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Abstract

P-p plots contain all the information that is needed for scale-

invariant comparisons. Indeed, Empirical Distribution Function (EDF)

tests translate sample p-p plots into a single number. In this paper we

characterize the set of all distinct p-p plots for two balanced sample of

size  absent ties. Distributions of EDF test statistics are embedded

in this set. It is thus used to derive the exact finite sample distribu-

tion of the L1-version of the Fisz-Cramér-von Mises test. Comparing

this distribution with the (known) limiting distribution shows that the

latter can always be used for hypothesis testing: although for finite

samples the critical percentiles of the limiting distribution differ from

the exact values, this will not lead to differences in the rejection of the

underlying hypothesis.
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1 Introduction

Any two continuous distribution functions are conveniently compared graph-

ically using the percentile-precentile (p-p) plot: the scatter plot of two dis-

tributions’ percentiles (Wilk and Gnanadesikan, 1968). P-p plots have the

desirable property that they contain all the information that is needed for

scale-invariant comparisons (Holmgren, 1995). Little is known however of the

statistical properties of sample p-p plots, which obtain in case two samples

are compared. This is all the more surprising as any Empirical Distribution

Function (EDF) test can be represented in a sample p-p plot. In this paper,

therefore, we characterize the set of all distinct p-p plots for two balanced

samples of size  absent ties.

P-p plots yield a straight 45-degree line when two identical distributions

are compared. EDF tests use this property as they quantify in one way or

another the distance between the p-p plot and the diagonal. For example, the

Kolmogorov-Smirnov test considers the largest positive distance, the Kuiper

test computes the sum of the maximum positive and negative distance, and

the 1 (2) version of the Fisz-Cramér-von Mises () test sums up over

all absolute (squared) distances (Stephens, 1974).1 Applying an EDF test to

small samples might be troublesome however because only the limiting dis-

tributions are known for any of the concomitant test statistics. How accurate

these limiting distributions are for small samples is yet to be determined.2 3

1The area below the p-p plot corresponds to the Mann-Whitney-Wilcoxon U statistic

(Bamber, 1975), which is used to test if one distribution first-order stochastically dominates

another distribution.
2Sample sizes vary across disciplines. For instance, economics research that involves

controlled laboratory experiments typically relies on a very limited number of independent

observations.
3Monte Carlo and Bootstrapping exercises can retrieve approximations of finite sample

distributions (see e.g. Henze (1996), Famoye (1999), and Olea and Pawlowsky-Glahn,

2009).
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Using the characterization of all distinct sample p-p plots we retrieve the

exact finite sample distribution of 1. That is, we order all distinct

sample p-p plots according to the corresponding value of 1 and link

these values to the relative frequency of occurrence of the underlying sample

p-p plot. This also serves as an example as to how the exact finite sample

distribution of other EDF test statistics could be retrieved.

We conclude by comparing the finite sample distribution of 1 with

its (known) limiting distribution. It turns out that the latter can always be

used for hypothesis testing: although for finite samples the critical percentiles

of the limiting distribution differ from the exact values, this will not lead to

differences in the rejection of the underlying hypothesis.

2 All distinct sample p-p plots

Consider the set of cumulative density functions Ξ1. For 1 2 ∈ Ξ1 the p-p

plot depicts for every domain value  from their joint support the percentiles

of one distribution relative to the other:

 7−→
∙
1()

2()

¸
 (1)

This is a plot in the 2-dimensional simplex that depicts the correspondence

of 1 and 2 in probability space (Figure 1, panel a).
4

Two discrete samples yield the sample p-p plot (Figure 1, panel b). Let

1 = {11  11} be 1 realizations of the random variable 1 with dis-

crete sample CDF 11 , and let 2 = {21  22} be 2 realizations of
random variable 2 with discrete sample CDF 22 . The set of ordered val-

ues of the joint support of 1 and 2 is {1 }, whereby  ≤ 1 + 2.

4Written as a function rather than a plot it reads as:  7−→ 1(
−1
2 ()) 0 ≤  ≤

1whereby −12 () = inf { : 2() ≥ }.
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Figure 1: Continuous p-p plot (panel a) and corresponding discrete (sample)

p-p plot (panel b).

