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1
Introduction

Since it has become possible to identify the structure of Deoxyribonucleic acid
(DNA) and, to sequence an organism's genome, one of the biggest challenges
in today's biology is to decipher the genomic role in the stru cture, function
development and, evolution of simple to complex organisms. Biology used
to be perceived as a data-poorscience where traditional approach mainly fo-
cused in understanding single element (genes, proteins, cells,...). The tech-
nical advances in molecular biology turned it into a data-rich�eld it became
conceivable to conduct data-driven research. The enormous amount of data
produced at different molecular levels grows too large to fu lly apprehend the
ongoing process by traditional standard biological approa ches or manual ma-
nipulations. New �elds such as bioinformatics established themselves as key-
methods in the management, computational statistical anal ysis of the data.
Theoretical approaches such as mathematical formalisms also contributed in
understanding the functional mechanism under biological s ystems. One emerg-
ing �eld that considerably gained attention the last decade s is system biology.
The main concern of systems biology is to study an ensemble of elements as an
ensemble (or "a system"). The �eld aims at revealing the conn ections between
elements, their dynamics, as well as the mechanism behind their evolution ul-
timately the precise role of each individual within the syst em as well as the
entire system's functionality. A typical problem where stu dying a system, as a
complete entity is essential is the mechanism of early development in multicel-
lular organisms.

In many animals, morphogen gradients in�uence the movement organisation
of cells that lead to the morphogenesis in early development al embryogenesis.
The morphogens provide spatial information by forming conc entration gra-
dients that subdivide the developing embryo into different regions. Distinct
cell types and structures emerge because of the different combinations of mor-
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2 CHAPTER 1. INTRODUCTION

phogen gradients. This is a general mechanism by which cells can generate
type diversity and structures in body plan formation. Under standing the body
plan formation also requires a comprehensive knowledge of t he underlying
biochemical process. This is the level at which genes in�uen ce the transcrip-
tion of other genes. Genetic regulatory networks (GRNs) are an ensemble of
interconnected genes that control the dynamic of gene expression level for each
gene in the genome. Understanding how do GRNs control the mec hanism that
leads to a speci�c phenomena such as body patterning require s knowledge of
the active genes their interconnection structure. By means of systems biology
techniques, it is now possible to infer the GRNs involved in t he mechanism of
body plan formation in some organisms in early development.

In this chapter, we brie�y discuss the mechanism of early dev elopment in Sec-
tion 1.1. Section 1.2discusses the basic principles of GRNs Section1.3reviews
models methods for reverse engineering of regulatory netwo rks from gene ex-
pression data.

1.1 Mechanism of early development

From the moment sperm fuses with an ovum in animals or, after t he pistil is
pollinated in plants, the process of fertilization starts. At this point, in most
organisms, starting from a single cell, the complex biologi cal mechanism be-
hind the formation of an embryo begins will lead to a grown org anism. The
fundamental question is how do we go from fertilized egg to an organism?

Developmental biology has a long history, but nowadays, mod ern develop-
mental biology studies the genetic control of cell growth [1 38, 216], differen-
tiation "morphogenesis," [28, 32]. Theses three processesare the basic mecha-
nisms that give rise to tissues, organs and anatomy. Growth i s a consequence
of cell division. Two forms of cell division development occ ur within an organ-
ism: at the early stage, successive series of cell division increases the number
of cells without consequently increasing the cell mass and, at the latest stage
the cell mass increases during the cell division [256, 292]. More than 200 dif-
ferent type of cells have been identi�ed among humans and oth er vertebrates.
Cell specialisation is conducted through a step called diff erentiation. During
this late phase, cell fate is established through variation of the gene expression
causing the cells to have different shapes, activities functions that will make
them recognisable and specialised [292]. The combination and association of
different cell's fate will determine the function of a part o f the body.

1.1.1 Morphogenesis

Recent advances in biology have considerably increased the level of under-
standing of the mechanism of early development [27, 290]. At a very early
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stage, some speci�c chemical regions are created in the extreme of the body
plan. These gradients secreted by cells are proteins calledmorphogenes. By
diffusion and degradation mechanisms, they will spread int o the extracellular
matrix forming chemical gradients that can span the whole em bryo [83]. Cells
can sense these gradients by means of speci�c receptors or, the gradients bind
to speci�c sites on DNA. In response, the cells adjust their t ranscription rate of
the targeted genes in a concentration-dependent manner. By this mechanism,
a speci�c chemical body map can be generated that brings speci�c cellular re-
gions of the developing embryo in a different chemical state . This mechanism
enables these regions to develop along different developmental pathways as
shown in Fig. 1.1

Figure 1.1: The concentration of the morphogen is produced by source cel ls at the
left and transported along the body axis through diffusion a nd degradation. The two
thresholds determine the level at which gene receptors (cyt oplasmic receptors or mem-
brane receptors) are sensitive to the morphogen. (After Wol pert [291])

The explanation of the early patterning and pattern formati on by means of
morphogen gradients has initiated the theory of positional information pro-
posed by Wolpert [290]. However, many details about the mole cular mecha-
nisms of morphogen production, transport, or dynamics are s till unclear [115].

1.1.2 Basic principals of segmentation in animals

One of the striking example of organisms that have extensive ly been studied
and has a clear segmentation mechanism is the fruit �y Drosophila melanogaster
[38]. It is a little insect about 3mm long, of the kind that acc umulates around
spoiled fruit. It is also one of the most valuable of organism s in biological re-
search, particularly in genetics and developmental biolog y. Its importance for
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human health was recognized by the award of the Nobel prize in medicine
and physiology to Edward B. Lewis, Christiane Nüsslein-Vol hard and Eric Wi-
eschaus in 1995 [199].Drosophila melanogasterhas been used as a model organ-
ism for research for almost a century, and today, several tho usand scientists
are working on many different aspects of the fruit �y. Body pl an formation
and pattern formation has been very well studied in Drosophila melanogaster
[36,54,70,89,106,119,183,223,258,283]. Once morphogenes gradients are trans-
ported along a body axis, as for example the antero-posterior axis of the body
(AP axis or head-tail) as shown in Fig. 1.1, and diffuse through the extracellu-
lar matrix, they will establish the location for some genes t o be regulated. The
precise location of the gene expression will consequently d etermine the begin-
ning of the body segmentation. The pair-rule genes are the �r st set of gene ex-
pression that determine precise patterns showing future po sition of segments.
Later on, they will regulate the segment polarity genes [38] .

Although this feature is observed in many other organisms fo r which the body
plan development is a consequence of multiple segmentation steps along the
AP axis, the segmentation mechanism of Drosophila melanogasterdoes not nec-
essary hold for all segmented animals. In vertebrates and also some insects,
segmentation is formed sequentially from anterior to poste rior during a long
phase of growth and cell proliferation [9, 43, 84, 207] as show in Fig. 1.2where
parallel segmentation of Drosophila melanogasterand sequential segmentation
of grasshopper are compared.

The process of segmentation along the AP axis is either by simultaneous or
sequential formation of the segments. One of the fundamenta l questions is
whether or not the organisms showing one or the other segment ation gene
expression shares the same or a common molecular mechanism. Some early
works compared the expression patterns of Drosophila melanogastersegmenta-
tion genes in other animals by means of comparative genomics. For instance,
it was reported that similar mechanisms are present in insec ts showing simul-
taneous segmentation of the early embryo such asDrosophila melanogasterand
insects having sequential subdivision such as beetles or grasshoppers [53, 84,
203, 204]. Also, it was shown that the vertebrate homolog's pair-rule gene
hairy of Drosophila melanogasteris involved in zebra�sh Danio reriosegmenta-
tion [188,277] as well as the avian embryo chicken [202] suggesting that pair-
rule patterning is an evolutionary process.
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(a) Drosophila melanogaster (b) Grasshopper Schistocerca

Figure 1.2: Two extreme cases of segmentation gene expression in two different insects
species. Embryos are shown in a ventral view with anterior at the top. (a) Sequen-
tial segmentation gene expression in Drosophila melanogaster. Developmental stages are
shown. a.a:) maternal genes localisation during oogenesis. a.b:) Gap gene expression
are expressed after maternal genes have diffused through the embryo. a.c:) Expres-
sion of the pair-rule gene. a.d:) segment polarity gene at stage 6/7. (b) Segmentation
gene expression in the grasshopper Schistocerca. b.a:) late heart stage: hunchback (hb)
and pairberry-1 (pby) are strongly expressed in arcs in the f uture gnathal region. b.b: )
By 17% of development time, hunchback expression has resolved into high and lower
level bands (indicated by colour intensity) and pairberry1 is expressed in thin stripes
in antennal, gnathal and thoracic segments, and in a broad posterior stripe that will
resolve later into thin stripes in the 1st and 2nd abdominal s egments. b.c:) By 23% of
development time, the anterior hb bands have faded, but ther e are two further bands
of expression in the future abdomen. pby is now expressed in t hin stripes in segments
down to the 6th abdominal, and in a broad posterior stripe. Im age from V. French [84].

1.2 Gene expression

In the previous section, we have brie�y introduced the basic principle of body
plan formation. It is important to mention that this mechani sm is principally
controled by a biochemical process. This is the level at which genes in�u-
ence the transcription of other genes. A gene is the basic functional unit of
the genome, which consists of long molecules of DNA made up of chains in a
double-helix structure. The gene can be de�ned as the inform ation stored in a
sequence of a DNA region and it is required to transcribe the R NA into protein.
Gene expression stands for the gene information translated into a particular
protein. Proteins are the fundamental structure that ful�l functional units in
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cells such as a structural element, enzyme catalyst or antibody. The translation
of gene into proteins is carried out through two main steps: t ranscription and
translation.

Transcription Within a gene, one region contains the information about the
regulation time and another coding region speci�es the shap e and amount of
proteins that will be produced after the gene has been activa ted. The pro-
teins produced at these locations are known as transcriptio n factors (TFs). This
mechanism is slightly different between eukaryotes and pro karyotes [259].
In prokaryotes, the coding region is contiguous and the regu latory region is
generally located directly upstream of the coding region wh ile in eukaryotes
elements of the regulatory region are located at a considerable distance both
upstream and downstream from the coding region.

Translation Once the DNA has been transcribed into a complementary mes-
senger RNA (mRNA), the molecules bind to another large molec ule called a ri-
bosome. The function of the ribosome is to read an mRNA molecu le in triplets
known as codons. The codons will then map to one 1-20 possible amino acids.
After a very brief time, mRNA and proteins are broken down and their con-
stituent nucleotides and amino acids are reused. They are degraded at differ-
ent rates according to the presence or absence of chemical species present in
the cell.

1.2.1 Genetic Regulatory Network

Spatiotemporal gene expression is the activation of genes within speci�c tis-
sues of an organism at speci�c times during development. Gen e activation
patterns vary widely in complexity. In some cases, the patte rn is expressed
in all cells at all times of the organism life time. In other ca ses, it is extraor-
dinarily intricate and dif�cult to analyse and predict, whe re the expression is
�uctuating wildly from minute to minute or from cell to cell. Spatiotemporal
variation plays a key role in generating the diversity of cel l types found in de-
veloped organisms; since the identity of a cell is speci�ed b y the collection of
genes actively expressed within that cell. In developmenta l biology, a funda-
mental question is "What causes spatial and temporal differ ences in the expres-
sion of a single gene?" The current expression pattern depend on the previous
expression patterns. The inverse question is, how does the previous pattern
form? By symmetry breaking mechanism, uniform gene express ion becomes
spatially and temporally differential. In the case of early embryonic Drosophila
melanogasterdevelopment, the genes nanos and bicoid are asymmetrically ex-
pressed in extreme opposite locations of the embryo where maternal cells have
deposited mRNA for these genes. (see left panel of Fig.1.2)

There are many techniques to identify the expression patter n of a particular
gene depending on the identi�cation of the gene's promoter. If a gene's pro-
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moter is known, a reporter gene downstream of its promoter is placed. The
promoter gene will initiate the reporter gene to be expresse d only where and
when the gene of interest is expressed. The expression distribution of the re-
porter gene can be identi�ed by visualizing it. If the promot er of the gene of
interest is unknown, there are several ways to identify its s patiotemporal distri-
bution. Immunohistochemistry involves preparing an antib ody with speci�c
af�nity for the protein associated with the gene of interest . This distribution
of this antibody can then be visualized by a technique such as �uorescent la-
belling shown in Fig. 1.3

Figure 1.3: Three �uorochrome-tagged secondary antibodies label thre e primary anti-
bodies, which in turn recognize three transcription factor proteins, hunchback, Kruppel,
and eve (left). The �uorochromes indodicarbocyanine used e mit light in different parts
of the spectrum, so that three separate images of the embryo can be collected with the
appropriate color �lters in gray-scale mode. Each of these i mage represents the expres-
sion pattern of a single protein. The images can be color-coded and merged to visualise
the spatial relationships between the patterns are easily perceived (right). Mixture of
colours allows to distinguish overlapping gene patterns. M odi�ed from Huges et al.
[113]).

Once the spatiotemporal gene expression of some genes can beobtained from
experiments, understanding this formation is not necessar y trivial. This re-
quires a clear knowledge of the gene regulatory network that controls the gene's
regulation. A genetic regulatory network (GRN) is an ensemb le of DNA seg-
ments present in a cell that interact with one another and oth er substances
[52]. GRNs dynamically "manage" the level of expression for each gene in the
genome by controlling whether and how vigorously that gene w ill be tran-
scribed into RNA. Each RNA transcript then functions as the t emplate for syn-
thesis of a speci�c protein by the process of translation. A s imple GRN would
consist of alternative input such as signalling pathways or regulatory proteins
that regulate several target genes. The output or products of the target genes
are RNA and proteins product as illustrated in Fig. 1.4. In addition, feedback
loops are often included for further regulation of network a rchitecture. Tran-
scriptional control in the various differentiated cell typ es allows each type of
cell to express different amounts of the possible proteins. Signal transduction
pathways that will relay signals from outside of cells to the cell nucleus reg-
ulate TFs. Signal transduction pathways often involve rece ptors, receptor lig-
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ands and enzymes such as protein kinases. One key class of genes that are
differentially regulated by transcription factors in diff erent cell types are genes
for cell adhesion proteins. Cell adhesion proteins are amon g the key regulators
of morphogenesis. Understanding the network of genes' inte ractions. Large
networks of regulatory genes typically control the develop ment of the body
plan.

Figure 1.4: Simple representation of gene regulation.

Currently the genetic regulation of development in a number of model or-
ganisms is known in great detail, as for example: Drosophila melanogaster, sea
urchins, Caenorhabditis elegans, ascidians. Recently much information has be-
come available on the genetic regulation of growth and form i n sponges [150]
and cnidarians [180]. Within the metazoans, sponges and cnidarians represent
the phyla with the simplest body plan and a relatively simple regulatory net-
work controlling the development. This makes these organis ms an excellent
case study for understanding morphogenesis and the physica l translation of
the genetic information into a growth form, using a combinat ion of a biome-
chanical model of cell aggregates and a model of the spatial and temporal ex-
pression of developmental genes.

1.2.2 Quantitative measurements of Gene expression

Many techniques were developed to measure gene expression in organisms
[15] . One of the most proli�c method to asses the expression o f particular
gene is DNA microarray technology [146]. This technique can provide a rough
measure of the cellular concentration of different mRNAs; o ften thousands at
a time. A DNA microarray is a collection of microscopic DNA sp ots attached
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to a solid surface, such as glass, plastic or silicon chip forming an array. Usu-
ally, microarrays are used to quantify mRNAs transcribed fr om different genes
which encode different proteins. Another important techni que to identify gene
expression is serial analysis of gene expression (SAGE) [172,280] tag sequenc-
ing. SAGE is a technique used by molecular biologists to prod uce a snapshot
of the messenger RNA population in a sample of interest.

All of these techniques generate extremely noisy data that are in most of the
cases subject to bias in the biological measurement. A major research area in
computational biology involves developing statistical to ols to separate signal
from noise in high-throughput (HT) gene expression studies .

A more sensitive and more accurate method of relative gene expression mea-
surement is Real-Time PCR. The real-time PCR system is basedon the detection
and quantization of a �uorescent reporter [158, 163]. This s ignal increases in
direct proportion to the amount of PCR product in a reaction. With a carefully
constructed standard curve it can even produce an absolute measurement (e.g.,
in number of copies of mRNA per nanolitre of homogenized tiss ue, or in num-
ber of copies of mRNA per total poly-A RNA).

Other techniques have been developed including, massively parallel signa-
ture sequencing (MPSS) [29,178], or by measuring protein concentrations with
high-throughput mass spectroscopy. Expression data is also used to infer gene
regulation: one might compare microarray data from a wide va riety of states
of an organism to form hypotheses about the genes involved in each state.
In a single-cell organism, one might compare stages of the cell cycle, along
with various stress conditions (heat shock, starvation, et c.). One can then ap-
ply clustering algorithms to that expression data to determ ine which genes are
co-expressed. Further analysis could take a variety of directions: for instance
Beer et al. [16] analyzed the promoter sequences of co-expressed (clustered
together) genes to �nd common regulatory elements and used m achine learn-
ing techniques to identify the promoter elements involved i n regulating each
cluster.

