

is simple. Also, observe that, for both CAR and SAR models, as ρ→ λ−1, λn[Σ(ρ)]→∞ and all of the

other eigenvalues of Σ(ρ) tend to a finite value, because, as it is easily verified, rank[(I − λ−1W
0
)(I −

λ−1W )] = n − 1. For CAR and symmetric SAR models and for any ρ > 0, fn[Σ(ρ)] = f and thus

the spectral decomposition Σ(ρ) = n
i=1{λi[Σ(ρ)]fi[Σ(ρ)]f 0i [Σ(ρ)]} shows that the matrix λ−1n [Σ(ρ)]Ωρ

tends to Cff 0C0 as ρ→ λ−1. The same limit result holds also for asymmetric SAR models, since in that

case fn[Σ(ρ)] → f as ρ → λ−1 (because (I − λ−1W 0)(I − λ−1W ) has an eigenvector f corresponding

to its smallest eigenvalue 0). Now, since rank(Cff 0C0) ≤ rank(ff 0) = 1, all eigenvalues of Cff 0C0 are

zero except possibly one, which must then be equal to λ̄ = tr [Cff 0C0] = f 0Mf . If f /∈ col(X), then λ̄

is a simple positive eigenvalue of Cff 0C0 and has an associated eigenvector equal to Cf , for

Cff 0C0Cf = Cff 0Mf = λ̄Cf.

It is easily seen that for any CAR or SAR model with f /∈ col(X), Cf is also an eigenvector of lim
ρ→λ−1

Ωρ,

with (simple) eigenvalue equal to lim
ρ→λ−1

{λn [Σ(ρ)] λ̄} = ∞. If f ∈ col(X), then Cf = 0 and thus

Ωρ =
n−1
i=1 {λ−1i [Σ(ρ)]Cfif

0
iC

0}, which tends to a matrix whose entries are all finite. Hence, when
f ∈ col(X), lim

ρ→λ−1
λn−k (Ωρ) must be finite. The theorem now follows by applying Lemma 3.2 with

a = λ−1.

Proof of Lemma 3.4 From (13), we have that, provided that Cf 6= 0, α∗ = 0 if and only if

Cf/ kCfk = argmin
v∈Sn−k

{v0Bv}, and α∗ = 1 if and only if Cf/ kCfk = argmax
v∈Sn−k

{v0Bv}. The proposition
follows by application of the Rayleigh-Ritz theorem (e.g., Horn and Johnson, 1985).

Proof of Proposition 3.5 It can be deduced from the proof of Theorem 3.3 that, for a CAR or

SAR model with f /∈ col(X), En−k(Ωρ) tends, as ρ→ λ−1, to a 1-dimensional subspace containing Cf .

It follows that if En−k(Ωρ) does not depend on ρ for ρ > 0, it must be spanned by Cf for any ρ > 0,

and hence, by Lemma 3.4 with B = Ω−1ρ̄ , α∗ = 0 for any POI test. Since this property holds for any

ρ̄ > 0, it also holds for the LBI test.

Proof of Theorem 3.6 We start from the case of the LBI test, which is notationally simpler than

that of POI tests. By Lemma 3.4, for CAR and symmetric SAR models the limiting power of a LBI test

vanishes for any α (less than 1) if and only if f /∈ col(X) and Cf ∈ E1(CWC0). For a fixed W , consider

the m1-dimensional subspaces belonging to the span of f1, ..., fm1 , f , and denote by Θ the set of all such

subspaces that do not contain f and are not E1. It is easily shown that if col(X) ∈ Θ, CWC0 admits the

eigenpairs (λi, Cfi), i = m1 + 1, ..., n − 1. But then, by the symmetry of CWC0 and the fact that the

vectors Cfi, i = m1 + 1, ..., n− 1 are pairwise orthogonal (because the fi are), CWC0 must also admit

an eigenvector in the subspace spanned by Cf1, ..., Cfm1 , Cf . Since when col(X) ∈ Θ such a subspace
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is 1-dimensional, it follows that Cf is an eigenvector of CWC0, i.e.,