In addition let 0 denote −∞ and define z ≡ {0  }. The vertical coor-
dinates of the sample p-p plot equal  [1 ≤ ] ∀  ∈ z, while the horizontal
coordinates are given by  [2 ≤ ] ∀  ∈ z (Bamber, 1975). The sample
p-p plot thus reads as:

(12) 7−→
∙
11()

22()

¸
 (2)

Let Ξ2 = { |∀,  ∈ R: lim→−∞ () = 0, lim→∞ () = 1, lim−→0 (+

) =  (), and    =⇒  ()   () for  ()  () ∈ (0 1)}. Note that
Ξ2 ⊂ Ξ1, that functions belonging to Ξ2 are continuous and strictly increas-

ing on their support, and that mass points are absent. For the remainder we

restrict the analysis to balanced samples absent ties:5

Assumption A1: 1, 2 ∈ Ξ2

5Within-sample ties eliminate points from the grid of the sample p-p plot while between-

sample ties induce the continuous p-p plot to deviate from the grid lines. Both types make

the number of distinct sample p-p plots not tractable analytically.
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Assumption A2: 1 = 2 = .

To identify the number of distinct sample p-p plots for sample size  we

describe how the set of sample p-p plots develops when the sample expands.

Increasing the sample size from  = 0 tot  = 1 creates two sample p-p

plots: one going from (0,0) to (1,1) via (0,1) and another via (1,0), see panel

a of Figure 2. Adding another observation creates six sample p-p plots in

total. Three of these go through point a, and three run through point b, see

panel b of Figure 2. Panel c applies when going from  = 2 to  = 3. As

of points c and f there are four possible continuations of the p-p plot, while

there are three possible continuations from points d and e onwards, leading

to 20 different sample p-p plots in total, and so on.

2.1 Border point, border number and history number

To capture the recursive pattern in Figure 2 we first introduce two labels:

the p-p grid refers to the grid of the sample p-p plot, and the grid step is

a continuation of the sample p-p plot of length 1 in either the horizontal

or vertical direction. Next, we identify a group of special points on the p-p

grid:

Definition 1 Border point (): any point on the p-p grid with coordinates

(1− 1 ) or ( 1− 1) for some  ∈ {0  1− 2}.

Point e in panel c is a border point, while it is not in panel d. Let () be

the set of border points for sample size . Border points have an important

property (proofs of lemmata are in the Appendix, Section 5.2):

Lemma 1 Given sample size , any sample p-p plot passes through some

() ∈ ().
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Figure 2: Sample p-p plots, border points, border numbers and history num-

bers; panels a through d respectively refer to  going from 0 to 1, from 1 to

2, from 2 to 3, and from 3 to 4.
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Lemma 1 implies that all p-p plots passing through any () ∈ () neces-

sarily have passed through some (− 1) ∈ (− 1). Accordingly, to reveal
the pattern in the development of the set of distinct p-p plots, it suffices to

keep track of what happens at the border points.

For each border point we introduce two numbers.

Definition 2 Border number (()): the number of border points (+1)

that can be reached from () onwards when the sample size increases to +1.

For example, as of point d in panel c three border points can be reached in

panel d: h, i and j, yielding () = 3. Observe that as of point d onwards

there are also three possible routes to arrive at (1,1). This correspondence

holds in general (proofs of properties are in the Appendix, Section 5.1):

Property P1 Border number (()) coincides with the number of dis-

tinct continuations of the sample p-p plot from () onwards to (1,1).

This property allows border numbers to be calculated:

Lemma 2 (()) = 1 + (1− ).

Border numbers are also uniquely related to the shape of the p-p plot running

through the underlying border point:

Property P2 A higher border number implies a larger distance between

the diagonal and the p-p plot.

This second property will be instrumental for deriving the finite sample dis-

tribution of EDF statistics.