1.3 Reverse-engineering gene regulatory systems

For many centuries, traditional reductionist biological s ciences have focused
their research in understanding organisms by studying thei rs constituents as
individual component. Since the important review of morpho genetic theories
proposed by Ludwig von Bertalanffy [19], the idea of biologi cal systems as
a self-organization dynamics has opened doors to new concepts. One main
obstacle in biology research used to be the limited quantity and poor qual-
ity of data produced, due to technology constraints. Conseq uently, biology
was mainly a hypothesis-driven research �eld. The rapid tec hnological ad-
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vance that happened the last couple of decades has allowed the production of
massive quantitative and qualitative data, leading to othe r research approach,
mainly the data-driven research. One of the new foci is to �nd patterns and the
underlying mechanisms behind their formation in the quanti ties of informa-
tion produced from the molecular biology revolution trying to obtain a more
system-level understanding. The discovery of the structur e of the DNA [284]
has allowed the identi�cation of a large number of genes and t heir transcrip-
tion factors in a large number of organisms. Later on, the tec hnical advance
leads to exact methods that facilitate the measurement of gene expression pro-
�les giving information at the mRNA level, and also the poten tial interaction
among genes [248].

1.3.1 Systems biology

The data-driven approach used to investigate biological me chanisms in organ-
isms can be divided into two categories: the collection/ana lysis of large ge-
nomic, proteomic or metabolic data sets, and the mathematical modelling of
complex biological systems. Systems biology is a relative new �eld that aims
to combine these two �elds for a complete integrated underst anding of the bio-
logical process at different level (cellular, organism or e volutional). Systems bi-
ology is an interdisciplinary �eld that became an important assets in the study
of biological systems as an entire "complex system" [251, 262]. The main aims
are:

1. structure identi�cation of the elements present in the sy stem: the net-
work of interaction.

2. elements 'dynamics: how does their state change in time and under which
condition.

3. biological mechanism behind the elements' dynamics

Ultimately, system biology aims at understanding how these systems evolve
and how to construct arti�cial systems [143].

Any attempt to infer gene regulatory networks requires at li st a partial knowl-
edge of the genes involved. Although some methods such as cluster and sta-
tistical analysis [60] allow to partially �nd the underlyin g network of gene-
gene interactions from the measured dataset of gene expression, it is essen-
tial to determine the role and importance of each component. In addition to
experimental observations, mathematical models and simul ation models are
an important option to obtain an understanding of regulator y networks. In
an iterative process as shown in Fig. 1.5, they can be used to understand the
function of the very complex processes involved in the devel opment of organ-
isms. This includes simulation of cell signalling, multice llular interactions and
regulatory genomic networks in development of multicellul ar structures and
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processes. Combined, mathematical modelling and quantita tive experimen-
tation has already provided useful information on the role o f GRNs and/or
how do the control systems based on molecular signals generate pattern and
govern the timing of developmental embryos in organism such as Drosophila
melanogaster, frog embryo by Bone Morphogenetic Protein signals, the aux in-
mediated patterning of plant meristems, and the Notch-depe ndent somite seg-
mentation (see [159,221] for reviews).

Figure 1.5: The diagram shows a typical systems biology scenario. First step is the
collection of biological knowledge from literature. In par allel, experiments and mod-
els are designed to measure quantitative data and describe mathematically describe the
system. By means of computational tools and parameter estimation, the system is sim-
ulated. Last step is the experiment design where analysis, interpretation and validation
are performed. From this step, knowledge is gain and new expe riments can be con-
ducted.

1.3.2 Mathematical model

There are numerous techniques to model genetic regulatory n etworks (GRNs).
The choice of modelling formalisms depends on the type of bio logical problem
and properties of interest, the type and amount of the data, a nd also the prior
information available [141]. Existing models can be broadl y categorized as
continuous vs. discrete and deterministic vs. stochastic, dynamic vs. static.
Extensive reviews discuss the principles and motivations b ehind each of these
modelling formalisms [55,74,87,239]
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Dynamic vs. Static models When temporal aspect of the gene expression
variation is investigated, dynamic models are used. In most cases, dynamic
GRNS are modelled by means of differential equations or by bo olean networks
describing the gene concentration change over time. Staticmodels do not han-
dle the temporal component. Typical statistical models are graph theoretic
models [185] or Bayesian networks [3]. Lately, Bayesian networks became
more and more appealing for the inferring of regulatory netw ork structure
from gene expression data [85, 170]. Some of the limitations of these Bayesian
networks are the inability to handle the direction of gene in teractions and the
acyclicity constraint, which rules out feedback loops.

Continuous vs. Discrete models When dynamical models are considered,
the description of the time transition between two differen t states is impor-
tant. This transition can be modelled continuously or throu gh discrete transi-
tion. Discrete models such as Boolean network [26, 135] or logical formalisms
[176, 270] discretise the time into a �x number of quantitati ve states. The tem-
poral evolution of the values of the variables is de�ned by lo gical equations
which is a combination of Boolean functions such as AND, OR or XOR. The
values of each variable (presence or absence of a molecular species) depend on
the preceding values of the variables of the system. The dif� culty in reverse-
engineering boolean network is to determine individual boo lean functions for
each "node" or gene. Methods [174] and algorithms such as REVEAL [161] are
general reverse engineering methods that have been developed for this pur-
pose. One of the main advantages of Boolean network models lies in its sim-
plicity. When the elements of interest as well as their poten tial regulatory inter-
actions are known, they are easy to interpret and to simulate gene regulatory
events. As it is a discrete formalism, the analytical tracta bility can be de�ned
and the simulation remains simple. This make them appropria te and useful to
infer GRN when the input data are very noisy due to their weak s ensitivity to
measurement errors. The �rst and important limitation of bo olean modelling
is its perceived lack of applicability to biological system s. The "synchronism"
does not re�ect real biological situation. Another importa nt disadvantage of
this approach is the basis of these models: how do we validate the assumption.
It is known that a gene can have different regulatory effect d epending on their
quantitative expression level. Also, as mentioned by Klipp et al. [144] it is
very dif�cult to infer the "real" network from continuous da ta using Boolean
networks. It generally leads to many "false" interactions

Continuous representation of the time dynamic can be formal ised using dif-
ferential equations such as ordinary differential equatio ns (ODEs), partial dif-
ferential equations (PDEs) or time delay different equatio ns. There is a long
history of using systems of differential equations to model the reaction kinet-
ics of regulatory systems [42, 75, 104, 107,296]. These approaches have several
advantages. In principle, their more detailed representat ion of regulatory inter-
actions provides a more accurate representation of the physical system under
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investigation. In most of biological situation, the intera ctions considered are
non-linear (effect of threshold, saturation, interaction synergistic, etc), which
leads to models that are hardly solvable using analytical me thods. It is then
very impossible to derive the solutions from these systems a nd one must re-
sort to numerical simulation.
Continuous models using partial differential equations (P DEs) can be used
when attempting to model the dynamic of developmental pheno mena involv-
ing GRNs and when considering the physical space in which gen e regulation
is occurring. They consist of chemical rate equations describing the regulation
of gene within a cell and the diffusion of gene products betwe en neighbouring
cells. Recently, Salazar-Ciudad et al. [236] have used a continuum model to
model regulatory networks to:

1. compare diffusion and direct-contact induction process es as mechanisms
of pattern formation

2. identify the possible range of behaviour of real gene netw orks

3. suggest causal mechanisms to generate known patterns

Deterministic vs. Stochastic models Deterministic models such as ODEs do
not describe the molecular �uctuations present in the syste m and assume that
proteins are produced at a continuous rate. Biological syst ems must be rel-
atively insensitive to variation or noise [4]. Biochemical reactions in many
cases involve a low number of molecules [201,266,295]. Therefore, noise is an
integral part of GRNs and deterministic assumptions may not hold or may be
insuf�cient to capture all the dynamics [217]. Stochastic m odelling approaches
allow describing the stochastic events within the gene expr ession. Two main
formalisms are commonly used: stochastic differential equ ations (SDEs) and
probabilistic modelling. SDEs are an extension of ODEs, wit h an additional
term describing the noise. Probabilistic model are based on master equations
describing the time evolution of the system. Independent va riables of mas-
ter equations are time the population of reacting species. The master equation
can be transformed into a partial differential equation by t he use of a generat-
ing function. Although the master equations provide a clear description of the
stochastic process ruling the dynamics of a regulatory syst em, it is still more
dif�cult than ODEs and even impossible to �nd analytical sol utions. Also, be-
cause of their stochastic nature, it is necessary to solve SDEs a large number of
times for statistic purpose. Models using SDEs have been until now applied
to small molecular networks [4, 186]. An interesting review summarizing the
issues and technical aspects of stochastic model can be found in [217].

1.3.3 Inference by parameter estimation

A signi�cant problem with the numerical approach is the lack of measurement
of the various kinetic parameters in a system. The number of s ystems for which
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detailed parameter values are known is very small, and the si ze of most sys-
tems makes it unfeasible to obtain in vitro or in vivo measure ments of many
parameter value of all parameters involved.

If the parameters and the initial conditions are known the ti me evolution of
the gene expression patterns can be simulated by numerical integration of the
partial differential equations and the properties of the mo del can be further
studied. However, in most cases the precise parameter values are not known
and methods are required to estimate the parameters. One way to obtain the
parameters is by direct measurement, however in most cases this cannot be
done experimentally because the individual regulatory pro cesses are not eas-
ily isolated. An alternative approach is detection of cis-r egulatory elements
(interaction sites), which may be directly measured or pred icted from the DNA
sequences using bioinformatics techniques. Although this technique is useful
to constrain the number of interactions, the precise parameter values cannot
be estimated. Furthermore, in phenomenological models, wh ich are used most
of the time, the parameters often do not represent biophysic ally measurable
quantities. Therefore a different approach is used; parameter inference is for-
mulated as an inversion problem. Given a detailed set of expe rimentally mea-
sured expression patterns (observations) the parameters are varied such that
the difference between the simulated and the experimentall y observed expres-
sion patterns is minimised.

The standard optimisation approach minimizes a single cost function that rep-
resents the difference between the simulated and observed expression pattern.
In most studies the least square method has been used, where parameters are
estimated by minimizing the root mean square error (RMS). In these studies
box constraints for the parameters are used to reduce the search space and also
to ensure that the parameter values are within biophysical c onstraints. Because
the response function possesses asymptotes at strong repression and strong ac-
tivation a penalty function can be used to ensure that an inve rse solution (i.e.
the parameters) exists.

Non-linear inverse problems with many parameters are notor iously ill de�ned,
many different solutions may be obtained that all �t the data set equally well.
This means that the objective function to be minimised possesses many local
minima with similar "energy" values. There are two main sour ces for this.
First, if the data does not contain enough information (miss ing genes, miss-
ing time points, only part of the space is modelled and there i s also a limited
time window) the parameters may not be identi�able, which ca n be observed
as correlations between parameters that compensate each other because they
act similarly in the model. Secondly, if the data contains fe atures, e.g. artefacts,
noise or certain processes, which are not represented in themodel the optimi-
sation strategy, will lead to spurious parameter values in t he model because
each parameter in the model is indiscriminately used to �t th e data as good as
possible. However, in the real system these parameters may not be related to
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explaining these features at all.

Qualitative analysis of the model parameters is used to vali date the estimated
parameters. Precision and sensitivity of the parameters is an important aspect
[51]. Also, parameter variances and covariances can be usedto verify the over-
all validity of a model in representing the data and to ensure the signi�cance
and determinability of its parameters [124]. These differe nt validations tech-
niques also allow to compare different inferences approach es or for models
discrimination [62].

When one is concerned with dynamical models, different addi tional aspects
such as the dynamic stability (robustness to parameter vari ations) [92, 241],
the structural stability (ability to maintain the system tr ajectory) are essential
for the system behaviour analysis [142]. These analyses schemes can improve
the understanding of the mechanism behind bistability, bif urcation or hystere-
sis.

Ultimately, model validation should be carried out in vivo by experimentally
testing hypotheses generated by the model prediction. So far, few have carried
this complete system biology approach [25,72,114,249]

1.4 Research questions addressed in this thesis

In this thesis, we investigate several aspects of the inference of GRNs capa-
ble of simulating spatio-temporal pattern. The main focus o f this thesis is the
problem of parameter estimation of mathematical models des cribing biological
systems and the reliability of the inference. As a case study we use a quanti-
tative spatio-temporal model of the regulatory network for early development
in Drosophila melanogaster. This model is capable of simulating pattern of the
early development of the organism and serves as a basis to investigate several
aspects of the robust inference of GRNs by means of reverse engineering.

We investigate the ef�ciency of an evolution strategy for th e parameter esti-
mation of GRN models capable of simulating spatio-temporal patterns. Our
choice is inspired by [175,184] where the authors compared different global op-
timisation strategies and suggested that the evolution str ategy is a very promis-
ing and competitive method for the problem of parameter esti mation of bio-
chemical networks. We combine this appoach with a local search strategy to
further improve the quality of the global search. The motiva tion behind the
implementation of such algorithm is the need for a fast and ef �cient parame-
ter estimation method for the reverse engineering of comple x spatio-temporal
model of GRNs.
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Once parameters have been estimated, it is essential to address their reliabil-
ity as well as the robustness of the model. We investigated th e sensitivity and
robustness of circuits obtained from reverse engineering o f the regulatory net-
work for early development in Drosophila melanogaster. We analyse the unique-
ness of the predicted network and the model stability. We aim to investigate
whether the model shows signs of over-�tting (uniqueness) a nd if this over-
�tting leads to variable circuit behavior (stability). The goal is to extract the
best set of circuits that can simulate realistically the pat terns, but also obtain
the most plausible topology consistent with biological evi dence. Ultimately,
our aim is to understand the dynamics behind the gap gene mech anism.
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2
Parameter estimation for

biological systems 1

Parameter estimation in systems biology is usually part of a n iterative process
to develop data-driven models for biological systems that s hould have predic-
tive value. In this chapter we discuss how to obtain paramete rs for mathemat-
ical models by data �tting. We restrict ourselves to the case where a determin-
istic model in the form of a mathematical function-based mod el is available,
say a system of differential and algebraic equations. For in stance in the case
of a biochemical process, hypotheses based on the knowledgeof the under-
lying network structure of a pathway are translated into a sy stem of kinetic
equations, parameters are obtained from literature or esti mated from a data
�t, and with the resulting model predictions are made that ca n be tested with
further experiments. To compare model results to experimen tal data one �rst
has to simulate the mathematical model to produce these results, the forward
problem. The inverse problemis the problem at hand: the estimation of parame-
ters in a mathematical model from measured observations. Th ere are a num-
ber of dif�culties involved (see, e.g., [238]). The forward problem requires
a fast and robust time integrator. Fast, because the model will be evaluated
many times. Robust, because the whole parameter and state space will be vis-
ited, which most likely will result in a different character of the mathematical
model (number and range of time scales involved). The invers e problem has
even more pitfalls. The �rst question is whether the paramet ers for the mathe-
matical model can be determined assuming that for all observ ables continuous
and error-free data are available. This is the subject of a priori identi�ability or

1This chapter is based on the paper Maksat Ashyraliyev and Yve s Fomekong-Nanfack and Jaap
A. Kaandorp and Joke Blom, "Systems biology: parameter estimation for biochemical models",
FEBS Journal, 276(4):886 - 902(17). 2009. [5]
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structural identi�ability analysis of the mathematical model. The actual param-
eter estimation or data �tting typically starts with a guess about parameter
values and then changes those values to minimize the discrepancy between
model and data using a particular metric. Kinetic models wit h nonlinear rate
equations have in general multiple sets of parameters that l ead to such minimi-
sation, some of those minima may only be local. The value of pa rameters and
model variables may range over many orders of magnitude, one can get stuck
in a local minimum or one can wander around in a very �at part of the solution
space. Given a particular set of experimental data and one particular accept-
able model parameterization obtained by a parameter estima tion procedure
does not mean that all obtained parameters can be trusted. Af ter the minimum
has been found, an a posteriorior practical identi�ability study can show how
well the parameter vector has been determined given a data set that is possibly
sparse and noisy. That this part of model �tting should not be underestimated
is shown by Gutenkunst et al. [103]. For all 17 systems biology models they
considered, the obtained parameters are "sloppy", meaning not well-de�ned.
On the other hand, one could argue that often the precise valu e of a parameter
is not required to draw biological conclusions [6].

This chapter discusses the different main issues and approaches encountered
in parameter estimation problem of model of biological syst em. First, a prob-
lem de�nition is given followed by the choice of measure for t he goodness of
the �t. Second, we discuss different methods for both the a pr iori and a poste-
riori identi�ability. Next, we give a brief survey of the cur rent methods used
in parameter estimation with a focus on those that are implem ented in popu-
lar toolboxes for systems biology. In Section 2.4 we give some guidelines on
the application of these methods in practice. Finally, in th e Appendix A 8.4an
overview is given of the contents of some well-known toolbox es.