CWMf = λ̃Cf (15)

for some eigenvalue λ̃. Thus, a col(X) ∈ Θ causing the limiting power of the LBI test to disappear for

any α exists if and only if λ̃ ≤ λm1+1. Observe that as col(X) ∈ Θ approaches a subspace orthogonal

to E1, Mf/ kMfk tends to a vector in E1, which implies that λ̃ → λ1 (note that, by the definition of

Θ, no col(X) ∈ Θ is orthogonal to E1). Thus, by the continuity of the eigenvalues of a matrix (CWC0

here) in the entries of the matrix itself plus the fact that λ1 < λm1+1, a col(X) ∈ Θ such that λ̃ ≤ λm1+1

always exists. The extension to POI tests, for any ρ̄ > 0, is straightforward and is obtained by replacing

W with Σ(ρ̄) and λi by (1− ρλi)
−r, i = 1, ..., n, in the arguments used above, for any CAR (r = 1) or

symmetric SAR model (r = 2).

The second part of the theorem considers explicitly the case m1 = 1. Take X to be a vector

proportional to f1 + bf , so that col(X) ∈ Θ as long as b 6= 0. For the LBI test, we just need to establish
which values of b yield λ̃ ≤ λ2 (existence of an infinite number of such values of b follows from the

first part of the theorem). Recalling that the vectors f1 and f are normalized, it is easily seen that

Mf = (f − bf1)/(1 + b2). Plugging such an expression in (15), and using the fact that Cf1 = −bCf
(since CX = 0), we obtain λ̃ = (λ+ b2λ1)/(1+ b2). Hence, λ̃ ≤ λ2 requires |b| ≥ [(λ−λ2)/(λ2−λ1)]

1/2,

proving the part of the theorem relative to the LBI test when m1 = 1 (note that the non-uniqueness of

f1 does not affect this result). By obvious extension, the limiting power of a POI test disappears for any

α if |b| ≥ {(λn[Γ(ρ̄)]− λ2[Γ(ρ̄)])/(λ2[Γ(ρ̄)]− λ1[Γ(ρ̄)])}1/2. The proof of the theorem is then completed

on substituting λi[Γ(ρ̄)] = (1− ρ̄λi)
−p in the last inequality, with p = 1 for a CAR model and p = 2 for

a symmetric SAR model.

Proof of Proposition 3.7 By Theorem 3.6, for POI or LBI tests in CAR or symmetric SAR models

with any W , there exist col(X) ∈ Gk,n such that α∗ = 1. Let T (y) represents the test statistic associated

to a POI or LBI test. Then, by equation (13), the subspaces col(X) yielding α∗ = 1 are those that

maximize T (f), regarded as a function from Gk,n to R. Next, observe that T (f) is continuous at its

points of maximum, which implies that, for any α, it is possible to find a neighborhood (defined according

to some distance on Gk,n) of the points of maximum such that any col(X) in this neighborhood causes the

limiting power of size-α tests to disappear. This implies immediately that Hk(α) has non-zero invariant

measure on Gk,n (see James, 1954), for any 0 < α < 1 and for k = m1, and for any POI or LBI c.r.

in any CAR or symmetric SAR model. Since the power of an invariant test does not depend on β, the

proposition also holds for k > m1.

Proof of Corollary 3.8 The result follows immediately by taking C = I in Theorem 3.3.