The second number associated with border points is related to the path

that lead to it. Let (()) ⊂ ( + 1) be the set of border points that

can be reached from () onwards when the sample size increases to + 1.
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For instance, in Figure 2 panel c we have that () = {  }. Further, let
(()) ⊂ (− 1) be the set of border points that can reach () when
the sample size increases from −1 to . For example, () = { }. We
then introduce:

Definition 3 History number (()): the number of distinct continua-

tions of the sample p-p plot from all ( − 1) ∈ (()) towards ()

without passing through any other border number 0() ∈ ()

For example, point h in panel d can be reached in three different ways from

two border points in panel c: twice by passing d without going through c and

once by passing c without going through g. This yields () = 3. In Figure

2 the border numbers are depicted with their concomitant history number in

brackets. History numbers are uniquely related to the probability that a p-p

plot passes through the underlying border point:

Property P3 History number (()) is proportional to the probability

that () is part of some sample p-p plot.

Property P3 is the second building block of the finite sample distribution of

EDF statistics.

Intuitively, knowing how many distinct routes lead to a particular border

point and how many distinct continuations of the p-p plot this border point

allows, suffices to determine the number of distinct sample p-p plots. The

next proposition formalizes this intuition (proofs of propositions are in the

Appendix, Section 5.3):

Proposition 1 For any   1 the number of distinct sample p-p plots equals:

Ω() =
X

()∈()
(())(())

8



2.2 A logical tree

To calculate the number of distinct sample p-p plots thus requires all bor-

der points to be identified, together with their border numbers and history

numbers, for any sample size . For that we introduce a logical tree Γ as in

Figure 3. It groups together all border points with the same border number

by branch. Each branch reflects the history of the underlying p-p plot. There

is a close relation between logical tree Γ and the p-p plots in Figure 2. Going

from  = 1 to  = 2 creates two border points, a and b, that both have

border number 3. These border points are grouped at the first node of the

tree. In case  = 3 there are four border points, two of which have border

number 3 (d and e), and two that have border number 4 (c and f ). Logical

tree Γ splits up accordingly: one branch that continues with border number

3 and another that continues with border number 4. And so on.

Let (()) be the set of all border points () at node () of logical

tree Γ, where  = 1 () refers to a branch, () being the number

of branches for sample size . For instance, (1(4)) = { } at the upper
most node. All points in(()) have identical border numbers and history

numbers. Property P1 implies that there is one, and only one, border number

associated with any border point. These border numbers are included at the

nodes in logical tree Γ and referred to as (()). For history numbers

the situation is more involved, as they reflect the total number of distinct

routes that the underlying p-p plot can have taken to reach a particular

border point. For instance, border point i has history number 6. This is the

sum of two distinct possibilities: it could have been reached through d or e,

yielding (|  ) = 4, or via c or f, yielding (|  ) = 2. In logical tree
Γ this distinction is made explicit: each border point enters with its ‘net’

history number. Accordingly, border points can enter the tree at more than

9
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3 (2)
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Figure 3: Logical tree Γ for the evolution of distinct p-p plots when the

sample size increases.
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one node. The numbers in brackets next to the border numbers (())

in logical tree Γ are therefore no history numbers, but the sum of the (net)

history numbers of all border points at any node (). We label these history

sums:

Definition 4 History sum (()): the sum of all history numbers of the

border points at node (), that is,

(()) =
X

()∈(())
(()).

Property P3 implies that history sums are proportional to the probability of

reaching node ().

Considering then the development of border numbers in logical tree Γ

suggests that border numbers for sample size  always give rise to the same

sequence of border numbers for sample size  + 1. For example, border

number 3 is split into {3 4} while border number 4 evolves into {3 4 5}, and
so on. This is due to a recursive pattern indeed:

Lemma 3 At any node () in logical tree Γ, border number (())

splits into (())−1 border numbers with respective values {3 4  (())
+1} when the sample size increases from  to + 1.

Figure 3 suggests also an obvious recursive pattern in the evolution of

history sums:

Lemma 4 At any node () in logical tree Γ history sum (()) splits

into (())−1 history sums with respective values {2(())(())

 (())} for the border numbers {3 4  (())+1} when the sam-
ple size increases from  to + 1.
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Lemmata 3 and 4 jointly describe how logical tree Γ evolves when the

sample size increases. To describe this development in compact matrix nota-

tion we need to introduce one additional number. Let  ((12)) be the

set of border points () ⊂ (),  = 2  , that sample p-p plot (1 2)

crosses. For example,  ((12)) = {   } implies that (1 2)

crosses points a, d, h and i in Figure 2. The border sum is then the sum of

all border numbers at these border points:

Definition 5 Border sum ((12): the sum of all border numbers at

the border points through which (1 2) passes, that is,

((12)) =
X

()∈ ((12))

(())

Border sums are included to the right of the vertical dashed line in Figure 3,

together with the history sums at the concomitant node ().