2.1 Problem de�nition

Deterministic models arising from kinetic equations are ty pically given by a
system of differential algebraic equations (DAEs) 1 - ordinary differential equa-
tions (ODEs) coupled to algebraic equations - of the form:

œ

A dx ˆ t;��� •

dt � f ˆ t; x ˆ t; ��� • ; ���; u ˆ t •• ; t0 @ t B te;
x ˆ t0; ��� • � x0 ˆ ��� • ;

(2.1)

where t denotes time, the m-dimensional vector ��� contains all unknown param-
eters, x is an n-dimensional vector with the state variables(e.g., concentration
values), u are the externally input signals, and f is a given vector function.

1The content of this chapter is also applicable to (discretiz ed) systems of partial differential
equations (PDEs) and delay differential equations (DDEs). Fitting parameters of stochastic models
requires a different approach (see e.g., [97, 225, 272]).
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When components of the initial state vector x0 are not known, they are consid-
ered as unknown parameters, sox0 may depend on ��� . In the simplest case,A is
a constant diagonal n � n matrix with A ii � 1 if the i-th equation is a differential
equation and A ii � 0 if the i-th equation is algebraic.

In addition, a vector of observablesis given

g ˆ t; x ˆ t; ��� • ; ���; u ˆ t •• ; (2.2)

which are quantities in the model - in general (a combination of) state variables
- that can be experimentally measured, and possibly a vector of (non)linear
constraints

c ˆ t; x ˆ t; ��� • ; ���; u ˆ t •• C 0: (2.3)

Let us assume thatN measurements are available to �nd parameters of system
(2.1-2.3). Each measurement, which we denote by yi , is speci�ed by the time
t i when the i -th component of the observable vector g is measured. The corre-
sponding model value for a speci�c parameter vector p̂̂p̂p, which can be obtained
suf�ciently accurate by numerical integration of system ( 2.1) and computing
the observable function (2.2), is denoted by ĝi � gi ˆ t i ; x ; �̂̂�̂�; u • . The vector of
discrepancies between the model values and the experimental values is then
given by ê p̂̂p̂p• � S g ˆ t; x ˆ t; �̂̂�̂� • ; �̂̂�̂�; u ˆ t •• � y S . We assume that system (2.1) is a suf-
�ciently accurate mathematical description approximatin g reality. This means
that all relevant knowledge about the biological processes is incorporated cor-
rectly in the vector function f . Thus, the only uncertainty in ( 2.1) is the vector of
unknown parameters ��� . In this case the difference ei ˆ ��� ‡

• � S gi ˆ t i ; x ; ��� ‡ ; u • � yi S

is solely due to experimental errors, where ��� ‡ is the true solution.

2.1.1 Fitness criterion

The m-dimensional optimization problem is given by the task to mi nimize
some measure,V ˆ ��� • , for the discrepancy ê ��� • . By far the most used measure
for the discrepancy is the Euclidean norm or the sum of the squ ares weighted
with the error in the measurement

VMLE ˆ ��� • �

N

Q

i � 1

ˆ gi ˆ t i ; x ; ���; u • � yi •

2

� 2
i

� eT
ˆ ��� • W ê ��� • ; (2.4)

see [63, 91]. This measure results from the Maximum Likeliho od Estimator
(MLE) theory. Under the assumption that the experimental er rors are indepen-
dent and normally distributed with standard deviation � i , the least squares
estimate �̂�� of the parameters is the value of ��� that minimizes the sum of squares

�̂�� � arg min
���

VMLE ˆ ��� • : (2.5)
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When these assumptions do not hold, other measures than VMLE ˆ ��� • might be
used like the sum of the absolute values. The MLE theory then d oes not apply
so�̂�� is not the least squares estimate and the statistical analysis of Section2.3.1.2
does not hold. Dependent on the optimization method or the ma thematical
discipline the function V ˆ ��� • is called objectivefunction, costfunction, goalfunc-
tion, energyfunction or �tness function.

The solution set �̂�� in Equation 2.5 may be a unique point, a countable (�nite
or in�nite) collection of points, or a set containing an unco untable number of
points. The following three examples illustrate these type s of solution sets �̂�� .

Example 2.1.1 : �̂�� contains unique solution. Suppose thatV ˆ ��� • � ��� T ��� and��� � Rm

(i.e. ��� is unconstrained). The value��� � 0 uniquely minimisesV . Hence,��� ‡ is the
single point��� ‡

� 0 .

Example 2.1.2 : �̂�� has countable (�nite or in�nite) number of points. Let ��� be
a scalar andV ˆ ��� • � sin̂ ��� • . If ��� � � 0; 4� � , thensin̂ ��� • � � 1 (its minimum) at the
point ��� ‡

� ˜ 3� ~ 2; 7� ~ 2• , a countable set with a �nite number (two) of elements. On
the other hand, if��� � R 1 , then��� ‡

� ˜ :::; � 5� ~ 2; � � ~ 2; 3� ~ 2; 7� ~ 2; :::• , a countable set
with in�nite number of elements.

Example 2.1.3 : �̂�� has uncountable number of points. Suppose thatV ˆ ��� • �

ˆ ��� T ��� � 1•

2 and ��� � R m . This cost function is minimised when��� T ��� � 1. which is
the set of points lying on the surface of am-dimensional sphere having radius 1. When
m C 2, ��� ‡ is an uncountable (but bounded) set.

2.2 Parameter estimation methods

To �nd the minimum of the objective function, optimization m ethods are used.
We describe here two classes:localand global. Local search methods typically
converge fast to a minimum, but as the name suggests, this might be a local
minimum and the method has no possibility to escape from this minimum to
�nd the true or global minimum. For local search methods ther e is in general a
theoretical proof of convergence (and of convergence speed) to the minimum
if the initial guess is suf�ciently close to that minimum. Glob al optimization
searches all over the parameter space to �nd smaller and smaller values for
the objective function, but in general there is no proof for c onvergence to the
minimum (with exception of the simulated annealing algorit hm).

Various numerical algorithms exist for global and local opt imization. In [175,
184] a number of global and local methods are applied to a benchmark of bio-
chemical pathways. Below we will describe brie�y the method s that are fre-
quently used when estimating model parameters of biologica l problems and
methods that are available in general toolboxes used in system biology.
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2.2.1 Some de�nitions and theorems

�̂�� is aglobal minimizerof the objective function V if it gives the lowest obtainable
objective function value from an arbitrary starting point:

�̂�� global � arg min
���

V ˆ ��� • ; ¦ ��� in the parameter space: (2.6)

�̂�� is a local minimizerof the objective function V if it gives the lowest obtainable
objective function value in the neighbourhood of the starting point:

�̂�� local � arg min
���

V ˆ ��� • ; ¦ SS ��� � �̂�� start SS @ �; � A 0: (2.7)

A stationary pointx ‡ of a function f is a point for which the gradient is zero

© f ˆ x ‡

• � 0: (2.8)

The following theorems hold for unconstrained optimizatio n and a suf�ciently
differentiable objective function V . In this caseV can be extended into a Taylor
series around �̂�� :

V ˆ �̂�� � ���� • � V ˆ �̂�� • � ���� T
© V ˆ �̂�� • �

1
2

���� T
©

2V ˆ �̂�� • ���� � ::: (2.9)

with the gradient

© V ˆ �̂�� • � �

@V
@���

ˆ �̂�� •� ; (2.10)

and the Hessian or second derivative

©

2V ˆ �̂�� • � �

@V
@��� i @��� j

ˆ �̂�� •� : (2.11)

A necessarycondition for a parameter vector �̂�� to be a local minimizerof V is that
�̂�� is a stationary pointof V :

© V ˆ �̂�� • � 0:

A suf�cient condition for a local minimizeris that �̂�� is a stationary pointof V and
the Hessian ofV is positive de�nite:

© V ˆ �̂�� • � 0; ��� T
©

2V ˆ �̂�� • ��� A 0 ¦ ��� x 0:

2.2.2 Global Optimization

Most global optimization methods are stochastic of nature t o prevent the search
process being trapped in a local minimum. Moles et al. [184] h ave performed
a comparison of a number of global optimization methods on pa rameter esti-
mation problems for biochemical pathways.
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Figure 2.1: In this simple example, the landscape shows two minima: a loc al minima at
� local and a global minima at � ‡ . The standard search optimization techniques available
in the literature for solving the parameter estimation prob lem can be classi�ed into
2 categories. The local search methods and the global searchmethod. If the initial
guess is around this local minima, the algorithm will conver ge to the global minimum.
For a given starting point, the local search method does not n ecessary �nd the global
minima since one of the major drawback is their incapacity to get out of local minima.
For instance, any starting point for wich � B � lm , most local search methods will be
trapped at �local . Global methods offer an interesting alternative when no in itial guess
is available, since the can overcome this problem.

2.2.2.1 Simulated Annealing

Simulated Annealing (SA) is a stochastic optimization algo rithm proposed by
Kirkpatrick et al. [140] in 1983. The term annealingcomes from physics. It
is the process of heating up a solid until it melts, followed b y a slow cooling
down until the molecules are aligned in a crystalline struct ure corresponding
to the minimum energy state. The cooling must occur at a suf�c iently slow
rate, otherwise the system will end up in an amorphous or poly crystalline state
and thus the system will not be at its minimum energy state. In optimization,
the SA algorithm attempts to mathematically capture the pro cess of controlled
cooling associated with physical processes; the analogy to the minimum en-
ergy state is the minimum value for the objective function.

SA is based on the Metropolis algorithm [177] which is a Monte -Carlo method
to sample a thermodynamic system. Rephrased for the parameter estimation
problem it samples for a �xed "temperature" the parameter sp ace according to
the Boltzmann-Gibbs probability distribution
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P ˆ ��� • � C exp Œ �

V ˆ ��� •

kB T
‘ ; (2.12)

where C is a normalization constant, kB the Boltzmann constant, and T the
temperature. Starting from an initial (random) parameter v ector, in each step a
random new state (parameter vector) is generated based on the previous one.
This new state is accepted with a certain probability (see below under Transi-
tion probability). If it is rejected a new state is generated based on the same
parameter vector as before. In this way a Markov chain is obta ined which,
if it is suf�ciently long, describes the required probabili ty distribution. The
macroscopic observable, the minimizing parameter vector, is the average over
all states in the Markov chain. In SA the Metropolis algorith m is applied with
a slowly decreasing T. SA starts with a high "temperature" implying that all
states, or parameter vectors, are equally probable. The original algorithm - the
homogeneousMarkov chain method - computes for a constant temperature a
complete Markov chain, i.e. the required probability distr ibution is obtained.
Then the temperature is slowly decreased and the next distri bution is sampled.
In contrast the inhomogeneousMarkov chain method decreases the temperature
every time a new state has been found. Devising the cooling schedule - initial
temperature, method of lowering the temperature, and the st op criterion - is
the art of simulated annealing. Under certain conditions (e rgodicity, cooling
schedule) it has been proven that SA converges to the global minimum (see,
e.g., [278]).

Cooling schedules Many have attempted to derive theoretical or experimen-
tal proofs of an ef�cient cooling schedule scheme (see [24] for an extensive
review). Among the most popular ones, three different theor etical concepts
are used

Logarithmic: Introduced by Geman and Geman [90], this one has special the-
oretical importance. The temperature is decreased according to: t i �

 ~ loĝ i � d• with i the iteration count and d usually set to one. Although
it has been proven that for  C Emax , the true global minima can be found
(in the limit of in�nite time), with Emax being the maximum energy bar-
rier (problem dependent and a priori unknown), this method i s very slow
and impractical because of its asymptotically slow tempera ture decrease
[105].

Geometric: The original cooling schedule proposed by Kirkpatrick [140 ] and
still widely used with major or minor variants. The temperat ure is up-
dated by: t i � �t i � 1. The cooling factor � is assumed to be a constant
smaller than one. Examples of usage and a good explanation of the un-
derlying mechanisms are given by Johnson [127].

Adaptive: The previous cooling schedules always apply the same cooling fac-
tor irrespective the state of the system. It is known that at h igh temper-
ature, almost all new parameter vectors are accepted although some of
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them are bad solutions. It is obvious that using an appropria te cooling
schedule depending on the state of the system can lead to large improve-
ments. A variety of adaptive temperature annealing strateg ies have been
proposed. The main techniques are presented by Boese [24]. The most
important ones are: (i) Lam [155, 156]: the temperature is updated aim-
ing to maintain the system in thermodynamical equilibrium; (ii) Ingber
[116,118]: a very popular cooling schedule. The strength of this algorithm
is that it takes into account the sensitivity of the cost func tion for each pa-
rameter. The goal is to extend the insensitive parameter's search range
relative to the range over the more sensitive parameters. Each parameter
has its own temperature, equally initialized at the beginni ng. After ev-
ery Nacc accepted steps, the sensitivity for the best solution parameters
is computed and after every Ngen generation steps the temperatures are
re-annealed scaled by the sensitivities. A very limited num ber of method
parameters has to be assigned by the user: the rate control parameter
C, Nacc , and Ngen . The other method parameters are automatically set
and updated by the algorithm. The optimal values of the three parame-
ters are problem dependent [117], but the performance of the algorithm
is not critically in�uenced for choices of C in the range of 1 to 10, Nacc

O(10-100) andNgen O(200-1000).

Transition probability If the objective function of the new parameter vector
��� œ is smaller than the previous one then the new parameter vecto r is accepted.
However, to prevent getting stuck in a local minimum, the new parameter vec-
tor is also accepted with a probability according to the samp led distribution

P ˆ � V; T • � exp ‹ �

� V
kB T

• ; with � V � V ˆ ��� œ

• � V ˆ ��� • : (2.13)

Expression (2.13) is known as the Metropolis Criterion. For T � 0 and �V A 0, the
probability P ˆ �V; T • � 0. Therefore, for suf�ciently small values T, the process
will more and more go "downhill": new accepted parameter vec tors tend to
have lower objective function values.

2.2.2.2 Evolutionary Algorithms

Evolutionary Algorithms (EA) are inspired by biological ev olution. Potential
solutions (parameter vectors) are the individualsof a population. In order to get
new solutions - a next generation- the individuals in the population are replaced
using mechanisms asreproduction, natural selection, mutation, recombination, and
survival of the �ttest.
Initially, a population is created of random individuals (p ossible parameter
vectors). Next, the corresponding objective functions are computed which de-
�ne the �tness of an individual (the higher the �tness, the be tter the solution).
The selection process is mimicked by assigning probabiliti es to individuals re-
lated to their �tness to indicate the chance to get selected f or the next gener-
ation. Individuals with a high �tness are assigned high prob abilities. New
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individuals are created by two operators: recombination (o r cross-over) and
mutation. Recombination consists in selecting some parents (at least two) and
results in one or more children (new candidates). Mutation a cts on one can-
didate and results in a new candidate. These operators create the offspring (a
set of new candidates). These new candidates compete with old candidates
for their place in the next generation (survival of the �ttes t). This process can
be repeated until a candidate with suf�cient quality (a solu tion) is found or a
prede�ned computational limit is reached. There are many di fferent ways of
writing these operators and one can �nd exhaustive literatu re focussing on this
aspect of EAs (see, e.g. [96]).

EA operators
The selection operator is responsible for convergence to the minimum, the re-
combination operator for exploring the parameter space and the mutation op-
erator gives nearby solutions a chance to survive.

Fitness A commonly used objective-to-�tness transformation resul ts in a �t-
ness value ofmax̂ 0; Cmax � V ˆ ��� •• with Cmax either a user-de�ned constant or
the maximum V -value thus far. To prevent almost equal selection probabil ities
in later stages of the algorithm the �tness values should be s caled accordingly
[96]. Another transformation is simply rank-based, where t he population is
sorted according to their objective values and �tness assig nment depends only
on the position [11,287].

Selection determines, which individuals are chosen for mating (recom bina-
tion) and how many offspring each selected individual produ ces. The �rst step
is �tness assignment. Next, the actual selection is perform ed. Parents are se-
lected according to their �tness by means of one of the follow ing algorithms
[96]:
truncation: the only deterministic selection: select the m best individuals and
reproduce them until the pool is �lled;
roulette-wheel: selection with size of wheel part proportional to �tness [1 3];
stochastic remainder: sampling. First entier ˆ f i ~

�f •

2 times individual i are se-
lected with f i the individual and �f the average �tness. Next the pool is �lled
using a weighted toss [13];
tournament: N "tournaments" will be held with K randomly picked individu-
als as competitors for a place in the pool. Winner is the one wi th highest �tness
[179].
The selection process is an extremely important part of the convergence of the
algorithm: if the selection pressure is high - as with roulette-wheel- then the
convergence time is fast, but the solution can be a local one. If the selection
pressure is low - as with tournamentwith small K - it is the other way around.

2entier ˆ x • is the largest integer value not exceeding x.
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Recombination or cross-over produces new individuals by combining the
information contained in the parents (parents: mating popu lation). In the case
of real-valued variables the algorithms all choose a point o n the line connecting
the two parents, either deterministically - line recombination(interpolation with
a �xed constant) - or stochastically. In the latter case one d istinguishes interme-
diate recombinationin which a point is chosen in an interval slightly larger than
the connecting line segment and extended line recombinationwhere the complete
line is used but the probability decreases with the distance from a parent.