Proof of Proposition 3.9 Observe that if f is an eigenvector of W 0, it must be associated to λ.
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To see this, call φ the eigenvalue of W 0 associated to f . Transposing both left and right hand sides of

the equation W 0f = φf and post-multiplying them by f yield f 0Wf = φ. But then φ = λ, because it

must also hold that f 0Wf = λ. Let Γ(ρ) = [(I − ρW 0)(I − ρW )]−1. By Lemma 3.4 with B = Γ−1(ρ̄),

in order to prove the statement of the proposition regarding POI tests, we need to show that W 0f = λf

is necessary and sufficient for f ∈ En(Γ(ρ̄)), for any ρ̄ > 0. Clearly, if this holds for any ρ̄ > 0, it

also holds for ρ̄ → 0, establishing the part of the proposition regarding the LBI test. The necessity is

straightforward, because if Γ(ρ̄)f = λn(Γ(ρ̄))f , then Γ−1(ρ̄)f = λ−1n (Γ(ρ̄))f . From the latter equation

we have (1− ρ̄λ)(I − ρW 0)f = λ−1n (Γ(ρ̄))f , which requires f to be an eigenvector of I − ρW 0 and hence

of W 0 (associated to λ by the above argument). As for the sufficiency, note that if W 0f = λf , then f

is clearly an eigenvector of Γ(ρ̄), for any ρ̄ > 0. By Perron’s theorem (e.g., Horn and Johnson, 1985,

Theorem 8.2.11), a vector in En(Γ(ρ̄)) is entrywise nonnegative (or nonpositive), for any ρ̄ > 0. But f is

entrywise positive (by the Perron-Frobenius theorem applied to W ), and hence it must be in En(Pρ̄P
0
ρ̄),

for any ρ̄ > 0, because if it were not, then, by the symmetry of Pρ̄P 0
ρ̄, it should be orthogonal to an

entrywise nonnegative vector, which is impossible. This completes the proof of the proposition.

Proof of Corollary 3.10 IfW is a row-stochastic matrix, then f has identical entries, and therefore

the condition in Proposition 3.9 is satisfied if and only if the columns of W , as its rows, sum to 1.

Proof of Proposition 4.1 The assertion follows by applying Corollary 3.2.1 of Lehmann and

Romano (2005) to the density (6), plus the assumption of identification of model (1).

Proof of Proposition 4.2 For a POI test, we need to prove that πρ̄(ρ) ≥ α for any positive ρ and

ρ̄ and any size α. If unbiasedness holds for any ρ̄ > 0, then it also holds for the LBI test. Letting

Mρ̄ = I −X[X0Σ−1(ρ̄)X]−1X0Σ−1(ρ̄),

the matrix C0 (CΣ(ρ̄)C0)−1 C can be rewritten as Σ−1(ρ̄)Mρ̄ (e.g., Lemma 2 of King, 1980). Thus, for

0 ≤ ρ < λ−1,

πρ̄(ρ) = Pr
y0Σ−1(ρ̄)Mρ̄y

y0My
< cα; y ∼ N(0,Σ(ρ)) . (16)

Under Conditions A and B, Mρ̄ = M and, as is easily seen by exploiting the fact that Condition B is

equivalent to the existence of an invertible matrix A such that Σ(ρ)X = XA, the matrices Σ−1(ρ̄) and

M commute for any ρ̄ > 0. Hence,

πρ̄(ρ) = Pr
z0Σ(ρ)Σ−1(ρ̄)Mz

z0Σ(ρ)Mz
< cα ,

where z ∼ N(0, I). Moreover, under Conditions A and B, the matrix M has an eigenvalue 0 with

eigenspace spanned by the k eigenvectors of Σ(ρ) that are in col(X), and an eigenvalue 1 with eigenspace

spanned by the remaining eigenvectors of Σ(ρ). Let H be the set of indexes i of the n − k eigenvalues

λi[Σ(ρ)] associated to a set of linearly independent eigenvectors of Σ(ρ) that are not in col(X). Note

that, when Condition A holds, H does not depend on ρ. Under Conditions A and B, the power of a POI
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c.r. can then be expressed as

πρ̄(ρ) = Pr
i∈H λi[Σ(ρ)]λ

−1
i [Σ(ρ̄)]z2i

i∈H λi[Σ(ρ)]z2i
< cα , (17)

and its size as

α = Pr
z0Σ−1(ρ̄)Mz

z0Mz
< cα = Pr i∈H λ−1i [Σ(ρ̄)]z2i

i∈H z2i
< cα . (18)