The compact matrix notation now follows. Let () ≡ (∆| 2Υ) for

  1, where∆ is the upper triangular unit matrix of size  and Υ the unit

vector of size , and (1) = [1 2], a 1×2 matrix. Matrix () contains
the development factors of the history sums. For example, for  = 3 we have

for (3):

6 5 4 3

5

4

3

⎡⎣ 1 1 1 2

0 1 1 2

0 0 1 2

⎤⎦ 

where rows and columns respectively refer to the border numbers for  = 3

and  = 4. Further let (1) ≡ 2 and let () be a Θ() ×  matrix

with elements () defined as:

() =

½
(−+1)()  =  Θ(− 1) +  − 1  = 1  

0 

with Θ() ≡ 1 + (− 1)/ 2, where ( + 1) ≡ ()(), whereby

(1) ≡ 2, and  is an entry from the auxiliary matrix (+ 1). Note that

12



(+1) is needed to construct (+1). Indeed, matrix () contains

the history sums themselves. For example, (3) boils down to:

5 4 3

12

11

10

9

⎡⎢⎢⎣
2 0 0

0 2 0

0 4 4

0 0 8

⎤⎥⎥⎦ 

where the columns refer to the distinct border numbers for  = 3, and where

the rows refer to all distinct values of ((12)) for  = 3. Observe

that the number of distinct sample p-p plots equals the sum of all entries in

(): Ω() =
P



P
 (). For instance:

(4) = (3)(3) =

⎡⎢⎢⎣
2 2 2 4

0 2 2 4

0 4 8 16

0 0 8 16

⎤⎥⎥⎦ 
and

P


P
 (4) = 70 = Ω(4).

3 An application: the finite sample distribu-

tion of FCvM1

The analysis of the previous section can be used to derive the finite sample

distribution of 1. Note that a p-p plot coincides with the diagonal if,

and only if, the two underlying distributions are identical. EDF tests are

therefore based on the distance between the p-p plot and the diagonal (see

Figure 4, panel a). For instance, the Kolmogorov-Smirnov test considers

the largest absolute value of the maximum positive distance (+) and the

maximum negative distance (−), the Kuiper test considers the sum of +

and−, the 1 (2) version of FCvM test sums up over all absolute (squared)

distances , and the Anderson-Darling test augments 2 by weighing

every squared distance with the product of the distance between 0 and the

centre of , and the distance between 1 and the centre of .
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Figure 4: Continuous p-p plot (panel a) and corresponding discrete (sample)

p-p plot (panel b).

3.1 Computation

Given 1 and 2, 1 equals (Schmidt and Trede, 1996):

1(12) = (1 2)

1+2X
=1

|11()− 22()|  (3)

where the sample size correction factor (1 2) follows Rosenblatt (1952)

and Fisz (1960):

(1 2) =

r
12

(1 + 2)3
 (4)

This correction factor speeds up convergence of the finite sample distribution

towards the limiting distribution.

Observe two properties of 1:

Property P4 Under A1 — A2, the number of distinct values of FCvM 1(X 1,X 2)

is Θ() ≡ 1 + (− 1)/ 2.

Property P5 Under A1 — A2, the vector containing all possible, distinct
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values of FCvM 1(X 1,X 2) is FCvM1()≡ {FCvM 1
1 FCvM

Θ()
1 }, where



1 = [

2 − 2( − 1)]
.
2
√
23   = 1 Θ().

3.2 Finite sample distribution

To derive the distribution of 1(12) we order all distinct sample p-p

plots (12) according to the corresponding value of 

1 and link all

values of FCvM1() to the relative frequency of occurrence of the underlying

p-p plot. First note that the value of 1(12) is uniquely related to

the border sum:

Lemma 5 ((1 2)) ∝ 1(12).

Hence, to keep track of FCvM1(), it suffices to trace the development of

((12)) for an expanding sample size.

