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Chapter 1

General Introduction and Overview

1.1 Endogenous regressors

In applied econometrics linear models are still widely utilized. The Ordinary Least Squares

(OLS) estimation technique is the easiest one to obtain and to start the analysis with.

However, when some of the regressors are endogenous (contemporaneously correlated with

the regression error term) then, according to established wisdom, OLS is inappropriate

to apply due to its inconsistency and then di�erent methods are called for. Endogeneity

of regressors could arise for several reasons, for example, measurement error, omitted

explanatory variables, simultaneous equations, functional form misspeci�cation.

Under appropriate distributional assumptions, OLS can be viewed as an application

of Maximum Likelihood (ML) which is known for its optimal properties: it is asymptot-

ically normally distributed; it is consistent and has minimal asymptotic variance. The

ML estimator is derived from a full speci�cation of the likelihood function which contains

all the relevant information about the joint distribution of the observations on the de-

pendent variable conditional on the exogenous or predetermined explanatory variables.

Maximizing the likelihood function yields the desired estimator. ML heavily relies on the

distributional assumptions of the sample at hand and in general could be computationally

troublesome. Only under the normality assumption `Quasi' ML corresponds in a linear

model to OLS estimation.

One of the methods that does not require full knowledge of the conditional distribution

1
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of the dependent variable whereas it is designed to cope with possible endogeneity of the

regressors in the linear model is Instrumental Variable (IV) estimation, also known as Two

Stage Least Squares (2SLS). According to Stock and Trebbi (2003) it was invented by

Phillip G. Wright (1928). It requires a researcher to posses a su�cient number of extra

variables (instruments) possibly including some of the explanatory variables that are

contemporaneously uncorrelated with the error term. This `uncorrelatedness' establishes

so called orthogonality conditions which allow to estimate the parameters of the model

consistently.

Both OLS and IV estimators fall within a broader class of estimators introduced to

econometrics by Hansen (1982) known as Generalized Method of Moments (GMM), see

also Hall (2005). It is a more exible estimation method than ML: it does not require to

have full knowledge of the true underlying conditional distribution. Instead it relies on a

set of moment conditions that are assumed to hold in the population of interest. GMM

�nds the parameter estimates by matching the sample moments with the population

moments. The number of moment conditions can exceed the number of parameters to be

estimated, but should not be smaller. If the population moment conditions are true, GMM

can be shown to be consistent and asymptotically normal under fairly weak regularity

conditions. GMM will make optimal use of all the available moment conditions in the

sense that it is asymptotically e�cient within its class when it uses an asymptotically

optimal weighting matrix. However, it has also been shown that in �nite samples it may

be bene�cial to abstain from exploiting weakly identi�ed moment conditions, and that

using very many instrumental variables, although bene�cial from a standard asymptotic

point of view, may lead to serious bias in small samples, see Donald and Newey (2001).

Instrumental variables (which form the moment conditions for the estimation), apart

from being uncorrelated with the error term (being valid), should also explain the endoge-

nous explanatory variables well, that is jointly they should be strongly correlated with

the endogenous regressors (they should not be weak). Nelson and Startz (1990a,b) have

shown that IV can have poor �nite sample properties when instruments are `weak'. Since

then, a substantial body of literature has been written on the issue of weak instruments.

In particular, Bound, Jaeger, and Baker (1995) illustrate that the empirical study of An-
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grist and Krueger (1991) is a�ected by the weak instruments problem. They also show

that IV when using weak instruments will be biased in �nite samples in the direction of

the inconsistency of OLS. Therefore, in the presence of weak instruments Hausman (1978)

type tests will have poor power in detecting endogeneity of regressors, because they are

based on comparing OLS, which is inappropriate under endogeneity, with consistent IV.

If the two estimators di�er substantially we can suspect that some of the regressors are

endogenous. Hall, Rudebusch, and Wilcox (1996) propose the use of canonical correla-

tion criteria to measure instruments relevance. Staiger and Stock (1997) derive for the

simultaneous equations model (SEM) the asymptotic distribution theory for various IV

statistics when the correlation of instruments and endogenous regressor is `local to zero'

and propose a practical guideline for applied research when the instruments are weak.

Anderson and Rubin (1949), Kleibergen (2002) and Moreira (2003) propose parameter

tests that have a size which is invariant to the weak instruments problem. The studies

on weak instruments are mainly dealing with the detection of the potential problems of

weak identi�cation and devising inference methods that are robust under weak instru-

ments. Stock, Wright, and Yogo (2002) and more recently Andrews and Stock (2007)

give comprehensive surveys on the weak instruments literature.

The �nite sample properties of the optimally-weighted two step GMM estimator can

be poor, see for example Hansen, Heaton, and Yaron (1996). Attractive alternative esti-

mators (that similar to GMM exploit underlying moment conditions) have been proposed:

Empirical Likelihood (EL) by Qin and Lawless (1994), see also Imbens (1997); Exponen-

tial Tilting (ET) by Kitamura and Stutzer (1997); and the Continuous Updated Estimator

(CUE) by Hansen, Heaton, and Yaron (1996). Smith (1997) and Newey and Smith (2004)

show that those estimators fall into the broader family of Generalized Empirical Likeli-

hood (GEL) estimators. The study of Newey and Smith (2004) suggests that GEL will

have better �nite sample properties relative to GMM. In practice, assessing �nite sam-

ple properties of GEL type estimators and test statistics in a Monte Carlo setup can be

burdensome due to computational di�culties in obtaining both fast and accurately the

solution to the saddle point problem that GEL poses.

Of course GMM (and also its generalizations o�ered by GEL and its specializations
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provided by IV and OLS) lose their attractive asymptotic properties when invalid moment

conditions are being exploited. In order to prevent that from happening instrument valid-

ity tests have been developed. The most common tests for testing the validity of the extra

moment conditions, so-called overidentifying restrictions tests, are the Sargan test for IV,

see Sargan (1958), theJ test for GMM, see Hansen (1982) and the Likelihood Ratio type

tests for GEL, see Smith (1997). The consistency of the overidentifying restrictions tests

for GEL was proven by Smith (1997). Optimality of EL for testing moment conditions

has been shown by Kitamura (2001). However, it is impossible to test the validity of

all the exploited moment conditions. Only under the untestable assumption of having a

number of valid instruments equal to the number of unknown coe�cients in the model the

validity of any additional instruments can be tested by overidenti�cation tests. Hence,

it seems most likely that in practice it will often happen that GMM or IV are being

exploited with invalid instruments leading to inconsistent estimators. The consequences

of using invalid instruments has been analyzed by Hendry (1979), Maasoumi and Phillips

(1982), Hall and Inoue (2003). Andrews (1997, 1999) proposes and proves the consistency

of several strategies to �nd from a (su�ciently large) set of instruments the largest subset

of valid moment conditions. Some of those selection procedures �nd the optimal set of

moment conditions by minimizing an appropriate criterion function (over possible subsets

of moment conditions). Other strategies are upward or downward searching procedures.

1.2 Some practical research questions

Still many research questions are waiting for answers that would help practitioners, despite

the great many contributions in the literature regarding the consequences for various

inference methods both in large samples and in small samples: regarding the presence

of endogenous explanatory variables in econometric models; the possible use of invalid

instruments; and the qualities of tests to detect endogenous regressors and possibly invalid

instruments. Below we mention those research questions that will be addressed in this

thesis.

1. What are the actual consequences both asymptotically and in �nite samples of using
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OLS when some of the regressors are actually endogenous? What is the magnitude

of bias (inconsistency), how is the distribution of OLS and its variance a�ected?

2. What are the consequences both asymptotically and in �nite samples of using IV

when some of the instruments are in fact invalid, and in what way does weakness

of instruments a�ect these consequences?

3. Can classic detection methods for the (in)validity of instruments, like the Sargan

test or Hansen'sJ -test, be improved by bootstrapping them or by replacing them

with similar statistics based on GEL type estimators? Are these tests vulnerable

regarding instrument weakness?

4. Can sequential selection methods for the detection of valid instruments be improved

by using incremental versions of Sargan or J tests? The incremental version of the

overidentifying restriction test tests the validity of a subset of instruments by taking

the di�erence between test statistics of the validity of a set of instruments and of a

subset of those instruments.

The above issues will be examined in this thesis mostly for single equation models,

where the model speci�cation is mostly linear and all the variables are stationary and

either endogenous or exogenous. Often our analysis is valid too for dynamic relationships,

which may also contain predetermined regressors. However, we exclude non-stationarity

of variables. Hence, most of our results pertain to analyzing cross-sectional data.

1.3 Overview of this thesis

In practice structural equations are often estimated by least-squares, thus neglecting any

simultaneity. It is examined in Chapter 21 why this may often be justi�able and when.

Assuming data stationarity and existence of the �rst four moments of the disturbances we

1This is an updated and corrected version of Kiviet and Niemczyk (2007), see Kiviet and Niemczyk
(2009a). The corrections concern the following: (a) the formulation and proof of the main result has been
adapted and clari�es now that it produces the conditional asymptotic distribution of inconsistent OLS
in linear models; (b) also the unconditional asymptotic distribution is derived; (c) the illustrations now
compare both conditional and unconditional distributions, both asymptotically and in �nite samples.
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study the limiting distribution of the OLS estimator in a linear simultaneous equations

model. In simple static models we compare the asymptotic e�ciency of this inconsistent

estimator with that of consistent simple IV estimators and depict cases where { due to

relative weakness of the instruments or mildness of the simultaneity { the inconsistent

estimator is more precise. In addition, we examine by simulation to what extent these

�rst-order asymptotic �ndings are reected in �nite samples, taking into account non-

existence of moments of the IV estimator. In all comparisons we distinguish between

conditional and unconditional (asymptotic) distributions.

In Chapter 32, we examine IV estimation when instruments may be invalid. This is

relevant because validity of the initial just-identi�cation restrictions is untestable. More-

over, tests for the validity of additional instruments, so-called over-identi�cation restric-

tion tests, have limited power when samples are small, especially when instruments are

weak. Conditioning on genuinely predetermined possibly latent variables, we �nd the

limiting normal distribution of inconsistent IV, expressed in parameters and data mo-

ments. This provides a �rst-order asymptotic approximation to the density in �nite

samples. For a speci�c simple class of models we compare this approximation and its

unconditional counterpart with the simulated empirical distribution over almost the full

parameter space, which is expressed in measures for: model �t, simultaneity, instrument

invalidity and instrument weakness. Our major �ndings are that for the accuracy of large

sample asymptotic approximations instrument weakness is much more detrimental than

instrument invalidity. And, IV estimators obtained from strong but possibly invalid in-

struments are usually much closer to the true parameter values than those obtained from

valid but weak instruments.

In the remaining part of the thesis we focus on instrumental variables selection meth-

ods. In Chapter 4, we investigate in a Monte Carlo setup several versions of classic

GMM tests and Likelihood Ratio like tests based on GEL estimators for overidentifying

restrictions. We also investigate incremental versions of those tests. We examine several

bootstrap methods to obtain better �nite sample critical values other than the standard

ones based on the asymptotic null distribution of the tests. Those bootstrap methods

2This is based on Kiviet and Niemczyk (2009b)
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include Hall and Horowitz (1996) who replicate the test statistics in a way that the boot-

strap moments are exactly satis�ed in the bootstrap samples. We also examine methods

proposed by Brown and Newey (2002) who bootstrap the data using the implied prob-

abilities obtained from GEL estimation, which then leads to the sample moments being

satis�ed in the bootstrap population. In addition we investigate a simple residual type

bootstrap of the data. We �nd that for linear models the adapted Hall (2000) version of

the Sargan test bootstrapped according to Hall and Horowitz (1996) performs very well

(even in models with heteroscedastic errors) in comparison to the other tests we analyze.

This is peculiar because the Sargan test is in principle designed for homoscedastic errors

only. The standard � 2 asymptotic critical values are derived under homoscedasticity.

In Chapter 5 we propose several ways to apply those overidentifying restrictions tests

to detect the invalid instruments from a possibly very large set that contains a number

of valid instruments equal to or larger than the number of unknown coe�cients plus one.

The selection procedures are sequential and di�er in the way how the overidentifying

restrictions tests are used. We compare the performance of our selection procedures

and two of Andrews's (1999) procedures in a Monte Carlo setup. The �rst two of our

procedures are computationally feasible, that is for a large set of moment restrictions to

search from they will provide an answer within a reasonable time limit. We �nd that all

the selection procedures are vulnerable to weak instruments and that the sample size and

instrument invalidity should be substantial in order for the procedures to show good power

in detecting the invalid instruments. Nonetheless, for moderate invalidity of instruments

the resulting distribution of the estimates (over the instruments found by any of the

selection procedures) is almost centered around the true value. Finally, we analyze the

empirical data of Angrist and Krueger (1991), where we have as many as 180 potential

instruments to search from. For several model speci�cations our selection procedure,

which utilizes the incremental version of the test, �nds that some of the instruments are

invalid. That could be explained by the possibility that the instruments based on the

quarter of birth of an individual are indeed correlated with some excluded characteristics

that do a�ect the earnings of individuals.

In the last section of Chapter 5, the practical usefulness - despite their infeasibility
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- of the theoretical results of Chapters 2 and 3 will be illustrated on one of the Angrist

and Krueger speci�cations. We will produce an alternative inference based on making

varying assumptions on the degree of simultaneity, and when external instruments have

been used, their possible degree of invalidity. We will demonstrate that this inference,

which is based on an assumption regarding hard to establish nuisance parameters, allows

a useful sensitivity analysis. We demonstrate that for these data, such inference based on

an unfeasible bias corrected OLS estimator is more attractive than for the unfeasible bias

corrected IV estimator, due to the weakness of the instruments.

At the end there is a summary of the thesis in English and in Dutch.



Chapter 2

The asymptotic and �nite sample

(un)conditional distributions of OLS

and simple IV in simultaneous

equations

2.1 Introduction

Relatively little attention has been paid in the econometric literature to the limiting

distribution of inconsistent estimators. Usually, when developing and rating alternative

estimators, consistency has been considered a minimum requirement. This seems very

reasonable when actual samples are so large that estimation variance is relatively small.

in �nite samples, however, it could well be the case that, when the bias of alternative

consistent and inconsistent estimators is of similar magnitude whereas the inconsistent

one has smaller variance than its consistent rival, the consistent estimator is actually less

precise according to reasonable criteria to be operationalized below. An example where

this occurs is in estimating dynamic panel data models, where so-called fully e�cient

GMM estimators may actually have larger mean squared error (MSE) than inconsistent

least-squares estimators, see Bun and Kiviet (2006). For a completely speci�ed data gen-

erating process any such di�erences can easily be assessed from Monte Carlo experiments,

9
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but may only persuade practitioners to use inconsistent but actually more precise estima-

tors when at the same time techniques are developed to use them accurately for inference

purposes. The present study embarks on this by deriving an explicit characterization

of the limiting distribution of an inconsistent estimator and examining its accuracy for

actual behavior in �nite samples.

We focus on least-squares and instrumental variable estimators in a linear structural

equation from a simultaneous system. Goldberger (1964, p. 359) considers a very speci�c

case and derives the asymptotic variance of inconsistent OLS. An early { but incomplete

{ attempt to obtain the limiting distribution of OLS in a simple speci�c case can be found

in Phillips and Wickens (1978, problem 6.10). A derivation in a more general context for

an IV estimator that may contain invalid instruments (note that OLS is thus a special

case) can be found in Maasoumi and Phillips (1982), see also Hendry (1979, 1982). How-

ever, they do not provide an explicit representation, and they focus on the unconditional

limiting distribution in a large dynamic system, whereas we shall obtain an explicit ex-

pression for both the conditional and unconditional limiting distribution of inconsistent

OLS in particular linear models. Such an approach is also followed in Rothenberg (1972).

Our approach di�ers, because we do not start o� from an errors in variables context, but

from a more generic parametrization, which covers all kinds of linear contemporaneous

and lagged dependence of regressors on disturbances. Joseph and Kiviet (2005) also made

an attempt to derive an explicit representation of the limiting distribution of an inconsis-

tent OLS estimator, but we will show here that that result is incomplete. By developing

a useful decomposition of the OLS estimation error and by applying a rather standard

form of the central limit theorem (CLT), we will derive here a general representation of

the limiting distribution of OLS, both unconditional and conditional on predetermined

information, in a linear regression model where the regressors are stationary and contem-

poraneously correlated with the disturbance term. We �nd this distribution to be normal

and centered at the pseudo true value (true coe�cient plus inconsistency) with an asymp-

totic variance that can simply be expressed as a correction to the asymptotic variance

of a consistent OLS estimator, where this correction is based on the actual inconsistency

and a measure for the simultaneity. It can easily be shown that in general this asymptotic
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variance gets smaller (in a matrix sense) when the simultaneity and thus the inconsis-

tency become more severe. However, this is not the case for the �rst-order asymptotic

approximation to the MSE of OLS. We make comparisons with the asymptotic variance

of consistent IV implementations in speci�c simple static simultaneous models. By that

we establish areas in the parameter space where OLS beats IV on the basis of asymp-

totic MSE. In addition, we examine the accuracy of these asymptotic approximations via

simulation experiments. In order to ease the presentation, absorption and interpretation

of our extensive numerical �ndings they are all put into colored 2D and 3D diagrams.

All these diagrams are in fact single images of animations (3D and 4D diagrams) which,

when viewed as a �lm on a monitor via the web, allow to depict the various most relevant

phenomena in more than three dimensions.

In order to limit the size of this Chapter we make actual comparisons between OLS

and just identi�ed consistent IV estimation only, i.e. exploiting precisely as many valid

instruments as regressors. This implies that we have to take into account the non-existence

of moments of IV. At a later stage we also plan to examine overidenti�ed cases and to

compare consistent IV and inconsistent IV implementations which exploit some invalid

instruments. Then a recent study by Hall and Inoue (2003) will become relevant. They

examined generalized method of moments estimators in misspeci�ed models. Loosely

formulated they de�ne misspeci�cation as exploiting orthogonality conditions which are

in fact false for any possible parameter value, whereas they exclude the case where as

many orthogonality conditions as parameters are employed. Hence, they exclude the case

of OLS when some of the regressors are in fact invalid instruments, which is precisely the

main focus of the present study.

Our major �nding is that inconsistent OLS often outperforms consistent IV when the

sample size is �nite. For a simple speci�c class of models we �nd that in samples with

a size between 20 and 200 the actual estimation errors of IV are noticeably smaller than

those of OLS only when the degree of simultaneity is substantial and the instruments

are far from weak. However, when instruments are weak OLS always wins, even for a

substantial degree of simultaneity. We also �nd that the �rst-order asymptotic approx-

imations to the estimation errors of OLS (both conditional and unconditional) are very
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accurate even in relatively small samples, which is not the case for IV when instruments

are weak, see also Bound, Jaeger, and Baker (1995). For consistent IV one needs alterna-

tive asymptotic sequences when instruments are weak, see for an overview Andrews and

Stock (2007), whereas generally speaking standard �rst-order asymptotic approximations

seem to work very well for OLS, which by its very nature always uses the strongest pos-

sible, though possibly invalid, instruments. Especially when simultaneity is serious, the

actual conditional distribution of OLS is found to be more attractive than its uncondi-

tional counterpart. Hence, its asymptotic distribution derived here, which turns out to

be highly accurate, could and should be used in future research as a tool for producing

inference based on OLS and an assumption on the degree of simultaneity.

The structure of this Chapter is as follows. In Section 2 we introduce the model

and some of its particulars, especially the standard asymptotic properties of OLS and IV

when the data are stationary. Next in Section 3 we derive the limiting distribution of OLS

when the dependent variable is in fact jointly dependent with some of the regressors. We

distinguish between the unconditional limiting distribution, and the e�ects of conditioning

on predetermined variables. In Section 4 we discuss the measures that we will use to make

comparisons between the performance of di�erent estimators. We address the issues that

are relevant when using the limiting behavior of an inconsistent estimator for such a

comparison. For representing the actual �nite sample performance obtained from Monte

Carlo experiments, we develop alternative measures for situations where IV has no �nite

moments and simply calculating the mean squared error from the simulations would be

inappropriate. Next, in Section 5, we present graphical results for a particular simple class

of models. In order to make di�erent models from this class comparable over relevant

parts of its parameter space, we develop a useful transformation of this parameter space.

Section 6 concludes.
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2.2 Model, estimators and standard asymptotics

We examine method of moments estimators for the single linear structural model

y = X� + "; (2.1)

wherey and " are n � 1 vectors,X is a full column rankn � k matrix of regressors, which

may contain exogenous regressors but also endogenous variables (i.e. jointly dependent

with y) and lagged endogenous (i.e. weakly exogenous) variables. Thek � 1 vector

� contains the unknown coe�cients of this relationship betweeny and X: These are

the parameters of primary interest. The relationship must be well-speci�ed, because we

assume that the disturbances are white noise (unconditionally), i.e.

E(") = 0 ; Var(") = � 2
" I n : (2.2)

While the functional relationship of model (2.1) is supposed to be adequately speci�ed, we

examine the consequences of misspeci�cation of the chosen set of instrumental variables.

We focus on the speci�c case where all regressors of the full rank matrixX are used as

instruments, i.e. OLS is applied and any simultaneity is neglected.

The OLS estimator of model (2.1) is

�̂ OLS = ( X 0X )� 1X 0y: (2.3)

Because we consider here exclusively models with stationary variables,�̂ OLS will be con-

sistent and asymptotically e�cient only if E(X 0" ) = 0 ; and will yield an inconsistent

estimator otherwise. Then, consistent estimators could be obtained by exploiting instru-

mental variablesZ for which E(Z 0" ) = 0 : Here we will only consider as a competitor of

OLS the case whereZ is a full column rank n � k matrix, which yields the simple (just

identi�ed) IV estimator

�̂ IV = ( Z 0X )� 1Z 0y: (2.4)

Matrix Z should be such thatZ 0X has rankk:
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We make standard mild stationarity assumptions yielding

X 0X = Op(n); X 0X = Op(n); Z 0X = Op(n); (2.5)

and we de�ne (for n ! 1 )

� X 0X � plim
1
n

X 0X; � Z 0Z � plim
1
n

Z 0Z; � Z 0X � plim
1
n

Z 0X; (2.6)

which all are supposed to have full rank. This yields standard results on the limiting

distributions of the estimators, provided that the instruments actually used are valid, i.e.

n1=2(�̂ IV � � ) d! N (0; � 2
" � � 1

Z 0X � Z 0Z � � 1
X 0Z ); if E(Z 0" ) = 0 ; (2.7)

and

n1=2(�̂ OLS � � ) d! N (0; � 2
" � � 1

X 0X ); if E(X 0" ) = 0 : (2.8)

However, whenE(X 0" ) 6= 0; OLS is inconsistent and its limiting distribution will be

di�erent from (2.8).

Below, we restrict ourselves to cases whereE(Z 0" ) = 0 whereasE(X 0" ) may be non-

zero, i.e. the instrumentsZ are valid and some of the regressors inX may be contempo-

raneously correlated with the disturbance term. Although we will examine cases where

some instruments may be weak (then the columns ofZ 0X are almost linearly dependent),

in this study we will not consider alternative asymptotic sequences, as in (approaches re-

ferred to in) Staiger and Stock (1997). We �rst want to obtain under standard regularity

conditions the counterpart of (2.8) when OLS is inconsistent and compare it with (2.7)

and with actual behavior of the estimators in �nite samples. No doubt these regularity

conditions and the speci�cation of our data generating scheme can be relaxed in various

ways, as is done in for instance Gallant and White (1988). However, the present strict

framework easily yields, after some further specialization of the regularity assumptions,

an explicit and calculable characterization of the limiting behavior of inconsistent OLS.
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2.3 The asymptotic distribution of inconsistent OLS

We allow for linear contemporaneous dependence of the observationsx i on the distur-

bances" i : We use thek � 1 parameter vector� to expresses this dependence, such that

matrix X can be decomposed as

X = �X + "� 0; (2.9)

with

E( �X 0" ) = 0 and E(X 0" ) = n� 2
" �: (2.10)

Note that this does not exclude cases whereX contains lagged endogenous variables.

These could be a part of the component�X and have a corresponding element in� equal

to zero. Only current endogenous regressors will have corresponding elements of� di�erent

from zero.

Decomposition (2.9) with properties (2.10) implies

� X 0X = plim
1
n

( �X 0 �X + �X 0"� 0+ �" 0 �X + �" 0"� 0) = plim
1
n

�X 0 �X + � 2
" �� 0:

We de�ne � �X 0 �X � plim 1
n

�X 0 �X and �nd

� �X 0 �X = � X 0X � � 2
" �� 0: (2.11)

The probability limit of �̂ OLS will be denoted as� �
OLS ; for which we obtain

� �
OLS � plim�̂ OLS = � + � � 1

X 0X plim
1
n

X 0" = � + � 2
" � � 1

X 0X �: (2.12)

This is the so-called pseudo true value of̂� OLS : We may also de�ne

•� OLS � � �
OLS � � = � 2

" � � 1
X 0X �; (2.13)

which is the inconsistency of the OLS estimator.

For obtaining a characterization of the unconditional limiting distribution of incon-

sistent OLS, we will assume that the data are in fact IID (independently and identically
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distributed). Hence, for obtaining a result on the unconditional limiting distribution of

inconsistent OLS we have to exclude occurrence of lagged dependent variables. More in

particular, for the transpose of thei -th row (i = 1; :::; n) of X; the k � 1 vector x i ; we will

assume that we have

x i � IID (0; � X 0X ); (2.14)

where the zero expectation is easily obtained by removing the intercept from the model

(if present) by taking the covariance stationaryyi and x i observations in deviation from

their expectation. Then the remaining coe�cients are the slopes of the original regression

with nonzero but constant unconditional expectation of the regressors. Clearly, the IID

assumption excludes most time-series applications. Below, for �nding the conditional

limiting distribution of inconsistent OLS, the IID assumption is not required, but for

obtaining the unconditional limiting distribution it simpli�es the derivations considerably.

Like Goldberger (1964, p. 359) we rewrite the model as

y = X (� �
OLS � •� OLS ) + " = X� �

OLS + u; (2.15)

whereu � " � X •� OLS : Under assumption (2.14) we �nd thatE(u) = 0 ;

� 2
u � E(u2

i ) = � 2
" (1 � 2•� 0

OLS � ) + •� 0
OLS � X 0X

•� OLS

= � 2
" (1 � � 2

" � 0� � 1
X 0X � ); (2.16)

and E(ui uj ) = 0 for i 6= j: Moreover, E(x i ui ) = E(x i " i ) � E(x i x0
i ) •� OLS = � 2

" � �

� X 0X
•� OLS = 0; thus E(X 0u) = 0 : Hence, in the alternative model speci�cation (2.15)

OLS will be consistent and the disturbances have a scalar covariance matrix. Therefore,

applying OLS to this model yields the limiting distribution

n1=2(�̂ OLS � � �
OLS ) d! N (0; � 2

" (1 � � 2
" � 0� � 1

X 0X � )� � 1
X 0X ): (2.17)

For the OLS residualsû = y � X �̂ OLS one easily obtains

plim
1
n

û0û = plim
1
n

(" � X •� OLS )0(" � X •� OLS ) = � 2
u: (2.18)
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Thus, standard OLS inference in the regression ofy on X makes sense and is in fact

asymptotically valid when the data are IID, but it concerns unconditional (because it

has been built on the stochastic properties ofX ) inference on the pseudo true value

� �
OLS = � + � 2

" � � 1
X 0X �; and not on �; unless� = 0:

Next we shall re�ne result (2.17) by focussing on the limiting distribution of�̂ OLS con-

ditional on the predetermined variables�X (which in practice have not all been observed,

usually, because they are conated with unknown reduced form parameters and reduced

form disturbances, but that turns out not to matter), no longer restricting ourselves to

(2.14), hence serially correlated regressors and lagged dependent explanatory variables

are again allowed. As suggested in Rothenberg (1972), we do not center now at� �
OLS ; but

at

� �
n;OLS � � + •� n;OLS = � + � 2

" (
1
n

�X 0 �X + � 2
" �� 0)� 1�; (2.19)

where plim� �
n;OLS = � �

OLS : Conditioning on �X (and specializing (2.2) toV ar(" j �X ) =

� 2
" I n ), we will derive that n1=2(�̂ OLS � � �

n;OLS ) d! N (0; V); and we establish the variance

matrix V of this zero mean limiting distribution. From this result we �nd � �
n;OLS to be a

�rst-order asymptotic approximation to the expectation of �̂ OLS in �nite samples, whereas

Vn=n for its variance, provided plimVn = V: First-order approximations to the quantiles

of �̂ OLS can straightforwardly be obtained from the corresponding normal distribution.

Remark 2.1 Conditioning on �X will always be unfeasible, because we cannot observe it.

But, it is `the maximal set of information' on which we can possibly condition, and hence

will yield the highest precision, which we will express without using�X and which we can

assess only by making assumptions on� (or on � X" = � � 1=2
X 0X � " � where � X 0X and � 2

" can

be assessed consistently, as will be show in Section 6 of Chapter 5).