Mutation consists in randomly altering an individual. The mutation s tep
(usually very small) is the probability of mutating a variab le, and the muta-
tion rate is the effective mutation applied to that variable . Although in general
the mutation step is inversely proportional to the dimensio n of the problem,
the mutation rate does not depend on the problem.

Reinsertion ("survival of the �ttest") After producing offspring they m ust be
inserted into the population. This is especially important , if the number of
offspring does not equal the size of the original population . To guarantee that
the best individual(s) survive the elitist strategy [96] can be used.

2.2.2.3 Covering methods

Covering methods are deterministic global optimization al gorithms, that guar-
antee that a solution with a given accuracy is obtained. The p rice paid for this
guarantee, however, is that some a priori information of the function must be
available.

Branch and Bound (B&B) [157, 181] requires that the search space is �nite
(parameters are constrained) and can be divided to create smaller subspaces.
To apply branch and bound, one must have a means of computing u pper and
lower estimated bounds of the objective function to be minim ized.

The method starts by considering the original problem with t he complete search
space - theroot problem. The lower-bounding and upper-bounding procedures
are applied to the root problem. If the bounds match, then an o ptimal solution
has been found and the procedure terminates. Otherwise, the search space is
partitioned into two or more regions. These subproblems bec ome children of
the root search node. The algorithm is applied recursively t o the subproblems,
generating a tree of sub-problems. If an optimal solution is found to a subprob-
lem, it is a feasible solution to the full problem, but not nec essarily globally
optimal. Since it is feasible, it can be used to prune the rest of the tree: if the
lower bound for a node exceeds the best known feasible soluti on, no globally
optimal solution can exist in the subspace of the feasible region represented by
the node. Therefore, the node can be removed from consideration. The search
proceeds until all nodes have been solved or pruned, or until some speci�ed
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threshold is met between the best solution found and the lowe r bounds on all
unsolved subproblems. Although this method is widely used i n engineering,
the technique is not that popular among the biologists and co mputational bi-
ology community.

2.2.3 Local optimization

If the gradient of the objective function can be computed one can solve the
minimization problem by �nding the point where the gradient vanishes using
gradient-based methods. Direct search methodstry to �nd the minimising point of
the objective function without explicitly using derivativ es. As for the global
search methods these methods only require an order relation (V ˆ ��� 1 • @ V ˆ ��� 2 • )
for all points in parameter space.

2.2.3.1 Direct-search methods

The term direct-search method has �rst been used in 1961 in th e classical paper
of Hooke and Jeeves [111] that describes their pattern search method, but it
is more generally used for all methods that �nd a local minimu m without the
use of a derivative. Direct search methods select a �nite - generally not large
- number of possibilities each step and check whether one of these is better
than the current one. For reviews on direct-search or deriva tive-free methods
we refer to [147, 212, 293]. Here we discuss the two most used methods: the
classical Hooke-Jeevesmethod [111] and the Nelder-Meador Downhill Simplex
method [194].

Hooke-Jeeves method The pattern search method of Hooke and Jeeves [111]
consists of two steps. In the �rst a series of exploratorychanges of the current
parameter vector are made, typically a positive and negativ e perturbation of
one parameter at a time. The exploratory step then has formed a basis for the
parameter space with information in which directions the ob jective function
decreases. In the next step, thepattern move, the information obtained is used
to �nd the best direction for the minimisation process. The o riginal method is a
special case ofgeneralized pattern searchmethods for which it is shown that the
search directions span the parameter space [274]. For a nicediscussion on this
type of direct-search methods, the broad class of generating set searchmethods,
including convergence results, some history and references to other ideas we
refer to the extensive review paper of Kolda et al. [147]. They show amongst
others that these methods have the same type of convergence guarantee as
gradient-based methods.

Nelder-Mead simplex algorithm The Nelder-Mead method [153,194] is based
on the idea of an adaptive simplex - the simplest polytope of m � 1 vertices in
m dimensions (2D: triangle, 3D: tetrahedron). The objective function is eval-
uated in all vertices ( ��� "s) and the vertices are ordered according to the value.
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The next step tries to replace the "worst" vertex by a better one. A line search is
performed along the line through this vertex and the centroi d of the remaining
vertices: ��� new = ���� � �� �� worst . For � � 1; 2; 1

2 ; �

1
2 it is tested whether the new ob-

jective value is better than the old one. If this is the case the simplex is adapted
by replacing the old vertex by the new one. If not, a shrink procedure is per-
formed: the "best" vertex stays in the simplex, all other one s are replaced by
a vertex half-way along the line from the best vertex. If the l ine search is suc-
cessful the method uses just 1 to 4 function evaluations per step and the aim
is that the simplex adapts itself to the minimising function . But in contrast to
the Hooke-Jeeves method it improves the objective function value along the
sequence of worst vertices.

2.2.3.2 Gradient-based methods

In constrast to all other methods above this class of methods not only requires
the value of the objective function but also of its �rst deriv ative with respect
to the parameters. These type of methods are not so straightforward to im-
plement as the direct-search methods, but if it is possible t o use them it is in
general preferable to do so. Often in implementations appro ximations of the
gradient and/or the Hessian (second derivative) are used, e .g., by �nite differ-
ences. However, with the current automatic differentation tools like ADIFOR
[22], symbolic algebra packages like Maple [88] and Mathematica [227], and
modelling languages with automatic computation of derivat ives like AMPL
[82] and GAMS [130], it is doable and preferrable to use the exact derivative.
For a general treatment of this subject we refer to Nocedal [195].

Remember that a requirement for a local minimizer ��� ‡ is that the gradient
© V ˆ ��� ‡

• � 0 (stationary point). A suf�cient condition requires that th e Hes-
sian is positive de�nite. Note that none of the methods below guarantees the
latter requirement!

Gradient-based methods are all descent methods. These methods �rst �nd a
descent direction d��� and then take a step �d� �� in that direction, with � such that
it results in a "good" decrease of the objective function

��� new � ��� � �d� ��; V ˆ ��� new • @ V ˆ ��� • : (2.14)

The largest gain is obviously obtained when � is determined by a line-search,
i.e., by �nding the minimum value of V ˆ ��� � �d� �� • for all � A 0. Note that a simple
decrease in the objective function (f ˆ xk � 1 • @ f ˆ xk • ) is not suf�cient to converge
to a stationary point of f . (Counterexample: V ˆ x • � x2 and x i � 1 � 2� i , see
[57].)

Steepest descent or gradient method In this method the search direction is
de�ned by the gradient
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d��� � �© V ˆ ��� • : (2.15)

In the �nal stage, however, this method has a slow convergenc e. In fact if
combined with exact line search it can even fail.

Newton's method Newton's method iteratively solves the equation for a sta-
tionary point © V ˆ ��� ‡

• � 0 by linearization. The search direction for the line-
search method is in this case

d��� � �©

� 2V ˆ ��� • © V ˆ ��� • : (2.16)

In quasi-Newton methods the Hessian is approximated. If the starting point
is suf�ciently close to the solution Newton's method has a qu adratic order of
convergence.

Trust region method [47] The objective function V ˆ ��� • is approximated by a
simpler function which mimicks the behaviour of V in a neighbourhood of ��� .
This function is then minimized over this neighbourhood, th e trust region, and
if the objective function decreases the new value is accepted. Otherwise the
trust region is decreased. Originally the approximation co nsisted of the �rst
two terms of the Taylor expansion of V at ��� but for high-dimensional problems
this is still too expensive. In this case the trust region is r estricted to two di-
mensions [34]. This subspace is spanned by the gradient vector © V (Equation
(2.15)) and a direction of negative curvature given by d��� T

©

2V ˆ ��� • d��� @ 0 or the
Newton direction (Equation ( 2.16)). The aim of the �rst combination is global
convergence and of the second fast local convergence.

2.2.3.3 Gradient-based methods for least-squares

Gauss-Newton If the function to be minimized is a sum of squares - as is the
case when solving a least-squares problem - Newton's method is often replaced
by a modi�cation - the Gauss-Newton algorithm - in which the H essian is not
used. The gradient of VMLE ˆ ��� • � eT e is given by © VMLE � J T e, where the
JacobianJ ˆ ��� • �

@e
@��� ˆ ��� • is the so-called 'sensitivity" matrix of size N � m (cf.

Equation (2.19)).
To solve for the stationary point again linearization is use d which results in the
task to solve the normal equations

J T
ˆ ��� • J ˆ ��� • ���� � � J T

ˆ ��� • ê ��� • : (2.17)

Note that ���� is a descent direction because���� T
© VMLE � ���� T J T e � � ���� T J T J���� @

0. As in Newton this is an iterative process.
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Levenberg-Marquardt method [171] can be seen as Gauss-Newton with damp-
ing or as a combination of Gauss-Newton with steepest descent. The search
direction is de�ned by

‰ J T
ˆ ��� • J ˆ ��� • � �I m Ž ���� � � J T

ˆ ��� • ê ��� • ; (2.18)

where � C 0 is some constant and I m the identity matrix of size m. ���� is a
descent direction for all � A 0; for � large Equation (2.18) results in the steepest
descent method and for � small in the Gauss-Newton process. The �rst is a
good strategy in the initial stage of the process, the latter in the �nal stages. The
art of the Levenberg-Marquardt method is the design of the da mping factor �
(see, e.g., [33,165]).

2.2.4 Hybrid methods

Global methods in generally work well to explore the paramet er space but are
slow in �nding the minimum of the objective function precise ly (see, e.g. [78]).
In contrast, local methods are much faster in �nding a minimu m once in the
neighbourhood. Sequential application of both approaches combines the best of
the two. Such hybrid methods use a global search method to ide ntify promis-
ing regions of the search space that are further explored by a local optimizer.

Although hybrid methods are quite recent in the systems biol ogy world, these
methods have a long tradition in computational problems [28 1]. Katare et
al. [132,133] employ a Particle Swarm Optimization [136,137] combined with
Levenberg-Marquardt. However, their method appears to be s ensitive to the
"swarm topology" that de�nes the information transfer betw een the parameter
vectors. Combinations of local search with the Stochastic Ranking Evolution
Strategy [233] seem to be more promising. In [228], Rodriguez-Fernandez
et al. applied with good results SRES + DN2GB (Gauss-Newton + trust re-
gion for stabilization) on the three-step pathway benchmar k problem [184].
In [6, 78] a challenging reaction-diffusion system is consi dered describing the
early Drosophiladevelopment. This results in a model with 348 state vari-
ables and a 66-dimensional optimisation problem with (non) linear constraints.
Jaeger et al. [121] obtained previously the parameters for that model with
parallel simulated annealing. Fomekong Nanfack et al. [78] show that the hy-
brid method SRES+Nelder-Mead is approximately 50 times as f ast. The same
problem was solved with SRES+DS+LM [6] with a comparable spe ed up but
a better approximation of the local minima.

Another interesting approach is an intrinsic global-local method such as the
scatter-search method [154,228], an evolutionary algorithm with a local search
method after (each) recombination step. Since this method is expensive for
costly objective funtion evaluations SSKm (Scatter-search-Kriging) [66] has
been developed. Here the number of "local-search" points is reduced by pre-
dicting the possibility that a new parameter vector will res ult in a lower min-



2.3. MODEL ANALYSIS AND VALIDATION 33

imum without evaluation of the objective function, based on the assumption
that V has a Gaussian distribution (Kriging).

2.2.5 Constraints

For all optimization methods described above it holds that i t is the implemen-
tation that counts, i.e. one version of an optimization meth od with different
method parameters and strategy can result in a much better and faster conver-
gence behaviour (for some problems) than the next. This hold s even more for
the implementation of constraints. Constraints can be impl emented as penal-
ties added to the objective function. This is often done in gl obal and in di-
rect search methods. It implies that the constraints are not strictly obeyed, at
least during the search. In direct search methods linear constraints restrict the
search directions -the parameter space becomes a cone - and thus the chance
of failure increases (the search directions no longer span the search space). For
nonlinear constraints a number of approaches exists (see Kolda et al. [147]
for an overview of methods used in Generalized Set Search (GSS) methods). If
the constraints are differentiable, this direction can be u sed when computing
the new search direction. For GSS and gradient-based methods one can also
solve an augmented nonlinear system where a Lagrange multip lier with the
constraint is added and possibly other penalty terms [147,2 57].

2.3 Model analysis and validation

As stated previously, the �rst aim of gene regulatory networ k inference consists
in deriving the topology of a system. In our case, we focus on c omplex dynam-
ical system exhibiting spatial temporal pattern formation . Beside the topol-
ogy, the inference also aims at revealing the mechanistically details behind the
system's dynamic. The mathematical models used, are necessarily simpli�ed
description of the phenomena being studied. The limited rep resentation intro-
duces uncertainty in the model, which is increased by the unc ertainty inherited
from the measured data. Furthermore, most GRNs are inferred from stochastic
search algorithms. The stochastic nature of these algorithms imposes one to
run as many as possible optimization trials on the same set of data before any
deduction. From these many trials, different sets of parame ter solutions can be
obtained with reasonably good/low �tness.

In practice, most models based their correctness by visually comparing the sim-
ulated concentration of some molecular species with experi mental data. The
accumulation of the different sources of uncertainty impos es to further analyse
the estimated parameters and the network inferred. More obj ective validation
criteria are necessary to gain a certain level of con�dence i n the model's accu-
racy, the structural identi�ability, the reliability of th e parameters and overall
the robustness of the model [124].
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2.3.1 Identi�ability

Unlike the simple motivational examples above given in Sect ion 2.1.1, most bi-
ological problems have very complex form of cost function V for which solving
Equation 2.5analytically is impossible. The problem becomes harder for large-
scale optimisation problem, hence requires optimisation a pproaches. Most Pa-
rameter estimation methods are iterative algorithms that s tart from an initial
(random) parameter ��� and step by step improve the value to the closest possi-
ble true value ��� ‡ in order to minimise the cost function. The term "true value"
assumes that for a given system of the form input-output data , a set of param-
eter has to be identi�ed. It might not be possible to determin e the true value
of the parameter. Such a parameter is considered to be non-identi�able. The
identi�able problem of a model is of great importance. It bas ically answears
to one question: if one can not �nd the true parameters soluti on under ideal
conditions (noise-free observations, error-free model paradigm and indepen-
dently of the particular values of the parameters) , or if a mo del has more than
one solution (i.e. more than one set of parameter values that will provide an
identical �t to the data), then the physiological conclusio ns might be bias and
conclusions could be different from solution to solution. T herefore, the model
might not be relevant to prove anything about the biological system.
The sensitivity matrix J of the model is given by the sensitivity coef�cients of
the observables with respect to the parameters:

J � Œ

@gi ˆ ��� •

@pj
‘ : (2.19)

A parameter is globally identi�ableif it can be uniquely determined given the
input pro�le u ˆ t • and assuming continuous and error-free data for the observ-
ables of the model. If there is a countablenumber of solutions the parameter
is locally identi�able; it is unidenti�able if there exist uncountable manysolutions.
A model is structurally globally/locally identi�ableif all its parameters are glob-
ally/locally identi�able 3

2.3.1.1 a priori identi�ability

Before any further parameter estimation, once the model has been designed
and the data are available, one should ask: Given a model structure and an
experimental protocol (ideal data), do the data contain eno ugh information
to estimate the unknown parameters of the model? This is a theoretical ques-
tion and not an easy one in general as most biological phenomena dealing with
GRN describing a system dynamic in terms of mathematics mode l are very
complex, especially if it is described as a nonlinear dynami c model.

3Note that these de�nitions are not always the same. Other de� nitions are: A model is struc-
turally identi�able if its sensitivity matrix satis�es two conditions: each col umn has at least one large
entry and the matrix has full rank [124]. A model is locally identi�ableif it is globally identi�able in a
neigbourhoodof the parameter [228].
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There are several techniques to determine a priori global id enti�ability of the
model, but for realistic situations, i.e. non-linear model s of a certain size, it is
very dif�cult to obtain any results. Still it is advisable to always perform an
a priori analysis, since parameter estimation methods can have problems with
locally identi�able or unidenti�able systems. Symbolic al gebra packages like
Maple [88] and Mathematica [227] can be of great help.

For linear models the Laplace transformor transfer functionapproach can be ap-
plied. For nonlinear models the oldest method and most simpl e to understand
is the Taylor or power series expansion[209]. The observable function is ex-
panded in a Taylor series at a particular time point. The time derivatives are
evaluated in terms of the parameters resulting in a system of nonlinear equa-
tions for the parameters. If this system has a unique solutio n the model is
structurally identi�able. For simple examples using the La place transform (lin-
ear model) and Taylor series (Michaelis-Menten kinetics) w e refer to Godfrey
and Fitch [95]. Another classic method is the similarity transformationapproach
[276] (see also [71,205]). In [41] these two methods have been compared with-
out a decisive preference. Recently methods are developed that use differential
algebra techniques (see [8] and references therein).