Observe now that the sequences λi[Σ(ρ)], i ∈ H, and λ−1i [Σ(ρ̄)], i ∈ H, are oppositely ordered in the

sense of Hardy et al., 1952, p. 43. Then, the application of Tchebychef’s inequality (Hardy et al., 1952,

Theorem 43) to the weighted arithmetic means (with weights z2i / i∈H z2i ) of the λi[Σ(ρ)], i ∈ H, and

of the λ−1i [Σ(ρ̄)], i ∈ H, yields that

i∈H
λi[Σ(ρ)]z

2
i

i∈H
λ−1i [Σ(ρ̄)]z2i ≥

i∈H
z2i

i∈H
λi[Σ(ρ)]λ

−1
i [Σ(ρ̄)]z2i ,

for any vector z ∈ Rn, with equality holding only if all the λi[Σ(ρ)] or all the λ−1i [Σ(ρ̄)], i ∈ H, are the

same. Rearranging the terms of the above inequality, one finds that the statistic appearing in expression

(17) is stochastically larger (e.g., Lehmann and Romano, 2005, p. 70) than that appearing in expression

(18), and hence that πρ̄(ρ) ≥ α, for any ρ̄ > 0, any ρ > 0 and any size α. If there are at least two indexes

i, j ∈ H such that λi[Σ(ρ)] 6= λj [Σ(ρ)], i.e., if col⊥(X) is not a subset of an eigenspace of Σ(ρ), then the

last inequality is strict (as we are assuming α 6= 0, 1). The proof of the proposition is completed.
Proof of Proposition 4.3 For a CAR or a symmetric SAR model, λi[Σ(ρ)] = (1− ρλi)

−r, for

i = 1, ..., n, and with r = 1 for a CAR model, r = 2 for a symmetric SAR model. Inserting such

expressions in equation (17) from the proof of Proposition 4.2, we obtain that the power function of a

POI c.r. is non-decreasing in ρ if the statistic

tρ̄(ρ) =
i∈H

1

1− ρλi

r

z2i

−1

i∈H

1− ρ̄λi
1− ρλi

r

z2i

is non-increasing in ρ for any vector z ∈ Rn. Direct differentiation of tρ̄(ρ) with respect to ρ and some
simple manipulation show that such a condition is satisfied if

i,j∈H
ai,jz

2
i z

2
j ≤ 0, (19)

with the coefficients ai,j defined by

ai,j = λj
(1− ρ̄λj)

r − (1− ρ̄λi)
r

(1− ρλi)
r (1− ρλj)

r+1 .

It is immediately verified that, for each i, j ∈ H such that i 6= j, ai,j + aj,i ≤ 0, with strict inequality if
λi 6= λj . Thus, given that ai,i = 0 for any i ∈ H, (19) holds, the inequality being strict if there exist at

least one pair of distinct eigenvalues λi, λj with i, j ∈ H, i.e., if col⊥(X) is not a subset of an eigenspace

of W . The statement in the proposition relative to the POI c.r.s is therefore proved, and the one relative

to LBI follows immediately.
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Proof of Proposition 4.4 Under Condition B, if fi /∈ col(X), for i = 1, ..., n, then fi ∈ col⊥(X). It
follows that, if fi /∈ col(X), for i = 1, ..., n and when Σ (ρ) is that of a CAR or symmetric SAR model,

ΩρCfi = CΣ (ρ)Mfi = CΣ (ρ) fi = λi(Σ (ρ))Cfi, i.e., {Cfi, fi /∈ col(X), j = 1, ..., n} is a set of n − k

orthogonal eigenvectors of Ωρ. Thus, in particular, En−k(Ωρ) does not depend on ρ. The proposition

now follows by Theorem 3.3, and Propositions 3.5 and 4.3.
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