So, we set out to examine the limiting behavior of

n1=2(�̂ OLS � � �
n;OLS ) = n1=2[(

1
n

X 0X )� 1 1
n

X 0" � •� n;OLS ]

= (
1
n

X 0X )� 1[
1

p
n

X 0" � n1=2(
1
n

X 0X ) •� n;OLS ]: (2.20)
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For the terms between square brackets we �nd

1
p

n
X 0" � n1=2(

1
n

X 0X ) •� n;OLS

=
1

p
n

[ �X 0" + ( "0" � n� 2
" )� ] + n1=2� 2

" � � n1=2(
1
n

X 0X ) •� n;OLS

=
1

p
n

[ �X 0" + ( "0" � n� 2
" )� ] � n1=2[

1
n

X 0X � (
1
n

�X 0 �X + � 2
" �� 0)] •� n;OLS

=
1

p
n

[ �X 0" + ( "0" � n� 2
" )� ] �

1
p

n
[ �X 0"� 0+ �" 0 �X + ( "0" � n� 2

" )�� 0] •� n;OLS

=
1

p
n

[(1 � � 0•� n;OLS )I k � � •� 0
n;OLS ] �X 0" +

1
p

n
(1 � � 0•� n;OLS )� ("0" � n� 2

" )

=
1

p
n

[A0
n" + an ("0" � n� 2

" )]; (2.21)

whereAn is an n � k matrix and an a k � 1 vector, viz.

A0
n � [(1 � � 0•� n;OLS )I k � � •� 0

n;OLS ] �X 0;

an � (1 � � 0•� n;OLS )�:
(2.22)

Denoting the i th row of An as A0
n;i we can now write (2.21) as a scaled sample average of

n mutually uncorrelated zero mean random vectorsAn;i " i + an ("2
i � � 2

" ) and apply (while

conditioning on �X ) the standard CLT, giving

n1=2

 
1
n

nX

i =1

�
An;i " i + an ("2

i � � 2
" )

�
!

d! N

 

0; lim
1
n

nX

i =1

Var
�
An;i " i + an ("2

i � � 2
" )

�
!

:

(2.23)

Since Var[An;i " i + an ("2
i � � 2

" ) j �x i ] = � 2
" An;i A0

n;i + � 3
" � 3(An;i a0

n + anA0
n;i ) + � 4

" (� 4 � 1)ana0
n ;

where� 3 � E("3
i =� 3

" ) and � 4 � E("4
i =� 4

" ); we �nd that n1=2(�̂ OLS � � �
n;OLS ) has a limiting

distribution conditional on �X given by

N
�

0; � 2
" � � 1

X 0X

�
lim

1
n

[A0
nAn � � " � 3(A0

n �a0
n + an �0An )] + � 2

" (� 4 � 1)ana0
n

�
� � 1

X 0X

�
: (2.24)

For the special case with normal disturbances, and exploiting (2.11), the conditional
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asymptotic variance specializes to

� 2
" � � 1

X 0X [(1 � � 2
" � 0� � 1

X 0X � )I k � � 2
" �� 0� � 1

X 0X ]� �X 0 �X � (2.25)

[(1 � � 2
" � 0� � 1

X 0X � )I k � � 2
" � � 1

X 0X �� 0]� � 1
X 0X + 2� 4

" (1 � � 2
" � 0� � 1

X 0X � )2� � 1
X 0X �� 0� � 1

X 0X

= (1 � � 2
" � 0� � 1

X 0X � )[(1 � � 2
" � 0� � 1

X 0X � )� 2
" � � 1

X 0X � (1 � 2� 2
" � 0� � 1

X 0X � )� 4
" � � 1

X 0X �� 0� � 1
X 0X ]:

Note that when � = 0; i.e. when OLS is consistent and e�cient, the above formula

yields � 2
" � � 1

X 0X for the asymptotic variance, as it should. Also note that� 2
" � 0� � 1

X 0X � consti-

tutes the population R2 of the auxiliary regression of" on X ; denoting the OLS estimator

of this regression aŝ� = ( X 0X )� 1X 0"; we �nd

R2
";X � plim

�̂ 0X 0X �̂
"0"

= plim
"0X (X 0X )� 1X 0"

"0"
= � 2

" � 0� � 1
X 0X �; (2.26)

which expresses the seriousness of the simultaneity. Substituting (2.26) and (2.13), result

(2.25) implies

AVarNC (�̂ OLS ) =
1
n

(1 � R2
";X )[(1 � R2

";X )� 2
" � � 1

X 0X � (1 � 2R2
";X ) •� OLS

•� 0
OLS ]; (2.27)

where the superscriptN indicates that we assumed that the �rst four moments of the

disturbances conform to normal and the subscriptC indicates that this concerns the

conditional distribution. Of course, 0 < 1 � R2
";X � 1: Because•� OLS

•� 0
OLS is positive

semi-de�nite, we �nd that as a rule, and certainly whenR2
";X < 0:5; simultaneity has

a mitigating e�ect on the asymptotic variance of the OLS estimator. This is plausible

because by the pseudo true value also part of the disturbances is explained, and hence

the e�ective signal-to-noise ratio becomes larger under simultaneity.

For the case with symmetric disturbances (� 3 = 0) and excess kurtosis (� 4 6= 3) the

asymptotic variance (2.27) changes to

1
n

(1 � R2
";X )f (1 � R2

";X )� 2
" � � 1

X 0X � [(4 � � 4) � (5 � � 4)R2
";X ] •� OLS

•� 0
OLS g: (2.28)

Assuming that the �rst column of X equals � so that � � 1
X 0X � X 0� = e1 = (1 ; 0; :::; 0)0 is
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a unit vector whereas� 0e1 = 0, then in case of skewness, the extra contribution to the

variance of the limiting distribution is

1
n

� 3
" � 3(1 � R2

";X )2[e1� 0� � 1
X 0X + � � 1

X 0X �e0
1]: (2.29)

Note that { in agreement with established knowledge { the contributions due to� 3 6= 0

or � 4 6= 3 are nil when � = 0:

Returning now to the unconditional limiting distribution given in (2.17) and using

(2.26) we �nd

AVarU (�̂ OLS ) =
1
n

(1 � R2
";X )� 2

" � � 1
X 0X ; (2.30)

which holds irrespective of the distribution of the disturbances. By its very nature it

should be larger in a matrix sense than its conditional counterpart.

An expression that can be shown to be similar to (2.27) can be found in Rothenberg

(1972). However, his formula (4.7), which is employed in Hausman (1978) and Hahn and

Hausman (2003), is more di�cult to interpret. It has been obtained from a particular

errors in variables model speci�cation in which no allowance has been made for lagged

dependent regressor variables, whereas ours stems from a much more general (possibly

dynamic) regression speci�cation, which is generic concerning the problem of contempora-

neous correlation of regressors and disturbances. By the decomposition (2.9) we avoided

an explicit speci�cation of the variance matrix of the disturbances in a reduced form

for X; as employed by Rothenberg (1972), and then from (2.25) it is easy to recognize

that, apart from � 2
" � � 1

X 0X ; the only determining factors of the asymptotic variance are the

very meaningful characteristics: (i) the inconsistency•� OLS = � �
OLS � � = � 2

" � � 1
X 0X � and

(ii) a measure for the simultaneityR2
";X = � 0•� OLS : The derivations in Joseph and Kiviet

(2005) yielded the expression1n [� 2
" � � 1

X 0X + •� OLS
•� 0

OLS ] for AVarNC (�̂ OLS ): It can be shown

that the di�erence between this incorrect and the complete formula given above is positive

semi-de�nite. Hence, the area in the parameter space where OLS beats IV on the basis

of their limiting distribution is actually even larger than indicated in that earlier study.

Kiviet and Niemczyk (2007) presented the complete expression forAVarC (�̂ OLS ); but it
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was inadequately indicated1 that it concerned the distribution conditional on �X:

2.4 Measures for estimator accuracy

We want to use characteristics of the limiting distributions of OLS and IV estimators

in order to express the essentials of their location and spread, so that we can make

useful comparisons, which hopefully will also prove to approximate their relative qualities

in �nite samples reasonably well. Apart from using �rst-order asymptotic theory to

approximate these �nite sample characteristics, in addition we shall use simulation to

assess them. The asymptotic distributions of OLS and IV in the models to be considered

are all normal and have �nite moments.

Let for the generic estimator�̂ of �; with pseudo true value� � ; the limiting distribution

be given by

n1=2(�̂ � � � ) d! N (0; V): (2.31)

Under a complete speci�cation of the data generating processes for bothy and the vari-

ables occurring inX and Z; matrices like � X 0X and � Z 0X and vector� are determined just

by the model parameters. Then all elements of both� � and V depend on the parameters

only. The �rst order asymptotic approximation to the variance of �̂ is given by

AVar(�̂ ) �
1
n

V; (2.32)

and to its bias by � � � �: Hence, the �rst-order asymptotic approximation to the MSE

(mean squared error) can be de�ned as

AMSE(�̂ ) �
1
n

V + ( � � � � )( � � � � )0; (2.33)

which for a consistent estimator simpli�es to 1
n V:

The simple IV estimators�̂ IV considered in this study do not have �nite moments in

1We thank Peter Boswijk for bringing this forward.
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�nite samples and hence their biasE(�̂ � � ), their variance Var(�̂ ); and their MSE, i.e.

MSE(�̂ ) � E(�̂ � � )( �̂ � � )0 = Var( �̂ ) + E(�̂ � � )E(�̂ � � )0; (2.34)

do not exist. This makes the usual measures of the actual distribution of̂�; calculated on

the basis of Monte Carlo sample moments, unsuitable. Denoting the series of mutually

independent simulated realizations of the estimator bŷ� (1) ; :::; �̂ (R) ; whereR is the number

of replications, the habitual Monte Carlo estimator ofE(�̂ ) is the Monte Carlo sample

average

ME(�̂ ) � R� 1
X R

r =1
�̂ (r ) : (2.35)

However, ME(�̂ ) will not converge for R ! 1 if E(�̂ ) does not exist. Self-evidently,

similar problems arise for the Monte Carlo assessment of the variance, i.e.

MVar(�̂ ) �
1

R � 1

X R

r =1
(�̂ (r ) � ME(�̂ ))( �̂ (r ) � ME(�̂ ))0; (2.36)

and for the empirical (Monte Carlo) MSE, i.e.

MMSE(�̂ ) �
1
R

X R

r =1
(�̂ (r ) � � )( �̂ (r ) � � )0; (2.37)

if the corresponding moments do not exist. Therefore, to �nd expressions for estimator

quality obtained from Monte Carlo results such that they will always summarize location

and spread in a meaningful way, we will choose measures here which are based directly on

characteristics of the empirical Monte Carlo density or the empirical distribution function

F̂i of the i th element of the vector�̂; such as the median and other quantiles.

For any real argument valuex the empirical distribution function of �̂ i ; obtained from

the Monte Carlo experiments, is de�ned as

F̂i (x) �
1
R

X R

r =1
I (�̂ (r )

i � x); (2.38)

whereI (�) is the Kronecker indicator function. Then the empirical median or second quar-

tile is F̂ � 1
i (0:5); and the �rst and third empirical quartiles are F̂ � 1

i (0:25) and F̂ � 1
i (0:75);
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respectively. Theseqth quartiles can easily be obtained after sorting thê� (r )
i in non-

decreasing order and then taking (assumingR is a multiple of 100)

F̂ � 1
i (q=4) = 0:5(�̂ (qR=4)

i + �̂ (1+ qR=4)
i ); q = 1; 2; 3: (2.39)

To mimic the RMSE (root mean squared error) criterion, which is
p

� 2
i + b2

i ; when � i and

bi are the standard deviation and the bias of̂� i respectively, a similar alternative empirical

measure, not requiring existence of �nite moments, seems the following. We replace� i by

q�
0:75[F̂

� 1
i (0:75) � F̂ � 1

i (0:25)]=2; for some real numberq�
0:75; and bi by F̂ � 1

i (0:5) � � i : We

can chooseq�
0:75 such that in case an estimator is in fact normally distributed the criterion

conforms precisely to RMSE. Indicating the standard normal distribution function by �

this requires q�
0:75[�

� 1(0:75) � � � 1(0:25)]=2 = 1; which results in q�
0:75 = (0 :67499)� 1 =

1:4815: As an alternative to the RMSE we could then use

q
(q�

0:75)2[F̂ � 1
i (0:75) � F̂ � 1

i (0:25)]2=4 + [F̂ � 1
i (0:5) � � i ]2:

However, we do not necessarily have to use the quartiles. More generally, for any 0:5 <

p < 1; we may de�ne

d(p) � [� � 1(p) � � � 1(1 � p)]=2:

Let � �;� be the distribution function of N (�; � 2); then

� � 1
�;� (p) � � � 1

�;� (1 � p) = 2 �d (p):

Now as an assessment ^� i (p) from an empirical distribution F̂i that should mimic � i (if

this exists), we may use

�̂ i (p) �
1

2d(p)
[F̂ � 1

i (p) � F̂ � 1
i (1 � p)]: (2.40)

This will work perfectly well for any 0:5 < p < 1 if F̂i is in fact normal. We have

experimented with a few values ofp; trying Chi-squared (skewed) and Student (fat tailed)

distributions, and found especiallyp = 0:841345; for which d(p) = 1 ; to work well.
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Therefore, when �nite moments do not exist, instead of RMSE, we will use what we

call the \empirical quantile error distance", which we de�ne as

EQED(�̂ i ) �
q

[F̂ � 1
i (0:841345)� F̂ � 1

i (1 � 0:841345)]2=4 + [F̂ � 1
i (0:5) � � i ]2: (2.41)

See also Pearson and Tukey (1965)2 on approximating means by distances between quan-

tiles, where the authors also consider the approximation to the standard deviation (2.40)

for p=0.95, 0.975 and 0.99 (Pearson and Tukey's equations (6)-(8)).

Below, we will calculate this for alternative estimators for the same model (and same

parameter values and sample size), including the consistent and asymptotically optimal

estimator, and then depict the logarithm of the ratio (with the asymptotically optimal in

the denominator), so that positive and negative values directly indicate which estimator

has more favorable EQED criterion for particular parameter values. Having smaller EQED

will be interpreted as being more accurate in �nite samples. Hence, negative values for

the log of the ratio will indicate that the asymptotically optimal is actually less accurate

in �nite samples.

To examine the accuracy in �nite samples of the precision criteria obtained from the

limiting distribution we can calculate the log ratio of EQED(�̂ i ) and the asymptotic root

mean squared error

ARMSE(�̂ i ) �

r
1
n

Vii + ( � �
i � � i )2: (2.42)

For an estimator with �nite moments we can simply take the log ratio of the Monte Carlo

root mean squared error

MRMSE(�̂ i ) �

r
1
R

X R

r =1
(�̂ (r )

i � � i )2 (2.43)

and ARMSE(�̂ i ).

Note that for an inconsistent estimator, where� �
OLS;i 6= � i ; the ARMSE criterion

will converge forn ! 1 to j � �
OLS;i � � i j6= 0; whereas it will converge to zero for any

consistent estimator. Hence the criterion follows the logic that, since estimator variance

2We thank Prof. J.G. de Gooijer for this reference.
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gets smaller in larger samples irrespective of whether the estimator is consistent, the larger

the sample size the more pressing it becomes to have a consistent estimator. On the other

hand, when sample size is moderate, an inconsistent estimator with possibly a substantial

bias in �nite samples but a relatively small variance could well be more attractive than

a consistent estimator, especially when the latter's distribution has fat tails, and is not

median unbiased with possibly a wide spread. In the models to be de�ned below, we

will �rst examine the log ratios of the ARMSE criterion for OLS and IV, with IV in

the denominator, so that positive values of this ratio indicate parameter values for which

IV is more accurate on the basis of �rst-order asymptotic theory. Next we will examine

whether the �ndings from �rst-order asymptotic theory are vindicated in �nite samples

by simulation experiments.

2.5 Pictured parametrizations

In this section we specify a class of simple speci�c models that easily allow to param-

eterize the asymptotic characteristics of both OLS and IV. Models from this class will

be simulated too in order to assess the actual behavior in �nite samples and to examine

the accuracy of the asymptotic approximations. We restricted our study to cases where

disturbances are normally distributed. In all simulations we use the same set of random

draws for the various disturbance vectors for all grid-points in the parameter space exam-

ined. To further reduce the experimental variance, exploiting the assumed symmetry of

the disturbances, we also made use of the simple variance reduction method of re-using

vectors of normal random numbers by simply changing their sign. The number of Monte

Carlo replications for each parameter combination is 1,000,000 for densities and 50,000

for all grid points in the 3-D pictures. The diagrams presented below are single images

from animated versions (available at www.feb.uva.nl/ke/jfk.htm) which allow to inspect

the relevant phenomena over a much larger part of the parameter space.

For the simple static models that we examine below some analytic �nite sample prop-

erties are available; see Woglom (2001) and Hillier (2006) for some recent contributions

and further references. We have not made use of these and employed straightforward
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Monte Carlo simulation, which as yet seems the only option for assessing �nite sample

properties for most of the phenomena examined here.

2.5.1 A basic static IID model

We consider a model with one regressor and one valid and either strong or weak instru-

ment. The two variablesx and z, together with the dependent variabley, are jointly IID

with zero mean and �nite second moments. This case may be denoted as

yi = �x i + " i ; (2.44)

x i = �x i + �" i ; (2.45)

where� is scalar now. Data fory; x and z can be obtained by the generating scheme

" i = � " v1;i ;

�x i = � 1v2;i ;

zi = � 2v2;i + � 3v3;i ;

wherevi = ( v1;i ; v2;i ; v3;i )0 � IID(0, I 3): Thus

0

B
B
B
@

" i

x i

zi

1

C
C
C
A

= Pvi =

0

B
B
B
@

� " 0 0

� " � � 1 0

0 � 2 � 3

1

C
C
C
A

vi ; (2.46)

giving (" i ; x i ; zi )0 � IID(0 ; PP0):

We will focus on this model just for the case� = 1: This is merely a normalization

and not a restriction, because we can imagine that we started from a modelyi = �� �x i + " i ;

with �� 6= 0; and rescaled the explanatory variable such thatx i = �x i =��: We can impose

some further normalizations on the 5 parameters ofP; because, without loss of generality,



2.5. PICTURED PARAMETRIZATIONS 27

we may take

� " = 1; (2.47)

� 2
z = � 2

2 + � 2
3 = 1: (2.48)

By (2.47) we normalize all results with respect to� " ; and because the IV estimator is

invariant to the scale of the instruments (only the space spanned byz is relevant) we may

impose (2.48) which will be used to obtain the value

� 2
3 = 1 � � 2

2 � 0: (2.49)

From the above we �nd the following data variances, covariances and related correlations:

� 2
x = � 2 + � 2

1 � 2
y = � 2 + 2� + 1 + � 2

1

� x" = � � x" = �=
p

� 2 + � 2
1

� z" = 0 � z" = 0

� xz = � 1� 2 � xz = � 1� 2=
p

� 2 + � 2
1

9
>>>>>>=

>>>>>>;

(2.50)

Note that these depend on only 3 remaining free parameters: viz.�; � 1 and � 2; and so

will the expressions for asymptotic variance (together with� 3 and � 4; the 3rd and 4th

moments ofv1;i ).

However, instead of designing our results in terms of the three parameters�; � 1 and

� 2, we prefer another parametrization. We shall use as a base of the design parameter

space for this simple model, the three parameters:� x" ; � xz and SN (signal-noise ratio),

where

SN = � 2� 2
x=� 2

" = � 2
x � 0: (2.51)

This reparametrization is useful because the parameters� x" ; � xz and SN have a di-

rect econometric interpretation, viz. the degree of simultaneity, instrument strength

and model �t, respectively. The population �t of the model might be expressed as

PF = � 2� 2
x=(� 2� 2

x + � 2
" ) = SN=(SN + 1) : By varying the three parametersj� x" j < 1;

j� xz j < 1 and 0< PF < 1; we can examine the whole parameter space of this model. For
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given values ofSN = PF=(1 � PF) = � 2
x and � x" one can obtain� and � 1; i.e.

� = � x" � x ; (2.52)

� 1 =
�
�
�
p

� 2
x � � 2

�
�
� =

�
�
� � x

p
1 � � 2

x"

�
�
� : (2.53)

With � xz we can now obtain

� 2 = � xz =
�
�
�
p

1 � � 2
x"

�
�
� (2.54)

and, of course,

� 3 =

�
�
�
�

q
1 � � 2

2

�
�
�
� =

�
�
�
p

(1 � � 2
x" � � 2

xz )=(1 � � 2
x" )

�
�
� ; (2.55)

so that � 2
x" + � 2

xz < 1:

In this simple model we have

� �
OLS � � = �

� 2
x

= � x" =� x

R2
";X = � 2

� 2
x

= � 2
x"

� X 0X = � 2
x = SN

� � 1
Z 0X � Z 0Z � � 1

X 0Z = � 2
z=� 2

xz = 1=� 2
xz � 2

x = � 2
xz =� 2

x :

9
>>>>>>=

>>>>>>;

(2.56)

In the simulations of the �nite sample distributions and the evaluations of the �rst-

order asymptotic approximations, we want to distinguish between the unconditional and

the conditional cases. When conditioning on�X all Monte Carlo replications should use

the same drawing, i.e. just one single realization of the seriesv2;i : However, an arbitrary

draw of v2;i might give rise to an atypical �x series, and when one would condition the

distribution of �̂ IV on the exogenousZ as well, the actual strength of the instrument

would not be fully under control because the sample correlation betweenv2;i and v3;i would

not be precisely zero. Therefore, when conditioning, we replacedv3;i by its residuals after

regressing onv2;i and an intercept, in order to guarantee a sample correlation of zero.

And to make sure that sample mean and variance of bothv2;i and v3;i are appropriate

we standardized them too. An e�ect of this is that in the simulations �x0�x=n + � 2
" � 2 = � 2

x

and thus � �
n;OLS = � �

OLS ; which makes it easier to notice the major consequences of

conditioning. Another consequence is that the assessment in the Monte Carlo of the
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�rst-order approximation to the variance of �̂ IV is the same for both the conditional and

unconditional case, as is the case for OLS when� = 0:

So, for the case where all variables are (almost) normally distributed

AVarNC (�̂ OLS ) =
1
n

(1 � � 2
x" )(1 � 2� 2

x" + 2� 4
x" )=� 2

x : (2.57)

This yields
@AVarNC (�̂ OLS )

@�2x"
= �

1
n

(3 � 8� 2
x" + 6� 4

x" )=� 2
x ;

which is strictly negative, because the polynomial factor between parentheses is strictly

positive. Therefore, the asymptotic variance of OLS decreases when the simultaneity

aggravates, even whenR2
";X � 0:5 (compare with the �nding below (2.27)).

Result (2.57) implies for the �rst-order asymptotic approximation to the mean squared

error under normality of the disturbances the speci�c result

AMSEN
C (�̂ OLS ) = [

1
n

(1 � � 2
x" )(1 � 2� 2

x" + 2� 4
x" ) + � 2

x" ]=� 2
x ; (2.58)

from which we �nd @
@�2x"

AMSEN
C (�̂ OLS ) > 0 for n > 3: So, �rst order asymptotic theory

predicts that in all cases of practical interest the reduction in variance due to an increase

in simultaneity will be o�set by the squared increased inconsistency.

We want to compare expression (2.58) with the corresponding quantity for IV

AVar(�̂ IV ) = 1 =(n� 2
x � 2

xz ); (2.59)

which holds for both the unconditional and the conditional distribution. Note that, unlike

AVarC (�̂ OLS ) and AVarU (�̂ OLS ); this is invariant with respect to � x" : According to �rst

order asymptotic criteria, OLS will be more accurate than IV for all combinations of

parameter values andn satisfying AMSEN
C (�̂ OLS ) < AMSE(�̂ IV ) = AVar(�̂ IV ); i.e. for

� 2
xz [(1 � � 2

x" )(1 � 2� 2
x" + 2� 4

x" ) + n� 2
x" ] < 1: (2.60)

Note that this watershed between IV and OLS as far as AMSE is concerned is invariant
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with respect toSN = � 2
x ; and so is the relative (but not the absolute) di�erence in AMSE.

Self-evidently (2.60) shows that for� x" = 0 OLS will always be more accurate. It is also

obvious that IV runs into weak instrument problems when� 2
xz gets close to zero. When

� 2
xz = 0 the equation is not identi�ed. For IV this implies an exploding variance but not

for OLS, whereAMSEN
C (�̂ OLS ) is not a�ected by � 2

xz : So, although obtaining meaningful

inference on� from it may seem an illusion,�̂ OLS has still a well-de�ned distribution.

Since

�̂ OLS � � = 1
� x

P n
i =1

�
� x" vi 1+

p
1� � 2

x" vi 2

�
vi 1

P n
i =1

�
� x" vi 1+

p
1� � 2

x" vi 2

� 2 ;

�̂ IV � � = 1
� x

P n
i =1 (� 2vi 2+ � 3vi 3 )vi 1

P n
i =1 (� 2vi 2+ � 3vi 3 )

�
� x" vi 1+

p
1� � 2

x" vi 2

� ;

(2.61)

the �nite sample distributions of both �̂ OLS and �̂ IV are determined bySN = � 2
x in a

very straightforward way. In fact, the shape of the densities is not a�ected, but only the

scale. This is also the case for the inconsistency, see the �rst formula in (2.56), and thus

carries over to the asymptotic variances (2.27) and (2.59) too. From (2.61) we can also

see that due to the symmetry ofvi ; the densities of both�̂ OLS and �̂ IV are not a�ected

by the sign of � x" nor by the sign of� xz ; so we will examine positive values only.

2.5.2 Actual �ndings

The actual values of� �
OLS and of (the square root of)AMSEN (�̂ OLS ) and AVar(�̂ IV ) could

be calculated and tabulated now for various values ofn; SN; � x" and � xz and then (to �nd

out how accurate these �rst-order asymptotic approximations are) be compared with sim-

ulation estimates for the expectation (or median) and the standard error (or interquartile

range). We have chosen, however, for a visual and more informative representation of

these phenomena by focussing both on density functions and on graphs of ratios of the

performance measures mentioned in section 2.4. We will portray these over the relevant

parameter space. From the foregoing it is clear that varyingSN = � 2
x will have a rather

straightforward and relatively neutral e�ect, so we focus much more on the e�ects of� x" ;

� xz and n:

In Figure 2.1 densities are presented, both for OLS and for IV, for the conditional
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and the unconditional distribution, both for the actual empirical distribution and for its

asymptotic approximation, as indicated in the legend below.

Legend for Figures 2.1 and 2.2

line type: density of:

||| OLS, actual, conditional

� � � OLS, asymptotic, conditional

{ { { { OLS, actual, unconditional

� � � OLS, asymptotic, unconditional

� � � � � IV, actual, conditional

� � � � IV, actual, unconditional

+ + + IV, asymptotic, both conditional and unconditional

For the asymptotic approximations we take

�̂ OLS
a� N (� �

OLS ; 1
n AVarNC (�̂ OLS )) ;

�̂ OLS
a� N (� �

OLS ; 1
n AVarU (�̂ OLS )) ;

�̂ IV
a� N (�; 1

n AVar(�̂ IV )) :

(2.62)

In the simulations we tookvi � IIN(0 ; I 3). From the results we may expect to get quick

insights into issues as the following. For which combinations of the design parameter

values are the actual densities of̂� OLS and �̂ IV close (regarding mean/median, spread,

symmetry, unimodality, tail behavior) to their respective normal approximations (2.62)?

Is there a qualitative di�erence between the accuracy of the OLS and the IV asymptotic

approximations? What are the e�ects of conditioning? Do these densities clearly disclose

where IV seems to perform better (or worse) than OLS? Hence, we focus on the corre-

spondences and di�erences in shape, location and spread of the four pairs of asymptotic

and empirical distributions.
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Figure 2.1 consists of six panels of 2� 2 diagrams each. Every panel has a �xed value

of n and of � xz ; the latter is shown in the middle of each panel. The three left-hand panels

are for n = 50 and the three right-hand panels forn = 200: The three rows of panels

are for di�erent values of � xz : From top to bottom we distinguish a relatively strong

instrument (� xz = 0:8); a much weaker one (� xz = 0:2) and a very weak instrument

(� xz = 0:02): Hence, in these three rows of panels the OLS results do not change, as

they do not depend on� xz : However, the scale on both the horizontal and vertical axes

di�ers, so their appearance does di�er. The four diagrams in each panel concern very

mild simultaneity ( � x" = 0:1); slightly stronger simultaneity (� x" = 0:2) and the bottom

two diagrams show more severe simultaneity for� x" = 0:4 and � x" = 0:6 respectively.

These all ful�ll the requirement � 2
xz � 1 � � 2

x" : Note that when � x" = 0:6 and � xz = 0:8

instrument zi is a multiple of �x i (� 3 = 0) ; according to (2.55), and cannot possibly be

made stronger. Each panel contains the seven densities forSN = � 2
x = 10, implying

population �t PF = 10=11 = 0:909; which value has just a straightforward multiplicative

e�ect and does not a�ect the qualitative di�erences between the densities.

From Figure 2.1 we �nd that for a relatively strong instrument the three densities

depicted for IV are extremely close to each other, even forn = 50 , irrespective of the

severity of simultaneity. Obviously, when the instrument is much weaker all three densities

become much atter, but when the instrument is really weak we note a serious discrepancy

between the unconditional and conditional actual distribution, where the latter is much

more erratic and shows bimodality for the smaller sample size. As has been established

in the literature before, the standard asymptotic approximation is clearly inaccurate for

a very weak instrument, and is in fact much too pessimistic regarding the spread of the

actual distribution. This is seen more clearly in Figure 2.2, where the two panels of the

third row of Figure 2.1 for the very weak instrument are depicted again, but now on a

di�erent scale, without the OLS densities. Note that conditional IV tends to be bimodal,

especially for smaller sample size and more severe simultaneity. With respect to OLS

Figure 2.1 shows that even for the smaller sample size the two asymptotic approximations

are very accurate for their respective �nite sample densities, which both are almost similar

for mild simultaneity, but clearly demonstrate for more severe simultaneity the smaller
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variance of the conditional distribution. The latter occurs for both sample sizes examined.