2.3.1.2 a posteriori identi�ability

Although necessary, a priori structural identi�ability is obviously not suf�cient
to guarantee successful parameter estimation from real data, and this is when
the concept of a posteriori or practical identi�ability com es into play. One
still assumes that the model structure is exact, however, now data are sparse
and noisy and the question is: can the unknown parameters of t he postulated
model be uniquely estimated from the (possibly noisy and sca rce) available
data?

A posteriori Identi�ability is the logical step that follow s the model �tting. A
priori identi�ability guarantee the existence of not of a so lution, but it does not
guarantee successful parameter estimation from real data.The dif�culty in es-
timating the parameters in a quantitative mathematical mod el is not so much
how to compute them, but more how to assess the quality of the o btained pa-
rameters, since this does not only depend on how well the mode l describes
the phenomenon studied and on the existence of a unique set of parameters,
but also on whether the experimental data are suf�cient in number, suf�ciently
signi�cant and suf�ciently accurate. With respect to the �rst two requirements,
a suf�cient and signi�cant amount of data, it is clear that, w hatever method
one uses to �t a model with experimental data: to estimate m unknown pa-
rameters one needs at leastm experimental values. On the other hand, it is
not necessary to have experimental data for all state variables involved in the
model at all possible time points, often only a few measureme nts for the right
observable at signi�cant times are needed.The last question, suf�ciently accu-
rate data, is related to the fact that measurement errors imp ly that we do not
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have precise data points to �t our model with, but that each po int represents a
whole cloud of possible data values, implying that also the i nferred parameters
are not point-values but are contained in a cloud. Depending on the model the
cloud of possible parameter values varies in size and shape and can be much
larger than the original uncertainty in the data. Summarisi ng, the questions
addressed by the a posteriori identi�ability are:

• How good is the precision of the parameter estimates?

• Can the model parameters be estimated from the data with acc eptable
statistical precision?

• Does the model predict the data in an acceptable way? The goodness-of-
�t must be acceptable

• How good is the precision of the parameter estimates?

2.3.2 Sensitivity/Uncertainty analysis

Once parameter estimates are obtained by means of optimization, it is impor-
tant to address the precision of those parameters, since in general, the opti-
mization yields large parameter uncertainties [124,175]. Analyzing the effects
of parameter uncertainty on results is a primordial step in m odelling, espe-
cially for high dimensional complex models. Beside learnin g the level of con-
�dence in parameter estimates, uncertainty analysis is use ful to discriminate
between competitive models. It provides insight into the va rious source of
uncertainty that are important or not with respect to a given response. Differ-
ent methods can be employed to address the uncertainty analysis of parameter
estimates such as sensitivity testing, analytical methods, sampling based meth-
ods and computer algebra based methods. Sensitivity testing aims at studying
model response or robustness with respect to change within t he model struc-
tural formation or parameter variation.
The con�dence interval (CI) gives a realistic measure of the precision of the
parameters. Fundamental for making predictions is the assessment of uncer-
tainties; if the con�dence interval on a prediction is too la rge, the prediction
cannot be used for model validation [40]. Beside linear mode l for which it ex-
ists theoretical exact methods to evaluate con�dence inter vals, in most cases,
approximation methods are used [228].

2.4 Discussion

The aim of this chapter was to give a comprehensive survey of p arameter esti-
mation, i.e., to discuss both the methods to �t the parameter s of a mathematical
model to experimental data and to analyze the results. A rece nt review paper
of van Riel [279] discusses these subjects more from the perspective of systems
biology but less extensively.
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An optimal use of the methods, especially of the global ones, is problem -
dependent and, in practice, convergence to the minimum is no t guaranteed.
Global methods are often used with a computational time limi t toprevent an
endless search and local methods can get stuck in a local minimum. In gen-
eral, a good initial guess e.g. from experiments will not be a vailable for all
parameters, ruling out the option of using only local search methods. A good
strategy is often to use global search methods to �nd various "promising" ar-
eas in the parameter space. Once in these areas, local searchmethods converge
much faster to the minimum (see, e.g. [6,78,228,281] and Section 2.2.4). Since
global methods explore the complete "�tness landscape" it i s also possible to
�nd multiple parameter vectors that satisfy the experiment al data.

In Section 2.2.2we compared several algorithms for global search. Simulated
Annealing and Branch and Bound have a proper convergence theory. The dis-
advantage of B&B is that it can only be applied if it is possibl e to compute lower
and upper bounds for the objective function. SA is generally applicable, but
the theoretical convergence is in practice not much worth si nce it is critically
dependent on the cooling-down schedule. At each temperatur e the inner-loop
(Metropolis) needs to be iterated long enough to explore the regions of search
space. However, the balance between the maximum step size and the number
of Monte Carlo steps is often dif�cult to achieve, and depend s very much on
the characteristics of the search space or energy landscape. SA is computation-
ally very expensive and is not easily paralellizable.

Evolutionary algorithms consistently perform well for all types of problems
and are well-suited to solve problems with a truly large sear ch space. The criti-
cal factor to escape local minima is the cross-over operator that allows each in-
dividual to explore other possibilities by means of informa tion transfer [149].
The critical factor for fast convergence is the selection operator. Premature
convergence occurs if an individual that is more �t than most of its competi-
tors emerges too early, it may reproduce so abundantly that i t drives down
the population's diversity too soon. This will lead the algo rithm to converge
to the local optimum of that speci�c individual rather than s earching the �t-
ness landscape thoroughly enough to �nd the global optimum [ 81]. For a
proper behavior the population size should be suf�ciently l arge which means
that the method is expensive if the computation of the object ive function is not
extremely cheap. Fortunately, EA is intrinsically paralle l. Multiple individuals
can explore the search space in different directions. In contrast to SA, EA can
be implemented as a self-tuning method, the most successful example is SRES
[233]. For most problems an evolutionary algorithm, like SR ES, is robust and
easy to use.

The local search methods are introduced in Section 2.2.3. Direct-search meth-
ods are generally applicable, but they are less ef�cient esp ecially for high-
dimensional problems. If possible, i.e., if the problem is s mooth we recom-
mend to use Newton or trusted region and for a least-squares � t Levenberg-
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Marquardt. In non-smooth problems the objective function i s discontinuous
or has a discontinuous derivative, e.g., because the mathematical model con-
tains step-functions, absolute values, if-then-else constructions, etc. In this case
gradient-based methods can not be applied. The Hooke-Jeeves method, or
more generally, the generating set search methods are reliable but slow. The
Nelder-Mead simplex method is in most cases ef�cient, but it can fail unpre-
dictably [173].

Normally, the methods described here are used as single shootingmethods,
meaning that the integration path leading to the observable function value in
the objective function is determined by the initial conditi ons for the state vari-
ables. Especially, if these initial conditions depend on pa rameters this can lead
to the wrong minimum. To avoid this, one can use the multiple shootingap-
proach [271] where the time interval is partitioned and new i nitial conditions
are used at the start of each part of the interval. To connect the integration paths
smoothly an augmented system has to be solved. Here the optimal method
choice is dependent on the objective funtion and on the DAE sy stem. For a
least-squares �t and smooth problems we recommend Levenber g-Marquardt.
If the (derivative of) the objective funtion is discontinuo us a direct method like
Nelder-Mead should be used. If the initial conditions of the DAEs depend also
on the parameters and the solution of the DAE system depends strongly on
the initial conditions, the multiple shooting strategy cou ld be advantageous.
A promising, but not yet fully tested strategy is the intrins ic global-local ap-
proach implemented in SSKm (cf. Section 2.2.4). Most important: for all opti-
mization algorithms it is the implementation that counts, e specially if the pa-
rameter space is restricted by constraints (see also Section 2.2.5).

Finally, �nding a parameter vector is only half the job. It is important to study
how robust against perturbations the parameters are. If the objective function
is the Maxium Likelihood estimator ( 2.4), the analysis method described in
Section2.3.1.2can be applied. Otherwise one can use a repeated �tting strat egy
[109] to study the �tness landscape.



3
Hybrid ( �; � )-evolution strategy

and Direct Search 1

In the previous chapter, we have discussed general aspects of parameter es-
timation including different methodologies and their issu es. Undeniably, a
need for ef�cient methods for model calibration of complex d ynamical biolog-
ical systems, and particularly models of pattern formation is necessary. In this
method chapter, we present an ef�cient approach to estimate unknown param-
eters in nonlinear dynamic multi-dimensional models of pat tern formation.

The method presented here combine a global search based on evolutionary
strategy (ES) followed by a local search. Our choice is inspired by [175, 184]
where the authors compared different global optimisation s trategies and sug-
gested that the modern evolution strategy is the most compet itive and the only
one capable of �nding the true minimum in the parameter estim ation of bio-
chemical networks. Their study focuses on the inverse probl em of a benchmark
model of a three-step pathway with 36 unknown parameters. Ou r contribution
extends the applicability of ES to higher multi-dimensiona l non-linear model
of genetic regulatory network that have been so far inferred using simulated
annealing strategies. Our primarily motivation is to reduc e the computational
effort of the previous used method in similar problems. Seco nd, if the com-
putational time is reduced, our goal is to obtain more result s in order to have
more depth analysis of the in-silico GRNs.

1This chapter is partially based on the paper:
Yves Fomekong-Nanfack and Jaap A. Kaandorp and Joke Blom, "Ef�cient parameter estimation
for spatio-temporal models of pattern formation: Case stud y of Drosophila melanogaster", Bioinfor-
matics, 23(24): 3356 - 3363, 2007. [78]

39



40 CHAPTER 3. HYBRID (�; � )-ES

Section 3.1 describes the basic ES and the stochastic ranking ES. Section 3.2
presents an island-ES. The local search is presented in section 3.3.

3.1 (�; � )-evolution strategy

Evolution strategy is an Evolutionary Algorithm (EA) that b elongs to the class
of algorithms presented in section 2.2.2.2. Like all EAs methods such as Ge-
netic Algorithm (GA) or Evolutionary Programming (EP), it i s a stochastic it-
erative algorithm that operates on some encoded individual s from an initial
population. Historically, GA became popular for discrete, combinatorial search
after Holland's book "Adaptation in Natural and Arti�cial S ystems" in 1975
[110]. EP, �rst introduced by L.J. Fogel [77] is used for cont inuous parame-
ter optimisation. The origin of ES is from the early 1960s by I ngo Rechenberg
[219] and popularised by Hans-Paul Schwefel [244]. It was conceived as a set
of rules for the automatic design and analysis of consecutiv e experiments with
stepwise variable adjustments driving a suitably �exible o bject/system into its
optimal state under noisy and multimodal conditions [21]. L ater on, ES was
not only applied to discrete problems but also to continuous decision variables.

ES, like most EAs consists of three main operators: crossover, mutation and
selection. The �rst two are exploration operators of the sea rch space, while the
last one lets the population evolve towards the optima of a pr oblem. The per-
formance of ES critically depends on the adjustment of the in ternal parameters,
with a main dependence on the mutation strength. One of the ma in advantages
of ES compared to standard EAs is the usage of strategic parameters such as
on-the-�y adaptation of the mutation parameters. Many diff erent specialised
version of ES exist, but the two most popular and successful setting of ES are:

1. ˆ � � � • � ES. In a population of � individuals, � � � new offsprings are
created at each generation. To keep the population size constant, only the
best between the parents and the children are kept.

2. ˆ �; � • � ES. Only the best � out of the � parents are chosen to create a
new population.

The symbol � designates the number of parents chosen in a population to be
the genitors and the symbol � represents the number of offsprings created by
these parents. In both algorithms, � offspring individuals are generated from �
parents. The difference lies only in the fact that in the Òplu sÓ strategy, � par-
ents for the next generation are selected from a combination of the � parent and
� offspring individuals of this generation, whereas in the Òc ommaÓ strategy,
� parents for the next generation are selected from the � offspring individuals
in this generation only.

In this study we use a modi�ed ˆ �; � • -ES, based on stochastic �tness ranking.
This method is simple and has proven to be more ef�cient than m ost EAs and
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ESs for large parameter estimation problems [233, 234]. A more rigorous de-
scription of the ˆ �; � • -ES is as follows:

ˆ �; � • � ES � ˆ P; � ; � ; sel; rec ; mut ; � ; V; G; t • (3.1)

where:

• P � ˆ I 1; :::I � • > I � . I j is an individual described in Equation 3.2

• � > N is the number of parents selected at each generation

• � > N is the population size and the number of offsprings ( � A � )

• sel � I �
Ð � I � is the selection operator

• rec � I3
Ð � I is the recombination operator

• mut � I Ð � I is the mutation operator

• � > R�
� RN is the step size meta-control

• V � RN
Ð � R is the objective function

• G � RN:q
Ð � Rq is the constraint function with q the number of constraints

• t � I �
Ð � ˜ 0; 1• is the termination criterion

Each individual is a representation of the parameter vector plus a set of en-
dogenous parameter:

I j � � ˆ � j ; � j ; Vj ; Gj • ; ¦ j > ˜ 1; :::� • (3.2)

where � j � � ˆ � 1
j ; :::� N

j • is the parameter set vector and � j � � ˆ � 1
j ; :::� N

j • the en-
dogenous strategy parameter vector associated to each parameter of each in-
dividual. n is the problem dimension. Vj is the objective function and Gj is
the penalty function. The parameter vector � is used to control statistical prop-
erty during the evolution of the algorithm. Initialisation consist in generating
randomly � number of individuals. Each individual is generated accord ing to
a uniform N -dimensional probability distribution over the search spa ce. The
following paragraphs describe the different main operator s.

3.1.1 Selection by Stochastic Ranking

In section 2.2.5of Chapter 2, we have discussed the issues of constraints in
optimisation problem. In most cases, constraints are de�ne d as a strict space
boundary on the parameters such as: � i > � � l

i ; � u
i � where � l

i and � u
i are respec-

tively the lower and upper bound. It is also common that besid e parame-
ter restriction, additional constraints are imposed on the minimisation of the
function V . These constraints can be de�ned by simplicity as penalty fu nction
method and need to be handle in the optimisation algorithm. I nclusion of the



42 CHAPTER 3. HYBRID (�; � )-ES

penalty tends to transform the constraint optimisation to a n unconstraint one.
The reformulation of the objective function given in Equati on 2.4is :

V ˆ x; ��� • � VMLE ˆ ��� • � w0

m

Q

j � 1
wj ˆ g�

j ˆ ��� ••

�

� VMLE ˆ ��� • � w0G ˆ g�

ˆ ��� •• (3.3)

where G ˆ g�

ˆ ��� •• is the total penalty function. Each function gj is a penalty ex-
pressing a particular constraint with a given weight wi and � exponent. The
weight w0 is the coef�cient that gives the importance of the overall co nstraint.
However, it is in practice very dif�cult to �nd the optimal va lue of the weight,
especially for w0. It is necessary to �nd an ef�cient manner to balance between
the objective function VMLE ˆ ��� • and the constraints violation. To avoid the set-
ting of the weight penalty parameters in Equation 3.3 , Runrasson and Yao
[233] suggested to handle the penalty functions as multiobj ective optimisa-
tion where the constraints are treated as additional optimi sation function. The
strength of this approach is to neither consider under- nor o ver-penalisation
but a well balance method to preserve individuals that might break the con-
straints (being in an infeasible region of the search space)but have a good ob-
jective.

Let P f be the probability of using only the objective function VMLE ˆ ��� • for com-
parisons of ranking in the infeasible regions of the search space. Given two ad-
jacent individuals among the � 's, if both individuals are feasible the probability
of comparing them according to their objective function if i t is 1, otherwise it
is P f . The total population is ranked using a bubble-sort Algorit hm where the
conditional swap between two adjacent individuals depends on the previous
mentioned probability. The following algorithm describes the stochastic rank-
ing procedure.
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Algorithm 1 Bubble sort with stochastic ranking

1: I j ¦ j > ˜ 1; :::; j •

2: for i 1 to N do
3: for j � 1 to � � 1 do
4: random number u > U ˆ 0; 1•

5: if G ˆ I j • � G ˆ I j � 1 • � 0 or ˆ u @ P f • then
6: if VMLE ˆ I j • A VMLE ˆ I j � 1 • then
7: swap ˆ I j ; I j � 1 •

8: else if G ˆ I j • A G ˆ I j � 1 • then
9: swap ˆ I j ; I j � 1 •

10: end if
11: end if
12: end for
13: IF no swap done break.
14: end for

where I j is the j th individual of the population and u is a uniform random
number. The choice of P f determines the strength of the penalisation. Weak
probability criteria; P f � 0 implied stronger penalisation while strong proba-
bility threshold P f � 1 reduces the in�uence of the penalisation. Intuitively
one will set P f �

1
2 for an equal chance of comparison based on the objective or

the penalty. It was shown that P f @

1
2 to achieve better results [233].

3.1.2 Recombination

Also named crossover, recombination is the primary explora tion mechanism in
most GAs. We use a global intermediate recombination descri bed in Equation
3.4

� œ

i � r ˆ � o; � c; � i � 1 • � � i �  ˆ � o � � i � 1 • (3.4)

where � i is the parameter vector of an individual i , individual o is the highest
ranked individual (the �ttest), and  is the recombination factor. In this way a
number of � new individuals is created from the � offspring. The individuals c
are chosen among the best� offspring obtained after a stochastic ranking [233].
The rest of the new population is �lled with the (unchanged) � best individuals
(repeatedly).