Figure 3 also displays the ’history numbers’ of border sums: the history

sum of all border points at the concomitant node (). Recall that Property

P3 implies that these history sums yield the frequency of obtaining any p-p

plot that passes through the same border numbers as (12), be it in a

possibly different order.6 Indeed, let () refer to row  of (). The

following then holds:

Proposition 2 Under H0 and A1 — A2, FCvM

1() has probability (),

where

() =
()Υ

Ω()


 = 1 Θ().

6At the same time, different p-p plots can have the same border sum while their history

sums differ because the underlying p-p plots passes through a different set of border

numbers. In Figure 3 this situation can arise for border points , ,  and .
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As an illustration, let  = 3. There are four distinct values of((1 2))

that corresponds to the four different values of 1(1 2) as given in

Property P5: (1 79 59 39)
p
3/ 8. Their respective relative frequencies

then equal the probabilities that the corresponding values of ((12))

emerge, which follow from the concomitant history sums: (220 220 820820).

3.3 Hypothesis testing

The exact critical percentiles, 
1 (), are given in Table 1 for  =

3  20 and  = 090 095 0975 and 099.7 High values of 
1 ()

imply a low probability that the underlying samples are drawn from the

same distribution.

Schmidt and Trede (1995) note that the limiting distribution of 1(1 2)

corresponds to the limiting distribution of the 1-norm of a Brownian bridge.

Johnson and Killeen (1983) derive the analytical expression for the latter and

tabulate its critical values. These values are in the last row of Table 1 and

are denoted by 
1 (∞).8

The question then is whether relying on the percentiles of the limiting

distribution in case of small samples will lead to differences in the rejection

of 0. To answer this question we use Property P5 to examine whether

1(12) can obtain a value in between the true critical percentiles

and those of the limiting distribution. This turns out not to be possible:9

Proposition 3  [1(1 2)  
1 ()] =  [1(1 2) 


1 (∞)].

7The entries do not display a monotonously declining pattern because the critical values

of 1(12) are falling in sample size absent the sample size correction factor,

whereas this factor itself is increasing in sample size.
8Johnson and Killeen (1983) do not report 0975

1 (∞).
9The computing code (GAUSS) is available upon request, as is all computing code used

for this paper.
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percentile 90 95 97.5 99

n

3 0.6124

4 0.5303 0.6187

5 0.5376 0.6008 0.6641 0.7273

6 0.5292 0.5774 0.6736 0.7217

7 0.5154 0.5918 0.6682 0.7445

8 0.5000 0.5938 0.6563 0.7500

9 0.5107 0.5893 0.6678 0.7464

10 0.5143 0.5814 0.6485 0.7379

11 0.5136 0.5911 0.6493 0.7462

12 0.5103 0.5784 0.6634 0.7485

13 0.5054 0.5808 0.6562 0.7467

14 0.4995 0.5804 0.6614 0.7424

15 0.5051 0.5903 0.6634 0.7486

16 0.5082 0.5856 0.6629 0.7513

17 0.4994 0.5801 0.6608 0.7516

18 0.5000 0.5833 0.6574 0.7500

19 0.4995 0.5849 0.6617 0.7471

20 0.5060 0.5850 0.6562 0.7510

∞ 0.4993 0.5821 * 0.7518

Table 1: Exact critical values of the FCvM1(X1,X2) under A1 - A2 at per-

centile 90, 95, 97.5, and 99.
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That is, although for finite samples the critical percentiles of the limiting

distribution differ from their true values, this will not lead to differences in

the rejection of 0.

4 Conclusions

For two balanced samples absent ties we characterize how the set of distinct

sample p-p plots expands when the sample size increases. We then order all

sample p-p plots according to the corresponding value of 1 and link

these values to the relative frequency of occurrence of the underlying sample

p-p plot. In this way we obtain the finite sample distribution of 1.

The (known) critical percentiles of the limiting distribution of 1

can thus be compared with the exact finite sample critical percentiles. This

shows that using the former will not lead to differences in the rejection of

the hypothesis that the distributions from which the two samples are drawn,

are identical.

It is left for future research to examine whether our analysis of p-p plots

can be used to derive the finite sample distribution of other EDF test statis-

tics.
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5 Appendix

5.1 Proofs of properties

5.1.1 Proof of Property P1

Proof. Note that all border points in (()) have one, and only one,

coordinate equal to 1. Hence, from any point (+1) ∈ (()) onwards

there is one, and only one route towards (1,1): along the border of the p-p

grid for which the coordinate of (+ 1) equals 1 at sample size .