It is evident that, in case of substantial simultaneity, IV can be more attractive than OLS

when the instrument is relatively strong, especially for the larger sample size. However,

it is much less obvious when the sample size is small and simultaneity very mild, even for

a strong instrument. That OLS may on average have smaller estimation errors than IV

when the instrument is weak is also clearly exposed, especially when the simultaneity is

mild. Because the bias of OLS is relatively small in comparison to the increased spread of

IV, this seems to be the case much more generally. For which particular parameter value

combinations OLS beats IV indeed can be learned from the diagrams in Figure 2.3.

To examine more closely for which parameter values the performance measures devel-

oped in section 4 show a positive (negative) di�erence between the precision of OLS and

IV in �nite samples, we produce here 3D graphs (and 4D graphs on the web) of

log[EQEDN
C (�̂ OLS )=EQEDN

C (�̂ IV )]; (2.63)

for �xed values of SN and n over the (� x" ; � xz ) plane. This log-ratio (2.63) is positive

when IV performs better (yellow/amber surface) and negative (light/dark blue surface)

when OLS is more precise. The four panels in Figure 2.3 correspond ton = 20; 50,

100 and 200 respectively. We took againSN = 10; but ratio (2.63) is invariant with

respect to this value, due to (2.61). These graphs have been obtained from simulating the

conditional distributions of �̂ IV and �̂ OLS : They illustrate that IV performs better when

both � x" and � xz are large in absolute value, i.e. when both simultaneity is severe and

the instrument relatively strong. The (blue) area where OLS performs better diminishes

when n increases. Where the ratio equals 2, IV is exp(2) or about 7.5 times as accurate

as OLS, whereas where the log-ratio is less than -3 OLS is more than exp(3) (i.e. about

20) times as accurate as IV. We notice that over a substantial area in the parameter space

(which obeys� 2
x" + � 2

xz < 1) the OLS e�ciency gains over IV are much more impressive

than its potential losses can ever be.

A measure for the weakness of an instrument is the �rst-stage populationF value (see,
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for instance, Staiger and Stock (1997)), which in this model is

F � n
� 2

x � � 2
x (1 � � 2

xz )
� 2

x (1 � � 2
xz )

= n
� 2

xz

1 � � 2
xz

: (2.64)

Instrument weakness is associated with small values ofF; say F � 10: The latter implies

here � 2
xz � 10=(n + 10) or j� xz j � 0:58 (for n = 20) and j� xz j � 0:3 (for n = 100). From

Figure 2.3 we see that this criterion lacks the inuence of� x" in order to be useful to

identify all the cases where IV performs better/worse than OLS.

Figure 2.4 examines for conditional OLS the quality of the asymptotic approximation

to represent the actual empirical OLS distribution. Because OLS has �nite moments, we

simply use the RMSE criterion. The 3D graphs represent

log[ARMSEN
C (�̂ OLS )=MRMSEN

C (�̂ OLS )]; (2.65)

hence positive values indicate pessimism of the asymptotic approximation (actual RMSE

smaller than �rst-order asymptotic approximation) and negative values optimism. Self-

evidently � xz has no e�ect, neither hasSN = � 2
x ; but � x" has. We �nd that the asymptotic

approximation of MSE developed in this study may be slightly pessimistic, but is espe-

cially accurate when the simultaneity is serious. Even in a very small sample the over

assessment by the asymptotic approximation of the actual RMSE is usually below 10 .

The above model can easily be generalized, for instance by including another, possibly

serially correlated or a lagged-dependent, explanatory variable foryi ; as we did in Kiviet

and Niemczyk (2007), although not yet taking conditioning properly into account. This

will be examined in future research. Note that when �x i is serially correlated the IID

assumption does no longer hold, and the asymptotic approximation to the unconditional

distribution of OLS does not apply.

2.6 Conclusions

Econometrics developed as a �eld separate from statistics, mainly because it focusses on

the statistical analysis of observational non-experimental data, whereas standard statistics
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generally analyzes data that have been obtained from appropriately designed experiments.

This option is often not open in economics, where data are usually not random samples

from a well-de�ned population. Unlike data obtained from experiments, most variables

may be jointly dependent. As a consequence the structural relationships become part of

a simultaneous system, and their explanatory variables may be contemporaneously corre-

lated with the equation's disturbance term. In that situation the least-squares estimator

exhibits bias, not just in �nite samples. In simultaneous equations of stationary variables

least-squares estimators are inconsistent. Hence, even asymptotically (in in�nitely large

samples) this estimator produces systematic estimation errors. For that reason its actual

distribution has received relatively little attention in the literature, mainly because in an

identi�ed (partial-) simultaneous system alternative consistent method of moments esti-

mators are available. However, in �nite samples these instrumental variable estimators

have systematic estimation errors too, and may even have no �nite moments. The fact

that they can be very ine�cient (even in large samples) has been highlighted recently

in the literature on weak instruments; see Dufour (2003) for an overview. In extreme

cases these method of moment estimators are no longer consistent either, whereas in

less extreme cases, they may still have reasonable location properties, while showing an

unfavorable spread.

In this Chapter we provide further evidence on the behavior of inconsistent least-

squares and consistent just identi�ed instrumental variable estimators. This evidence

enables us to monitor the trade-o� options between: (i) the systematic but generally

bounded dislocation of the least-squares estimator, and (ii) the vulnerability of the in-

strumental variable estimator regarding both its location and its scale (we avoid here

addressing these as mean and variance, because just identi�ed instrumental variable esti-

mators have no �nite moments). To achieve this we �rst derive the limiting distribution

of the least-squares estimator when applied to a simultaneous equation. We consider both

the unconditional distribution and the e�ects of conditioning on predetermined informa-

tion in static models. We are not aware of any published study that provides an explicit

representation for this conditional asymptotic distribution in terms of its inconsistency

and the degree of simultaneity as given in Kiviet and Niemczyk (2007). Analyzing it in
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a particular simple class of models shows that simultaneity usually has a mitigating ef-

fect on the asymptotic variance of OLS, and comparing it with results from Monte Carlo

experiments shows that even in very small samples the derived conditional asymptotic

variance of least-squares provides a very accurate approximation to the actual variance.

The asymptotic distribution of IV is often very informative on its behavior in �nite sam-

ples, but not in cases of weak instruments due to poor identi�cation. This is natural,

because under weak instruments the standard asymptotic results do not apply.

From the limiting distribution of OLS we straightforwardly obtain a �rst-order asymp-

totic approximation to its MSE, which we can compare with its counterpart for instru-

mental variables. We do so over all feasible parameter values of the simple class of models

examined. We �nd that under moderate simultaneity or for moderately weak instruments

in samples of a limited size least-squares can perform much better, even substantially so,

than instrumental variables. On the other hand, when both simultaneity and instrument

strength are extreme, IV estimation is only marginally more (or on a root mean squared

error criterion in moderately large samples roughly about twice as) precise than least-

squares, although IV is uniformly superior when the sample is really large. These general

predictions from �rst-order asymptotic theory are vindicated in simulation experiments of

actual samples of sizes in the range from 20 till 200. To make such comparisons we need

an equivalent to the root mean squared error, which is still meaningful when moments

do not exist. Therefore we developed what we call the empirical quantile error distance,

which proves to work adequately.

In practice, very often least-squares estimators are being used in situations where,

according to common text-book knowledge, more sophisticated method of moments es-

timators seem to be called for. Some of the results in this Chapter can be used to

rehabilitate the least-squares estimator for use in linear simultaneous models. However,

we should warn that the present study does not provide yet proper accurate inference

methods (estimated standard errors, tests, con�dence sets) that can be applied to least

squares when it is inconsistent. This is on the agenda for future research, that should focus

also on methods to modify least-squares, in order to render it consistent, and examining

its e�ects on the resulting e�ciency.
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Figure 2.1: Actual/asymptotic (un)conditional densities of�̂ OLS and �̂ IV in basic static
model;SN = 10; n = 50 (�rst two columns), 200 (last two columns); � xz = 0:8; 0:2; 0:02;
� x" = 0:1; 0:2; 0:4; 0:6
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Figure 2.2: Actual/asymptotic (un)conditional densities of �̂ IV in basic static model;
SN = 10; the top four diagrams are forn = 50 and the bottom four diagrams for 200;
� xz = 0:02; � x" = 0:1; 0:2; 0:4; 0:6







Chapter 3

On the limiting and empirical

distribution of IV estimators when

some of the instruments are invalid

3.1 Introduction

When in a regression model some of the explanatory variables are contemporaneously cor-

related with the disturbance term, and this correlation is unknown, then one needs further

variables in order to �nd consistent estimators by the method of moments. These instru-

mental variables should have a known (usually zero) correlation with the disturbances. If

this is the case they provide moment conditions (called orthogonality conditions when the

correlation is zero) that make it possible to obtain consistent instrumental variable (IV)

estimators. In practice, however, it is usually di�cult to assess whether an instrumental

variable is valid indeed, i.e. is uncorrelated with the disturbance term. Firstly, instrument

validity or orthogonality tests are only viable under just identi�cation or overidenti�ca-

tion by truly valid instruments. That is, they are based on the prerequisite of having

already available a number of undisputed valid instruments, at least as great as the num-

ber of coe�cients (k) to be estimated, whereas the validity of the initialk instruments

is untestable. Moreover, orthogonality tests will have reasonable power only when the

instruments employed and those under test are not too weak (are su�ciently correlated

41
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with the regressors) and the sample size is substantial. Therefore, it seems very likely that

IV estimation will often be employed when some of the instruments are in fact invalid.

In this case the IV estimator for the structural parameters is inconsistent, even when the

structural equation itself is correctly speci�ed for the parameters of interest.

In this Chapter we consider general and { in much more detail { some simple speci�c

forms of possibly dynamic linear structural equations and corresponding partial reduced

form systems in covariance stationary variables and examine the IV estimator when ac-

tually some of its exploited orthogonality conditions do not hold. We cover the general

case where the number of moment conditions exploited (l); thus the valid and invalid

conditions together, is at least as large as the number of unknown coe�cients, i.e. we

consider the (alleged) over or just identi�ed case (l � k): We focus on the distribution

of such an invalid IV estimator for a single structural equation that itself has been spec-

i�ed correctly 1 in the sense that its implied series of error terms is IID (independent

and identically distributed) with unconditional expectation equal to zero. In addition to

the simple expression for the inconsistency of the IV estimator in terms of parameters

and data moments we also derive its limiting distribution, conditional on all genuinely

predetermined variables in the system. These results yield a �rst-order asymptotic ap-

proximation to the actual distribution of inconsistent IV estimators in �nite samples. The

conditional asymptotic variance proves to be a rather complicated expression, although

it can be substantially simpli�ed when specialized for the just identi�ed case (l = k):

Over the relevant parameter space of simple classes of models we verify by simulation

whether these analytic �ndings are accurate regarding the actual estimator distribution

in �nite samples and demonstrate how these depend on the various model parameters and

characteristics.

In the illustrations we focus �rst on a very simple speci�c type of model, entailing

just one explanatory variable and one instrument. Here we show that all our �ndings,

both the analytic asymptotic and the simulated �nite sample results, are driven by just

four primal econometric model characteristics, in addition to the sample size. These four

characteristics are straightforward transformations of the underlying parameters of the

1An alternative point of departure is chosen in Hale, Mariano, and Ramage (1980) where instruments
are invalid due to omitted regressors.
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data generating process. They are all related to particular correlation coe�cients, viz.:

(i) the model �t, (ii) the degree of simultaneity, (iii) the degree of invalidity of the instru-

ment, and (iv) the degree of instrument weakness. Thus, even in the simple one-regressor

one-instrument model, the distributional properties of the IV estimator are functions in-

volving �ve arguments, which makes it di�cult to depict their behavior over all relevant

argument values. Instead of presenting extensive tables, we present a few series of 2D

and 3D graphs in print, and we use dynamic multi-dimensional visualization techniques

to present our �ndings more elegantly and e�ectively on screen through animations. We

also present some results for an (alleged) overidenti�ed one-regressor model with two in-

struments. Here we �nd that both the actual �nite sample distribution and its asymptotic

approximation can be expressed using just one extra argument, whereas at �rst sight one

might conjecture that both the invalidity and the strength of the extra instrument would

matter separately.

Despite its obvious relevance, the analysis of IV estimators employing invalid instru-

ments has not received very much attention in the literature yet. The special case of

inconsistent OLS has been addressed in various studies. Goldberger (1964, p. 359) exam-

ines for IID data its asymptotic variance. In an unpublished paper, Rothenberg (1972)

derives the limiting distribution of OLS when some regressors are a�ected by measure-

ment errors. From this Hausman (1978) obtains the conditional limiting distribution of

OLS in a simultaneous equation withk = 1: The k = 2 case can be found as a problem

exercise with indications for its solution in Phillips and Wickens (1978, problem 6.10).

The analysis of the much more general problem of obtaining the limiting distribution of

an inconsistent instrumental variables estimator has received some attention too. For

one equation from a normal linear dynamic simultaneous system with serial correlation

this was taken up by Hendry (1979), and further examined in Maasoumi and Phillips

(1982) and Hendry (1982). These three studies derive a so-called control variate, which

has the same limiting distribution, and examine its potential to enhance the e�ective-

ness of Monte Carlo simulation �ndings by response surface analysis. The focus in these

three studies is on the unconditional distribution of inconsistent IV estimation assuming

normality of all variables involved, whereas ours will be on the conditional distribution
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rendering distributional assumptions on predetermined variables redundant. Much more

recently Hahn and Hausman (2003) have examined the e�ects of locally invalid instru-

ments in simple linear one regressor models, i.e.k = 1, and Hall and Inoue (2003) the

consequences of misspeci�cation in a general nonlinear GMM context. Neither does pro-

vide explicit formulas for the asymptotic variance in the general linear multivariate case,

where l � k � 1: Such a formula is obtained here by extending the approach introduced

by Rothenberg (1972) for inconsistent OLS estimators, also followed in Kiviet and Niem-

czyk (2007, 2009a), which complete some initial results obtained in Joseph and Kiviet

(2005). For relatively simple models we evaluate the obtained asymptotic distribution of

invalid IV estimators numerically and examine the discrepancies between conditional and

unconditional asymptotic distributions and their �nite sample counterparts obtained by

simulation. We do not resort to the response surface technique, but to (dynamic) graph-

ical techniques. These allow to cover almost the entire parameter space, in which we do

not put the DGP parameters on the axes but transformations of these which much more

directly convey the basic model characteristics, being: degree of simultaneity, instrument

strength, instrument invalidity and model �t.

The analysis of the exact �nite sample properties of consistent IV estimators has

a long history. Early contributions are Sawa (1969) and Phillips (1980). More recent

contributions (and further references) can be found in, for instance, Phillips (2006) and

Hillier (2006). Some of our numerical �ndings illustrate the e�ects of instrument weakness

on the �nite sample density of consistent IV estimators, which have been studied before by

Woglom (2001), who focusses on just identi�ed IV estimators, and by Forchini (2006), who

gives further theoretical underpinnings in case of overidenti�cation. Here, we supplement

these �ndings with illustrations for the case of invalid instruments, and the e�ects of

conditioning. Whereas much of the recent literature on weak instruments focusses on

developing appropriate tests and con�dence sets when instruments are weak but valid,

see for instance Hahn and Inoue (2002) and Andrews and Stock (2007), the present study

analyzes and illustrates properties of the distribution of standard coe�cient estimators

when instruments may be both weak and invalid.

From our simulations we establish that invalid but not very weak instruments yield
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IV estimators which have a distribution in small samples that is rather close to the

analytic large-sample asymptotic approximations derived here. Hence, the distribution

of these inconsistent estimators is often close to normal, but it has its probability mass

centered around the pseudo-true-value instead of the true value. Even when instruments

are weak and sample size not too small we establish that the accuracy of the conditional

asymptotic distribution is not all that bad, whereas standard large-sample asymptotics of

the unconditional distribution can be very poor, as had already been established in the

literature for the valid but weak instrument case. More importantly, though, for both valid

and invalid instruments we also �nd that when the instrument is weak the probability

mass of the actual distribution of instrumental variable estimators is generally much

closer to the true value of the coe�cient than indicated by these much too at asymptotic

approximations. For valid but rather weak instruments it had already been established

that the �nite sample distribution of IV can be skewed, and that it becomes bimodal for

very strong simultaneity, whereas for extreme weakness (i.e. close to underidenti�cation)

the dispersion explodes and the median moves away from the true parameter value towards

the probability limit of OLS. We �nd that skewness, bimodality and a median away from

the pseudo-true-value may occur for much more moderate weakness and simultaneity when

instruments are invalid. Note, however, that in practice one can easily avoid using weak

instruments, since weakness (unlike validity) can straight-forwardly be assessed. Because

the invalid IV estimator is reasonably well behaved for reasonably strong instruments,

a tentative conclusion is that it seems more promising to attempt to produce accurate

inference from IV estimators based on strong (as in OLS) but possibly invalid instruments,

than on valid but weak instruments. In the latter case, not only is the standard asymptotic

approximation poor, but also the actual behavior of the distribution of the estimator is

rather erratic and has much larger estimation errors than invalid but strong instruments

produce. Thus, even when its actual behavior could be adequately approximated by

alternative weak-instrument asymptotic methods, this consistent weak instruments based

IV estimator may well have a less attractive actual distribution than an inconsistent one

based on strong but invalid instruments.

The structure of this Chapter is as follows. In Section 2 we introduce the model and
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the statistical assumptions on all instrumental and explanatory variables involved. Fo-

cussing on the alleged overidenti�ed case we consider the generalized IV or 2SLS estimator

and derive its inconsistency and conditional limiting distribution (proofs in appendices)

for the case where all variables are weakly stationary, hence their unconditional �rst

and second moments are constant through time. Next these results are specialized for

the just identi�ed case, for which we make comparisons with the unconditional limit-

ing distribution. Initially we consider cases where the disturbances have their �rst four

moments corresponding to the normal, and next derive the e�ects of skewness and of

excess kurtosis. These explicit limiting distributions are then compared with the results

of Maasoumi and Phillips (1982), Hendry (1982) and Hall and Inoue (2003). Section 3

contains graphic illustrations of both the asymptotic and �nite sample distributions in

speci�c simple (k = 1) models, and we illustrate the consequences and the advantages of

conditioning. Moreover, we compare the performance of valid and invalid IV with OLS,

which uses always extremely strong but possibly invalid instruments. In separate sub-

sections we consider models withl = 1 and with l = 2: Substantial attention is paid to

obtaining a transparent design for simulating the data for these models and instruments

and to establishing any invariance and symmetry properties of the estimators over the

parameter space. Section 4 concludes.

3.2 Model, assumptions and theorems

We consider data generating processes for stationary variables for whichn observations

have been collected in the rows ofy = ( y1; :::; yn )0; X = ( x1; :::; xn )0 and Z = ( z1; :::; zn )0:

The matrices X and Z have k and l columns respectively, withl � k. Column vector

x i contains the explanatory variables foryi in a linear structural model with structural

disturbance " i ; i = 1; :::; n: The l variables collected inZ will be used as instrumental

variables for estimating thek structural parameters of interest�: Not all these instruments

are necessarily valid, some of them may be weak, whereas others may be extremely strong,

especially when columns ofX correspond to (or are spanned by) columns ofZ:

Our basic framework is characterized by the following parametrization and regularity
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conditions, which involve linearity of a well-speci�ed relationship, weak stationarity of all

variables and possibly some invalid instruments.

Framework 3.1 We have:

(i) the structural equation y = X� + ";

(ii) where the disturbances posses (fori 6= h = 1; :::; n) the �nite unconditional moments

E(" i ) = 0 ; E(" i "h) = 0 ; E("2
i ) = � 2

" ; E("3
i ) = � 3� 3

" and E("4
i ) = � 4� 4

" : Moreover,

(iii) 8i : E(x i x0
i ) = � X 0X � plimn!1 n� 1X 0X , E(zi z0

i ) = � Z 0Z � plimn!1 n� 1Z 0Z and

E(zi x0
i ) = � Z 0X � plimn!1 n� 1Z 0X all have full column rank, and

(iv) X 0X; Z 0Z and Z 0X all have full column rank with probability one.

(v) E(x i " i ) = � 2
" � and E(zi " i ) = � 2

" �; where thek� 1 vector � parameterizes simultaneity

and the l � 1 vector � models instrument invalidity.

Note that if � j = 0 for some j 2 f 1; :::kg then the j -th regressor inX is exogenous

or predetermined and will establish a valid instrument; otherwise, when� j 6= 0; the j -

th regressor is endogenous. Likewise, if� g = 0 for some g 2 f 1; :::; lg then the g-th

column of Z establishes a valid instrument, and an invalid instrument otherwise. Note

that assumption (v) allows that either X or Z or both include lagged dependent variables.

We de�ne

�X � X � "� 0 and �Z � Z � "� 0; (3.1)

with E( �X 0" ) = 0 and E( �Z 0" ) = 0 : Our major result concerns the asymptotic variance

of inconsistent instrumental variables estimation of�; conditional on the predetermined

variables �X and �Z (hence, not requiring a distributional assumption on�X and �Z ). Note

that columns of �X and �Z corresponding to� or � elements which di�er from zero (but

which are in principle unknown) are latent variables.

Sincel � k the generalized instrumental variable (GIV) or 2SLS estimator of� exists

and is given by

�̂ GIV = [ X 0Z(Z 0Z)� 1Z 0X ]� 1X 0Z(Z 0Z)� 1Z 0y (3.2)

= ( X̂ 0X̂ )� 1X̂ 0y;
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where we introduced the notation

X̂ � Z �̂ (3.3)

= Z(Z 0Z)� 1Z 0X:

Here �̂ = ( Z 0Z)� 1Z 0X contains the OLS (alleged reduced form) coe�cient estimates of

the �rst-stage regressions. In Framework 3.1 the probability limit of�̂ GIV exists. We

de�ne

� �
GIV � plim�̂ GIV (3.4)

= � + plim[ X 0Z(Z 0Z)� 1Z 0X ]� 1X 0Z(Z 0Z)� 1Z 0"

= � + � 2
" [� X 0Z � � 1

Z 0Z � Z 0X ]� 1� X 0Z � � 1
Z 0Z �;

where� �
GIV is also known as the pseudo-true-value of̂� GIV : We shall denote the inconsis-

tency of �̂ GIV as

•� GIV � � �
GIV � � (3.5)

= � 2
" � � 1

X̂ 0X̂
� 0�;

where we used �X̂ 0X̂ � � X 0Z � � 1
Z 0Z � Z 0X and � � plim(Z 0Z)� 1Z 0X = � � 1

Z 0Z � Z 0X : Note that

in Framework 3.1 the GIV estimator is consistent if and only if� = 0:

Below, we shall also look into the special casel = k of (alleged) just identi�cation,

where the above GIV results specialize to simple IV, i.e.

�̂ IV = ( Z 0X )� 1Z 0y; (3.6)

� �
IV = � + � 2

" � � 1
Z 0X �;

•� IV = � 2
" � � 1

Z 0X �:

When in fact Z = X (all regressors are used as instruments), i.e.� = �; then IV specializes
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to OLS, i.e.

�̂ OLS = ( X 0X )� 1X 0y; (3.7)

� �
OLS = � + � 2

" � � 1
X 0X �;

•� OLS = � 2
" � � 1

X 0X �:

For the sake of simplicity, we start with deriving special results for models with distur-

bances that have 3rd and 4th moments corresponding to those of the normal distribution.

Therefore, we specify

Framework 3.2 This specializes Framework 3.1 to the case:� 3 = 0 and � 4 = 3:

With increasing sample size the estimator̂� GIV tends to � �
GIV ; instead of�: Therefore,

in order to establish its limiting distribution we should not focus on
p

n(�̂ GIV � � ); but

choose a center of the distribution that tends to� �
GIV too, see Rothenberg (1972). The

derivations are relatively smooth if we center at

� �
n;GIV � � 2

" S� 1
X̂ 0X̂

P0; (3.8)

whereSX̂ 0X̂ � S0
Z 0X S� 1

Z 0Z SZ 0X ; P � S� 1
Z 0Z SZ 0X ; with

SZ 0Z � n� 1 �Z 0�Z + � 2
" �� 0 and SZ 0X � n� 1 �Z 0 �X + � 2

" �� 0: (3.9)

Note that plim � �
n;GIV = � �

GIV : For GIV estimators we obtain the following result on its

convergence in distribution (proof in Appendix).

Theorem 3.1 In Framework 3.2 and conditional on the predetermined variables we have
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n1=2(�̂ GIV � � �
n;GIV ) d! N (0; VN

GIV ); with

V N
GIV = � 2

" c5(1 � c3 + c4)� � 1
X̂ 0X̂

+ � 2
" c2

4� � 1
X̂ 0X̂

� X 0X � � 1
X̂ 0X̂

� c4[� � 1
X̂ 0X̂

� X 0X
•� GIV

•� 0
GIV + •� GIV

•� 0
GIV � X 0X � � 1

X̂ 0X̂
]

+ � 4
" c4(1 � 2c4)� � 1

X̂ 0X̂
�� 0� � 1

X̂ 0X̂

+ � 2
" c4(1 � 2c5)[� � 1

X̂ 0X̂
� •� 0

GIV + •� GIV � 0� � 1
X̂ 0X̂

]

+[ c5(1 � 2c5) � c3 + � � 2
" ( •� 0

GIV � X 0X
•� GIV )] •� GIV

•� 0
GIV ;

wherec1 � � 2
" � 0� � 1

Z 0Z �; c2 � � 0� •� GIV ; c3 � � 0•� GIV ; c4 � c1 � c2 and c5 � 1 � c3 � c4:

The N in the superindex ofV N
GIV indicates that it refers to the case where the dis-

turbances are "almost normal", because� 3 = 0 and � 4 = 3: The limiting distribution of

�̂ GIV is still genuinely normal when instruments are invalid, although no longer centered

at � but at the pseudo-true-value� �
GIV : When all instruments are valid, i.e. � = 0; then

� �
GIV = �; •� GIV = 0 and c1 = c2 = c3 = 0; giving c4 = 0 and c5 = 1; so that Theorem

3.1 specializes to the standard resultn1=2(�̂ GIV � � ) d! N (0; � 2
" � � 1

X̂ 0X̂
): Note that when

all instruments are valid the asymptotic variance of̂� GIV is not determined by the simul-

taneity �; because �X̂ 0X̂ = � X 0Z � � 1
Z 0Z � Z 0X = � �X 0Z � � 1

Z 0Z � Z 0 �X : However, when instruments

are invalid, i.e. � 6= 0; then � Z 0X = � �Z 0 �X + � 2
" �� 0 and thus � X̂ 0X̂ is determined by both�

and �: When �tting X to Z; while the "� 0 part of X is not (asymptotically) orthogonal

to Z due to its component"� 0; this does not only lead to the inconsistency, but also to

the many extra terms in the asymptotic conditional variance.

Maasoumi and Phillips (1982) already demonstrated thatl = k leads to substantial

simpli�cation. In that case we have � 0� •� GIV = � 2
" � 0� � 1

Z 0Z � Z 0X � � 1
Z 0X � = � 2

" � 0� � 1
Z 0Z �; so

c1 = c2; c4 = 0 and c5 = 1 � c3; giving:

Corollary 3.1 In Framework 3.2 for the special casel = k we have that conditional on

the predetermined variablesn1=2(�̂ IV � � �
n;IV ) d! N (0; VN

IV ); with

V N
IV = � 2

" (1 � c3)2� � 1
Z 0X � Z 0Z � � 1

X 0Z � [(1 � c3)2 � � 2
" � 0� � 1

Z 0X � �X 0 �X � � 1
X 0Z � ] •� IV

•� 0
IV ;

where� �
n;IV � � + � 2

" S� 1
Z 0X � and c3 � � 0•� IV = � 2

" � 0� � 1
Z 0X �:
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When all instruments are valid, i.e. � = 0; this result specializes to the standard

result n1=2(�̂ IV � � ) d! N
�
0; � 2

" � � 1
Z 0X � Z 0Z � � 1

X 0Z

�
: Since for arbitrary � and � the scalar

� 2
" � 0� � 1

Z 0X � can either be positive or negative, no general conclusions can be drawn on the

behavior ofV N
IV in comparison to the reference case� 2

" � � 1
Z 0X � Z 0Z � � 1

X 0Z : Depending on the

particular parametrization and data moment matrices the conditional asymptotic variance

of individual coe�cient estimates may either increase or decrease, due to� 6= 0 and � 6= 0:

When Z = X; which gives� = � and �̂ IV = �̂ OLS ; the resulting V N
IV = V N

OLS is the same

as the formula for the conditional asymptotic variance found for an inconsistent OLS

estimator when the disturbances are (almost) normal, as derived in Kiviet and Niemczyk

(2007, 2009a).