3.1.3 Mutation and Self-Adaptation

After the cross-over, mutation is applied to the � � � individuals. Mutation is
the primary source for individual variation through the evo lution. An ef�cient
ES requires a good setting of the mutation coef�cient � . It was shown that it is
possible to improve the convergence rate by using a variable mutation strength
� instead of a constant. However the mutation coef�cient � should evolve in
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a very ef�cient way. It is important to de�ne the mutation str ength properly.
As discussed in the previous chapter, the mutation operator is usually a basic
variation operator in ES although the design of a mutation op erator is problem
dependent. By analyzing implementation details of various ES, Beyer et al.
[20] proposed some rules to design an ef�cient mutation meth odology:

1. reachability: to ensure that starting from a parent, any c hild can be reached
in a �nite number of mutation steps or generation.

2. unbiasedness: use selection and variation respectively to 1) exploit the
�tness information in order to guide the search into promisi ng search
space, 2) explore the search space. The variation operationshould not
introduce any bias.

3. scalability: the mutation strength or the average length of the mutation
step should be tunable in order to adapt the properties of the �tness land-
scape. The scalability should guarantee evolvability of th e ES.

These theoretical considerations can be observed when minimizing an objec-
tive function of a sphere model using a simple ˆ 1 � 1• � ES with isotropic
Gaussian mutations with constant mutation strength � � 1:0. In this test case
shown by Beyer et al. [20], after a period of good performance the ES loses
its evolvability and starts to stagnates as shown in Fig. 3.1. At each iteration,
only one parent is selected to generate the next offspring. The progress rate
' and the success probability Ps both depend on the mutation coef�cient, but
also the mutation strength � . Theoretical and computational results obtained
by Rechenberg et al. [218] and Beyer et al. [20] suggested a compromise suc-
cess probability of Ps � 0:2 leading to the 1~ 5th-rule:

"in order to obtain nearly optimal (local) performance of the (1+1)-ES in real-valued
search spaces, tune the mutation strength in such a way that the (measured) success
rate is about1~ 5" .
This rule is restricted to the (1+1)-ES but can be extended to a more general
self-adaptation ES. In a self-adaptative ES, the mutated strategy parameters
are used to control the mutation coef�cient � applied to the individual's object
parameters. The strategy parameter� controls the strength of the object param-
eters by tuning the search distribution so that maximal prog ress is maintained
(mutations become smaller as the search progresses). Sincethe strategy param-
eters are endogenous, it is important to carefully control t heir evolution. Let
us consider the adaptation of a single mutation strength par ameter � . The �rst
step consists in the initialisation of the strategy paramet er � . If we assume that
�� is an estimation of the expected distance to the global minim a, according to
[246], the initial step-size is given by:

� 0
j � �� j ~

º

N � ˆ � u
j � � l

j •~

º

N (3.5)

with j > ˜ 1; ::N • , N being the number of parameters to estimate. The strategy
parameter � represents the standard deviation of the mutation distribu tion.
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Figure 3.1: A simple (1+1)-ES based on isotropic Gaussian mutations wit h constant
mutation strength � � 1:0is used to minimize a sphere model. At each iteration, only
one parent is selected to generate the next offspring. A quick convergence is observed
the �rst 250 steps. After, the ES shows very little improveme nt of the �tness and starts
to stagnate.

This initial value is used as upper bound on � . The next step is the mutation
of the strategy parameter. The successive mutations should decrease� until
a certain � sigma � 0. Lets consider the spherical model taken as an example
above with one mutation strategy parameter. If we assume tha t there exits an
optimal �̂ , due to the symmetry of the sphere, �̂ depends only on the parental
distance rp to the optimum at a given state p. The state space and the muta-
tion are scaled by a constant factor, both �̂ and rp are scaled in the same way
implying that: �̂ ~ rp � const (under stationary conditions, i.e., self-adaptation is
working properly). If we consider two consecutive generati ons, it follows:

�̂ ˆ g •

~ r ˆ g •

� �̂ ˆ g � 1 •

~ r ˆ g � 1 •

� �̂ ˆ g � 1 •

� �̂ ˆ g •

r ˆ g � 1 •

r ˆ g •

(3.6)

where g is the current generation. The expected relative rate change should be
constant. r and � should be changed by a constant factor using a log-normal
rule:

~� j � � � exp̂ � N ˆ 0; 1•• (3.7)

where � is an exogenous parameter called the learning rate and N ˆ 0; 1• a ran-
dom number derived from a normal distribution [245]. The lea rning rate �
has been theoretically and empirically investigated by Sch wefel et al. [245]
and they suggested that:

� � 1~

º

N (3.8)
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This holds for problems with very smooth �tness landscape. H owever, for
highly multimodal Þtness landscapes, it is suggested to use smaller learning
rates such as:

� � 1~

º

2N (3.9)

The mutation rule given in Equation 3.7is de�ned for the case where only one
mutation parameter strategy is used. This log-normal rule c an be extended to
the case where each parameter has its own strategy parameter. In this case,
the strategy parameters are given in a vector � � ˆ � 1; ::::::� N • and follow an
extended log-normal rule given as:

~� � � exp̂ � 0 N 0 ˆ 0; 1•• :‰ � 1 exp̂ � N 1 ˆ 0; 1•• ; :::::::; � N exp̂ � N N ˆ 0; 1••
Ž (3.10)

This mutation strategy extends the previous one given in Equ ation 3.7by de�n-
ing a general mutative multiplier with learning rate � 0 and coordinate-wise
mutations with learning parameter � . Each component of the vector � is mu-
tated independently as given in Equation 3.10and the whole vector is muta-
tively scaled by random factor exp̂ � 0 N 0 ˆ 0; 1•• . Since each parameter for each
individual has its own mutation strategy, it can be read as:

� œ

i;j � � i;j exp ˆ � 0 N ˆ 0; 1• � � N j ˆ 0; 1•• (3.11)

N ˆ 0; 1• is a normally distributed uniformly random variable and N j ˆ 0; 1• a
new random variable generated for each parameter j . Subscript i is the indi-

vidual index. � � 1~

»

2
º

N is the coordinate-wise learning rate of the parame-
ters and � 0 � 1~

º

2n the overall learning rate [246,247].

Then, the parameters are mutated according to:

� œ

i;j � � i;j � � œ

i;j N j ˆ 0; 1• (3.12)

Equation 3.11introduces noise on � by means of random �uctuations. Con-
sequently, the performance of the ES is degraded and although it is impossible
to achieve the theoretical maximal progress rate, any reduction of the random
�uctuations will be a major improvement [20]. Ostermeier et al. [200] have
proposed to reduce random �uctuations by recombining or ave raging the strat-
egy parameters. One limitation of this approach is to use str ategy parameters
of an other individual especially if this individual is loca ted in another region
of the search space (typically in Pareto based method). Runrasson [232] offered
an alternative method to reduce random �uctuations without averaging over
the population, but instead " takes an exponential recency-weighted average of trial
step sizes sampled via the lineage instead of the population" [234]. Simply speaking,
an exponential smoothing is applied to the strategy paramet er as follow:

� œ

i;j � � k;j; � � ˆ � œ

i;j � � k;i • (3.13)
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with k � i mod � is the index of the strategy parameter of the same lineage.
The coef�cient � which was intended to be use as classic mutation coef�cient
for the parameters � is instead used as the smoothing factor.

3.1.4 Pseudo-code

The following pseudo-code summarises the different steps o f the ˆ �; � • -ES dis-
cussed above.

Algorithm 2 ˆ �; � • -ES

1: INITIALIZATION: � œ

i;j � ˆ � j � � j •~

»

ˆ n • ; � œ

i;j � ˆ � j � � j • U j ˆ 0; 1•

2: while termination criteria not met do
3: SCORE: evaluate each individual objective function: VMLE ˆ � œ

i • and
penalty: G ˆ � œ

i •

4: RANKING: sort individuals based on a stochastic ranking.
5: SELECTION: select the� best individuals out of � offspring as parents

for the next generation.
6: COPY� individuals � ~ � times ˜ˆ � 1; � 1 • ; ::::; ˆ � � :� � ••

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¸ ¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¶

; :::; ˜ˆ � 1; � 1 • ; ::::; ˆ � � :� � ••

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¸ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¹¹¹ ¹¹ ¶

7: for k � 1 to � do
8: � � mod ˆ k � 1; � • � 1
9: if ˆ k @ � • then

10: recombination
11: � œ

k;j � � k;j

12: � œ

k;j � � k;j �  ˆ � 1;j � � k � 1;j •

13: else
14: non-isotropic mutation
15: � œ

k;j � � i;j exp ˆ � œ N ˆ 0; 1• � �N j ˆ 0; 1••

16: � œ

k;j � � i;j � � œ

k;j N j ˆ 0; 1•

17: � œ

k;j � � i;j; � � ˆ � œ

k;j � � k;i •

18: end if
19: end for
20: end while

3.2 Island (�; � )-evolution strategy

Implicitly, EAs are inherently parallel. A natural process would assume par-
allel evolution of the individuals, where all the mechanism s or operators such
as recombination or mutation would append asynchronously. This parallel
description of the algorithm requires a a �ne-grained massi vely parallel com-
puter [288] where, the ideal situation would consist in only one individual per
processor. However, due to physical limitation, this appro ach is not frequently
used. The two main alternatives are the global single-popul ation master-slave
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EAs and the multipopulation coarse-grained EAs [35]. In the master-slave
EA has one single population residing on the master processor where common
operations are performed (selection and re-population). O nly the �tness as-
signment is distributed among the slave processors. In the m uliple-population
EAs, the population is divided into sub-population based on the number of
available processors. Each processor runs independently asequential EA on its
own sub-population. After an isolation period, the sub-pop ulations exchange
individuals.

Comparisons of the single-population GA and multipopulati on GA suggested
that the multipopulation has several advantages over the ot her one and leads
to better results, using the same number of individuals [35, 162, 164, 187]. We
have therefore use this approach to implement an island-based ˆ �; � • -ES where
each sub-population evolves independently as described in Section 3.1.4. The
three basic and important features of an island-ES are:

1. how often do the islands exchange individuals?

2. how many individuals are exchanged?

3. how do the island exchange their individuals?

The island-ES is de�ned as follow:

ˆ �; � • � ILES � ˆˆ � œ ; � ~ np • � ES; np; � ; � ; S; • (3.14)

where:

• ˆ � œ ; � ~ np • � ES is a independent ES de�ned in Equation 3.1.

• np is the number of sub-population

• � is the migration interval

• � is the migration rate

• S structure of the migration (or connection between island )

Initialising each island independently ensures a diverse s et of individuals cov-
ering a large part of the parameter search space. After the isolation time (or
migration interval � ), a number of individuals is exchanged among the sub-
populations by a procedure called migration. The migration interval should
not be too small or neither too large since the method would al most be re-
duced to a single-population EA in the �rst case, or to comple tely independent
EA in the second case. The number of exchanged individuals (migration rate
� ) can be selected randomly or �tness-based. The migration to pology deter-
mines how do they island exchange individuals. Among many ap proaches,
the most common schemes are complete net structure and ring topology.
The migration operation spreads the best individuals over s ub-populations.
An elitist migration is applied where only the best individu al of each island is
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migrate and replace the worst of the target island. This elit ist migration ensures
that the new individual inserted in a subpopulation can allo w the population
to escape local minima if trapped in one with a high value of th e cost-function.
Also, migration allows to maintain diversity in the sub-pop ulations [99, 286].
We use a complete net structure [164] with random assignment . At each migra-
tion, an individual from a population can migrate to any othe r subpopulation.
Fig. 3.2illustrates the migration scheme used for the rest of our wor k.

Figure 3.2: Fitness-based complete-migration topology with 4 islands . Each colour
represents an island. The little squares represent individ uals, where "b" stand for indi-
vidual with the best �tness and " w" for the one with the worst �tness. A) the arrows
between indicate the migration topology. B) islands after t he migration. The worst in
each island has been replaced with the best coming from the mi grating island.

It has been shown [35,187] that an island evolution algorith m can qualitatively
outperform a serial EA. The focus is not on the performance in terms of com-
putational time of a parallel version of ES, but on its effect iveness in terms of
the quality of the solution. In the current work, we did not co nsider a paral-
lel implementation of the ES, but a mimetic multipopulation based ES run in
sequential. The island-ES used here is run on a single processor, working as a
regional model.
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3.3 Local Search

Global search is often used for parameter estimation proble ms where no in-
formation on parameters is available. Although it has prove n to be ef�cient in
many problems to identify promising regions, a slow converg ence when reach-
ing the global minima is always observed. Combining a global search with a
local optimizer to identify the minimum speeds up convergen ce. The hybrid
approach used is inspired from Katare et al. [132] where the a uthors have suc-
cessfully used a hybrid genetic algorithm to estimate param eters of small (5
parameters) and large (31 parameters) kinetic model of prop ane aromatisation
on a zeolite. Also, Gursky et al. [102] used a local search to re�ne the parame-
ters obtained after a global search by simulated annealing.

There are a large variety of local search techniques. Most local optimizer tech-
niques such as Powell's method, the quasi-Newton methods or Levenberg-
Marquardt (see Section 2.2.3) are based on the gradient descent approach and
thus require the derivative of the objective function f ˆ � • . If analytic expres-
sions are not available for the derivative, a �nite-differe nce approximation of
the gradient of f ˆ � • can be used. In many situations, computing the objective
function f ˆ � • can be expensive and numerical approximation of the gradien t
of f ˆ � • is thus too costly. Furthermore, biological data can be nois y, making the
use of the gradient dif�cult if not impossible. In these case s, Newton-like local
optimizers become inappropriate. A good alternative is a di rect search method
(see Section 2.2.3.1). Direct search such as generating set search [147, 160],
pattern search [111] or Downhill simplex [194] are suitable to solve a vari-
ety of optimisation problems that are not well suited for sta ndard optimisation
algorithms, including problems in which the objective func tion is discontinu-
ous, non-differentiable, stochastic, or highly nonlinear . In this study we use
the Downhill simplex (DS) as local search strategy. DS assumes that the ini-
tial starting point (simplex) is around a local minimum. Sim plex-based direct
search methods are based on a comparison of the cost-function values at the
vertices of a simplex that is updated by the algorithm steps. (A simplex is the
geometrical �gure consisting, in N dimensions, of N � 1 points (or vertices)
and all their interconnecting line segments, polygonal fac es, etc., giving in 2D
a triangle and in 3D a tetrahedron.)

3.4 Conclusions

In this chapter, we have presented the parameter estimation method devel-
oped for the purpose of our gene regulatory network inferenc e. The choice of
an hybrid approach in many respects is motivated by previous work such as
the one by Voogd et al. [281]. Out of all the global search methods, we have
chosen an evolutionary strategy based on stochastic ranking strategy which
was reported to be one of the more ef�cient global stochastic search algorithm.
This type of algorithm has proven superiority over algorith ms like simulated
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annealing which indicate that evolution strategies might b e the most competi-
tive stochastic optimization method, especially for large problems and nonlin-
ear dynamic systems [220]. Most of the biological problems w here stochastic
global optimization methods are compared deal with problem with relative
low unknown parameters. In the next chapter, we will present a known bio-
logical problem for which simulated annealing have been use d to infer a GRN
with 62 unknown parameters. We will use the hybrid method pre sented in this
chapter to infer the same system of GRN, followed by a compari son and details
analysis of our results.
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Inference of the Gap gene 1

4.1 Segmentation in Drosophila melanogaster

Drosophila melanogasteris a little diptera insect that belongs to the fruit �ies
family. It quickly became one of the main model organisms in b iological re-
search, after pioneering works on genetic by Thomas Hunt Mor gan. Drosophila
melanogastersmall size, minimal nutritional requirement and short life cycle
(approximatively two weeks) makes it an ideal organism to wo rk with. Since
1998, its complete genome has been sequenced and the presence of occasional
variants in natural population with easily recognisable di stinct features makes
Drosophila melanogasterexceptionally suitable to investigate theories and ap-
plied problems in developmental genetics. Its importance f or human health
was recognized by the award of the Nobel prize in medicine and physiol-
ogy to Edward B. Lewis, Christiane Nüsslein-Volhard and Eri c Wieschaus in
1995 [197,198].