5.1.2 Proof of Property P2

Proof. A higher border (()) number is exclusively due to an increase

in , or a decrease in  (Lemma 2). The distance between (()) and
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the diagonal of the p-p plot equals |(())− | = 1 +  − ( − 1). The
property then follows as ∀ ∈ [0 1 − 2),  |(())− |/   0, and

 |(())− |/   0.

5.1.3 Proof of Property P3

Proof. Lemma 1, Property P1 and Definition 3 jointly imply that the num-

ber of distinct sample p-p plots that pass through (), without passing

through any other 0() ∈ (), equals Φ() = (())(()). The

property then follows as Φ()(()) = (())  0.

5.1.4 Proof of Property P4

Proof. Under A1-A2 the smallest value of 1 obtains when each next

grid step is vertical (horizontal) after a horizontal (vertical) step. In that

case,  distances  in Panel b of Figure 1 are equal to 1 and  dis-

tances  are zero, yielding 1 = 1
√
8. 1 obtains its largest

value when  consecutive grid steps are either vertical or horizontal, yielding

1 = 1
√
8
¡
2
P−1

=1 + 
¢
=
p
8. The smallest difference between

two values of 1 is twice distance  of length 1, multiplied by ():

2
√
8 = 1

.√
23 . Hence, the number of distinct values of 1 is:

1 +
³p

8− 1√8
´.³

1
√
23
´
= 1 + (− 1)2.

5.1.5 Proof of Property P5

Proof. First note that 

1 is decreasing in . Hence, 1

1 =
p
8

is the largest value of 1, while 
Θ()
1 = 1

√
8 is the smallest

value of 1
. Because 

+1
1 − 


1 = 1/

√
23, which is the

smallest difference between two values of 1 (see Property P4), the

lemma follows.
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5.2 Proofs of lemmata

5.2.1 Proof of Lemma 1

Proof. Because all p-p plots start at (0,0) and end at (1,1), both coordinates

of the p-p plot run through the sequence {0 1   1 − 1 1}, whereby
each next grid step adjusts one coordinate only. Hence, if one coordinate is

the first to equal 1− 1, the other must equal  ∈ {0  1− 2}.

5.2.2 Proof of Lemma 2

Proof. Consider some border point () above the diagonal with coordinates

( 1 − 1),  ∈ {0  1 − 2}. All p-p plots emanating from () take

one, and only one vertical grid step at one of the horizontal positions  ∈
{  + 1  1}, whereby the number of distinct values  is 1 + (1 − ).

An identical reasoning applies for any () with coordinates (1 − 1 ),
 ∈ {0  1− 2}.

5.2.3 Proof of Lemma 3

Proof. From any border point () all border points with respective border

numbers {3 4  (())} can be reached at least once. In addition, there
is one border point with border number (()) + 1 that can be reached as

well.

5.2.4 Proof of Lemma 4

Proof. First, from any border point () all border points with respective

border numbers {4 5  (()) + 1} can be reached once, and only once.
Accordingly, the history numbers do not change when the sample size in-

creases. Second, border points with border number 3 can be reached from

two different border points that have the same border number and history

number. And because these border points are grouped together in logical

22



tree Γ, the history number of border points with border number 3 is twice

the history number of the border point they emanate from.

5.2.5 Proof of Lemma 5

Proof. As 1(12) sums up the absolute distances between all bor-

der points in  ((1 2)) and the diagonal, it follows from Property P2

that the value of 1(1 2) is positively related to ((12)).

5.3 Proofs of Propositions

5.3.1 Proof of Proposition 1

Proof. Recall from the proof of Property P3 that Φ() = (())(())

is the number of distinct sample p-p plots that pass through (), without

passing through any other 0() ∈ (). Summing up over all border points

() ∈ () then yields the proposition.

5.3.2 Proof of Proposition 2

Proof. By construction, () refers to all ((1 2)) with an identi-

cal value, which, according to Lemma 5, yield the same value for 1(1 2).

Hence, ()Υ is the frequency of observing this particular value of

1(12).
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