Next, we look at the case where the disturbances may have general 3rd and 4th

moment. Let � be an � 1 vector of unit elements. Upon de�ning

� Z 0� � plimn� 1Z 0� = plim n� 1 �Z 0� � � �Z 0� ;

� X 0� � plimn� 1X 0� = plim n� 1 �X 0� � � �X 0� ;

we �nd (superindex NN indicates nonnormal disturbances; proof in Appendix):

Theorem 3.2 In Framework 3.1 and conditional on all predetermined variables we have

n1=2(�̂ GIV � � �
n;GIV ) d! N (0; VNN

GIV ); whereV NN
GIV is equal toV N

GIV ; given in Theorem 3.1,

plus two additional terms. When� 4 6= 3 an additional term is

(� 4 � 3)f � 4
" c2

4� � 1
X̂ 0X̂

�� 0� � 1
X̂ 0X̂

+ � 2
" c4c5[ •� GIV � 0� � 1

X̂ 0X̂
+ � � 1

X̂ 0X̂
� •� 0

GIV ] + c2
5
•� GIV

•� 0
GIV g;

wherec4 � � 2
" � 0� � 1

Z 0Z � � � 0� •� GIV and c5 � 1� � 0•� GIV � c4: When � 3 6= 0 another additional
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term is

� 3f c4[� 3
" c4� � 1

X̂ 0X̂
� X 0� � 0� � 1

X̂ 0X̂
� � "

•� GIV
•� 0

GIV � X 0� � 0� � 1
X̂ 0X̂

+ � 3
" c5� � 1

X̂ 0X̂
� 0� Z 0� � 0� � 1

X̂ 0X̂

+( � 3
" � � 1

X̂ 0X̂
� � � "

•� GIV )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z � Z 0� � 0� � 1

X̂ 0X̂
]

+ c5[� " c4� � 1
X̂ 0X̂

� X 0�
•� 0

GIV � � � 1
"

•� 0
GIV � X 0�

•� GIV
•� 0

GIV + � " c5� � 1
X̂ 0X̂

� 0� Z 0�
•� 0

GIV

+( � " � � 1
X̂ 0X̂

� � � � 1
"

•� GIV )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z � Z 0�

•� 0
GIV ]

+ c4[� 3
" c4� � 1

X̂ 0X̂
� � 0

X 0� �
� 1
X̂ 0X̂

� � " � � 1
X̂ 0X̂

� � 0
X 0�

•� GIV
•� 0

GIV + � 3
" c5� � 1

X̂ 0X̂
� � 0

Z 0� ��
� 1
X̂ 0X̂

+� � 1
X̂ 0X̂

� � 0
Z 0� �

� 1
Z 0Z (� 2

" � � � Z 0X
•� GIV )( � 3

" � 0� � 1
X̂ 0X̂

� � "
•� 0

GIV )]

+ c5[� " c4
•� GIV � 0

X 0� �
� 1
X̂ 0X̂

� � � 1
"

•� 0
GIV � X 0�

•� GIV
•� 0

GIV + � " c5
•� GIV � 0

Z 0� ��
� 1
X̂ 0X̂

+ •� GIV � 0
Z 0� �

� 1
Z 0Z (� 2

" � � � Z 0X
•� GIV )( � " � 0� � 1

X̂ 0X̂
� � � 1

"
•� 0

GIV )]g:

When all the instruments are valid, i.e. � = 0; this result again collapses to the

standard one, i.e.V NN
GIV = � 2

" � � 1
X̂ 0X̂

; which highlights that normality of the disturbances is

not a requirement for the standard normal limiting distribution of �̂ GIV .

For the special casel = k Theorem 3.2 yields:

Corollary 3.2 In Framework 3.1 for the special casel = k we have that conditional on

the predetermined variablesn1=2(�̂ IV � � �
n;IV ) d! N (0; VNN

IV ); with

V NN
IV = � 2

" c2
5� � 1

Z 0X � Z 0Z � � 1
X 0Z + � 3� " c2

5[� � 1
Z 0X � Z 0�

•� 0
IV + •� IV � 0

Z 0� �
� 1
X 0Z ]

� [(5 � � 4)c2
5 + 2c5(� 3� � 1

"
•� 0

IV � X 0� � 1) + 1 � � � 2
"

•� 0
IV � X 0X

•� IV ] •� IV
•� 0

IV :

wherec5 � 1 � � 0•� IV = 1 � � 2
" � 0� � 1

Z 0X �:

It shows that an increase (decrease) in the kurtosis leads to a larger (smaller) asymp-

totic variance. Of course, for� 3 = 0 and � 4 = 3 this result simpli�es to that of Corollary

3.1: In the Appendix we compareV NN
IV with the unconditional variance of (3.12) given

below.

In the proofs of the above theorems we employ a lemma which is a straightforward

extension of the simple CLT (central limit theorem): Let vi be a k � 1 random vector

such that E(vi ) = 0 ; E(vi v0
i ) = Vi and E(vi v0

h) = O for i 6= h = 1; :::; n; then n1=2�v d!
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N (0; limn!1
�V ); where �v = n� 1

P n
i =1 vi and �V = n� 1

P n
i =1 Vi : We employ the following

generalized version:

Lemma 3.1 Let W = ( w1; :::; wn )0 be an � k random matrix and ! a k � 1 nonrandom

vector, whereas then � 1 vector " = ( "1; :::; "n )0 has mutually uncorrelated elements for

which E(" i j wi ) = 0 ; E("2
i j wi ) = � 2

" ; E("3
i j wi ) = � 3� 3

" and E("4
i ) = � 4� 4

" : Then thek � 1

vector vi = wi " i + ! ("2
i � � 2

" ) has zero expectation, conditional varianceE(vi v0
i j wi ) =

Vi = � 2
" wi w0

i + � 3� 3
" (wi ! 0+ !w 0

i ) + ( � 4 � 1)� 4
" !! 0; whereasE(vi v0

h) = O for i 6= h; so that

for n� 1=2
P n

i =1 vi = n� 1=2[W 0" + ! ("0" � n� 2
" )] the CLT implies

n1=2�v ! N[0; � 2
" � W 0W + � 3� 3

" (� W 0� ! 0+ ! � � 0W ) + ( � 4 � 1)� 4
" !! 0];

where � W 0W � plimn� 1W 0W and � W 0� � plimn� 1W 0� � � 0
� 0W with � a n � 1 vector of

unit elements.

The di�erence between the conditional approach followed above and the results ob-

tained in Maasoumi and Phillips (1982) is that, instead of a formula like our (3.44) given in

Appendix, to which the above Lemma directly applies, their analysis yields a much more

complex expressionn1=2Hvec[n� 1F 0F � E(n� 1F 0F )] in which H is a huge �xed transforma-

tion matrix determined by selection and data moment matrices and parameters, whereas

the zero mean random vector is obtained from then � m matrix F; which contains all the

n observations on them endogenous plus predetermined variables from a multi-equation

dynamic simultaneous system with serial correlation. This expression constitutes the con-

trol variate that has the same limiting distribution as a single equation GIV estimator in

which invalid instruments are being used. Next they sketch how under normality of all

the m variables (including any exogenous and predetermined variables) and exploiting a

spectral density matrix the unconditional variance could be established. Hence, they do

not provide an explicit formula and do not consider the conditional variance. This also

applies to the result in Hendry (1982), who provides algebraic instructions on how an

explicit expression for the unconditional variance could be assembled when all variables

are normal.
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The results in Theorems 3.1 and 3.2 in fact address special cases of Theorem 3.2 in

Hall and Inoue (2003, p. 369). The latter theorem is more general, but more implicit

at the same time. It concerns GMM estimation (both 1-step and 2-step) of a possibly

nonlinear misspeci�ed model and expresses its asymptotic variance matrix in a few model

characteristics and a matrix 
 : This matrix, which is left unspeci�ed, is the variance of the

limiting distribution of a k + 2l vector, sayv� ; which in our particular setting specializes

to

v� �

0

B
B
B
@

n� 1=2 [Z 0(y � X� �
GIV ) � nplimn� 1Z 0(y � X� �

GIV )]

n1=2 (n� 1X 0Z � � X 0Z ) � � 1
Z 0Z plimn� 1Z 0(y � X� �

GIV )

n1=2
�
(n� 1Z 0Z)� 1 � � � 1

Z 0Z

�
plimn� 1Z 0(y � X� �

GIV )

1

C
C
C
A

d! N (0; 
) :

How 
 should be obtained and whether or not it is supposed to represent the unconditional

or the conditional variance they do not mention. It can be shown, though, that in our

model

n1=2(�̂ GIV � � �
n;GIV ) = � � 1

X̂ 0X̂

�
� 0 I k � X 0Z

�
v� + op(1); (3.10)

and thus the conditional asymptotic variance of GIV that we obtained can indeed be

expressed in �Z 0X ; � Z 0Z and 
 (which we express for our linear model in �Z 0X ; � Z 0Z ; �; �;

� 3; � 4 and � 2
" ). The added value of our results is that some general conclusions could be

drawn on the joint e�ects of simultaneity, instrument invalidity and disturbance kurtosis

on the limiting distribution of GIV and, because they are explicit in parameters and data

moments, they allow to depict the numerical e�ects of those various characteristics, as we

will show in the next section.

In fact, when l = k and the data IID, it is relatively simple to obtain the unconditional

limiting distribution of the IV estimator even when some instruments are invalid. This

generalizes a result by Goldberger (1964, p. 359) on inconsistent OLS. Exploiting the

weak-stationarity and subtracting from all components in the model their unconditional

expectation, we remove the intercept (if present) from both the model and the set of

instruments, such that the remaining regressors now all have expectation zero. Still using

the same notation for the model (although it may now have one regressor less), we consider
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the alternative model speci�cation

y = X� + " = X� �
IV + u; (3.11)

whereu � " � X •� IV : Because now E(x i ) = 0 ; we have E(ui ) = E( " i ) � E(x0
i ) •� IV = 0; and

also � 2
u � E(u2

i ) = � 2
" (1 � 2•� 0

IV � ) + •� 0
IV � X 0X

•� IV ; whereas E(zi ui ) = � 2
" � � E(zi x0

i ) •� IV =

� 2
" � � � Z 0X

•� IV = 0: Thus, the instruments Z are valid in this alternative model spec-

i�cation (whereas when l > k this would not generally be true) and, providedx i �

IID (0; � 2� X 0X ) so that E(ui uj ) = 0 for i 6= j; standard asymptotic arguments yield

n1=2(�̂ IV � � �
IV ) d�! N (0; � 2

u � � 1
Z 0X � Z 0Z � � 1

X 0Z ): (3.12)

One easily obtains plimû0
IV ûIV =n = � 2

u; hence standard IV inference in the alternative

model speci�cation with true parameter � �
IV is valid, but invalid for � when � 6= 0: In

the Appendix we examine the di�erence between the unconditional asymptotic variance

of (3.12) andV NN
IV of Corollary 3.2, which should be positive semi-de�nite, of course.

3.3 Illustrations

To illustrate the analytical asymptotic �ndings obtained in the foregoing section, we will

calculate the various formulas for particular models and show the corresponding normal

densities over relevant parts of the parameter space. In addition, we will simulate these

models and depict the empirical density of the estimators to check the relevance and

accuracy of the �rst-order asymptotic approximations in �nite samples. We will also

compare IV and GIV estimators (using possibly invalid and possibly weak instruments)

with OLS. The latter estimator always uses extremely strong instruments that at the

same time are invalid in case of simultaneity.

The limiting distributions obtained in the foregoing section are all of the generic form

n1=2(�̂ � � � •� ) d! N (0; V) and they imply a �rst-order approximation to the distribution
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of �̂ in �nite samples which can be expressed as

�̂ a� N (� + •�; n � 1V): (3.13)

This entails a �rst-order asymptotic approximation to the bias or mean error of�̂ equal

to •� = � � � � and to the mean squared error (AMSE) given by

AMSE(�̂ ) � n� 1V + •� •� 0: (3.14)

The actual values of•� and of (the square root of) AMSE(̂� ) can be computed for anyn

and any given values of the model parameters and relevant data moments. To �nd out

how accurate the �rst-order asymptotic approximation (3.14) is, it should be compared

with corresponding Monte Carlo estimates obtained from a series of realizations of�̂ in

simulated �nite samples. However, these cannot be achieved in the standard way when

�̂ does not have �nite �rst or second moments in �nite samples, as is the case for GIV

when l � k � 1: Then, irrespective of the number of Monte Carlo replications employed,

the sample moments from Monte Carlo experiments are not informative as they do not

converge. Appropriate alternatives for the mean error and for the root mean squared

error are then the median error and the median of the absolute error.

For a scalar estimator�̂ of � the median error ME(�̂ ) and the median absolute error

MAE( �̂ ) are de�ned as

Prf (�̂ � � ) � ME( �̂ )g = 0:5;

Prfj �̂ � � j� MAE( �̂ )g = 0:5:
(3.15)

From a series ofR independent Monte Carlo realizations�̂ (r ) (r = 1; :::; R) we estimate

ME( �̂ ) by sorting the values (̂� (r ) � � ) and taking the median value, and similarly for

MAE( �̂ ); taking the median of the sortedj �̂ (r ) � � j values. Of course, AMSE(̂� ) is not

the natural asymptotic counterpart of the Monte Carlo estimate of MAE(̂� ): We assess

the (scalar) asymptotic version AMAE(�̂ ) of MAE( �̂ ) in the following way. Let the CDF

of the normal approximation to the distribution of �̂ � � be indicated by � •�;� �̂
(x): Then,
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for m � AMAE( �̂ ); we have

0:5 = Pr fj �̂ � � j� mg = 1 � Prfj �̂ � � j> m g

= 1 � Prf �̂ � � > m g � Prf �̂ � � < � mg

= Pr f �̂ � � < m g � Prf �̂ � � < � mg

a= � •�;� �̂
(m) � � •�;� �̂

(� m);

so that we can solve2 m from

� •�;� �̂
(m) = 0 :5 + � •�;� �̂

(� m): (3.16)

Below we will examine the empirical �nite sample distribution of scalar�̂ GIV and

compare it with �̂ GIV
a� N (� + •� GIV ; n� 1V N

GIV ): In addition, for various estimators �̂ GIV

(including �̂ IV and �̂ OLS ), we examine MAE(�̂ GIV ) and compare it with AMAE( �̂ GIV ) over

almost the entire parameter space of two simple classes of models. Employing normally

distributed disturbances3, we examined these models under Framework 3.2 only.

3.3.1 A simple just identi�ed model

We commence by considering the most basic example one can think of, viz. a model

with one regressor (k = 1) and one instrument (l = 1) ; which is either weak or strong

and possibly invalid. The two variablesx and z, together with the dependent variabley,

are supposed to be jointly IID with zero mean and �nite second moments. Hence, the

variables are strongly stationary and our Theorems 3.1 and 3.2 apply. This model has

often been examined in the past. Recently in Woglom (2001) and Hillier (2006), and for

l � 1 in Bound, Jaeger, and Baker (1995) and Hahn and Hausman (2003). Though, only

the latter paper considers (locally) invalid instruments.

2 Sincem = � � 1
•�;� �̂

[0:5 + � •�;� �̂
(� m)]; we employed the iterative scheme,m0 = 0 ; mi +1 = � � 1

•�;� �̂
[0:5 +

� •�;� �̂
(� mi )] for i = 0 ; 1; ::: until convergence. When •� = 0 no iteration is required since m = � � 1

0;� �̂
(0:75)

conforms to the quartile.
3 This Chapter contains a few series of graphs only; more complete and animated pictures are available

via the web, see: www.feb.uva.nl/ke/jfk.htm
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We �rst evaluate the relevant expressions for the conditional limiting distribution given

in Corollary 3.1. In the model with k = l = 1 we can simplify the notation considerably,

by writing � 2
x for � X 0X ; � xz or � xz � x � z for � Z 0X ; etc. Using � = � z" =� 2

" and � = � x" =� 2
"

we obtain

•� IV = � �
IV � � = � 2

" � � 1
Z 0X � =

� z"

� xz
=

� z"

� xz

� "

� x
(3.17)

c3 = � 2
" � 0� � 1

Z 0X � =
1
� 2

"

� z" � x"

� xz
=

� z" � x"

� xz

•� 0
IV � X 0X

•� IV = � 4
" � 0� � 1

Z 0X � X 0X � � 1
X 0Z � = � 2

z"
� 2

x

� 2
xz

= � 2
"

� 2
z"

� 2
xz

;

giving in the case where the disturbances are (almost) normally distributed

V N
IV =

� 2
"

� 2
x

(1 � � 2
z" )( � xz � � z" � x" )2 + � 4

z" (1 � � 2
x" )

� 4
xz

: (3.18)

The expression for the inconsistency•� IV shows that its sign is determined by the sign of

� z" =� xz ; whereas its magnitude is inversely related to the strength of the instrument, cf.

Bound et al. (1995).V N
IV is una�ected by the signs of� z" ; � x" and � xz as long as the sign

of the product � z" � x" � xz remains the same, or when either� x" or � z" is zero. Self-evidently,

V N
IV diverges for� xz approaching zero.

For this simple model we �nd from (3.12) for the unconditional limiting distribution

n1=2(�̂ IV � � �
IV ) d�! N

�
0;

� 2
"

� 2
x

(� xz � � z" � x" )2 + � 2
z" (1 � � 2

x" )
� 4

xz

�
; (3.19)

which makes immediately clear that the conditional variance (3.18 ) is smaller if� z" 6= 0;

as expected.

We now set out to design the Monte Carlo. Without loss of generality we may focus in

this model on the case� = 1: This is just a normalization and not a restriction, because

we can imagine that we started o� from a modelyi = � # x#
i + " i ; with � # 6= 0; and

rescaled the explanatory variable such thatx i = x#
i =� # :

An important characteristic of the model is the signal-to-noise ratio (SN), which is
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equal to

SN =
� 2� 2

x

� 2
"

=
� 2

x

� 2
"
: (3.20)

From (3.17) and (3.18) we �nd that V N
IV and •� are proportional to (the square root of)

the inverse ofSN: In fact, after the normalization � = 1; in this simple model the ap-

proximation to the distribution of the IV estimator �̂ IV
a� N (� + •�; n � 1V N

IV ) is completely

determined byn and the four model characteristics� xz ; � x" ; � z" and SN:

Next, we focus on obtaining an appropriate data generating scheme for this model to

be used in the simulations. In the notation of Section 2 it is given by

yi = �x i + " i

x i = �x i + �" i

zi = �zi + �" i

9
>>>=

>>>;

(3.21)

where � and � are scalars. In order to obtain (" i ; x i ; zi )0 � IID(0 ; 
) ; with appropriate

3� 3 covariance matrix 
 ; we can �rst generatevi = ( vi; 1; vi; 2; vi; 3)0 � IID(0 ; I 3) and then

parameterize as follows:

" i = � " vi; 1;

�x i = � 1vi; 2;

�zi = � 2vi; 2 + � 3vi; 3:

This provides full generality. The coe�cient � 1 determines� 2
�x ; whereas E(�x i " i ) = 0 ; as

it should. Also E(�zi " i ) = 0 ; and � 2 and � 3 enable any correlation between �x i and �zi and

any value of� 2
�z : The above implies

0

B
B
B
@

" i

x i

zi

1

C
C
C
A

= 
 1=2vi =

0

B
B
B
@

� " 0 0

� " � � 1 0

� " � � 2 � 3

1

C
C
C
A

0

B
B
B
@

vi; 1

vi; 2

vi; 3

1

C
C
C
A

: (3.22)

Note that the zero elements do not entail restrictions on 
; because 
1=2 is non-unique

and a lower-triangular form with positive diagonal elements can be found for any positive



60 CHAPTER 3. ON THE DISTRIBUTION OF IV

de�nite 
.

In this simple model with k = l = 1 we have

�̂ IV =
P

zi yiP
zi x i

= � +
P

zi " iP
zi x i

; (3.23)

which clari�es that, irrespective of the sample size, the distribution of̂� IV is invariant to

the scale ofzi : We may also change the sign of all thezi without a�ecting �̂ IV : Therefore,

we may restrict ourselves in the illustrations to cases with� xz > 0 (the case� xz = 0

leads to underidenti�cation and was already excluded in the assumptions). Since the

distribution of �̂ IV � � becomes just its mirror-image when allx i are changed in sign, we

shall also restrict ourselves to cases where� z" � 0; because of the following reasoning.

The value of � xz is invariant to changing the signs of allx i and zi values. Hence, for

any value of � xz > 0 the distribution of �̂ IV � � for � z" � 0 and arbitrary positive or

negative value of� x" is equivalent with the distribution of � (�̂ IV � � ) for � � z" � 0 and

� � x" : It is also obvious that � x and � " do not a�ect the distribution of �̂ IV separately, but

only through their ratio. Hence, without loss of generality, we can impose some genuine

equality restrictions on the 6 parameters of 
: For these we choose

� " = 1; (3.24)

� 2
z = � 2 + � 2

2 + � 2
3 = 1: (3.25)

By (3.24) we normalize all results with respect to� " ; and (3.20) simpli�es to

SN = � 2
x : (3.26)

Because any GIV estimator is invariant to the scale of the instruments (only the space

spanned by the instruments is relevant) we may impose (3.25), which will be used to

obtain the value

� 3 =
�
�(1 � � 2 � � 2

2)1=2
�
� ; (3.27)

where, without loss of generality, we may stick to positive values for� 3 as long asvi; 3 is
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symmetrically distributed. For similar reasons we would get observationally equivalent

data realizations if both � 1 and � 2 would be changed in sign. Therefore, below we will

restrict ourselves to just positive values for both� 1 and � 3:

The above yields the following data (co)variances and correlations:

� 2
x = � 2 + � 2

1 � 2
y = � 2 + 2� + 1 + � 2

1

� x" = � � x" = �=
p

� 2 + � 2
1

� z" = � � z" = �

� xz = �� + � 1� 2 � xz = ( �� + � 1� 2)=
p

� 2 + � 2
1

(3.28)

Note that these, after the normalizations� = 1; � " = 1 and � z = 1, depend on only 4 free

parameters of the data generating process (DGP), viz.�; �; � 1 and � 2: As we already

established, the expressions for inconsistency in (3.17) and asymptotic variance (3.18)

evaluated under� 3 = 0 and � 4 = 3 (the 3rd and 4th moment of vi; 1) depend on just four

characteristics too, viz. on� x" ; � z" ; � xz and SN = � 2
x . The latter four can be used in this

simple model as a base for the Monte Carlo design parameter space, since they determine

the parameters of the DGP through the relationships

� = � z" ;

� = � x" � x ;

� 1 = � x

�
�(1 � � 2

x" )1=2
�
� ;

� 2 = ( � xz � � x" � z" )=
�
�(1 � � 2

x" )1=2
�
� ;

(3.29)

from which � 3 follows directly via (3.27). This reparametrization is useful, because the

parameters� x" ; � z" ; � xz and SN have a direct econometric interpretation, viz. the degree

of simultaneity, instrument (in)validity, and instrument strength, whereasSN is directly

related to the model �t, which can be expressed asSN=(SN + 1). We prefer to avoid to

use the `concentration parameter' as one of the relevant characteristics of this model in the

present context, because this concept refers exclusively to the case where all instruments

are valid.

From the above it follows that by varying the four parametersj� x" j < 1; 0 � � z" <
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1; 0 < � xz < 1 and 0 < � 2
x=(� 2

x + 1) < 1; we can examine the limiting and �nite

sample (un)conditional distributions of�̂ IV over the entire parameter space of this model.

Note, however, that not all admissible values of these parameters will be compatible. For

example, when� x" is large and� z" is small, this cannot be compatible with� xz being

very large. Moreover,� x has just an e�ect on the scale of•� IV ; VN
IV and �̂ IV � �; so we

may choose just one �xed value for� x and from these �ndings the results for any value

of � x can be obtained simply by rescaling. In our calculations and simulations we will �x

SN = 10; yielding a population �t of the model of 10=11 = 0:909:

In the simulations we took vi � IIN (0 ; I 3) and used 2,000,000 replications. From

the results we may expect to get quick insights into issues as the following. For which

combinations of the �ve design parameter values is: (a) the actual density of̂� IV close

to normal (symmetric, unimodal, etc.), (b) the actual median of�̂ IV close to� �
IV , (c) the

actual tail behavior of �̂ IV reasonably well represented by that of the asymptotic normal

approximation, and (d) how does the magnitude of the actual estimation errors depend

on the design parameters. Hence, we will assess the correspondences and di�erences in

shape, location and spread of the asymptotic and the empirical distributions, both for

the conditional and the unconditional distributions. Since in this just identi�ed model

the IV estimator does not have �nite moments, we know that even if the instruments

are valid, the asymptotic approximation will not capture the fat tails of the �nite sample

distribution.

For our results on the simulated conditional distribution only one arbitrary draw of the

seriesvi; 2 and vi; 3 has been used. However, because such a single random realization will

not yield two series which have an actual sample correlation of zero and a sample variance

of one, this implies that we would loose full control over the actual values ofSN and of

the strength of the instrument. We overcame this problem by transforming these single

draws of twon-element vectorsvj by replacing one by its residuals after regressing on the

other and by normalizing them, such that they obtained zero sample mean, zero sample

correlation and inner-productn: Naturally, when establishing the conditional asymptotic

distribution by evaluating •� IV and V N
IV ; one has to replace� xz by �x0�z=n + � 2

" �� and � 2
x

by �x0�x=n + � 2
" � 2: Due to our transformation of the vj series �x0�x = � 2

1v0
2v2 = n� 2

1 and
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likewise �x0�z = n� 1� 2 yielding exactly the same numerical values for� xz and � 2
x as for the

unconditional case. Therefore, the assessment of the standard asymptotic distribution

when � z" = 0 will be the same for the conditional and unconditional case, which would

not occur for untransformed single realizations of �x and �z:

In order to �nd out how accurate the �rst-order asymptotic approximations are, actual

values of •� IV and of AMAE( �̂ IV ) can now be calculated for any set of compatible values

of n; � x" ; � z" ; � xz and � x ; and they can be compared with corresponding Monte Carlo esti-

mates obtained from�̂ IV realizations in simulated �nite samples. Before we present these

summarizing characteristics, we will �rst examine the actual density functions themselves.

The Figures 3.1 through 3.4 consider� xz = 0:8; 0:4; 0:1; 0:02 respectively. Each �gure

contains forn = 50; 200; 2000 a set of 8 panels, so 24 in total. The 8 panels depict in two

rows densities for the four cases� x" = � 0:3; 0; 0:3; 0:6; with next to each other results

for � z" = 0 and � z" = 0:2 respectively. All these panels present three or four densities,

viz. for the actual empirical conditional distribution (solid line), for the unconditional

�nite sample distribution ( dashed line) and for the available asymptotic approximations.

For these, either both the conditional and unconditional distributions are available and

equivalent (then we usecircles), or if di�erent and available the conditional asymptotic

distribution ( squares) and the unconditional (diamonds) are presented separately. These

asymptotic distributions have been taken aŝ� IV
a� N (� + •� IV ; n� 1V); whereV is given

by (3.18) or (3.19) respectively.

In Figure 3.1 � xz = 0:8; so the instrument is far from weak. The panels in columns 1

and 3 have� z" = 0, i.e. the instrument is valid and the standard asymptotic result applies

for both conditional and unconditional distributions. In columns 2 and 4� z" = 0:2; i.e. the

instrument is (mildly) invalid, hence the IV estimator is inconsistent and the asymptotic

approximations di�er for the conditional and unconditional cases. From Figure 3.1 we �nd

that for a relatively strong instrument the resemblance between corresponding actual and

approximated distributions is quite remarkable even for sample sizes as small asn = 50;

but for the sample sizes considered we already note some di�erences between conditional

and unconditional distributions when� z" 6= 0: In Figure 3.2, where� xz = 0:4; we note that

due to the weaker instrument the actual distributions display some skewness, especially
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when sample size is small, except for� x" = � z" = 0: By its very nature, such skewness

is completely overlooked by the �rst-order normal approximations. Hence, although any

inconsistency and the dispersion of the actual distributions (which both increased due

to the weaker instrument) are quite well approximated, the actual behavior in the tails

of the distribution may be over or under stated by standard asymptotic approximations.

In Figure 3.3 where the instrument is weak we note more pronounced skewness when

both � x" 6= 0 and � z" 6= 0: The actual unconditional distribution is approximated well

only for a really large sample. On the other hand, especially when� x" � 0 and � z" > 0;

the conditional asymptotic approximation is remarkably accurate. For a much weaker

instrument, Figure 3.4 shows that even for large sample size the actual distributions

may become bimodal, unlike their normal �rst-order approximations. Only for� x" =

0 and � z" = 0 the standard asymptotic approximation captures the actual conditional

distribution very well, even when the sample size is small. When the instrument is invalid

and the sample size gets larger the approximation of the conditional distribution is found

to be better than that of the unconditional one. When the instrument is very weak,

whether valid or not, the actual distributions become so widely dispersed and wrongly

located that they compare very unfavorably with that of a much stronger instrument,

even if this were not valid.

The magnitude of the (median) bias of consistent IV and of OLS in relation to the ef-

fects of weakness of the instrument has been analyzed by many authors, see Sawa (1969)

and (further references in) Hillier (2006). From Figures 3.1 through 3.4 we �nd that

when the instrument is both invalid and weak then the �nite sample distribution of the

inconsistent IV estimator (both conditional and unconditional) is not centered at the

pseudo-true-value. Surprisingly, however, it is often quite close to the true value (also

when the instrument is not so weak), whereas the distribution becomes bimodal when

the instrument is very weak. Maddala and Jeong (1992), Woglom (2001), Hillier (2006)

and Forchini (2006) show that bimodality of the unconditional consistent IV estimator

occurs for much more severe simultaneity than examined here, viz. for� x" = 0:99; whereas

Phillips (2006) shows that it is omnipresent in the simple Keynesian model where simul-

taneity is always severe. We �nd that the conditional distribution may be bimodal for
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much smaller values of� x" : For moderate degree of simultaneity our �ndings also suggest

that using instruments that are both weak and invalid may lead to bimodality in small

samples, irrespective of whether one conditions or not.