Most of our actual knowledge regarding the anterior-poster ior body plan de-
velopment of organisms is provided from genetic analysis of a series of mu-
tations occurring in three classes of genes in Drosophila melanogaster: maternal
genes, segmentation genes and homeotic genes [196]. These three classes of
genes are responsible for the cellular specialisation of the developmental em-
bryo. The entire process is mainly conducted in four steps: m aternal position,
gap domains formation, pair-rule domains formation and �na lly the stable
boundary or segment polarity. At each step, a basic regulato ry mechanism is

1This chapter is partially based on the paper:
Yves Fomekong-Nanfack and Jaap A. Kaandorp and Joke Blom, "Ef�cient parameter estimation
for spatio-temporal models of pattern formation: Case stud y of Drosophila melanogaster", Bioin-
formatics, 23(24): 3356 - 3363, 2007. [78]

55
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Figure 4.1: Eight Hox genes regulate the identity of regions in the adult (top) and em-
bryo (bottom). The Hox genes are activated by the pair-rule g enes but a subset of gap
genes also in�uences directly the Hox genes. Picture taken f rom S.B. Carrol [38]

controlling the establishment of spatial expression genes also referred as "pat-
tern formation" [52]. The compete development of the embryo is a cascade
of successive segmentation. The body plan ofDrosophila melanogaster, contains
14 segments as shown in Fig.4.1, along the anterior-posterior axis, of which
three establish the head (including its antennae and mouth) . The next three
segments constitute the thorax. Each of the thorax 'segments will make up a
set of legs. Finally, the last eight segments will establish the abdominal.

4.1.1 Early segmentation of the anterior-posterior body fo rma-
tion

Contrarily to most organisms, the early Drosophila melanogasterembryo is not
constituted of many cells, but instead, it is a single syncyt ium comprising a
mass of cytoplasm and multiple nuclei (see Fig. 4.2) structure persists until
successive rounds of nuclear division have produced some 1500 nuclei: only
then do individual uninucleate cells start to appear around the outside of the
syncytium, producing the structure called the blastoderm. Before the blasto-
derm stage has been reached, the positional information operated by maternal
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Figure 4.2: Early development of the Drosophila melanogasterembryo. At the early stage,
the embryo is a single syncytium containing a gradually incr easing number of nuclei.
These nuclei migrate to the periphery of the embryo after abo ut 2 hours, and within
another 30 minutes cells begin to be constructed. The embryo is approximately 500 �m
in length and 170 �m in diameter. Picture taken from A.T. Brown [31]

genes has begun to be established.

Step 1: Positional information by maternal genes Maternal genes determine
the embryo's polarity. Initially the positional informati on that the embryo
needs is a de�nition of which end is the front (anterior) and w hich the back
(posterior), as well as similar information relating to up ( dorsal) and down
(ventral). This information is provided by concentration g radients of proteins
that become established in the syncytium. The bulk of these p roteins are not
synthesized from genes in the embryo, but are translated fro m mRNAs injected
into the embryo by the mother. There is four proteins or so cal led maternal-
gene, involved in determining the A-P axis. These four prote ins are:

• Bicoid (Bcd)

• Caudal (Cad)
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Figure 4.3: Maternal genes along the A-P axis. Picture taken from S.B. Carrol [38]

• Hunchback (Hb)

• Nanos (Nos)

bicoid(bcd) is transcribed in the maternal nurse cells, which are in con tact with
the egg cells, and the mRNA is injected into the anterior end o f the unfertilized
egg [64]. This position is de�ned by the orientation of the eg g cell in the egg
chamber. The bicoid mRNA remains in the anterior region of th e egg cell, at-
tached by its untranslated region to the cell's cytoskeleto n. Bicoid protein then
diffuses through the syncytium, setting up a concentration gradient, highest at
the anterior end and lowest at the posterior end. The nanos mR NA is trans-
ported to the posterior part of the egg and attached to the cyt oskeleton while it
awaits translation. Hb and cadmRNAs become distributed evenly through the
cytoplasm, but their proteins subsequently form gradients through the action
of Bcd and Nos. The genetic regulation is described as follow :

• bcdactivates the maternal hunchback gene in the embryonic nucl ei and
represses translation of the maternal caudal mRNA, increasing the con-
centration of the Hunchback protein in the anterior region a nd decreasing
that of Caudal [229].

• Nanos represses translation of hunchback mRNA, contribut ing further to
the anterior-posterior gradient of the Hunchback protein [ 86].

cadis both a maternal and zygotic gene, as well as hb [268]. The net result
is a gradient of Bcd and Hb, greater at the anterior end, and of Nos and Cad,
greater at the posterior end (see Fig.4.3). In addition, two other genes control
the terminal system of the embryo, tailles,(tll) and huckebin ,(hkb)[39,223].

Gap gene The gradients established in the embryo by the maternal-eff ect
gene products are the �rst stage in formation of the segmenta tion pattern.
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Figure 4.4: Gap gene network proposed by Jaeger et al. [120]. The �gure il lustrates the
genetic network that de�nes the gap gene expression domains in the head, the trunk
and the tail regions of the blastoderm embryo. Maternal morp hogen Bcd activates both
anterior and central gap genes while Cad activates kni, posterior gt and posterior hb. Hb,
Kni and Gt have an autoactivation. Only repressive interact ions are present among gap-
gap genes. The width of the arrows determine the strength of t he interactions. Inner
arrows represent autoactivation. Arrows � indicate activation while T-connectors x

represent repression. Image modi�ed from Jaeger et al. [120]

These gradients provide the interior of the embryo with a bas ic amount of po-
sitional information, each point in the syncytium now havin g its own unique
chemical signature de�ned by the relative amounts of the var ious maternal-
effect gene products. This positional information is made m ore precise by the
expression of the gap genes which are: zygotic hunchback, Krüppel (Kr), giant
(gt) and knirips (kni). After the ninth divisions, they start to be zygotically ex-
pressed and are established at their maximum level at cleavage cycle 14 (see
Section. 4.2.1). The maternal genesbcd, cadand hbregulate their transcription
[229, 268] in two ways: bcdand cadactivates their transcription while hb can
either repress [268] or activate the anterior domain (in com bination with bcd,
[253]) their transcription. In addition to the regulation b y maternal genes, ex-
perimental evidence [36,54,70,268] suggest that interactions between the gap
genes also contribute in the establishment of their precise expression further as
shown in Fig. 4.4.
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Pair rule The next set of genes to be transcribed, the pair-rule genes,establish
the basic segmentation pattern. Transcription of these genes responds to the
relative concentrations of the gap gene products and occurs in nuclei that have
become enclosed in cells. The pair-rule gene products therefore do not diffuse
through the syncytium but remain localised within the cells that express them.
The result is that the embryo can now be looked upon as compris ing a series
of stripes, each stripe consisting of a set of cells expressing a particular pair-
rule gene. In a further round of gene activation, the segment polarity genes
become switched on, providing greater de�nition to the stri pes by setting the
sizes and precise locations of what will eventually be the se gments of the lar-
val �y. Gradually the imprecise positional information of t he maternal-effect
gradients are converted into a sharply de�ned segmentation pattern.

4.2 Gene circuit

As discussed above, many different developmental steps leading to pattern
formation are taken place before the embryo segments are precise. In this dis-
sertation we only focus on the gap gene segmentation. It is kn own that the
maternal genes are responsible for the initial transcripti on of the gap gene. It is
also acknowledge that the gap gene undergo some mutual repression, but their
precise role is still unclear as well as the mechanism that control the dynamics
behind the precise positional information. In 2004, Jaeger et al. [121] provided
one of the �rst (if not the �rst) quantitative model that simu late the wild type
gap gene expression patterns dynamics. The motivation was to understand the
role of the gap-gap gene interactions. They have inferred a network by means
of reverse engineering that can reproduce the measured spatial and temporal
gene expression patterns. The gap gene model involves sevendifferent genes,
bcd, cad, hb, gt, Kr, kniand tll . The experimental data used to �t the model
were obtained from the FlyEx database, where an extensive amount of accurate
quanti�ed spatio-temporal expression data for all genes is stored [189, 211]. A
connectionist description was used to model the gene regula tory network.

Related work For modeling the segmentation mechanism of the early Drosophila
melanogasterembryo, two main formalisms have been proposed: a logical fo r-
malism (tackling qualitative aspects) proposed by Sánchez and Thieffry [237],
and continuous models proposed by Mjolsness and Reinitz [18 2] used to sim-
ulate the dynamics of a system. They have developed gene circuit data-driven
mathematical modelling method whose main goal is to reveal h idden infor-
mation about the dynamical mechanism of gene regulation. Us ing the latter
formalism, because the detailed spatio-temporal data is available Reinitz and
co-workers formulated the inference problem as an inverse p roblem using the
connectionist model [224]. Given a mathematical model and suf�cient accu-
rate quantitative data, the parameters in the model can be estimated by opti-
mization techniques, i.e. by �tting the model to the data. Ex cept for box con-
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straints, only little experimental information is used to c onstrain the parameter
values in the model.

4.2.1 Quantitative gene expression data

This section gives more information on the data used in the co urse of this the-
sis to �t the model parameters for simulating the gene expres sion patterns of
the Drosophila melanogasterin the early blastoderm stage. The lab methodology
was not experimentally obtained by our group, but was develo ped by John
Reinitz's group in Stony Brook and Maria Samsonova's group f rom Saint Pe-
tesbourgh. The overall result is presented as a numerical atlas of segmentation
gene expression in the blastoderm containing quantitative spatial and tempo-
ral measurements of gene expression obtained from individu al embryos and
an spatial temporal average data representation [211]. Alt hough not devel-
oped by us, for completeness, we describe the methodology used to obtain the
quantitative spatio temporal gene expression data.

Acquisition of quantitative data Each Drosophila melanogasterblastoderm's
embryo was collected, �xed and immunostained for three segm entation genes
products as described by Kosman et al. [148]. Each embryo was�uorescently
stained for Even-Skipped (Eve) protein and two other gene products.
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Figure 4.5: Gene expression data. (a,c,e) correspond to confocal images of stained
Drosophila melanogasterblastoderm embryos. Staining is done by �uorescent im-
munohistochemistry [148]. (b,d,f) are the average quantit ative gene expression lev-
els obtained by successive image-processing operations [189, 191]. Images are from
the late blastoderm stage cleavage cycle 14A; (a,d) time class 8 for hunchback(em-
bryo ba3); (b,e) and (c,f) time class 1 for bicoid and caudal, respectively (embryo
cb11). The y-axis gives the relative protein concentration expression level normal-
ized to a �uorescence intensity range from 0-255. The x-axis corresponds to the
anterior-posterior (A-P) axis of the embryo. Images are fro m the FlyEx database
http://flyex.ams.sunysb.edu/flyex . [211]
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Image processing for quantitative data extraction This part was done in four
major steps:

1. For normalization purposes, quantitative protein conce ntrations were all
set to a relative �uorescence intensity range of [0,255] on t he basis of the
most intensely �uorescent pattern on each slide with multip le embryos.
Based on an embryo mask, all embryo images were horizontally oriented
along the Anterior-Posterior (A-P) axis and cropped to the d imensions of
the mask. Image embryo were then all segmented to obtain exact nuclear
positions.

2. Time classi�cation was applied to each embryo to determin e the corre-
sponding cleavage cycle [189, 191]. A cleavage cycle is the development
period between two mitosis. At the early blastoderm stage, s everal cleav-
age cycles occur. Foe et Albert [76] have determined the exact duration
of these cycles (8 to 12 minutes for cycle 10 to 13 and approximatively
50 minutes for cycle 14A). Between each cycle, a nuclear division takes
place preceded by a mitosis. From cycle 10 to 14, the average number of
nuclei follows: 130, 260, 450, 1000, 2000. Embryo's age below cleavage
cycle 14 was then established based on their average number of nuclei in
the transverse section. Since during cleavage cycle 14 there is no mitosis,
the duration is long and the gene expression level changes considerably,
additional benchmark time were included (T1-T8) and embryo s timing
was done carefully based on the evegene pattern and nuclei morphology
[192]. Fig. 4.6 illustrates the time schedule. The image is modi�ed from
[120] where more details on the gap-circuit are given

Figure 4.6: The model simulates cleavage cycle 13 and cleavage cycle 14Auntil
gastrulation at time t � 71:10 min. Interphase takes places at the beginning of
the process from time t � 0:00 until t � 16:00 min, followed by mitosis, occurring
from t � 16:00 min until t � 21:10 min. Image is modi�ed from [120] where more
details on the gap-circuit are given.

3. Background removal and data registration were applied to transform the
different sets of data into one coordinate system. This is necessary in or-
der to be able to compare or integrate the data obtained from d ifferent
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measurements. Background removal done by Myasnikova et al. [193]
aims at removing signals that are due to non-speci�c binding of the an-
tibodies. Data registration [189] goal is to map (A-P and D-V position)
the patterns obtained from individual embryos for averagin g purpose.
Embryos were aligned on the basis of evepatterns features.

4. Integrated data were obtained by averaging the middle 10% of dorsoven-
tral (D-V) positional values of each embryo for each gene and time class.

The �nal data contain gene products for: bicoid (bcd), caudal(cad), hunchback
(hb), Krüppel (Kr), knirps (kni), giant (gt), and tailless (tll ). This results in a
database of integrated data. Quantitative gene expression data are not always
complete for all genes at all time points. For instance, tll is not available at
t � 10:55 min, T1 and T2. The gene product for cadis also not available at
times T7 and T8. Initial conditions are given by data obtaine d at cleavage cycle
C12. The maternal contribution of bcdstays constant during the whole process.
Fig. 4.7 shows the gene expression pattern of the integrated real data used in
the current study.

The integrated data on the expression of 14 genes presented here were assem-
bled from many individual isogenic embryos, each stained fo r the products of
three genes. Even in an isogenic population, there are differences between in-
dividuals. The fundamental criterion for the validity of ou r integrated data is
that it should represent the possible actual dynamics of one individual in the
isogenic population.

4.2.2 Connectionist model of the Gap Gene

The pattern formation at the early stage of the Drosophila melanogasterblas-
toderm results from the interactions among segmentation ge nes, by affecting
the gene expression of other segmentation genes. At this stage, a Drosophila
melanogasterembryo consists of a syncytium containing nuclei not surrou nded
by a membrane. The developmental time of interest is between cycle 13 and
14A, before gastrulation at time t � 71:10 min (see Fig. 4.6). To simulate the
pattern formation, we use the model given in Equation ( 4.1) [121] based on a
connectionist model [182]. It is a dynamical model consisti ng of a discrete rep-
resentation in space of the nuclei with discrete cell divisi on and a continuous
regulation of the genes in time. For each nucleus, a system oflattice differential
equations describes the change in concentration of gene products:

dga
i

dt
�

Ra � a Š
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N g

b� 1 W b
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i � ha •
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regulation decay diffusion
(4.1)

where a and bdenote gene products and i the nucleus number. In Equation 4.1
gene product concentrations depend on three main factors:
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Figure 4.7: Observed expression of hb, Kr, gt, kni, tll used to �t the simulated gap-gene
expression. Time point t � 10:55 shows the gene expression at cleavage cycle 13 where
only 30 nuclei are present. The other 8 images show the 8 time points of cleavage cycle
14A after division with 58 nuclei in each. The y-axis gives th e relative protein concen-
tration expression level. The x-axis corresponds to the anterior-posterior (A-P) axis of
the embryo. The integrated data intends to represent the possible actual dynamics of
one individual embryo in the isogenic population. There exi sts an amplitude variation
and positional variation from embryo to embryo. Although It is not possible to quan-
titatively measure the expression of all the genes involved , the integrated data seems
to be a well representation of individual embryo gene expres sion. Surkova et al. [263]
compared the integrated data with individuals data and conc luded that the gene means
from individual pattern is very close to the median individu al pattern.

• The �rst term describes the regulation of protein synthesi s that takes
place in the nucleus. The genetic regulation model is the same in each
nucleus. This is represented by the weight matrix W . W b

a characterizes
the regulatory effect of gene bon genea. Ng is the total number of zygotic
genes in the model. The sum over e denotes the external in�uence from
maternal genes such asbcdor cad. In this paper only bcdis present as ma-
ternal gene. � is a sigmoid function with range ˆ 0; 1• to prohibit negative
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values resulting from inhibitors, and to saturate the effec t of activators
[224]. ha denotes the shift for the transition of � from 0 to 1 given as:

� a ˆ ua
• �

1
2

�Š ua
~

»

ˆ ua
•

2
� 1• � 1� (4.2)

where ua
�

P

N g

b� 1 W b
a gb

i � magbcd
i � ha . The unknown parameters of the

model are: the regulation matrix W b
a , the production rate Ra , the activa-

tion threshold ha for � , the decay rate � a , the diffusion coef�cient Da,
and the regulatory in�uence of maternal gene bcdma . The model simu-
lates the time evolution for the concentration of the genes cad, hb, Kr, gt,
kni, tll .

• The second term is the decay of the gene products. The decay rate � a is
related to the protein half-life of the product of gene a by ta

1 ~ 2 � ln ˆ 2•~ � a.

• The third term represents the exchange of diffusible produ cts between
neighboring nuclei.

4.2.3 Numerical implementation of the model

The developmental time of interest is between cycle 13 (t � 0:00min) and 14A,
before gastrulation at time t � 71:10min as given in Fig. 4.6. Gap gene proteins
appear only at cycle 13 and maternal genesbcd,cadand maternal hbare already
present, initial conditions for the gap genes are all set to 0 and initial conditions
for the maternal genes are taken from data at cycle 12 [211].