From Figures 3.1 through 3.4 we conclude that, irrespective of whether the instruments

are valid or not, one should avoid to use standard �rst-order large sample asymptotics

when instruments are really weak. If one replaces the weak instrument with a strong one

that is invalid (which is always possible by reverting to OLS), one obtains an inconsistent

estimator, such as depicted in the� z" = 0:2 columns of Figure 3.1. Not only are asymptotic

approximations very accurate here, but also the actual distributions are much better

concentrated around the true value than that of the consistent estimators depicted in the

� z" = 0 columns of Figures 3.3 and 3.4. Forn = 50 most of the inconsistent IV estimates

for � z" = 0:2 and � xz = 0:8 fall within the (0.9, 1.2) interval for all examined values of

� x" ; whereas this range is close to (0, 2) for the consistent estimates when� xz = 0:1:

Validity of the major �ndings from Figures 3.1 through 3.4 on the conditional distri-

bution will be illustrated now by scanning the median absolute error over almost the full

parameter space of this simple model. Figure 3.5 provides an overview in 16 diagrams

of the (in)accuracy of the asymptotic conditional distribution of IV as an approxima-

tion to the actual conditional distribution in �nite samples. Each of these diagrams

(based on 50,000 replications) cover all compatible positive values of� x" and � xz ; and

relate to a particular relatively small sample size, viz.n = 20; 50; 100; 200; and a par-

ticular discrete value of� z" ; viz. � z" = 0; 0:1; 0:3 and 0:6: The accuracy is expressed as

log[MAE(�̂ IV )=AMAE( �̂ IV )]: Hence, positive values (yellow-amber, or light grey) indicate

larger absolute errors in �nite samples than indicated by the asymptotic approximation

and negative values (blue, or dark grey) indicate that standard asymptotics is too pes-

simistic about the absolute errors of�̂ IV in �nite samples. This log-ratio is invariant

regarding the value ofSN = � 2
x=� 2

" : We �nd that the approximation is quite good, even

for n = 20; as long as the instrument is not very weak.

Figure 3.6 examines log[MAE(̂� OLS )=MAE( �̂ IV )]; which is also invariant with respect

to SN: It shows that in �nite samples the absolute estimation errors committed by OLS

are larger than those of IV only when� x" and � xz are both large. Of course, the area where
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IV beats OLS gets smaller for larger� z" : We also note that OLS may beat IV by a much

larger margin (when the instrument is weak and the simultaneity not so serious) than

IV will ever beat OLS (which happens when the instrument is strong, the simultaneity

serious, and the instrument not severely invalid).

3.3.2 A simple overidenti�ed model

The model of the above subsection can be extended such that we have two instruments

zi; 1 and zi; 2; i.e. l = 2 and � = ( � 1; � 2)0: First, we examine by which minimal set of data

moments the limiting distribution is determined in this model. Again we assume that

all variables in the regression have been scaled such that� = 1 and � 2
" = 1; whereas

the instruments Z have been transformed such that �Z 0Z = I (while still spanning the

original subspace). Such an orthonormal base for this subspace is nonunique, and without

loss of generality we may choose one in which onlyzi; 1 is possibly correlated with" i ; so

that � 2 = 0: This implies that

� X 0Z � � 1
Z 0Z � Z 0" = � x̂" = � xz1 � z1" = � xz1 � z1" � x ; (3.30)

where, of course,� z1" = � 1: Now the various entries in the formula of Theorem 3.1 spe-

cialize to

� X 0X = � 2
x > 0; (3.31)

� X̂ 0X̂ = � 2
x̂ = � 2

xx̂ � 2
x > 0;

•� GIV = � 2
" � � 1

X̂ 0X̂
� X 0Z � � 1

Z 0Z � Z 0" =
� x̂"

� 2
x̂

=
� xz1 � z1" � x

� 2
xx̂ � 2

x
=

� xz1 � z1"

� 2
xx̂ � x

;

c1 = � 2
" � " 0Z � � 1

Z 0Z � Z 0" = � 2
z1" ;

c2 = � 2
" � " 0Z � � 1

Z 0Z � Z 0X � � 1
X̂ 0X̂

� X 0Z � � 1
Z 0Z � Z 0" = � 2

x̂" =
� 2

xz1
� 2

z1"

� 2
xx̂

;

c3 = � " 0X
•� GIV =

� x" � x̂" � x

� x̂
=

� x" � x̂"

� xx̂
=

� x" � xz1 � z1"

� 2
xx̂

;

from which c4 and c5 readily follow. From the above we conclude that the limiting

distribution of Theorem 3.1 is fully determined by (and varies with) the 5 data moments:
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� x ; � xx̂ ; � x" ; � z1" and � xz1 : However, in the special case� z1" = 0 the minimal set of

parameters is just one dimensional, because� xx̂ � x su�ces. For the general case we �nd

V N
GIV =

� 2
"

� 2
x � 2

xx̂

�
(1 � � 4

z1" ) + � z1"
 1

� 2
xx̂

+ � 2
z1" �

2
xz1

 2

� 4
xx̂

+ 2� 4
z1" �

4
xz1

 3

� 6
xx̂

�
(3.32)

+
� 2

"

� 4
x � 4

xx̂

� 4
z1"

�
1 �

� 2
xz1

� 2
xx̂

� �
1 � 2� 2

z1"

�
1 �

� 2
xz1

� 2
xx̂

��
;

where

 1 = � 3
z1" � 2� x" � xz1 (1 + � 2

z1" � 2� 4
z1" ) � � 2

xz1
(� z1" � 5� 3

z1" + 2� 5
z1" );

 2 = � 2
x" + 4� z1" � x" � xz1 � 4� 2

z1" [1 + 3� z1" � x" � xz1 � � 2
x" + � 2

xz1
(1 � � 2

z1" )];

 3 = 2 � (� x" � � z1" � xz1 )(3� x" � � z1" � xz1 ):

Note that this variance is invariant to sign changes of the correlations as long as the

sign of � z1" � x" � xz1 is not a�ected, or when either � x" or � z1" is zero. The sign of the

inconsistency •� GIV is determined by the sign of� z1" � xz1 : For given values of� xx̂ and

� z1" the magnitude of •� GIV is a multiple of � xz1 , so it will be large when the invalid

instrument is relatively strong. For the special case� xz1 = � xx̂ ; i.e. the second instrument

is orthogonal to x; the variance formula specializes to

� 2
"

� 2
x

(1 � � 2
z1" )( � xz1 � � z1" � x" )2 + � 4

z1" (1 � � 2
x" )

� 4
xz1

(3.33)

which, not surprisingly, corresponds to (3.18).

Next we examine whether, apart fromn; the same number of parameters is required to

obtain in all generality the �nite sample distribution of GIV by generating the appropriate

data processes. For that purpose the schemes (3.21) and (3.22) can be extended as follows.

Let now vi � IID(0 ; I 4): Again we take" i = vi; 1 and, again restricting ourselves to positive

� 1 for symmetrically distributed vi ; we have

x i = �v i; 1 + � 1vi; 2

= � x [� x" vi; 1 +
�
�(1 � � 2

x" )1=2
�
� vi; 2]; (3.34)
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with � 2
x = SN (this is all similar to the earlier example with l = 1) : Now, however, we

have to compose thel = 2 instruments as

zi; 1 = � 1vi; 1 + � 2vi; 2 + � 3vi; 3 + � 4vi; 4;

zi; 2 = � 2vi; 1 + � 5vi; 2 + � 6vi; 3 + � 7vi; 4:

These entail full generality, because they allow both instruments to have any correlation

with the disturbance " i ; any correlation with the regressorx i ; and any mutual correlation.

Since it is only the space spanned by these two instruments that matters for̂� GIV , we

may replacezi; 2 by a linear combination ofzi; 1 and zi; 2 such that it no longer depends

on vi; 1: This corresponds to taking� 2 = 0 and re-interpreting � 5; � 6 and � 7: Hence, the

general case of two possibly invalid instruments can be represented fully by that of one

valid and one possibly invalid instrument, as we already argued above from the asymptotic

perspective. Now we can perform a similar operation with respect tozi; 1; such that we

may impose� 4 = 0: Next, rescaling the instruments such that they have unit variance

leads to the generating schemes

zi; 1 = � 1vi; 1 + � 2vi; 2 +
�
�(1 � � 2

1 � � 2
2)1=2

�
� vi; 3;

zi; 2 = � 5vi; 2 + � 6vi; 3 +
�
�(1 � � 2

5 � � 2
6)1=2

�
� vi; 4:

9
=

;
(3.35)

Due to the symmetry of vi generality is maintained when we restrict ourselves to cases

where particular coe�cients are nonnegative. This extends to� 2 and � 5; because the

space spanned by the instruments does not change by multiplying all elements by� 1,

yielding

0 � � 2 � 1; 0 � � 5 � 1: (3.36)

We also maintain full generality by imposing zero covariance on the two instruments,

which implies � 2� 5 + � 6(1 � � 2
1 � � 2

2)1=2 = 0; from which we �nd

� 6 = � � 2� 5(1 � � 2
1 � � 2

2)� 1=2: (3.37)

So, for given values of� x ; � x" and � z1" = � 1; we would be able to generate data according
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to (3.34) and (3.35) if we also knew� 2 and � 5:

The asymptotic overall strength of the two instruments can be controlled by the pop-

ulation R2 of the regression ofx on Z = ( z1; z2); which is

R2
xZ =

� x0Z � � 1
Z 0Z � Z 0x

� 2
x

: (3.38)

Note that

� 2
xx̂ =

(� x0Z � � 1
Z 0Z � Z 0x )2

� 2
x � 2

x̂

=
� 2

x̂

� 2
x

= R2
xZ ; (3.39)

and, since we imposed �Z 0Z = I; we have

� 2
xx̂ =

� x0Z � Z 0x

� 2
x

= � 2
xz1

+ (1 � � 2
x" )� 2

5;

� xz1 = � x" � z1" +
�
�(1 � � 2

x" )1=2
�
� � 2:

From these we can express the (nonnegative) values of� 5 and � 2 as

� 5 =

�
�
�
�
�

�
� 2

xx̂ � � 2
xz1

1 � � 2
x"

� 1=2
�
�
�
�
�

(3.40)

and

� 2 =

�
�
�
�
� xz1 � � x" � z1"

(1 � � 2
x" )1=2

�
�
�
� ; (3.41)

from which � 6 follows directly by evaluating (3.37).

Hence, we can scan the �nite sample distribution of GIV for this class of model for any

n over its entire parameter space by simulating data for all compatible values of� x , � xx̂ ;

� x" ; � xz1 and � z1" : Here again, these are found to be the data moments that characterize

the asymptotic distribution. They determine � and � 1 as in (3.29) and� 2; � 5 and � 6 via

(3.41), (3.40) and (3.37), respectively. We may restrict ourselves to cases where� xx̂ > 0

(since the coe�cients of the simulation design are just determined by� 2
xx̂ ). Note that

the coe�cients of the data generation process, notably� 2; are una�ected (thus yielding

the same distribution of �̂ GIV ) if both � z1" and � xz1 are changed in sign. Therefore,

we will only examine cases with� xz1 � 0: However, we shall also examine nonnegative

values of � z1" only, because when the distribution of" is symmetric changing the signs
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of both � z1" and � x" yields the mirror image of the distribution of �̂ GIV . In line with

the just identi�ed model the distribution of �̂ GIV � � for � z1" � 0 is equivalent with the

distribution of � (�̂ GIV � � ) for � � z1" � 0 and � � x" ; because: If we change the signs of

� z1" ; � x" and all " i then the variablesx i ; zi; 1; zi; 2 and thus x̂ i remain the same, whereas

�̂ GIV � � =
P

x̂ i " i =
P

x̂2
i changes sign.

In the special case that no instrument is invalid we have� 1 = � z1" = 0 in (3.35). Thus

full generality is maintained by makingzi; 2 independent ofvi; 3; giving � 6 = 0; and zero

covariance of the two instruments implies now� 2� 5 = 0: Hence, we may choose� 5 = 0;

resulting in the simpli�ed generating schemes

zi; 1 = � 2vi; 2 + (1 � � 2
2)1=2vi; 3;

zi; 2 = vi; 4:
(3.42)

These imply � xz1 = � xx̂ and � 2 =
�
�� xx̂ (1 � � 2

x" )� 1=2
�
� instead of (3.41). Hence, when� = 0

the �nite sample distribution is determined by just 3 parameters (viz. � x ; � x" and � xx̂ )

instead of 5 (apart fromn), whereas the limiting distribution just depends on� 2
x̂ = � 2

xx̂ � 2
x :

In all calculations we again �xedSN = 10 (which here too has only a multiplicative

e�ect, i.e. just a�ects the scale of the densities). For the conditional distribution we used

the same draws forvi; 2 and vi; 3 as in the previous example, and added avi; 4 and used

the same strategy regarding normalizing and orthogonalizing them. Sincel � k = 1; GIV

does have a �nite �rst moment now, and forl > k we do not have an explicit formula for

the unconditional asymptotic variance when� z1" 6= 0: Figures 3.7 through 3.10 present

illustrative densities for � xx̂ = 0:8; 0:4; 0:1; 0:02 respectively. Again we examinen = 50;

200; 2000 and as before we chose values� x" = � 0:3; 0:0; 0:3; 0:6 and � z1" = � 1 = 0:0;

0:2; whereas we �xed� xz1 = � xx̂=2: Hence,z1 provides half of the joint strength of the

instruments, and we omitted cases where� xz1 = � xx̂ (and � xz2 = 0) : Although we already

established that the latter cases yield similar asymptotic results as obtained fork = l = 1;

from the simulations we found that the �nite sample densities do di�er slightly from the

"no �nite moments" case, and more so for a weaker instrumentz1:

Figure 3.7 shows that for strong instruments the available asymptotic approximations

are reasonably accurate, but slightly less so for small sample size in Figure 3.8 where the
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instruments are weaker. For really weak instruments we note from Figures 3.9 and 3.10

that the asymptotic approximations for the conditional distribution are very accurate

when � x" = 0; but are much too pessimistic regarding the inter quartile range otherwise.

Forchini (2006) suspects bimodality in the overidenti�ed model when the instruments are

valid but weak. At � xx̂ = 0:02 we establish some tendency into that direction especially

for the conditional distribution, and also for the unconditional distribution when there is

an invalid instrument. When both instruments are valid and� xx̂ = 0:02 the l = 2 case

produces estimators which are substantially more e�cient than the correspondingl = 1

estimators in Figure 3.4. This seems at odds with the �ndings in Donald and Newey

(2001) which suggest that e�ciency bene�ts when weak instruments are discarded. Note,

however, that their analysis assumes that the number of instruments grows at a smaller

rate than the sample size, whereas in our experiments the number of instruments is �xed.

Finally, we look again at median absolute error results. Figure 3.11 gives for this

model a more global impression of the remarkable accuracy of the conditional asymptotic

approximation even in very small samples. However, the approximation is much too

pessimistic about the actual estimation errors when overall instrument strength� xx̂ is very

low and simultaneity � x" severe, the more so for serious instrument invalidity� z1" : Figure

3.12 makes comparisons with OLS. We note that, especially in the presence of invalid

instruments, there is much scope for OLS to produce smaller estimation errors than GIV.

Anyhow, our simulation results do not generally support the conclusion by Hahn and

Hausman (2003) that 2SLS is the preferred estimator whenn � 100 and� 2
xx̂ � 0:1: They

arrive at this conclusion by comparing second-order asymptotic approximations to MSE,

whereas ours are obtained from simulating the actual distributions.

3.4 Conclusions

In this Chapter we obtained an explicit formula for the asymptotic variance of the gener-

alized instrumental variable estimator when some of the employed instruments are invalid

while conditioning on all predetermined variables. We showed that the limiting distribu-

tion of such an inconsistent estimator is normal, and is centered at the pseudo-true-value



72 CHAPTER 3. ON THE DISTRIBUTION OF IV

(true coe�cient plus inconsistency), whereas its asymptotic variance includes a number

of terms and factors additional to the standard result. It can only be expressed when one

is willing to make assumptions on the �rst four moments of the disturbances. To obtain

our results we assumed covariance stationarity of all variables, i.e. the dependent, the

explanatory and the instrumental variables. In the simple illustrative models which we

used, the data observations are in fact IID, as is often assumed in cross-section applica-

tions. However, our approach also applies to stationary time-series applications and can

be generalized to GMM estimators, also for dynamic panel data models.

We examined the accuracy of our analytic large sample results by comparing them

with the simulated actual behavior of instrumental variable estimators in �nite sam-

ples. Through a reparametrization of the structural and reduced form coe�cients into

parameters that directly express the degree of simultaneity, the degree of (in)validity of

the instrument(s), the strength of the instrument(s) and the signal-to-noise ratio of the

model, and by condensing the numerical results into graphic displays, it proved possible

to produce a rather complete taxonomy of the behavior of the examined instrumental

variables estimators over their full parameter space.

There is a quickly expanding literature on the shortcomings of standard large sample

asymptotic approximations to the distribution of IV and GMM estimators and tests when

the sample size is small or moderate and some of the instruments are weak but valid, and

how alternative and better approximations could be obtained. The present study shows

that it is possible to obtain an explicit large sample asymptotic approximation to the

distribution of method of moments estimators, also when some of the exploited moment

conditions are invalid. Not surprisingly, however, that approximation is found to be

vulnerable too, when instruments are weak. One option now would be to replace it by an

approximation that aims to cope with weakness of instruments. However, our illustrations

also suggest an alternative approach in which the employment of weak instruments, which

in general yield unattractive biased estimators with widely dispersed and often bimodal

distributions, is abandoned altogether. We have shown that exclusively exploiting strong

instruments, even if these constitute invalid instruments, yields much smaller absolute

estimation errors in comparison with those obtained on the basis of weak instruments.
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For that situation we have produced here a very accurate approximation to the �nite

sample distribution. But, to render this approximation feasible one requires information

on the simultaneity parameter� and the instrument invalidity parameter �: That seems

hard to obtain, and if such information was available other estimators than those obtained

by minimizing an (in)appropriate GMM criterion function might be better for producing

accurate inference on the coe�cient�: However, the conditional asymptotic distribution

derived here can always be used to produce a sensitivity analysis of IV inference under

alternative assumptions regarding the degree of simultaneity and of instrument invalidity.

3.5 Appendix

Proof of Theorem 3.1.

Centering around � �
n;GIV de�ned in (3.8) we obtain

p
n(�̂ GIV � � �

n;GIV ) =
p

n[(X̂ 0X̂ ) � 1X̂ 0" � � 2
" S� 1

X̂ 0X̂
P0� ]: (3.43)

To �nd the limiting distribution we shall rewrite the right-hand side of (3.43) such that we can invoke

the Lemma given at the end of Section 2. Below we �rst show that (3.43) can be rewritten as

p
n(�̂ GIV � � �

n;GIV ) = (
1
n

X̂ 0X̂ ) � 1 1
p

n
[W 0" + ! ("0" � n� 2

" )] + op(1); (3.44)

for appropriate n � k matrix W; with E( W 0" ) = 0 ; and nonrandomk � 1 vector !: Invoking also a theorem

often attributed to Cram�er, the lemma then yields

p
n(�̂ GIV � � �

n;GIV ) d! N
�
0; � 2

" � � 1
X̂ 0X̂

�
plimn !1

1
n

W 0W + 2 � 2
" !! 0

�
� � 1

X̂ 0X̂

�
; (3.45)

upon assuming� 3 = 0 and � 4 = 3.

We �rst set out to rewrite (3.43) in the form (3.44). We easily obtain

p
n(�̂ GIV � � �

n;GIV ) =
p

n(X̂ 0X̂ ) � 1[�̂ 0(Z 0" � n� 2
" � ) + n� 2

" �̂ 0� � � 2
" X̂ 0X̂S � 1

X̂ 0X̂
P0� ]

= (
1
n

X̂ 0X̂ ) � 1 1
p

n
f �̂ 0[ �Z 0" + ( "0" � n� 2

" )� ] + n� 2
" [�̂ 0 �

1
n

X̂ 0X̂S � 1
X̂ 0X̂

P0]� g:(3.46)
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For the second expression between square brackets in the �nal line of (3.46) we �nd

�̂ 0 �
1
n

X̂ 0X̂S � 1
X̂ 0X̂

SX 0Z S� 1
Z 0Z

= �̂ 0(SZ 0Z �
1
n

Z 0Z )S� 1
Z 0Z + (

1
n

X 0Z �
1
n

X̂ 0X̂S � 1
X̂ 0X̂

SX 0Z )S� 1
Z 0Z

= �̂ 0(SZ 0Z �
1
n

Z 0Z )S� 1
Z 0Z + (

1
n

X 0Z � SX 0Z )S� 1
Z 0Z + ( SX̂ 0X̂ �

1
n

X̂ 0X̂ )S� 1
X̂ 0X̂

SX 0Z S� 1
Z 0Z : (3.47)

Its third term contains a factor which can be decomposed as

SX̂ 0X̂ �
1
n

X̂ 0X̂

= SX 0Z S� 1
Z 0Z SZ 0X � �̂ 01

n
Z 0X

= ( SX 0Z S� 1
Z 0Z � �̂ 0)SZ 0X � �̂ 0(

1
n

Z 0X � SZ 0X )

= f (SX 0Z �
1
n

X 0Z )S� 1
Z 0Z �

1
n

X 0Z [(
1
n

Z 0Z ) � 1 � S� 1
Z 0Z ]gSZ 0X � �̂ 0(

1
n

Z 0X � SZ 0X )

= f (SX 0Z �
1
n

X 0Z )S� 1
Z 0Z � �̂ 0[(SZ 0Z �

1
n

Z 0Z )S� 1
Z 0Z ]gSZ 0X � �̂ 0(

1
n

Z 0X � SZ 0X ): (3.48)

Now substituting the decompositions obtained in (3.47) and (3.48) into the expression within curly

brackets in the �nal line of (3.46), and next using �̂ = � + Op(n� 1=2); P = � + Op(n� 1=2) and •� n;GIV =

•� GIV + Op(n� 1=2), we obtain

�̂ 0[ �Z 0" + ( "0" � n� 2
" )� ] + n� 2

" [�̂ 0 �
1
n

X̂ 0X̂S � 1
X̂ 0X̂

SX 0Z S� 1
Z 0Z ]�

= �̂ 0[ �Z 0" + ( "0" � n� 2
" )� ]

+ n� 2
" �̂ 0(SZ 0Z �

1
n

Z 0Z )S� 1
Z 0Z � + n� 2

" (
1
n

X 0Z � SX 0Z )S� 1
Z 0Z � + n(SX̂ 0X̂ �

1
n

X̂ 0X̂ ) •� n;GIV

= � 0[ �Z 0" + ( "0" � n� 2
" )� ] � n� 2

" � 0(
1
n

Z 0Z � SZ 0Z )S� 1
Z 0Z � + n� 2

" (
1
n

X 0Z � SX 0Z )S� 1
Z 0Z � (3.49)

� n(
1
n

X 0Z � SX 0Z )� •� GIV + n� 0(
1
n

Z 0Z � SZ 0Z )� •� GIV � n� 0(
1
n

Z 0X � SZ 0X ) •� GIV + Op(1):

All the six terms of (3.49) are Op(n1=2) and will after premultiplication by n� 1=2( 1
n X̂ 0X̂ ) � 1 a�ect the

limiting distribution of �̂ GIV :

In deriving in a more general context such a limiting distribution Hendry (1979, formula 16) takes

into account only terms similar to the �rst and sixth of (3.49). Hence, he incorrectly neglects four of the

six Op(n1=2) terms of (3.49), as demonstrated by Maasoumi and Phillips (1982, formula 17), who also

show that this only a�ects the l > k case: From (3.49) it can easily be seen that in the special casel = k

terms 2 and 5, and 3 and 4 cancel. Maasoumi and Phillips (1982) and Hendry (1982) provide algebra

by which, exploiting formulas related to (3.46) and (3.49), the unconditional limiting distribution of the

GIV estimator can be obtained for one equation of a particular simultaneous dynamic system with �rst
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order serial correlation involving an arbitrary number of endogenous and autoregressive predetermined

variables, which are all assumed to be normally distributed.

We will here obtain an explicit result for the particular situation described by our framework, while

conditioning on the (latent) predetermined variables. Hence, we do not make an assumption on the

distribution of �X and �Z; but make the substitutions

1
n

Z 0Z � SZ 0Z =
1
n

�Z 0 �Z +
1
n

�Z 0"� 0+
1
n

�" 0 �Z +
1
n

�" 0"� 0 �
1
n

�Z 0 �Z � � 2
" �� 0

=
1
n

�Z 0"� 0+
1
n

�" 0 �Z +
1
n

("0" � n� 2
" )�� 0;

1
n

X 0Z � SX 0Z =
1
n

�X 0"� 0+
1
n

�" 0 �Z +
1
n

("0" � n� 2
" )�� 0:

in the �nal expression given for (3.49), which yields

� 0 �Z 0" + ( "0" � n� 2
" )� 0� � � 2

" � 0 �Z 0"� 0S� 1
Z 0Z � � � 2

" � 0�" 0 �ZS � 1
Z 0Z � � � 2

" � 0("0" � n� 2
" )�� 0S� 1

Z 0Z �

+ � 2
"

�X 0"� 0S� 1
Z 0Z � + � 2

" �" 0 �ZS � 1
Z 0Z � + � 2

" ("0" � n� 2
" )�� 0S� 1

Z 0Z � + � 0 �Z 0"� 0� •� GIV + � 0�" 0 �Z � •� GIV

+� 0("0" � n� 2
" )�� 0� •� GIV � �X 0"� 0� •� GIV � �" 0 �Z � •� GIV � ("0" � n� 2

" )�� 0� •� GIV � � 0�" 0 �X •� GIV

� � 0 �Z 0"� 0•� GIV � � 0("0" � n� 2
" )�� 0•� GIV + Op(1):

This can be further simpli�ed by using

c1 � � 2
" � 0� � 1

Z 0Z �;

c2 � � 0� •� GIV = � 2
" � 0� � 1

Z 0Z � Z 0X � � 1
X̂ 0X̂

� X 0Z � � 1
Z 0Z �;

c3 � � 0•� GIV ;

giving

� 0 �Z 0" + ( "0" � n� 2
" )� 0� � c1� 0 �Z 0" � � 2

" � 0�� 0� � 1
Z 0Z

�Z 0" � c1("0" � n� 2
" )� 0�

+ c1 �X 0" + � 2
" �� 0� � 1

Z 0Z
�Z 0" + c1("0" � n� 2

" )� + c2� 0 �Z 0" + � 0� •� 0
GIV � 0 �Z 0" + c2("0" � n� 2

" )� 0�

� c2 �X 0" � � •� 0
GIV � 0 �Z 0" � c2("0" � n� 2

" )� � � 0� •� 0
GIV

�X 0" � c3� 0 �Z 0" � c3("0" � n� 2
" )� 0� + op(n1=2)

= [ c4I k � � 0� •� 0
GIV ] �X 0" + [ c5� 0+ ( � � � 0� )( � 2

" � 0 � •� 0
GIV � X 0Z )� � 1

Z 0Z ] �Z 0" (3.50)

+( c4� + c5� 0� )( "0" � n� 2
" ) + Op(1);

where c4 � c1 � c2 and c5 � 1 � c3 � c4:

Note that (3.50) re-expresses the factor in curly brackets in the �nal line of (3.46). We want to derive

its limiting distribution after scaling by the factor 1 =
p

n; so we may neglect the remainder term. De�ning
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the k � k matrix � 1; the k � l matrix � 2 and the k � 1 vector !; such that

� 1 � c4I k � � 0� •� 0
GIV ; (3.51)

� 2 � c5� 0+ ( � � � 0� )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z ;

! � c4� + c5� 0�;

we can now invoke the Lemma4 with

W 0 = � 1 �X 0+ � 2 �Z 0: (3.52)

For the case� 3 = 0 and � 4 = 3 we then obtain, conditioning on �X and �Z; the limiting distribution

1
p

n

�
� 1 �X 0" + � 2 �Z 0" + ! ("0" � n� 2

" )
� d! N (0; � 2

" V0);

where

V0 = � 1� �X 0 �X � 0
1 + � 2� �Z 0 �Z � 0

2 + 2 � 2
" !! 0+ � 1� �X 0 �Z � 0

2 + � 2� �Z 0 �X � 0
1: (3.53)

In evaluating V0 we make use of

� �Z 0 �Z � plimn� 1 �Z 0 �Z = � Z 0Z � � 2
" �� 0

� �X 0 �X � plimn� 1 �X 0 �X = � X 0X � � 2
" �� 0

� �Z 0 �X � plimn� 1 �Z 0 �X = � Z 0X � � 2
" �� 0

� �X 0 �Z � plimn� 1 �X 0 �Z = � 0
�Z 0 �X

and �nd that V0 can be expressed as

[c4I k � � 0� •� 0
GIV ](� X 0X � � 2

" �� 0)[c4I k � •� GIV � 0�]

+[ c5� 0+ ( � � � 0� )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z ](� Z 0Z � � 2

" �� 0)[c5� + � � 1
Z 0Z (� 2

" � � � Z 0X
•� GIV )( � 0 � � 0�)]

+2 � 2
" [c4� + c5� 0� ][c4� 0+ c5� 0�]

+[ c4I k � � 0� •� 0
GIV ](� X 0Z � � 2

" �� 0)[c5� + � � 1
Z 0Z (� 2

" � � � Z 0X
•� GIV )( � 0 � � 0�)]

+[ c5� 0+ ( � � � 0� )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z ](� Z 0X � � 2

" �� 0)[c4I k � •� GIV � 0�] :

4In fact, this requires that in Framework 3.1 (ii) the second and third moments of " should also hold
conditional under �X and �Z . We thank Prof. Peter Boswijk for bringing this to our attention.
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Next, we examine these 5 terms ofV0 one by one. The �rst one is

c2
4(� X 0X � � 2

" �� 0) � c4(� X 0X � � 2
" �� 0) •� GIV � 0�

� c4� 0� •� 0
GIV (� X 0X � � 2

" �� 0) + � 0� •� 0
GIV (� X 0X � � 2

" �� 0) •� GIV � 0�

= c2
4� X 0X � � 2

" c2
4�� 0 � c4� X 0X

•� GIV � 0� + � 2
" c3c4�� 0�

� c4� 0� •� 0
GIV � X 0X + � 2

" c3c4� 0�� 0+ ( •� 0
GIV � X 0X

•� GIV � � 2
" c2

3)� 0�� 0� ;

the second is

[c5� 0� Z 0Z + ( � � � 0� )( � 2
" � 0 � •� 0

GIV � X 0Z )][c5� + � � 1
Z 0Z (� 2

" � � � Z 0X
•� GIV )( � 0 � � 0�)]

� � 2
" [c5� 0�� 0+ ( � � � 0� )( � 2

" � 0 � •� 0
GIV � X 0Z )� � 1

Z 0Z �� 0][c5� + � � 1
Z 0Z (� 2

" � � � Z 0X
•� GIV )( � 0 � � 0�)]

= c2
5� 0� Z 0Z � + c5(� � � 0� )( � 2

" � 0� � •� 0
GIV � X 0Z �) + ( � 2

" c5� 0� � c5� 0� Z 0X
•� GIV )( � 0 � � 0�)

+( � � � 0� )( � 2
" � 0� � 1

Z 0Z � •� 0
GIV � 0)( � 2

" � � � Z 0X
•� GIV )( � 0 � � 0�)

� � 2
" c5[c5� 0�� 0� + ( � � � 0� )( � 2

" � 0 � •� 0
GIV � X 0Z )� � 1

Z 0Z �� 0�]

� � 2
" [c5� 0�� 0+ ( � � � 0� )(c1� 0 � c2� 0)][( � 2

" � � 1
Z 0Z � � � •� GIV )( � 0 � � 0�)]

= c2
5� 0� Z 0Z � + � 2

" c5�� 0� � � 2
" c5� 0�� 0� � c5� •� 0

GIV � X 0Z � + c5� 0� •� 0
GIV � X 0Z �

+ � 2
" c5� 0�� 0 � c5� 0� Z 0X

•� GIV � 0 � � 2
" c5� 0�� 0� + c5� 0� Z 0X

•� GIV � 0�

+( � � � 0� )( � 2
" � 0� � 1

Z 0Z � •� 0
GIV � 0)( � 2

" �� 0 � � Z 0X
•� GIV � 0)

� (� � � 0� )( � 2
" � 0� � 1

Z 0Z � •� 0
GIV � 0)( � 2

" �� 0� � � Z 0X
•� GIV � 0�)

� � 2
" c5[c5� 0�� 0� + ( � � � 0� )(c1� 0� � c2� 0�)]

� � 2
" [c5� 0�� 0+ ( � � � 0� )(c1� 0 � c2� 0)]( � 2

" � � 1
Z 0Z �� 0 � � •� GIV � 0)

+ � 2
" [c5� 0�� 0+ ( � � � 0� )(c1� 0 � c2� 0)]( � 2

" � � 1
Z 0Z �� 0� � � •� GIV � 0�)

= c5� 0� Z 0Z � + � 2
" c5�� 0� � � 2

" c5� 0�� 0� � � 2
" c5�� 0� + � 2

" c5� 0�� 0�

+ � 2
" c5� 0�� 0 � � 2

" c5� 0�� 0 � � 2
" c5� 0�� 0� + � 2

" c5� 0�� 0�

+( � � � 0� )( � 2
" c1� 0 � � 2

" c2� 0) � (� � � 0� )( � 2
" c2� 0 � � 2

"
•� 0

GIV � 0�� 0)

� (� � � 0� )( � 2
" c1� 0� � � 2

" c2� 0�) + ( � � � 0� )( � 2
" c2� 0� � � 2

"
•� 0

GIV � 0�� 0�)

� � 2
" c5(c5� 0�� 0� + c1�� 0� � c1� 0�� 0� � c2�� 0� + c2� 0�� 0�)

� � 2
" [c1c5� 0�� 0+ ( � � � 0� )c1c4� 0] + � 2

" [c2c5� 0�� 0+ ( � � � 0� )c2c4� 0]

+ � 2
" [c1c5� 0�� 0� + c1c4(�� 0� � � 0�� 0�)] � � 2

" [c2c5� 0�� 0� + c2c4(�� 0� � � 0�� 0�)]
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= c2
5� X̂ 0X̂ + � 2

" c4�� 0 � � 2
" c4� 0�� 0 � � 2

" c2�� 0+ � 2
" c2�� 0

� � 2
" c4�� 0� + � 2

" c4� 0�� 0� + � 2
" (c4 � c5)c5� 0�� 0� � � 2

" c4c5�� 0�

� � 2
" c4c5� 0�� 0 � � 2

" c2
4�� 0+ � 2

" c2
4� 0�� 0+ � 2

" c4c5� 0�� 0� + � 2
" c2

4�� 0� � � 2
" c2

4� 0�� 0�

= c2
5� X̂ 0X̂ + � 2

" c4(1 � c4)�� 0+ � 2
" c4(c4 � 1 � c5)� 0�� 0+ � 2

" c4(c4 � 1 � c5)�� 0�

� � 2
" [c4(c4 � 1 � 2c5) + c2

5]� 0�� 0� ;

the third is

2� 2
" c2

4�� 0+ 2 � 2
" c4c5� 0�� 0+ 2 � 2

" c4c5�� 0� + 2 � 2
" c2

5� 0�� 0� ;

the fourth is

[c4� X 0Z � � 0� •� 0
GIV � X 0Z ][c5� + � � 1

Z 0Z (� 2
" � � � Z 0X

•� GIV )( � 0 � � 0�)]

� [� 2
" c4�� 0 � � 2

" � 0� •� 0
GIV �� 0][c5� + � � 1

Z 0Z (� 2
" � � � Z 0X

•� GIV )( � 0 � � 0�)]

= c4c5� X 0Z � � c5� 0� •� 0
GIV � X 0Z �

+ � 2
" c4� X 0Z � � 1

Z 0Z �� 0 � c4� X 0Z � � 1
Z 0Z � Z 0X

•� GIV � 0 � � 2
" c4� X 0Z � � 1

Z 0Z �� 0� + c4� X 0Z � � 1
Z 0Z � Z 0X

•� GIV � 0�

� � 2
" c2� 0�� 0+ � 0� •� 0

GIV � X 0Z � � 1
Z 0Z � Z 0X

•� GIV � 0+ � 2
" c2� 0�� 0� � � 0� •� 0

GIV � X 0Z � � 1
Z 0Z � Z 0X

•� GIV � 0�

� � 2
" c4c5�� 0� + � 2

" c3c5� 0�� 0� � � 2
" c1c4�� 0+ � 2

" c1c3� 0�� 0+ � 2
" c2c4�� 0 � � 2

" c2c3� 0�� 0

+ � 2
" c1c4�� 0� � � 2

" c1c3� 0�� 0� � � 2
" c2c4�� 0� + � 2

" c2c3� 0�� 0�

= c4c5� X 0Z � � � 2
" c5� 0�� 0� + � 2

" c4� 0�� 0 � � 2
" c4� 0�� 0 � � 2

" c4� 0�� 0� + � 2
" c4� 0�� 0�

� � 2
" c2� 0�� 0+ � 2

" c2� 0�� 0+ � 2
" c2� 0�� 0� � � 2

" c2� 0�� 0�

+ � 2
" c4(c4 � c5)�� 0� + � 2

" c3(c5 � c4)� 0�� 0� � � 2
" c2

4�� 0+ � 2
" c3c4� 0�� 0

= c4c5� X̂ 0X̂ � � 2
" c2

4�� 0+ � 2
" c4(c4 � c5)�� 0� + � 2

" c3c4� 0�� 0+ � 2
" c3(c5 � c4)� 0�� 0� � � 2

" c5� 0�� 0� ;
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and the �nal �fth one is the transpose of the fourth. Collecting all terms we �nd

V0 = c2
4� X 0X � � 2

" c2
4�� 0 � c4� X 0X

•� GIV � 0� + � 2
" c3c4�� 0�

� c4� 0� •� 0
GIV � X 0X + � 2

" c3c4� 0�� 0+ ( •� 0
GIV � X 0X

•� GIV � � 2
" c2

3)� 0�� 0�

+(1 � c4 � c3)2� X̂ 0X̂ + � 2
" c4(1 � c4)�� 0+ � 2

" c4(2c4 + c3 � 2)� 0�� 0+ � 2
" c4(2c4 + c3 � 2)�� 0�

� � 2
" [c4(c4 � 1 � 2c5) + c2

5]� 0�� 0� + 2 � 2
" c2

4�� 0+ 2 � 2
" c4c5� 0�� 0+ 2 � 2

" c4c5�� 0� + 2 � 2
" c4

5� 0�� 0�

+2c4c5� X̂ 0X̂ � 2� 2
" c2

4�� 0+ � 2
" c4(c4 + c3 � c5)�� 0� + � 2

" c4(c4 + c3 � c5)� 0�� 0

+2 � 2
" c3(c2 � c1 + c5)� 0�� 0� � 2� 2

" c5� 0�� 0�

= c2
4� X 0X + 2c4c5� X̂ 0X̂ + c2

5� X̂ 0X̂ � c4� X 0X
•� GIV � 0� � c4� 0� •� 0

GIV � X 0X

� � 2
" c2

4�� 0+ � 2
" c4(1 � c4)�� 0+ 2 � 2

" c2
4�� 0 � 2� 2

" c2
4�� 0

+ � 2
" c3c4�� 0� + � 2

" c4(2c4 + c3 � 2)�� 0� + 2 � 2
" c4c5�� 0� + � 2

" c4(c4 + c3 � c5)�� 0�

+ � 2
" c3c4� 0�� 0+ � 2

" c4(2c4 + c3 � 2)� 0�� 0+ 2 � 2
" c4c5� 0�� 0+ � 2

" c4(c4 + c3 � c5)� 0�� 0

+( •� 0
GIV � X 0X

•� GIV � � 2
" c2

3)� 0�� 0� � � 2
" [c4(c4 � 1 � 2c5) + c2

5]� 0�� 0�

+2 � 2
" c2

5� 0�� 0� + 2 � 2
" c3(c2 � c1 + c5)� 0�� 0� � 2� 2

" c5� 0�� 0�

= c2
4� X 0X + (2 c4 + c5)c5� X̂ 0X̂ � c4� X 0X

•� GIV � 0� � c4� 0� •� 0
GIV � X 0X

+ � 2
" c4(1 � 2c4)�� 0+ � 2

" c4(c4 + c3 � c5)�� 0� + � 2
" c4(c4 + c3 � c5)� 0�� 0+ •� 0

GIV � X 0X
•� GIV � 0�� 0�

+ � 2
" f� c2

3 � [c4(c4 � 1 � 2c5) + c2
5] + 2c2

5 + 2c3(c5 � c4) � 2c5g� 0�� 0�

= c2
4� X 0X + [(1 � c3)2 � c2

4]� X̂ 0X̂ � c4� X 0X
•� GIV � 0� � c4� 0� •� 0

GIV � X 0X + � 2
" c4(1 � 2c4)�� 0

+ � 2
" c4(1 � 2c5)�� 0� + � 2

" c4(1 � 2c5)� 0�� 0+ ( •� 0
GIV � X 0X

•� GIV )� 0�� 0� + � 2
" [c5(1 � 2c5) � c3]� 0�� 0� :

Thus, the asymptotic variance of the (generalized) GIV estimator (3.45) is

V N
GIV

= � 2
" [(1 � c3)2 � c2

4]� � 1
X̂ 0X̂

+ � 2
" c2

4� � 1
X̂ 0X̂

� X 0X � � 1
X̂ 0X̂

� c4[� � 1
X̂ 0X̂

� X 0X
•� GIV

•� 0
GIV + •� GIV

•� 0
GIV � X 0X � � 1

X̂ 0X̂
]

+ � 4
" c4[1 � 2c4]� � 1

X̂ 0X̂
�� 0� � 1

X̂ 0X̂
+ � 2

" c4(1 � 2c5)[� � 1
X̂ 0X̂

� •� 0
GIV + •� GIV � 0� � 1

X̂ 0X̂
]

+[ c5(1 � 2c5) � c3 + � � 2
" ( •� 0

GIV � X 0X
•� GIV )] •� GIV

•� 0
GIV ;

which gives the result of Theorem 3.1.
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Note that when k = l we havec1 = c2; so c4 = 0 and c5 = 1 � c3; and so the variance simpli�es to

V N
IV = � 2

" c2
5� � 1

X̂ 0X̂
+ [(1 � c3)(2c3 � 1) � c3 + � � 2

" ( •� 0
IV � X 0X

•� IV )] •� IV
•� 0

IV

= � 2
" c2

5� � 1
X̂ 0X̂

� [2c2
3 � 2c3 + 1 � � � 2

" ( •� 0
IV � X 0X

•� IV )] •� IV
•� 0

IV ;

which is the result of Corollary 3.1.

Proof of Theorem 3.2.

When � 4 6= 3 then there is an additional contribution to the asymptotic variance for which we have

to evaluate � 4
" !! 0: In obtaining the third term of (3.53) we already found

!! 0 = c2
4�� 0+ c4c5� 0�� 0+ c4c5�� 0� + c2

5� 0�� 0� ;

so

� 4
" � � 1

X̂ 0X̂
!! 0� � 1

X̂ 0X̂

= � 4
" c2

4� � 1
X̂ 0X̂

�� 0� � 1
X̂ 0X̂

+ � 4
" c4c5� � 1

X̂ 0X̂
� 0�� 0� � 1

X̂ 0X̂
+ � 4

" c4c5� � 1
X̂ 0X̂

�� 0�� � 1
X̂ 0X̂

+ � 4
" c2

5� � 1
X̂ 0X̂

� 0�� 0�� � 1
X̂ 0X̂

= � 4
" c2

4� � 1
X̂ 0X̂

�� 0� � 1
X̂ 0X̂

+ � 2
" c4c5

•� GIV � 0� � 1
X̂ 0X̂

+ � 2
" c4c5� � 1

X̂ 0X̂
� •� 0

GIV + c2
5

•� GIV
•� 0

GIV :

In the overall asymptotic variance this term has factor � 4 � 1: The expression forV NN
GIV already contains

it with factor 2, so the additional term given in Theorem 4 has factor � 4 � 3:

When � 3 6= 0 there is another additional contribution to the asymptotic variance, for which we have

to evaluate

� 3� 3
" (� W 0� ! 0+ ! � � 0W ):

Since

W 0� = � 1 �X 0� + � 2 �Z 0�

= c4 �X 0� � � 0� •� 0
GIV

�X 0� + c5� 0 �Z 0� + ( � � � 0� )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z

�Z 0�;

we �nd

� W 0� = c4� X 0� � � 0� •� 0
GIV � X 0� + c5� 0� Z 0� + ( � � � 0� )( � 2

" � 0 � •� 0
GIV � X 0Z )� � 1

Z 0Z � Z 0� ;

and with ! 0 = c4� 0+ c5� 0� ; we obtain

� W 0� ! 0

= c4[c4� X 0� � 0 � � 0� •� 0
GIV � X 0� � 0+ c5� 0� Z 0� � 0+ ( � � � 0� )( � 2

" � 0 � •� 0
GIV � X 0Z )� � 1

Z 0Z � Z 0� � 0]

+ c5[c4� X 0� � 0� � � 0� •� 0
GIV � X 0� � 0� + c5� 0� Z 0� � 0� + ( � � � 0� )( � 2

" � 0 � •� 0
GIV � X 0Z )� � 1

Z 0Z � Z 0� � 0�] :
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Thus,

� 3
" � � 1

X̂ 0X̂
� W 0� ! 0� � 1

X̂ 0X̂

= � 3
" c4[c4� � 1

X̂ 0X̂
� X 0� � 0� � 1

X̂ 0X̂
� � � 1

X̂ 0X̂
� 0� •� 0

GIV � X 0� � 0� � 1
X̂ 0X̂

+ c5� � 1
X̂ 0X̂

� 0� Z 0� � 0� � 1
X̂ 0X̂

+(� � 1
X̂ 0X̂

� � � � 1
X̂ 0X̂

� 0� )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z � Z 0� � 0� � 1

X̂ 0X̂
]

+ � 3
" c5[c4� � 1

X̂ 0X̂
� X 0� � 0�� � 1

X̂ 0X̂
� � � 1

X̂ 0X̂
� 0� •� 0

GIV � X 0� � 0�� � 1
X̂ 0X̂

+ c5� � 1
X̂ 0X̂

� 0� Z 0� � 0�� � 1
X̂ 0X̂

+(� � 1
X̂ 0X̂

� � � � 1
X̂ 0X̂

� 0� )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z � Z 0� � 0�� � 1

X̂ 0X̂
]

= c4[� 3
" c4� � 1

X̂ 0X̂
� X 0� � 0� � 1

X̂ 0X̂
� � "

•� GIV
•� 0

GIV � X 0� � 0� � 1
X̂ 0X̂

+ � 3
" c5� � 1

X̂ 0X̂
� 0� Z 0� � 0� � 1

X̂ 0X̂

+( � 3
" � � 1

X̂ 0X̂
� � � "

•� GIV )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z � Z 0� � 0� � 1

X̂ 0X̂
]

+ c5[� " c4� � 1
X̂ 0X̂

� X 0�
•� 0

GIV � � � 1
"

•� 0
GIV � X 0�

•� GIV
•� 0

GIV + � " c5� � 1
X̂ 0X̂

� 0� Z 0�
•� 0

GIV

+( � " � � 1
X̂ 0X̂

� � � � 1
"

•� GIV )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z � Z 0�

•� 0
GIV ]

and the additional term is then equal to � 3 multiplied by

� 3
" � � 1

X̂ 0X̂
[� W 0� ! 0+ ! � � 0W ]� � 1

X̂ 0X̂

= c4f � 3
" c4� � 1

X̂ 0X̂
� X 0� � 0� � 1

X̂ 0X̂
� � "

•� GIV
•� 0

GIV � X 0� � 0� � 1
X̂ 0X̂

+ � 3
" c5� � 1

X̂ 0X̂
� 0� Z 0� � 0� � 1

X̂ 0X̂

+( � 3
" � � 1

X̂ 0X̂
� � � "

•� GIV )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z � Z 0� � 0� � 1

X̂ 0X̂
g

+ c5[� " c4� � 1
X̂ 0X̂

� X 0�
•� 0

GIV � � � 1
"

•� 0
GIV � X 0�

•� GIV
•� 0

GIV + � " c5� � 1
X̂ 0X̂

� 0� Z 0�
•� 0

GIV

+( � " � � 1
X̂ 0X̂

� � � � 1
"

•� GIV )( � 2
" � 0 � •� 0

GIV � X 0Z )� � 1
Z 0Z � Z 0�

•� 0
GIV ]

+ c4[� 3
" c4� � 1

X̂ 0X̂
� � 0

X 0� �
� 1
X̂ 0X̂

� � " � � 1
X̂ 0X̂

� � 0
X 0�

•� GIV
•� 0

GIV + � 3
" c5� � 1

X̂ 0X̂
� � 0

Z 0� ��
� 1
X̂ 0X̂

+� � 1
X̂ 0X̂

� � 0
Z 0� �

� 1
Z 0Z (� 2

" � � � Z 0X
•� GIV )( � 3

" � 0� � 1
X̂ 0X̂

� � "
•� 0

GIV )]

+ c5[� " c4
•� GIV � 0

X 0� �
� 1
X̂ 0X̂

� � � 1
"

•� 0
GIV � X 0�

•� GIV
•� 0

GIV + � " c5
•� GIV � 0

Z 0� ��
� 1
X̂ 0X̂

+ •� GIV � 0
Z 0� �

� 1
Z 0Z (� 2

" � � � Z 0X
•� GIV )( � " � 0� � 1

X̂ 0X̂
� � � 1

"
•� 0

GIV )]:

This expression can be simpli�ed slightly when we assume that both matricesX and Z have a �rst

column of ones. Then

� � 1
X̂ 0X̂

� X 0� = ek; 1;

� 0� Z 0� = � X 0Z � � 1
Z 0Z � Z 0� = � X 0Z el; 1;

where ef;g denotes af � 1 unit vector which has all elements equal to zero apart from a unit element in
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position g: This yields

� 3
" � � 1

X̂ 0X̂
[� W 0� ! 0+ ! � � 0W ]� � 1

X̂ 0X̂

= c4f � 3
" c4ek; 1� 0� � 1

X̂ 0X̂
� � "

•� GIV
•� 0

GIV � X 0� � 0� � 1
X̂ 0X̂

+ � 3
" c5� � 1

X̂ 0X̂
� X 0Z el; 1� 0� � 1

X̂ 0X̂

+( � 3
" � � 1

X̂ 0X̂
� � � "

•� GIV )( � 2
" � 0 � •� 0

GIV � X 0Z )el; 1� 0� � 1
X̂ 0X̂

g

+ c5[� " c4ek; 1
•� 0

GIV � � � 1
"

•� 0
GIV � X 0�

•� GIV
•� 0

GIV + � " c5� � 1
X̂ 0X̂

� X 0Z el; 1
•� 0

GIV

+( � " � � 1
X̂ 0X̂

� � � � 1
"

•� GIV )( � 2
" � 0 � •� 0

GIV � X 0Z )el; 1
•� 0

GIV ]

+ c4[� 3
" c4� � 1

X̂ 0X̂
�e0

k; 1 � � " � � 1
X̂ 0X̂

� � 0
X 0�

•� GIV
•� 0

GIV + � 3
" c5� � 1

X̂ 0X̂
� � X 0Z e0

l; 1� � 1
X̂ 0X̂

+� � 1
X̂ 0X̂

�e0
l; 1(� 2

" � � � Z 0X
•� GIV )( � 3

" � 0� � 1
X̂ 0X̂

� � "
•� 0

GIV )]

+ c5[� " c4
•� GIV e0

k; 1 � � � 1
"

•� 0
GIV � X 0�

•� GIV
•� 0

GIV + � " c5
•� GIV e0

l; 1� Z 0X � � 1
X̂ 0X̂

+ •� GIV e0
l; 1(� 2

" � � � Z 0X
•� GIV )( � " � 0� � 1

X̂ 0X̂
� � � 1

"
•� 0

GIV )]:

When k = l; i.e. c1 = c2; c5 = 1 � c3; �� � 1
X̂ 0X̂

= � � 1
X 0Z and � 2

" � � � Z 0X
•� IV = 0 ; V NN

GIV specializes to

the expression

V NN
IV = � 2

" c2
5� � 1

Z 0X � Z 0Z � � 1
X 0Z � [2c2

5 � 2c5 + 1 � � � 2
" ( •� 0

IV � X 0X
•� IV )] •� IV

•� 0
IV

+( � 4 � 1)c2
5

•� IV
•� 0

IV � 2� 3c5� � 1
"

•� 0
IV � X 0�

•� IV
•� 0

IV + � 3� " c2
5[� � 1

Z 0X � Z 0�
•� 0

IV + •� IV � 0
Z 0� �

� 1
X 0Z ]

= � 2
" c2

5� � 1
Z 0X � Z 0Z � � 1

X 0Z + � 3� " c2
5[� � 1

Z 0X � Z 0�
•� 0

IV + •� IV � 0
Z 0� �

� 1
X 0Z ]

� [(3 � � 4)c2
5 + 2c5(� 3� � 1

"
•� 0

IV � X 0� � 1) + 1 � � � 2
" ( •� 0

IV � X 0X
•� IV )] •� IV

•� 0
IV :

Comparison of (un)conditional asymptotic variances

We examine whether the di�erence between� 2
u � � 1

Z 0X � Z 0Z � � 1
X 0Z and V NN

IV is positive semide�nite in models

where the intercept has been removed, yielding �X 0� = 0 and � Z 0� = 0 : We �nd � 2
u = � 2

" (1 � 2•� 0
IV � ) +

•� 0
IV � X 0X

•� IV = � 2
" c2

5 + •� 0
IV � �X 0 �X

•� IV ; giving for this di�erence

� 2
" [c2

5 + •� 0
IV � �X 0 �X

•� IV ]� � 1
Z 0X � Z 0Z � � 1

X 0Z

� � 2
" c2

5� � 1
Z 0X � Z 0Z � � 1

X 0Z + [(5 � � 4)c2
5 � 2c5 + 1 � � � 2

"
•� 0

IV � X 0X
•� IV ] •� IV

•� 0
IV

= ( � 2
"

•� 0
IV � �X 0 �X

•� IV )� � 1
Z 0X � Z 0Z � � 1

X 0Z + [(4 � � 4)c2
5 + ( c5 � 1)2 � � � 2

"
•� 0

IV � X 0X
•� IV ] •� IV

•� 0
IV

= ( � 2
"

•� 0
IV � �X 0 �X

•� IV )� � 1
Z 0X � Z 0Z � � 1

X 0Z + [(4 � � 4)c2
5 � � � 2

"
•� 0

IV � �X 0 �X
•� IV ]� 4

" � � 1
Z 0X �� 0� � 1

X 0Z ;
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because� � � 2
"

•� 0
IV � X 0X

•� IV = � � � 2
"

•� 0
IV � �X 0 �X

•� IV � (� 0•� IV )2 = � � � 2
"

•� 0
IV � �X 0 �X

•� IV � (1 � c5)2: Positive

(semi)de�niteness of the di�erence in variances follows now from positive (semi)de�niteness of

( •� 0
IV � �X 0 �X

•� IV )(� �Z 0 �Z + � 2
" �� 0) + [(4 � � 4)c2

5 � � � 2
"

•� 0
IV � �X 0 �X

•� IV ]� 2
" �� 0

= ( •� 0
IV � �X 0 �X

•� IV )� �Z 0 �Z + (4 � � 4)c2
5� 2

" �� 0

or of the matrix

� �Z 0 �Z + (4 � � 4)
(1 � � 2

" � 0� � 1
Z 0X � )2

� 2
" � 0� � 1

X 0Z � �X 0 �X � � 1
Z 0X �

�� 0:

The latter is clearly positive de�nite when � 4 < 4 (hence also for the case of Corollary 3.1), but should

also be for larger values of� 4 (because the conditional variance should not exceed the unconditional one)

highlighting that full rank of all the asymptotic moment matrices � has implications for the magnitudes

of �; � and � 2
" :
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n = 50

n = 200

n = 2000

Figure 3.1: Densities fork = l = 1; � = 1; � 2
x=� 2

" = 10; � xz = 0:8 (actual: solid = cond.,
dashed = uncond.; asymptotic:� = cond., � = uncond., O = both)
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n = 50

n = 200

n = 2000

Figure 3.2: Densities fork = l = 1; � = 1; � 2
x=� 2

" = 10; � xz = 0:4 (actual: solid = cond.,
dashed = uncond.; asymptotic:� = cond., � = uncond., O = both)
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n = 50

n = 200

n = 2000

Figure 3.4: Densities fork = l = 1; � = 1; � 2
x=� 2

" = 10; � xz = 0:02 (actual: solid = cond.,
dashed = uncond.; asymptotic:� = cond., � = uncond., O = both)
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Figure 3.6: Conditioned log[MAE (�̂ OLS )=MAE (�̂ IV )] for k = l = 1; any SN
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n = 50

n = 200

n = 2000

Figure 3.7: Densities forl � 1 = k = 1; � = 1; � 2
x=� 2

" = 10; � xx̂ = 0:8; � xz1 = 0:4 (actual:
solid = cond., dashed = uncond.; asymptotic:� = cond., O = both cond. and uncond.)
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n = 50

n = 200

n = 2000

Figure 3.8: Densities forl � 1 = k = 1; � = 1; � 2
x=� 2

" = 10; � xx̂ = 0:4; � xz1 = 0:2 (actual:
solid = cond., dashed = uncond.; asymptotic:� = cond., O = both cond. and uncond.)
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n = 50

n = 200

n = 2000

Figure 3.9: Densities forl � 1 = k = 1; � = 1; � 2
x=� 2

" = 10; � xx̂ = 0:1; � xz1 = 0:05 (actual:
solid = cond., dashed = uncond.; asymptotic:� = cond., O = both cond. and uncond.)
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n = 50

n = 200

n = 2000

Figure 3.10: Densities forl � 1 = k = 1; � = 1; � 2
x=� 2

" = 10; � xx̂ = 0:02; � xz1 = 0:01
(actual: solid = cond., dashed = uncond.; asymptotic:� = cond., O = both cond. and
uncond.)
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Figure 3.11: Conditioned log[MAE (�̂ IV )=AMAE (�̂ IV )] for k = l � 1 = 1; any SN







Chapter 4

Evaluating the performance of tests

of overidentifying restrictions

4.1 Introduction

In linear regression models with endogenous explanatory variables a researcher utilizes

additional variables, so-called instruments (which can also include some of the regres-

sors), that have known correlation with the regression error term, and provide necessary

information for the consistent estimation of the unknown parameter(s). So far, the most

common estimator used to tackle the linear model is the Instrumental Variables estimator

which can be viewed as a special case of the Generalized Method of Moments estimator

(GMM) for possibly non linear models with non i.i.d. disturbances, introduced by Hansen

(1982) in his seminal paper. In that case the validity of the exploited moment conditions

(restrictions), provided by the instruments, is investigated via the Hansen (1982)J statis-

tic.