Three different rules describe the phenomena that occur dur ing this time: in-
terphase, mitosis and division. Interphase and mitosis are continuous rules
describing the spatio-temporal evolution of gene expressi ons, while division
is a discrete rule that gives the number of nuclei at a time poi nt. Division is
modeled by duplicating instantaneously all nuclei and halv ing the distance
between them. The diffusion coef�cient depends on the numbe r of nuclear
division that occurs before the current time t. It is assumed to vary inversely
with the square of the distance between neighboring nuclei a nd this distance
is halved upon nuclear division.

The two continuous rules cannot be solved analytically beca use of their dimen-
sionality and complexity, in which case we have to resolve th e problem by an
approximating the exact solution. The general form of the co ntinuous rules is
given as a system of ordinary differential equations of the f orm:

y œ

ˆ t • � f ˆ t; y ˆ t •• ; y ˆ t0 • � y0 (4.3)

where f is some known function of the state vector of the system and th e initial
condition y0 is a given as a vector. ODEs /PDEs can be stiff and ill-conditi oned,
resulting in non-unique, non-existing, or non-reproducib le modeling solutions.
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Consequently, one has to carefully choose an intelligent optimal numerical
solver. There is an extensive number of numerical solvers.
Since a numerical solution is just an approximation of the re al solution, an
accurate numeric solver should reduce as much as possible the difference be-
tween the real solution and the approximation. To ef�cientl y choose the most
suitable numerical solver for the equations given in Equati on 4.1, a number of
properties has to be checked such as: constant or variable time step, one-step or
multistep, explicit or implicit, low-order or high-order. One important aspect
of a numerical solver is the time-step or step size h. A very small time step is
preferable but it will slack the solver. In the current probl em, we are confronted
with an optimisation problem: i.e the ODEs are solved an unli mited number
of time. Therefore the solver should be fast while still bein g accurate. How-
ever, fast solver might require a larger time-step that migh t lead to an unstable
problem. A numerical unstable problem is a problem for whom t he equation
include some terms that can lead to rapid variation in the sol ution. In this case,
the ODEs are said to be stiff. Summing all these considerations, the chosen
numerical solver has to deal with the potential stiffness of the ODEs, it has to
be accurate and computationally ef�cient. The main conside rations to choose
a numerical solver are:

Constant or variable time Simple numerical solvers use a �xed constant time
step h. Nowadays, most numerical solvers use adaptive time step du ring the
course of the computation, mainly to maintain a consistent l evel of accuracy.
The step size may change many times during the course of the computations,
as larger time steps are used where the solution is varying sl owly, and smaller
steps are used where the solution varies rapidly.

One-step or multistep Numerical solvers require to know at least the previ-
ous step to compute the current solution. In this case, one talks about one-step
algorithms. In contrast to one-step methods, multistep alg orithms require the
k � 1 previously computed solution values to compute the next sol ution. They
are less sensitive to initial conditions and require fewer e valuation of the f per
time step h. However, multistep algorithms are often slower because of differ-
ences in accuracy and computational complexity.

Explicit or implicit Explicit solvers require the current state of the system at
t to compute the solution at t � � t . Implicit algorithms such as the backward
Euler method contain algebraic formulas that need to be solv ed using iterative
processes like Newton iteration. One limitation of implici t methods is the non-
guarantee of convergence, since it heavily depends on the termination criteria.
However, these algorithms are very suitable for stiff probl ems because of their
iterative form.
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Low-order vs. high-order All numerical solvers compute their approxima-
tion of the solution in a �nite number of values of the functio n f . The error that
arises in this approximation is called truncation error. Fo r constant time step
algorithms, the maximum truncation error when solving a dif ferential equa-
tion over a �xed time interval t0 B t B T is proportional to the time step hp with
h being the time step and p the order of the method. Therefore, a high-order
method is more ef�cient than a low-order algorithm in most pr actical prob-
lems. However, if the solution is not smooth enough, a high-o rder algorithm
will not be very accurate and a tradeoff between the order and the computa-
tional cost should be consider.

Comparisons of numerical solvers Based on literature reviews [7, 12, 139,
214, 215, 260] and the criteria mentioned above, we have compared different
numerical solvers in order to decide which one should be appr opriate to the
gene circuit. We have tested the following methods:

1. Adams: explicit multistep algorithm

2. Euler: explicit one step algorithm

3. Heun: explicit multistep method with additional predict or an corrector
steps to euler solution

4. Bulirsch-Stoer: implicit adaptive step-size algorithm .

5. Bader-Deu�hard: semi-implicit mid-point algorithm for stiff systems of
ODEs

6. Runge-Kutta 4: explicit single step method

Table 4.1 shows the comparison of the �ve different numerical solvers . The
comparison is made on three main speci�c performance measur e such as com-
putational cost, accuracy and convergence. All methods converge while we
lower the accuracy or step size, but most of them have the computational time
that considerable increases. Since we want the CPU time to berelatively low,
from the table, we see that only Bulirsch-Stoer achieve a very good score in
a relative small computational time with a satisfactory acc uracy. On this ba-
sis, we have chosen to use Bulirsch-Stoer for the rest of the simulations in the
course of this thesis. This solver is an adaptive step-size algorithm based on
a modi�ed midpoint method and the Richardson Interpolation and Extrap-
olation [59, 214] As shown in Tab. 4.1, it is a lot cheaper than the Runge-
Kutta method, while at the same time, offering a better stabi lity than the Euler
method. Since the function evaluation is not very expensive , we did not opted
for a predictor-corrector method (Adams-Bashforth-Moult on).

4.2.4 Optimisation

As in the previously mentioned Drosophila melanogasterstudies by Jaeger et
al. [121, 206], we have chosen to use as cost-function the least-squares of the
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Solvers comparison
Name Acc/Step Time (ms) RMS

Adam

1.0 3.07 9.73
0.1 21.52 9.72
0.01 204.23 9.72
0.01 31.69 9.72

Euler

1.0 0.976 14.11
0.1 9.01 9.78
0.01 88.65 9.72
0.001 886.473 9.72

Heun

1.0 1.84 10.12
0.1 18.22 9.72
0.01 179.43 9.72
0.001 803.60 9.72

Bulirsch-Stoer

1.0 4.634 9.81
0.1 4.248 9.71
0.01 5.154 9.72
0.001 6.13 9.72

Bader-Deu�hard

1.0 847.91 17.31
0.1 847.05 9.77
0.01 115.73 9.72
0.001 834.35 9.72

Runge-Kutta 4

1.0 3.83 9.74
0.1 36.34 9.72
0.01 360.70 9.72
0.001 621.44 9.72

Table 4.1: Comparison of numerical solvers on a gap gene circuit. Expli cit and implicit
numerical solvers are presented on the �rst column and their setting and performance
are given in the next columns. The main setting is the accuracy for adaptive stepsize
algorithm and the stepsize for �xed-stepsize (column 2). Co mparisons are made on
the computational time require to achieve a reasonable score. All the simulations are
performed on the same circuit. Almost all solvers lead to a re lative low score (RMS,
discussed in Section 4.2.4), but the Bulirsch-Stoer method is the most stable with a
more or less constant CPU time independently of its accuracy. Tests were performed on
a serial 3.4-GHz "Intel Xeon" processor.

difference of the simulated and the observed data to which a c onstraint- or
penalty function is added:

E ˆ � • �

Q

i;t
ˆ ga

i ˆ t; � • model � ga
i ˆ t • data •

2 (4.4)

E tot ˆ � • � E ˆ � • � Epenalty ˆ � • (4.5)

where ga
i ˆ t • represents the concentration level at time t of gene a in nucleus
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i with 1 B i B N and N the number of nuclei during a cleavage cycle. An
explicit search-space constraint is given for parameters Ra , � a and Da . For
the parameters W b

a , ma and ha a collective penalty function � ua is used [224],
resulting in:

Epenalty � � R a � � � a � � D a � E � u a (4.6)

where the �rst three terms represent functions with value ze ro when the re-
spective parameters are within the search limit (Table 4.2) and in�nite other-
wise. If for any non-regulatory parametera ( R; �; D ) the value is out of the
search space given in Table 4.2, the penalty is extremely high (or in�nity). The
last term E � u a gives the penalty on the search space of the regulatory input s
in order to limit the saturation of ua in the sigmoid function given in equation
4.2with

� ua
�

Q

ab
ˆ W b

a vb
max •

2
� ˆ mavbcd

max •

2
� ˆ ha •

2 (4.7)

E � u a �

¢

¨

¨

¦

¨

¨

¤

exp̂ �� ua
• � exp̂ 1• iff �� ua

A 1

0 otherwise
(4.8)

where vb
max and vbcd

max are the maximum values for gene band bcdfound in the
database. The parameter� controls the size of the search space for parame-
ters involved in the sigmoid � function given in Equation ( 4.2). The goal of
the penalty function � ua is to limit the maximum saturation of ua to (1 � � )
with � a small parameter (in this study taken to be 0.001). When � ua

A 1~ � ,
the penalty E � u a will be extremely high. This implies that the parameter are
taking the dynamics out of the regulated region � ˆ ua

• .

We use the root mean square (RMS) [224] as a measure of the quality of a
model solution for a given set of parameters:

RMS �

¾

E tot ˆ � •

Nd
(4.9)

where E tot ˆ � • is given by Equation ( 4.5) and Nd is the number of data points.

parameters units search space
Rb min � 1 [10.0, 30.0] ]
D bl min � 1 [0.0, 0.3]
tb
1 ~ 2 min [5, 20]

Table 4.2: Parameter search space for the Gene Circuit based on [120]. We have en-
larged the parameter search space for all parameters with an explicit limit.
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4.3 Reverse-engineering the gap gene

The purpose of the model presented in Equation 4.1 is to simulate the pattern
formation of the early Drosophila melanogasterembryo. The aim of the optimiza-
tion is to �nd suitable model parameters that can simulate re alistic patterns, in
comparison with real quanti�ed gene expression patterns. D ifferent settings
for ˆ �; � • � ES are used followed by direct simplex search. The selected results
are chosen based on the quality of the �t (RMS) and visual comp arison of the
simulated pattern and the quantitative data.

4.3.1 Comparison of different ES settings

Different settings for ˆ �; � • -ES are used followed by Downhill simplex local
search (see Sections 3.1, 3.3). The population size � is varied, in ES � �

˜ 200; 350; 500• and in the island ES with 4 subpopulations � � 500~ 4 � 125.
The other method parameters are in all cases � � � ~ 5,  � 0:85, and � � 0:2
[234]. In all settings 20 optimisation runs have been perfor med. To facilitate
comparison the initial populations in the different settin gs are generated using
the same 20 random seeds and the number of generations for different � is such
that the (sequential) computational time is comparable in a ll runs. The Down-
hill simplex is applied to each resulting gap gene circuit an d runs for 130000
iterations. All simulations are performed on a serial 3.4-G Hz "Intel Xeon" pro-
cessor and took 8–11 CPU-hours for the complete ES+DS search.

Although some of the circuits with a RMS in ˆ 12:00; 14:00• could reproduce
faithfully the gene expression patterns, we only focus on th ose with a RMS
B 12:00. Out of 240simulations, 125ES+DS runs have a RMSB 12:00represent-
ing 52% good solutions. In Fig. 4.8 we have visualized the results and Table
4.3summarises the statistical differences of the different ES settings.

Full Search The �rst setting assumes that no a priori knowledge is availa ble
regarding any of the 66parameters other than the search space. After the global
search only one gap-gene circuit has a RMS smaller than 12 anddid not show
any speci�c defect.

Reduced Search In this setting the 20 optimisations are �rst run with the
activation thresholds hhb , hKr , hgt and hkni at a nominal value of � 3:5, as
suggested by [121]. For the other parameters we have set the parameter
search space as in the previous "Full Search" setting. The problem is now 62-
dimensional. The �xation of the four activation thresholds results in a much
easier optimisation problem as can be judged from the fact th at 16 out of the 80
runs result in a RMS less than 12 after the ES. Also the advantage of using the
island search can be seen more clearly: 16 out of 20 runs result in a RMS less
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than 14, in contrast to the 8 in the (100,500)-ES runs.

A second series has been done with activation thresholds hhb , hKr , hgt and hkni

having as nominal value � 2:5. As can be seen in Fig. 4.8(3 &2 ) the results are
comparable with the � 3:5 setting.
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Figure 4.8: Comparison of the different optimisation runs for (F): Full Search, (3): Re-
duced Search with activation thresholds set at � 3:5 and (2): Reduced Search with ac-
tivation thresholds set at � 2:5. Each bar-column represents 20 runs of a setting. Duo
bar-columns are read as follows: Left: after ES, right: after DS; bottom bar (blue):
RMS A 14, middle (white-grey): RMS > ˆ 12; 14• , top (red): RMS B 12.

RMS � � 200 N � 60000 � � 350 N � 30000 � � 500 N � 15000 � � 4 ‡ 125 N � 15000
� 2: 5 � 3: 5 F � 2: 5 � 3: 5 F � 2: 5 � 3: 5 F � 2: 5 � 3: 5 F

A 14 9/ 7 7/ 7 11/ 7 7/ 2 6/ 5 17/ 6 6/ 2 12/ 5 18/ 10 6/ 3 4/ 0 17/ 5
ˆ 12 ; 14 • 7/ 4 11/ 2 8/ 1 8/ 5 8/ 7/ 3/ 7 13/ 4 4/ 8 2/ 3 13/ 3 12/ 5 3/ 7
B 12 4/ 9 2/ 11 1/ 12 5/ 13 6/ 8 0/ 7 1/ 14 4/ 7 0/ 7 1/ 14 4/ 15 0/ 8

Table 4.3: Comparison of the results for 12 different settings. Twenty random seeds
were generated and each con�guration in a setting uses one of theses seeds. This results
in 240 simulations. In all simulations, � � � ~ 5,  � 0:85 and � � 0:2. The � � 4 ‡ 125 is an
island based ES with 4 sub-populations of each � � 125. N is the number of generations
of the ES. In all simulations, DS was run with 130000iterations unless stopped before
because no improvement was possible. The table header� 2:5, � 3:5 represents the �xed
value of the promoter thresholds in the 62-dimensional case . F indicates a full search
with 66 parameters to estimate. In each cell with value given as a~ b, a is associated to
the RMS after ES andb is associated to the RMS after DS.
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In Appendix 8.4, the tables [ 8.2– 8.5] gives details of the different ES setting
scores.

� # after ES percentage # after DS percentage
200 7 11.66 32 53.33
350 11 18.33 28 46.66
500 5 8.33 28 46.66
4*125 5 8.33 37 61.66

Table 4.4: In all different � settings, 60 simulations were run. The island-ES followed
by DS shows signi�cantly better results than the simple ES co mbined with DS.

Visual comparison In all cases where a RMS smaller than 12 was obtained
the simulated patterns match nicely the real spatio-tempor al data (see Fig.4.9
for an example). As in [121], in some other cases there is a small defect, espe-
cially for the late and posterior tll concentration.

4.3.2 Convergence of ES and Island based ES

In Fig. 4.10we illustrate the convergence behaviour of the evolution st rategy.
In the left plot the average �tness evolution is given for the 20 optimisation
runs with N � 62and h � � 2:5. In all cases a fast initial convergence is followed
by a slow decrease of the �tness. Note that the lines represent an equal amount
of computational work, so the runs with � � 200are allowed many more gen-
erations resulting in a slightly better RMS than the � � 500 case. Comparing
the latter with the island-based ES with 4 subpopulations of each 125 individu-
als it is obvious that the island-ES gives a signi�cantly bet ter RMS. The reason
is that the �ttest individual within one subpopulation is mi grated to another
subpopulation which might be stagnating, hence the stairca se behaviour of the
�tness curves (Fig. 4.10, right plot).

The four plots shown in Fig. 4.11 illustrate the convergence behaviour of all
the different ES settings. All curves show a typical behavio ur of a ˆ �; � • -ES. In
all cases, the �tness decreases quickly during the �rst gene rations. In Fig. 4.10,
the right plot shows the convergence of 4 sub-populations of an island-based
ES. After every 500 generations, migration is applied and some relative im-
provement can be observed in a sub-population receiving an i ndividual with
a better score than the actual best. This results in a sudden steep drop of the
curve. Stagnation occurs when all sub-populations start to be homogeneous.
The four sub-populations return model parameters with very small differences
and very similar solution quality. The lower plot illustrat es how the Downhill
simplex can ef�ciently improve the solution after ES by redu cing the RMS from
18:62to 10:17. The best solution was used as input for the DS.
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Figure 4.9: Solution of the gap-gene circuit gn52c13_200_62_25_14 at time points T �

10:550 and, after division, T1 � 24:225 and T8 � 67:975 obtained after parameter es-
timation using ˆ 40; 200• -ES (left) followed by Downhill simplex local search (right ).
Experimental (target) data is indicated with dashed lines.
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Figure 4.10: Convergence behaviour of the �tness of (left) the average of 20 experiments
(with N � 62 and h � � 2:5) for three different ˆ �; � • -ES and the island ˆ �; � • -ES and
(right) the evolution of the �tness of the 4 subpopulations i n the initial phase of a typical
island-based ˆ �; � • -ES run.
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