More recently, based on the concept of Empirical Likelihood introduced by Owen

(1991), an alternative method was proposed by Qin and Lawless (1994), Imbens (1997).

Empirical Likelihood (EL) �nds an estimator together with `empirical probabilities' that

maximize the `empirical likelihood function' such that the moment conditions are exactly

satis�ed in the sample (which, in general, is not the case with the GMM estimator for

which the implied `empirical probabilities' are all equal). Here the maximized criterion

97
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function (empirical likelihood) provides the natural statistic for testing validity of overi-

dentifying restrictions (via the `Empirical Likelihood Ratio' test, ELR). Other estimators,

such as Exponential Tilting and the Continuous Updating Estimator (CUE), were fur-

ther proposed. They are all special cases of the so called Generalized Empirical Likelihood

(GEL) estimator, see Smith (1997), Newey and Smith (2004) and citations therein. The

consistency of the overidentifying restriction tests based on GEL was proven by Smith

(1997). Optimality of EL for testing moment conditions was shown by Kitamura (2001).

The study of Newey and Smith (2004) suggests that GEL can have better �nite sample

properties relative to GMM.

In this Chapter, for a simple linear model, we examine the �nite sample properties of

several procedures for testing overidentifying restrictions via Monte Carlo simulation. We

compare several versions of known GMM statistics (that di�er with respect to weighting

matrices applied) with GEL type Likelihood Ratio tests. We analyze the behavior of the

tests when the instruments are either weak or strong. We also examine the incremen-

tal version of those overidentifying restriction tests, that is the di�erence between test

statistics of the validity of a set of instruments and of a subset of those instruments. By

exploiting the validity of a subset of the instruments this incremental version should lead

to a `local power' improvement, see Hall (2005).

Finite sample properties of the GMM tests can probably be improved by applying

bootstrap procedures. We examine an implementation suggested in Hall and Horowitz

(1996) and Brown and Newey (2002) and some modi�cations of those. We also analyze a

simple residual type bootstrap.

We �nd that the Hall and Horowitz (1996) implementations, in terms of size, are

working well for large samples and rather strong instruments. However, the residual

bootstrap performs much better here, for both small and large samples and under weak

or strong instruments. Brown and Newey's (2002) implementation does not perform well

in our examples, which is probably due to numerical problems.

In Section 2, we present the GMM and GEL type tests for overidentifying restrictions.

In Section 3, we describe bootstrap procedures for correcting GMM type test statistics. In

Section 4 we illustrate the size and power of those tests and the performance of bootstrap
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procedures for a simple linear model.

4.2 Test statistics for overidentifying restrictions

For some stationary data vectorX i , i = 1; : : : ; n, from X = [ X1; : : : ;Xn ]0, wheren is the

sample size, we denote a particularl � 1 vector function of the data bygi (� ) � g(X i ; � )

and the corresponding sample moment function by �gn (� ) = 1
n

P n
i =1 gi (� ), where � is a

p � 1 vector containing all the parameters. We assume that under the true but unknown

data generating process Egi (� ) = g(� ) and that �gn (� )
p

! g(� ) for every � 2 � � Rp: We

aim to estimate a unique� 0 for which g(� 0) = 0.

A popular estimation procedure for estimating� 0 is the Hansen (1982) GMM method,

which minimizes a particular quadratic form of the sample moment function. Although

having attractive asymptotic properties, GMM can perform poorly in �nite samples. Es-

pecially when the parameter is weakly identi�ed (when identifying conditions are close to

being violated), see Andrews and Stock (2007) and references therein.

Alternatives to Hansen's (1982) GMM estimator and the test statistics for overidenti-

fying restrictions include: empirical likelihood (which �nds an estimator that maximizes

the likelihood function of the data subject to the moment restrictions being satis�ed in

the sample), exponential tilting and the continuous updating estimator, see Newey and

Smith (2004). These are members of so called generalized empirical likelihood estimators

(GEL).

Below we describe those procedures in some more detail.

4.2.1 GMM statistics

The GMM estimator is

~� � argmin
� 2 �

�gn (� )0W(X )�gn (� ); (4.1)

where W(X ) = Op(1) is a l � l positive semi-de�nite weighting matrix. The e�cient

GMM estimator is obtained in one, two or several "steps". In the �rst step we obtain

(4.1) using some initialW(X ) (for instance the identity matrix, but in particular cases an
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optimal weighting matrix can be derived analytically), in the second step we re-compute

(4.1)

�̂ � argmin
� 2 �

�gn (� )0
̂ � 1(~� )�gn (� ); (4.2)

with W(X ) = 
̂ � 1(~� ) the inverse of a consistent estimator of the asymptotic variance of
p

n�gn (� 0). The third stage estimator, �̂ 3, would be based on̂
 � 1(�̂ ). For the theoretical

derivation of the consistency and asymptotic normality of the GMM estimator see Hansen

(1982).

As recommended by Andrews (1999) and further justi�ed by Hall (2000) (because it

may lead to local power improvement), we shall examine the following `adapted' form of

the covariance estimator,


̂ a(~� ) =
1
n

nX

i =1

gi (~� )gi (~� )0 � �gn (~� )�gn (~� )0; (4.3)

next to the `standard' estimator of the covariance matrix


̂ s(~� ) =
1
n

nX

i =1

gi (~� )gi (~� )0: (4.4)

Hansen's two-step test statistic for overidentifying restrictions is

Jn � n�gn (�̂ )0
̂ � 1(�̂ )�gn (�̂ ): (4.5)

Using (4.3) or (4.4), this specializes to

J a
n = n�gn (�̂ a)0
̂ � 1

a (�̂ a)�gn (�̂ a) (4.6)

or

J s
n = n�gn (�̂ s)0
̂ � 1

s (�̂ s)�gn (�̂ s); (4.7)

with

�̂ a � argmin
� 2 �

�gn (� )0
̂ � 1
a (~� )�gn (� ); (4.8)
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�̂ s � argmin
� 2 �

�gn (� )0
̂ � 1
s (~� )�gn (� ): (4.9)

Sometimes, for brevity, we will simply write �̂ for �̂ s or �̂ a, although in general those

estimators are not equal. Also note that we used̂
 � 1(�̂ ) in (4.5) and not 
̂ � 1(~� ), so

in general (4.5) will be di�erent from, but asymptotically equivalent to, the minimized

criterion function, n�gn (�̂ )0
̂ � 1(~� )�gn (�̂ ).

Also the di�erence between the expressions (4.3) and (4.4), �gn (~� )�gn (~� )0, tends to zero

if the population moments are satis�ed. Hence, it will not change the limiting null distri-

bution of the test statistic. However, if some population moment conditions are invalid,

this factor does not disappear in the limit, and thus can lead to power improvements of

the test, see Hall (2000).

When all the moment conditions are valid, i.e.g(� 0) = 0 for a unique � 0, then we can

test whether (l � k) overidentifying moment restrictions are satis�ed. Under appropriate

regularity conditions, see Hansen (1982), (4.6) and (4.7) are asymptotically distributed

as � 2(l � k). The procedures for testing overidentifying restrictions based on (4.5) are

consistent, see Andrews (1999).

Linear model

In a linear model we haveX i = ( yi ; x0
i ; z0

i ), wherezi is an l � 1 vector of alleged instruments

and x i is a k � 1 vector of regressors (if some of the regressors are `exogenous' or `prede-

termined' then x i and zi can share the same elements),i = 1; : : : ; n. Let Z = [ z1; : : : ; zn ]0

be the (n � l) matrix of `instruments', X = [ x1; : : : ; xn ]0 the (n � k) matrix of regressors

and y = [ y1; : : : ; yn ]0 the (n � 1) vector of dependent variables. The GMM estimator is

based on the following population moment conditions

g(� 0) = E zi (yi � x0
i � 0) = 0 :

For an initial consistent estimator, ~� , let u(~� ) = y � X ~� , we then have

�gn (~� ) =
1
n

nX

i =1

zi (yi � x0
i
~� ) =

1
n

Z 0u(~� ); (4.10)
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̂ a(~� ) =
1
n

nX

i =1

(yi � x0
i
~� )2zi z0

i �
1
n2

Z 0u(~� )u(~� )0Z; (4.11)

and


̂ s(~� ) =
1
n

nX

i =1

(yi � x0
i
~� )2zi z0

i : (4.12)

The second stage GMM estimator is

�̂ = ( X 0Z 
̂ � 1X 0Z)� 1X 0Z 
̂ � 1Z 0y (4.13)

with 
̂ being either (4.11) or (4.12). For testing moment conditions we are using (4.6) or

(4.7).

The instrumental variables (IV) estimator is

~� = ( X 0PZ X )� 1X 0PZ y; (4.14)

where PZ = Z(Z 0Z)� 1Z 0. It results from the minimization of (4.1) using W(X ) =

[ 1
n Z 0Z]� 1, where under conditional homoscedasticity, i.e. E((yi � x0

i � 0)2jzi ) = � 2
0, it is

an optimal choice. The unconditional covariance matrix of the moment conditions is


 = � 2� Z 0Z : Using, for the weighting matrix in the second stage, the structure of this

matrix we can apply

_
 s(~� ) =
u(~� )0u(~� )

n
1
n

Z 0Z (4.15)

or

_
 a(~� ) =
u(~� )0u(~� )

n
1
n

Z 0Z �
1
n2

Z 0u(~� )u(~� )0Z; (4.16)

instead of (4.12) or (4.11).

However, from the form of (4.13) we can easily see that updating the estimator that

uses _
 s � _
 s(~� ) will not a�ect the second stage estimator. Hence, when using_
 s, one

obtains

_� s = ( X 0Z _
 � 1
s Z 0X )� 1X 0Z _
 � 1

s Z 0y = ~�:

We now show that it is also true when using_
 a � _
 a(~� ):
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Lemma 4.2 For 
̂ = _
 a(~� ) in (4.13) we have

_� a = ~�: (4.17)

Proof. For simplicity, write

_
 a = _
 s � ~g~g0; (4.18)

with ~g = 1
n Z 0u(~� ): The resulting estimator is

_� a = ( X 0Z _
 � 1
a Z 0X )� 1X 0Z _
 � 1

a Z 0y (4.19)

Applying a known matrix result, viz.

_
 � 1
a = ( _
 s � ~g~g0)� 1 = _
 � 1

s + (1 � ~g0_
 � 1
s ~g)� 1 _
 � 1

s ~g~g0_
 � 1
s ;

we obtain

_� a = f X 0Z[ _
 � 1
s + (1 � ~g0_
 � 1

s ~g)� 1 _
 � 1
s ~g~g0_
 � 1

s ]Z 0X g� 1

� X 0Z[ _
 � 1
s + (1 � ~g0_
 � 1

s ~g)� 1 _
 � 1
s ~g~g0_
 � 1

s ]Z 0y

= f X 0Z _
 � 1
s Z 0X + (1 � ~g0_
 � 1

s ~g)� 1X 0Z _
 � 1
s ~g~g0_
 � 1

s Z 0X g� 1

�f X 0Z _
 � 1
s Z 0y + (1 � ~g0_
 � 1

s ~g)� 1X 0Z _
 � 1
s ~g~g0_
 � 1

s Z 0yg

= f X 0Z _
 � 1
s Z 0X g� 1X 0Z _
 � 1

s Z 0y = ~�:

The third equality is due to

X 0Z _
 � 1
s ~g =

1
n

X 0Z _
 � 1
s (Z 0y � Z 0X ~� ) =

�
u(~� )0u(~� )

n

� � 1

X 0PZ (y � X ~� ) = 0 :

The `standard' Sargan test (Sargan (1958)) arises from the application of (4.15) in

(4.7), giving

Ss
n � n~g0_
 � 1

s ~g = n
u(~� )0PZ u(~� )

u(~� )0u(~� )
: (4.20)
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Even though the estimator _� a = _� s = ~� , the test statistic

Sa
n � n~g0_
 � 1

a ~g (4.21)

is not equivalent to Ss
n : In fact we have,

Sa
n = n~g0[ _
 � 1

s + (1 � ~g0_
 � 1
s ~g)� 1 _
 � 1

s ~g~g0_
 � 1
s ]~g

= n~g0_
 � 1
s ~g + (1 � ~g0_
 � 1

s ~g)� 1n~g0_
 � 1
s ~g~g0_
 � 1

s ~g

= Ss
n +

Ss
n

n � Ss
n

Ss
n = Ss

n
n

n � Ss
n

: (4.22)

Since 0� Ss
n � n (equality can happen in the extreme cases whenu(~� ) is either orthogonal

to or completely spanned byZ), we haveSa
n � Ss

n . Hence, for a given critical value,Sa
n

will never reject less often thanSs
n .

4.2.2 GEL statistics

Here we will shortly describe GEL and the resulting test statistic for overidentifying

restrictions. For the analytical development of the following results see Smith (1997). For

some more re�ned results on GEL see also Newey and Smith (2004).

Like GMM, GEL estimation is based on moment conditions, Egi (� 0) = 0 : It assigns

multinomial weights f � i gn
i =1 to each of the observationsfX i gn

i =1 . This allows the GEL

estimator to estimate the empirical (implied) probabilitiesf �̂ i gn
i =1 such that

nX

i =1

�̂ i gi (�̂ GEL ) = 0 :

Note that for GMM we have �̂ i � 1
n and in general 1

n

P n
i =1 gi (�̂ GMM ) 6= 0: For a concave

scalar function � (v) of the scalarv in an open interval V containing zero

�̂ GEL � argmin
� 2 �

sup
� 2 �( � )

nX

i =1

� (� 0gi (� )) ; (4.23)

where �( � ) = f � : � 0gi (� ) 2 V ; i = 1; : : : ; ng. For example, the Empirical Likelihood
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estimator applies� (v) = ln(1 � v) with V = ( �1 ; 1), the Exponential Tilting estimator

uses � (v) = � exp(v) with V = R and the Continuous Updating estimator employs

� (v) = � (1 + v)2=2 with V = R:

Let ĝi � gi (�̂ GEL ). The empirical probabilities of the observations associated with the

GEL are

�̂ i �
� 0(�̂ 0̂gi )

P n
j =1 � 0(�̂ 0̂gj )

; (4.24)

where� 0(v) is the �rst order derivative of � , and �̂ = argmax
� 2 �( �̂ GEL )

P n
i =1 � (� 0̂gi ). These proba-

bilities are important for the bootstrap procedure introduced by Brown and Newey (2002)

which we will describe later.

The GEL likelihood ratio test statistic is

GELR n � 2(
nX

i =1

� (�̂ 0ĝi ) � n� (0))

and has asymptotic distribution � 2(l � k), when all the moment conditions are valid.

In the simulations we will analyze the size and power properties of this likelihood ratio

test using Empirical Likelihood (we will call it ELR ) and Exponential Tilting ( ETR). We

will also analyze a version that applies the GMM estimator (4.8) instead of (4.23). Then

�̂ = argmax
� 2 �( �̂ a )

P n
i =1 � (� 0gi (�̂ a)), and for � corresponding to either Empirical Likelihood or

Exponential Tilting we will call the modi�ed LR test ELR (�̂ ) or ETR(�̂ ) respectively.

4.3 Bootstrap procedures

Below we describe bootstrap procedures of Hall and Horowitz (1996) and Brown and

Newey (2002) for improving the �nite sample properties of the GMM overidentifying

restrictions test statistics. The Hall and Horowitz (1996) version of the bootstrapped test

statistic uses a `re-centered' moment function such that it satis�es the moment restrictions

in the bootstrap samples. Brown and Newey (2002) propose resampling the data according

to the probabilities associated with the observations that arise from the computation of the

empirical likelihood evaluated at the GMM estimator. That way the moments exploited
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by GMM are also satis�ed in the bootstrap samples, and in theory this procedure should

lead to improvements with respect to the Hall and Horowitz (1996) procedure.

4.3.1 HH type bootstrap

We adopt here the bootstrap procedure of Hall and Horowitz (1996) which is origi-

nally designed to handle dependent data. Assuming that the data is i.i.d., we have

E(g(X i ; � 0)g(X j ; � 0)0) = O for i 6= j . The version of the GMM statistic they consider is

the one that uses the inverse of (4.4) for the weighting matrix.

A bootstrap sample,X � , (X �
i i = 1; : : : ; n) is obtained by drawing independently with

replacement fromX (X i i = 1; : : : ; n). Let �̂ be the estimator for which we would like to

bootstrap the test statistic. De�ne

gh�
i (� ) � g(X �

i ; � ) � E� g(X �
i ; �̂ ); (4.25)

where E� (�) = E( �jX ). We have

E� g(X �
i ; �̂ ) =

Z
g(x; �̂ )dF̂ (x) = �gn (�̂ )

and

E� g(X �
i ; �̂ )g(X �

i ; �̂ )0 =
Z

g(x; �̂ )g(x; �̂ )0dF̂ (x) =
1
n

nX

i =1

gi (�̂ )gi (�̂ )0;

whereF̂ (x) is the EDF of X . Writing g�
i (� ) � g(X �

i ; � ) we get

gh�
i (� ) = g�

i (� ) � �gn (�̂ ): (4.26)

Clearly

E� gh�
i (�̂ ) = �gn (�̂ ) � �gn (�̂ ) = 0 ; (4.27)

which clari�es the structure of the bootstrap moment function (4.25). For that choice

the population moments exploited in the estimation, Egi (� 0) = 0, are satis�ed exactly

in the bootstrap samples at�̂ . Because of the independence of the bootstrap samples
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(E� gh�
i (�̂ )gh�

j (�̂ )0 = 0 for i 6= j ) the bootstrap variance of
p

n�gh�
n (�̂ ) is

nE� �gh�
n (�̂ )�gh�

n (�̂ )0 =
1
n

nX

i;j =1

E� gh�
i (�̂ )gh�

j (�̂ )0 = E � gh�
i (�̂ )gh�

i (�̂ )0

= E � [g�
i (�̂ ) � �gn (�̂ )][g�

i (�̂ ) � �gn (�̂ )]0

= E � g�
i (�̂ )g�

i (�̂ )0 � �gn (�̂ )�gn (�̂ )0

=
1
n

nX

i =1

gi (�̂ )gi (�̂ )0 � �gn (�̂ )�gn (�̂ )0 = 
̂ a(�̂ ):

The bootstrap version of (4.4) is


̂ h�
s (~� � ) =

1
n

nX

i =1

gh�
i (~� � )gh�

i (~� � )0 (4.28)

=
1
n

nX

i =1

g�
i (~� � )g�

i (~� � )0 � �g�
n (~� � )�gn (�̂ )0

� �gn (�̂ )�g�
n (~� � )0+ �gn (�̂ )�gn (�̂ )0

and the bootstrap version of (4.3) is


̂ h�
a (~� � ) =

1
n

nX

i =1

gh�
i (~� � )gh�

i (~� � )0 � �gh�
n (~� � )�gh�

n (~� � )0 (4.29)

=
1
n

nX

i =1

g�
i (~� � )g�

i (~� � )0 � �g�
n (~� � )�g�

n (~� � )0;

where ~� � is obtained from

~� � � argmin
� 2 �

�gh�
n (� )0W � �gh�

n (� ); (4.30)

for some initial weighting matrix W � . Since E� g�
i (�̂ )g�

i (�̂ )0 = 1
n

P n
i =1 gi (�̂ )gi (�̂ )0 and

E� g�
i (�̂ ) = �gn (�̂ ); it is easy to see that

E� 
̂ h�
s (�̂ ) = 
̂ a(�̂ ): (4.31)
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Lemma 4.3 For 4.29 evaluated at̂� , we have

E� 
̂ h�
a (�̂ ) =

n � 1
n


̂ a(�̂ ): (4.32)

Proof. Let Â � 1
n

P n
i =1 gi (�̂ )gi (�̂ )0: Now consider

E� 
̂ h�
a (�̂ ) = E �

� 1
n

nX

i =1

g�
i (�̂ )g�

i (�̂ )0 � �g�
n (�̂ )�g�

n (�̂ )0
	

:

Because of independence of the terms in the summation and because

E� g�
i (�̂ )g�

i (�̂ )0 = Â, we have E�
�

1
n

P n
i =1 g�

i (�̂ )g�
i (�̂ )0

	
= Â . Now

E� �g�
n (�̂ )�g�

n (�̂ )0 =
1
n2

E�
nX

i;j =1

�
g�

i (�̂ )g�
j (�̂ )0

	

=
1
n2

E�
X

i = j

�
g�

i (�̂ )g�
j (�̂ )0

	
+

1
n2

E�
X

i 6= j

�
g�

i (�̂ )g�
j (�̂ )0

	

=
1
n

Â +
n2 � n

n2
E� g�

i (�̂ )g�
j (�̂ )0 =

1
n

Â +
n � 1

n
�gn (�̂ )�gn (�̂ )0:

The last equality comes from the independence ofg�
i (�̂ ) and g�

j (�̂ ) for i 6= j , then

E� g�
i (�̂ )g�

j (�̂ )0 = E � g�
i (�̂ )E� g�

j (�̂ )0: Summing up, we get

E� 
̂ h�
a (�̂ ) = Â �

1
n

Â �
n � 1

n
�gn (�̂ )�gn (�̂ )0 =

n � 1
n


̂ a(�̂ ):

Hence, for theW � in (4.30), we shall use the inverse of̂
 h�
s (�̂ ) (if we bootstrap the

`standard' test statistic) or 
̂ h�
a (�̂ ) (for the `adaptive' one, where the multiplicative factor

resulting from (4.32), n
n� 1 , does not a�ect the estimator (and thus can be omitted) but it

will inuence the bootstrap version of the test statistic). We will also examine how, using

the `updated' (4.28) and (4.29), changes the results with respect to this initial choice.

The bootstrap versions of (4.6) and (4.7) are

J �
a = ( n � 1)�gh�

n (~� �
a)0
̂ h�

a (�̂ a)� 1�gn (~� �
a) (4.33)
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and

J �
s = n�gh�

n (~� �
s)0
̂ h�

s (�̂ s)� 1�gn (~� �
s); (4.34)

where the factorn � 1 in (4.33) is justi�ed by (4.32). If we `update' �̂ in the weighting

matrix, the second stage versions are

J ��
a = ( n � 1)�gh�

n (�̂ �
a)0
̂ h�

a (�̂ �
a)� 1�gn (�̂ �

a) (4.35)

and

J ��
s = n�gh�

n (�̂ �
s)0
̂ h�

s (�̂ �
s)� 1�gn (�̂ �

s): (4.36)

Here, ignoring the subscripta or s, ~� � is obtained from (4.30) using for the weighting

matrix 
̂ h� (�̂ )� 1 and �̂ � using 
̂ h� (~� � )� 1: In the simulation, we will refer to the bootstrap

critical values obtained fromJ � or J �� as 1 step and 2 step critical values.

Having designed their procedure primarily for dependent data, Hall and Horowitz

(1996) are concerned with the fact that the block bootstrap does not replicate the depen-

dence of the true data generating process. To overcome this issue they apply a particular

transformation to (4.28). Since we are not dealing here with dependent data we do not

need to apply this transformation here.

Linear model

In the linear case we have

�gh�
n (� ) =

1
n

Z � 0
u� (� ) �

1
n

Z 0u(�̂ );

whereu� (� ) � y� � X � � . For a given weighting matrix W � , say the inverse of
̂ h�
s (�̂ ) or


̂ h�
a (�̂ ), (4.30) becomes

~� � = ( X � 0
Z � W � Z � 0

X � )� 1X � 0
Z � W � (Z � 0

y� � Z 0(y � X �̂ )) : (4.37)
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The bootstrap version of the weighting matrix used for the Sargan test statistic based on

(4.28) or (4.29) will use the inverse of

_
 h�
s (~� � ) =

u� (~� � )0u� (~� � )
n

1
n

Z � 0
Z � �

1
n2

Z � 0
u� (~� � )u(�̂ )0Z (4.38)

�
1
n2

Z 0u(�̂ )u� (~� � )0Z � +
1
n2

Z 0u(�̂ )u(�̂ )0Z;

or

_
 h�
a (~� � ) =

u� (~� � )0u� (~� � )
n

1
n

Z � 0
Z � �

1
n2

Z � 0
u� (~� � )u� (~� � )0Z: (4.39)

Hence, the bootstrap versions of the standard or alternative Sargan tests (S�
a, S�

s , S��
a and

S��
s ) will have the same structure as (4.33), (4.34), (4.35), (4.36) but with the weighting

matrix replaced with `the dotted' version.

In the MC experiments we will examine how, for a given version of the test statistic,

the bootstrap critical values obtained from the bootstrapped statistics (J �
a , J �

s , J ��
a , J ��

s ,

S�
a , S�

s , S��
a or S��

s ) perform relative to the standard asymptotic critical values.

4.3.2 EL type bootstrap

An alternative approach to the one of Hall and Horowitz (1996) was proposed by Brown

and Newey (2002). Instead of drawing (with replacement) bootstrap samplesX �
i =

(y�
i ; x � 0

i ; z� 0

i ) from X , with each X i having equal probability, they suggest using the prob-

abilities obtained from the calculation of the empirical likelihood at the given GMM

estimator, �̂ . These are

�̂ i =
1

n(1 � �̂ 0gi (�̂ ))
; (4.40)

with

�̂ 0 = arg max
� 0gi ( �̂ )< 1

X
ln(1 � � 0gi (�̂ )) :

For that choice we then have
nX

i =1

�̂ i gi (�̂ ) = 0 :
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The bootstrap procedure then goes as follows:

� For a given GMM estimator �̂ and the `resulting' statistic Jn (�̂ ) obtain the proba-

bilities (4.40)

� obtain bootstrap samplesX b� by drawing with replacement fromX , whereX i has

the probability of being drawn �̂ i , i = 1; : : : ; n b= 1; : : : ; B:

� compute the statisticJ b�
n (�̂ ) exactly the same wayJn (�̂ ) was obtained but using the

bootstrapped dataX b� , instead ofX .

� the bootstrap � level critical value is the 100(1� � )% quantile of the bootstrap

distribution: cv� � J [(1� � )B ]�
n

A modi�cation to that procedure could use probabilities derived from another GEL mem-

ber. For example, for the exponential tilting, where� (v) = � expf vg; we would use

�̂ i =
exp(�̂ 0gi (�̂ ))

P n
j =1 exp(�̂ 0gj (�̂ ))

; (4.41)

with

�̂ 0 = argmax
� 2 �( �̂ )

�
�

nX

i =1

exp(� 0gi (�̂ ))
	

:

4.3.3 Residual type bootstrap

For the linear model (4.44) that we are going to analyze, the residual type bootstrap

consists of:

� obtain �̂ ols = ( Z 0Z)� 1Z 0X and the residualsV̂ = MZ X (scaled by
p n

n� l )

� obtain �̂ from (4.13) (we used (4.11) for the weighting matrix) and the residuals

û = y � X �̂

� from V = ( û; V̂ ), for b = 1; : : : ; B obtain bootstrap versions of the disturbances
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V b� = ( ûb� ; V̂ b� ) by re-drawing `row-wise'; generate

X b� = Z �̂ ols + V̂ b� (4.42)

yb� = X b� �̂ + ûb� (4.43)

� compute the bootstrap versions of the Sargan or Hansen tests (fromyb� , X b� and

Z)

� the bootstrap critical value is obtained from the 100(1� � )% quantile of the boot-

strap versions of the statistic.

By `�xing' Z in (4.42) we produce exogeneity of the instruments in the resampling scheme.

By drawing `row-wise' from the residual matrixV we preserve in (4.43) possible simul-

taneity of the regressor and heteroscedasticity of the disturbances.
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4.4 Illustrations

Here we present illustrations. We will analyze two linear examples, one involving ho-

moscedastic errors the other heteroscedastic ones. For a (n � l) matrix Z we denote by

Z i its i 'th column and its t'th row we denote byz0
t .

4.4.1 Homoscedastic Example

Let us consider the simple linear model

yt = x t � + ut (4.44)

x t = �z0
t � + vt ; (4.45)

whereyt , x t are scalar endogenous variables,t = 1; : : : ; n, � is a (l � 1) vector of reduced

form parameters. The instruments �Z = [�z1; : : : ; �zT ]0 are exogenous, E(uj �Z ) = 0 with

Var(�zt ) = I l : Let

0

@
ut

vt

1

A � IIN
�
0; �

�
; � =

0

@
� 2

u � uv � u � v

� uv � u � v � 2
v

1

A : (4.46)

We take l = 3 and create one invalid instrument (say the �rst one,Z1) by generatingZ1

according to

Z1 =
q

1 � � 2
Z1u

�Z1 + � Z1uu: (4.47)

We have Var(zt1) = 1. For the normalization we take � 2
u = 1, � = 1. We will choose

values for� and � 2
v via population versions of the concentration parameter and the signal

to noise ratio, which we de�ne below.

The concentration parameter in the valid instruments case for (4.45) is

� 2 = � 0�Z 0�Z�=� 2
v : (4.48)
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Denote the `population' version of the concentration parameter by

� 2
p = n� 0� �Z 0 �Z �=� 2

v =
n
� 2

v

lX

i =1

� 2
i : (4.49)

Denote Var(x t ) by � 2
x . We then have

� 2
x = � 0� �Z 0 �Z � + � 2

v =
lX

i =1

� 2
i + � 2

v ; (4.50)

and combining (4.49) with (4.50) we get

� 2
v =

� 2
x

� 2
p=n + 1

: (4.51)

We de�ne the signal to noise ratio of (4.44) by� 2 = Var( x t � )
� 2

u
; then � 2 = � 2

x .

Taking � i = � 0 in (4.49) for i = 1; : : : ; l; we get � 2
p� 2

v = nl� 2
0. Hence, for a given

sample sizen, � 2
p, and � 2 we can calculate� 2

v from (4.51) and� 0 from � 2
0 = � 2

p� 2
v=(nl ).

4.4.2 Heteroscedastic Example

In the above example we have conditional homoscedasticity, because E(u2
t j �zt ) = 1. The

Sargan test seems the most appropriate one to use. Here we will generalize the previous

model by introducing conditional heteroscedasticity.

Let wt � (�z0
t �zt )=l. Because �zt � N (0; I l ), we obtain E(wt ) = 1 and E(w2

t ) = 5 =3 for

l = 3 (as wt � � 2(3)=3). Let �wt � � 1+ � 2wtp
� 2

1+ 5
3 � 2

2+2 � 1 � 2
, for some scalars� 1; � 2. By construction

E �w2
t = 1 and

E �wt =
� 1 + � 2q

� 2
1 + 5

3 � 2
2 + 2� 1� 2

� :

In the extended Monte Carlo design below the �wt will be used to introduce conditional

heteroscedasticity given by �w2
t , by generating the disturbances as ~ut = �wtut . Note that 

can be equal to one or minus one only if� 2 = 0. Then �wt is in fact nonrandom and we
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again have conditional homoscedasticity. For� 2 6= 0 we can rewrite the above as

�wt =
� + wtp

� 2 + 2� + 5=3
(4.52)

and

 = E �wt =
� + 1

p
� 2 + 2� + 5=3

; (4.53)

where� = � 1=� 2. One of the solutions to (4.53) is

� =


p
1 �  2

r
2
3

� 1; (4.54)

which we will use to parameterize the conditional heteroscedasticity in our simulations.

Now, for j j 6= 1, we generate

yt = x0
t � + ~ut (4.55)

x t = �z0
t � + vt ; (4.56)

where ~ut = �wtut (hence yielding conditional heteroscedasticity,E(~u2
t j �zt ) = �w2

t ). When

j j = 1 then we would take ~ut = ut and we would be back in the previous example. We

have

E~ut = EE(~ut j �zt ) = E �wtE(ut j �zt ) = 0

E~u2
t = EE(~u2

t j �zt ) = E �wt
2E(u2

t j �zt ) = 1 :

E~u3
t = EE(~u3

t j �zt ) = E �wt
3E(u3

t j �zt ) = 0 :

Hence, the unconditional �rst three moments correspond to those from the previous ex-

ample. The fourth unconditional moment, however, is

E~u4
t = EE(~u4

t j �zt ) = E �wt
4E(u4

t j �zt ) = 3E �wt
4 =

3E
� 4 + 4� 3wt + 6� 2w2

t + 4�w 3
t + w4

t

(� 2 + 2� + 5=3)4
= 3

� 4 + 4� 3 + 10� 2 + 15 5
9 � + 11 2

3

(� 2 + 2� + 5=3)4
:

Via (4.54) E~u4
t is a function of  . It can be shown that E~u4

t > 3 for j j < 1. Figure
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4.1 shows the graph of E~u4
t for di�erent  's. Hence, forj j < 1 the distribution is more

Figure 4.1: E~u4
t for di�erent  's.

peaked around the mean with fatter tails than the standard normal, as can be seen from

Figure 4.2, which presents the shape of the density of ~ut in comparison to the standard

normal. Figure 4.3 shows realizations ofut and ~ut .

From (4.56), we now have

Ex t ~ut = EE(�z0
t � �wtut j �zt ) + EE( �wtutv2t j �zt ) =

E(�z0
t � �wt )E(ut j �zt ) + E �wtE(utv2t j �zt ) = � uv � v:

Because Varx t = � 2 and Var~ut = 1 then

� x ~u =
� uv � v

�
:
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Figure 4.2: Densities ofut (black) and ~ut (red) for di�erent  's.

Figure 4.3: A realization ofut (upper panel) and ~ut (lower panel) for  = 0:9.
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Similarly to (4.47) we generate the invalid instrument,Z1, according to

Z1 =
q

1 � � 2
Z1 ~u

�Z1 + � Z1 ~u ~u: (4.57)

Results

For all overidenti�cation tests presented above and for di�erent values of the concentration

parameter� 2
p, signal to noise ratio� 2, sample sizen, simultaneity � xu (or � x ~u when 6= 1),

we will present our �ndings on size distortion and size corrected power by varying� Z1u

(the degree of invalidity of the instrument when = 1) or � Z1 ~u (when  6= 1).

For the heteroscedastic case we use = 0:9. For that choice the fourth moment of ~ut

is approximately 6:96 and the peak of the distribution of the disturbances is moderate.

For given model parameters we generate �z0
t � N (0; I l ) and the disturbances (4.46) (there

we use� uv � v = � x ~u �= ), we obtain (4.44), (4.45), (4.47) for the homoscedastic case and

(4.55), (4.56), (4.57) for heteroscedastic disturbances.

We take the number of Monte Carlo replicationsMC = 190000 (we made that choice

to achieve `the accuracy' of 0:0005 for � = 0:05, see Table 4.2) for the `GMM' results

(Sargan and Hansen tests) andMC = 50000 (to achieve `the accuracy' of 0:001 for

� = 0:05) for the results involving `GEL' (ELR , ETR, ELR (�̂ ), ETR(�̂ )), whereas the

number of bootstrap replicationsB = 100.

Whenever computations involve Empirical Likelihood or Exponential Tilting, we used

the Matlab optimization toolbox to obtain �̂ (function fminsearch.m modifying the de-

fault accuracy criteria (̀ TolFun' and `TolX' ) from 10� 4 to 10� 10 setting `MaxIter' =100)

and adopted theelm.m program from A. Owen's webpage to calculatê� for Empirical

Likelihood. Moreover, we used B. Hansen's lecture notes for writing the Newton algorithm

for �̂ in Exponential Tilting cases. For the weak instrument case (� 2
p=3 = 1), 2:7%� 4:5%

of the simulations where skipped (hence the number of MC accordingly is smaller) when

Empirical Likelihood or Exponential Tilting were being computed, due to lack of conver-

gence of the optimization procedure. For the strong instrument case (� 2
p=3 = 20), this

percentage was almost zero (about 5 simulations out of 50000 were skipped).

For n = 50; 200 (small and larger sample),� 2
p=3 = 20; 1 (rather strong and weak
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instruments), and  = 1; 0:9 (homoscedastic and heteroscedastic disturbances) Tables

4.3 and 4.4 contain the Monte Carlo estimate ofP (Tn >cv )� �
� , i.e. the fraction of the

size distortion for the given nominal signi�cance level� = 0:05 of the standard Sargan

and Hansen tests,Ss
n and J s

n , and the adapted versions,Sa
n and J a

n . The critical values

employed are either based on asymptotic theory (cv1 ), Hall and Horowitz (1996) (referred

to as HH from below on) 1 step (cv� ) or 2 steps (cv�� ) bootstrap, or the residual type

bootstrap (cvR). In the column indicating instruments used by a test (sayTn ), [123] means

that all the three instruments are taken, [23] only the second and the third, [123]j[23]

means that the test used is the incremental one (Tn ([123]) � Tn ([23])). We do not show

the results for [13] or [12] in the size distortion Tables 4.3, 4.4 and 4.5 since all three

instruments are valid and i.i.d. here, they would yield the same (similar) results as

Tn ([23]). Likewise, as far as type I errors are concerned,Tn ([123])� Tn ([23]) gives similar

results asTn ([123])� Tn ([12]) or Tn ([123])� Tn ([13]): In fact, for the size distortion results,

we averaged the results for [12] and [23] (hence the result is based on 2MC replications).

We did the same for [123]j[12] and [123]j[23].

Given the `true' rejection probability p, the MC estimates of the size distortion results

would have standard deviation equal to
q

p(1� p)
MC =� . Table 4.1 shows this standard devia-

tion for a given p and actual number of Monte Carlo simulations. For `GEL' results this

is (almost) 50000 for [123] and (almost) 100000 for [12] and [123]j[12]. For `GMM' results

it is 190000 or 380000 respectively.

Table 4.1: Standard Deviation of MC estimate of p� 0:05
0:05 :

q
p(1 � p)

MC =0:05

p
MC 0:01 0:05 0:1 0:2 0:3
50000 0.0028 0.0195 0.0268 0.0358 0.0410
100000 0.0020 0.0138 0.0190 0.0253 0.0290
1900000 0.0015 0.0100 0.0138 0.0184 0.0210
3800000 0.0010 0.0071 0.0097 0.0130 0.0149

As we will see from the size distortion tables, the GMM tests will mainly under-reject

(hence thetrue p is less than 0:05). That means that the standard errors of the MC

results are less than or about 0:01 (i.e. 1%). When the tests over-reject, but less than
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Table 4.2: Standard Deviation of MC estimate of p:
q

p(1 � p)
MC

p
MC 0:01 0:05 0:2 0:3 0:5
50000 0.0004 0.0010 0.0018 0.0020 0.0022
1900000 0.0002 0.0005 0.0009 0.0011 0.0011

100%, the standard errors are about 0.02 (i.e. 2%). When tests over-reject by more than

100%, this occurs only on 3 occasions forLR tests and almost always for the Sargan tests

in the heteroscedastic case, the standard errors do not exceed 0:04 (i.e. are less than 4%

and this accuracy su�ces).

Tables 4.6 to 4.9 show the size corrected power of the analyzed tests. Here, we can

not merge di�erent results, hence, the number of Monte Carlo replications is 50000 for all

the GEL results and 190000 for the GMM results. There, if the true rejection probability

is p, the `power' results have standard deviation
q

p(1� p)
MC . Table 4.2 shows values of the

standard deviation for givenp and MC. We notice that the GMM results will be twice as

accurate. The highest standard errors are obtained whenp = 0:5. Hence, the standard

errors of the results are never higher than the values in the last column of Table 4.2.

Tables interpretation

From Tables 4.3 ( = 1) and 4.4 ( = 0:9) we see that as far as size distortion is

concerned, 2 stage HH bootstrap performs better than 1 step, except for the = 1,

n = 200, � 2
p=3 = 20 case.

For the homoscedastic case (both for the Sargan and Hansen tests), we notice that the

standard asymptotic critical values produce size distortions of more than 10% in absolute

value in the cases when we have `weak' instruments (for both sample sizes we consider) or

`strong' instruments (for n = 50). In those cases HH bootstrap gives improvements with

respect to the asymptotic results, but we notice that the residual bootstrap performs

even better. When we have the `large' sample (n = 200) and strong instruments the

standard asymptotics works very well and bootstrapping does not produce better results.

Fortunately in this case, bootstrap size distortions never exceed 10%. Hence, for both
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Sargan and Hansen tests the residual bootstrap would be preferable to the HH in the

homoscedastic case, since it seems to perform better in `weak' instruments cases and in

small samples with `strong' instruments.

For the heteroscedastic example, however, when applied to the Sargan tests, the resid-

ual bootstrap performs equally badly as its standard asymptotic implementation. For

that case HH bootstrap (2 step) gives improvements, the nicest for the large samples

(< 10%). For the Hansen tests HH bootstrap does not give improvements in the cases ex-

amined, but the residual bootstrap does. Note that for the Sargan tests HH bootstrap size

distortions are smaller than the corresponding asymptotic ones for the Hansen test, and

clearly smaller than the corresponding HH ones. They are also smaller or about the same

as the corresponding residual bootstrap size distortions for Hansen tests whenn = 200.

Hence it seems that, even though asymptotic� 2 critical values are not appropriate for

the Sargan test here, the HH bootstrap produces valid critical values (replicates well the

distribution of the Sargan statistic).

Table 4.5 shows results for the procedures applying Empirical Likelihood or Expo-

nential Tilting. The �rst columns present outcomes of applying the BN bootstrap for

the alternative Sargan and Hansen tests, with either Empirical Likelihood or Exponential

Tilting implied probabilities. We notice that this bootstrap procedure underrejects by at

least 50%. (The results for the `standard' Sargan and Hansen tests were almost identical)

The right-hand columns show theLR type tests. We see that, for the strong instrument

case,ELR is less distorted thanELR (�̂ ), similarly for ETR and ETR(�̂ ), and this size

distortion decreases with the sample size. For the weak instrument caseELR and ETR

are worse than the versions evaluated at the GMM estimators, which is probably due to

the optimization procedure applied to �nd Empirical Likelihood or Exponential Tilting

estimators. Apart from a few (regular) cases, the distortions are rather high.

Tables 4.6 to 4.9 show the size corrected power of the analyzed GMM tests and the

LR type tests considered in Table 4.5. They all seem to perform about equally. We have

highlighted the entries with the highest values (row-wise).

For the homoscedastic case, we notice that the Sargan tests are the best, overall. From

[123]j[12] entries we conclude that the `adapted' version is probably better to reject [123].
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Unfortunately, we would probably conclude here that it is due to the `third' instrument,

instead of the `�rst'. We notice that for all the tests, the power is substantial only for

rather strong invalidity of the instrument ( � Z1u = 0:5), where for the weak instruments

we have only about 50% chance to be right in rejecting (similarly for� Z1u = 0:2, large

sample and strong instrument).

The corresponding heteroscedastic results show the power loss with respect to the

homoscedastic case. Here the power is high only for the large sample, strong instrument

and serious invalidity. There is no uniformly best test in the heteroscedastic case.

For the values ofn,  and � 2
p=3 analyzed in the previous Tables, Figures 4.4 (for = 1)

and 4.5 (for  = 0:9) each show four panels of four plots (2 `Sargans' and 2 `Hansens')

for 3 values of invalidity of the instrument (0:1, 0:2, 0:5) on the horizontal axes. They

depict the worst case among the di�erent `instrument settings' ([123], [12], [123]j[12] and

[123]j[23]) of p̂� p̂c
p̂c

- percentage distortion of the `power' rejection probability, ^p, obtained

using di�erent critical values (asymptotic, HH and the residual bootstrap) with respect

to the `size corrected power', ^pc. First, we notice that using asymptotic critical values is

almost never the best choice (in terms of being closest to the `size corrected' power line).

For the J tests it seems that the residual bootstrap is the best, except for the large sample

and weak instrument case. The percentage distortion of HH bootstrap looks similar to

the size distortion for the Hansen tests. Residual bootstrap also works well for the Sargan

tests in the homoscedastic case. For the heteroscedastic case, the HH bootstrap is the

only good option for the Sargan tests. Here also the `power percentage distortion' looks

similar to the `size percentage distortion'.

4.5 Conclusions

In this Chapter we analyzed and compared several versions of overidentifying restriction

tests. They are based on the GMM criterion function and GEL type Likelihood Ratio

tests. We used di�erent bootstrap schemes to improve on GMM type tests. For a simple

linear homoscedastic model we saw that the Sargan tests perform very well in terms

of power and when supported with the residual bootstrap their size distortion does not
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exceed 10%. Hansen tests are best corrected for size by the residual bootstrap.

For the heteroscedastic case the residual bootstrap does not work for the Sargan test,

but the HH (2 step) bootstrap does work well. In the same circumstances, HH bootstrap

performs better for Sargan than for Hansen tests. The residual bootstrap does best for

the Hansen tests.

The BN bootstrap does not perform well in the examples we considered. Also the LR

type tests have size problems, which can be �xed possibly by using bootstrap techniques.

Size corrected versions do not perform better than Sargan tests in the homoscedastic case,

but for the heteroscedastic case they show some potential (but with no obvious winner

among the LR type tests). There is no clear winner for the heteroscedastic case anyway,

and together with rather substantial size problems, the GMM (Sargan) tests seem to be

the safest option for the model and circumstances we analyzed.

Kitamura (2001) analyzes the performance of the EL and Hansen tests in a non-linear

example from Hall and Horowitz (1996). It shows that EL performs better than GMM

tests. Here we demonstrate that in a linear model the Sargan test can be a better option.
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Ss
n Sa

n
instr. cv1 cv� cv�� cvR cv1 cv� cv�� cvR

� p=3 = 20 n = 50

[123] -0.02 -0.1 -0.089 0.084 0.38 -0.1 -0.098 0.083
[12] -0.023 -0.054 -0.0082 0.074 0.16 -0.055 -0.013 0.074

[123]j[23] 0.052 -0.073 -0.071 0.045 0.35 -0.089 -0.092 0.04

� p=3 = 1 n = 50

[123] -0.3 -0.25 -0.16 -0.082 0.0088 -0.25 -0.17 -0.083
[12] -0.34 -0.22 -0.12 -0.11 -0.21 -0.22 -0.12 -0.11

[123]j[23] -0.059 -0.26 -0.16 -0.1 0.19 -0.27 -0.17 -0.11

� p=3 = 20 n = 200

[123] -0.02 0.04 0.071 0.085 0.064 0.04 0.071 0.085
[12] -0.042 0.026 0.073 0.075 0.001 0.026 0.073 0.075

[123]j[23] -0.0028 0.04 0.044 0.053 0.064 0.038 0.042 0.051

� p=3 = 1 n = 200

[123] -0.31 -0.17 -0.079 -0.086 -0.24 -0.17 -0.08 -0.086
[12] -0.36 -0.2 -0.087 -0.095 -0.33 -0.2 -0.088 -0.095

[123]j[23] -0.094 -0.18 -0.1 -0.1 -0.038 -0.18 -0.1 -0.11

J s
n J a

n
instr. cv1 cv� cv�� cvR cv1 cv� cv�� cvR

� p=3 = 20 n = 50

[123] -0.18 -0.36 -0.3 0.07 0.2 -0.37 -0.31 0.068
[12] -0.11 -0.19 -0.11 0.074 0.076 -0.2 -0.11 0.074

[123]j[23] -0.024 -0.3 -0.25 0.037 0.27 -0.33 -0.28 0.037

� p=3 = 1 n = 50

[123] -0.42 -0.47 -0.35 -0.071 -0.14 -0.49 -0.36 -0.072
[12] -0.4 -0.34 -0.19 -0.092 -0.27 -0.35 -0.2 -0.094

[123]j[23] -0.12 -0.45 -0.32 -0.088 0.12 -0.47 -0.34 -0.093

� p=3 = 20 n = 200

[123] -0.06 0.012 0.048 0.085 0.028 0.011 0.047 0.085
[12] -0.055 0.012 0.061 0.075 -0.015 0.012 0.06 0.075

[123]j[23] -0.011 0.0062 0.021 0.043 0.057 0.0038 0.018 0.044

� p=3 = 1 n = 200

[123] -0.35 -0.2 -0.1 -0.086 -0.28 -0.2 -0.1 -0.087
[12] -0.38 -0.22 -0.11 -0.087 -0.35 -0.22 -0.11 -0.088

[123]j[23] -0.11 -0.22 -0.14 -0.099 -0.054 -0.22 -0.14 -0.099

Table 4.3: Size distortion: For di�erent n and � p=3, the table presents P (Tn >cv ) � �
� (relative deviation

of the actual rejection probabilities from the nominal level � = 0 :05), where Tn is either Ss
n , Sa

n in the
upper part of the table or J s

n , J a
n in the lower part. cv stands for the di�erent critical values (at the

given signi�cance � level used): cv1 asymptotic critical value, cv� based on `one step' version of Hall
and Horowitz (1996), cv�� based on `two steps',cvR is based on the residual type bootstrap alternative.
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Ss
n Sa

n
instr. cv1 cv� cv�� cvR cv1 cv� cv�� cvR

� p=3 = 20 n = 50

[123] 2.6 -0.32 -0.34 2.7 3.4 -0.32 -0.36 2.7
[12] 1.7 -0.23 -0.2 1.8 2 -0.23 -0.21 1.8

[123]j[23] 1.9 -0.24 -0.25 1.8 2.5 -0.29 -0.31 1.9

� p=3 = 1 n = 50

[123] 1.5 -0.4 -0.3 1.8 2.1 -0.41 -0.31 1.8
[12] 0.79 -0.32 -0.21 1 1 -0.32 -0.21 1

[123]j[23] 1.4 -0.4 -0.28 1.2 1.9 -0.43 -0.3 1.3

� p=3 = 20 n = 200

[123] 2.8 -0.02 0.013 3 3 -0.02 0.011 3
[12] 1.9 -0.0011 0.065 2 1.9 -0.0014 0.064 2

[123]j[23] 2 -0.0019 0.005 2 2.1 -0.0098 0.0011 2

� p=3 = 1 n = 200

[123] 1.7 -0.2 -0.084 2 1.8 -0.2 -0.086 2
[12] 0.85 -0.21 -0.085 1.2 0.91 -0.21 -0.086 1.2

[123]j[23] 1.6 -0.21 -0.11 1.4 1.7 -0.22 -0.11 1.4

J s
n J a

n
instr. cv1 cv� cv�� cvR cv1 cv� cv�� cvR

� p=3 = 20 n = 50

[123] -0.36 -0.76 -0.73 -0.013 -0.0099 -0.77 -0.74 -0.022
[12] -0.21 -0.52 -0.46 0.0087 -0.04 -0.52 -0.46 0.0048

[123]j[23] -0.084 -0.67 -0.63 -0.017 0.2 -0.7 -0.67 -0.03

� p=3 = 1 n = 50

[123] -0.55 -0.77 -0.69 -0.19 -0.29 -0.78 -0.7 -0.2
[12] -0.48 -0.56 -0.43 -0.19 -0.35 -0.56 -0.44 -0.19

[123]j[23] -0.19 -0.72 -0.63 -0.18 0.053 -0.75 -0.66 -0.18

� p=3 = 20 n = 200

[123] -0.16 -0.3 -0.28 0.028 -0.063 -0.3 -0.28 0.027
[12] -0.084 -0.15 -0.098 0.059 -0.039 -0.15 -0.099 0.058

[123]j[23] -0.045 -0.25 -0.22 0.00037 0.023 -0.25 -0.23 -0.0038

� p=3 = 1 n = 200

[123] -0.41 -0.41 -0.33 -0.17 -0.35 -0.41 -0.33 -0.17
[12] -0.41 -0.32 -0.21 -0.17 -0.38 -0.32 -0.21 -0.17

[123]j[23] -0.15 -0.4 -0.31 -0.18 -0.087 -0.4 -0.31 -0.18

Table 4.4: Size distortion: Same as Table 4.3, but with conditional heteroscedasticity where = 0 :9
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Sa
n J a

n

instr. cvEL cvET cvEL cvET ELR (�̂ ) ETR(�̂ ) ELR ETR

 = 1

� p=3 = 20 n = 50

[123] -0.51 -0.49 -0.78 -0.74 0.85 0.6 0.75 0.52
[12] -0.65 -0.6 -0.79 -0.77 0.37 0.27 0.28 0.21

[123]j[23] -0.71 -0.68 -0.84 -0.83 0.78 0.58 0.73 0.54

� p=3 = 1 n = 50

[123] -0.67 -0.62 -0.86 -0.85 0.35 0.15 -0.45 -0.56
[12] -0.77 -0.75 -0.88 -0.87 -0.054 -0.13 -0.61 -0.65

[123]j[23] -0.74 -0.72 -0.87 -0.86 0.52 0.36 -0.14 -0.26

� p=3 = 20 n = 200

[123] -0.53 -0.5 -0.57 -0.58 0.14 0.14 0.11 0.11
[12] -0.68 -0.65 -0.71 -0.7 0.04 0.042 0.013 0.017

[123]j[23] -0.72 -0.7 -0.74 -0.74 0.14 0.14 0.12 0.12

� p=3 = 1 n = 200

[123] -0.69 -0.68 -0.71 -0.72 -0.19 -0.19 -0.73 -0.73
[12] -0.79 -0.79 -0.81 -0.8 -0.31 -0.31 -0.74 -0.74

[123]j[23] -0.76 -0.75 -0.77 -0.77 0.011 0.0096 -0.51 -0.51

 = 0 :9

� p=3 = 20 n = 50

[123] -0.36 -0.27 -0.91 -0.86 1.7 1 1.6 0.88
[12] -0.54 -0.47 -0.89 -0.87 0.87 0.52 0.72 0.42

[123]j[23] -0.6 -0.55 -0.93 -0.89 1.5 0.95 1.4 0.89

� p=3 = 1 n = 50

[123] -0.54 -0.47 -0.95 -0.92 1 0.44 -0.21 -0.47
[12] -0.7 -0.64 -0.93 -0.91 0.28 0.03 -0.5 -0.6

[123]j[23] -0.65 -0.6 -0.94 -0.92 1.1 0.68 0.13 -0.12

� p=3 = 20 n = 200

[123] -0.46 -0.41 -0.69 -0.68 0.55 0.39 0.48 0.34
[12] -0.62 -0.58 -0.76 -0.75 0.28 0.2 0.22 0.16

[123]j[23] -0.67 -0.64 -0.8 -0.8 0.51 0.37 0.46 0.35

� p=3 = 1 n = 200

[123] -0.61 -0.58 -0.75 -0.74 0.088 -0.028 -0.65 -0.67
[12] -0.74 -0.71 -0.81 -0.82 -0.15 -0.19 -0.68 -0.7

[123]j[23] -0.72 -0.69 -0.78 -0.78 0.28 0.18 -0.39 -0.43

Table 4.5: Brown and Newey (2002) bootstrap: relative size distortion: P (Tn >cv ) � �
� ; for di�erent Tn

with the critical values cvEL , cvET obtained applying Empirical Likelihood (4.40) or Exponential Tilting
(4.41) implied probabilities. Last 4 columns show relative distortion of ELR (�̂ ), ETR(�̂ ), ELR and ELR
type Likelihood Ratio tests.
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instr. Ss
n Sa

n J s
n J a

n ELR (�̂ ) ETR(�̂ ) ELR ETR

� p = 20

� Z 1 u = 0 :1

[123] 0.0727 0.0727 0.0697 0.0697 0.0711 0.0708 0.0726 0.0716
[12] 0.0751 0.0751 0.0734 0.0734 0.0746 0.0741 0.0763 0.075

[123]j[12] 0.0588 0.0598 0.0569 0.0577 0.0596 0.0585 0.0596 0.0596
[123]j[23] 0.0834 0.0829 0.081 0.0809 0.0818 0.0815 0.0833 0.0831

� Z 1 u = 0 :2

[123] 0.151 0.151 0.138 0.138 0.143 0.143 0.145 0.145
[12] 0.155 0.155 0.148 0.147 0.152 0.152 0.154 0.153

[123]j[12] 0.087 0.093 0.0779 0.0823 0.0921 0.0874 0.094 0.09
[123]j[23] 0.192 0.191 0.176 0.176 0.184 0.184 0.187 0.187

� Z 1 u = 0 :5

[123] 0.718 0.718 0.646 0.645 0.675 0.675 0.674 0.673
[12] 0.615 0.615 0.579 0.579 0.593 0.591 0.583 0.582

[123]j[12] 0.339 0.41 0.23 0.274 0.376 0.34 0.395 0.36
[123]j[23] 0.797 0.797 0.733 0.735 0.761 0.76 0.758 0.759

� p = 1

� Z 1 u = 0 :1

[123] 0.0648 0.0648 0.0639 0.0639 0.0642 0.064 0.0647 0.064
[12] 0.0662 0.0662 0.0653 0.0655 0.0664 0.0669 0.0668 0.0666

[123]j[12] 0.0575 0.058 0.0558 0.0566 0.0583 0.0587 0.0583 0.0578
[123]j[23] 0.071 0.0707 0.0693 0.0691 0.0709 0.0714 0.0707 0.0697

� Z 1 u = 0 :2

[123] 0.122 0.122 0.115 0.115 0.118 0.118 0.111 0.109
[12] 0.122 0.122 0.118 0.118 0.121 0.122 0.115 0.115

[123]j[12] 0.0853 0.0882 0.08 0.0824 0.089 0.0878 0.0842 0.0833
[123]j[23] 0.147 0.147 0.137 0.137 0.142 0.143 0.131 0.131

� Z 1 u = 0 :5

[123] 0.43 0.43 0.397 0.396 0.412 0.411 0.303 0.302
[12] 0.328 0.328 0.317 0.316 0.323 0.323 0.26 0.259

[123]j[12] 0.241 0.264 0.204 0.22 0.256 0.242 0.193 0.187
[123]j[23] 0.485 0.484 0.45 0.45 0.467 0.468 0.354 0.352

Table 4.6: Size corrected power:P(Tn > c � j� Z 1 u ); � = 5%, n=50,  = 1.
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instr. Ss
n Sa

n J s
n J a

n ELR (�̂ ) ETR(�̂ ) ELR ETR

� p = 20

� Z 1 u = 0 :1

[123] 0.156 0.156 0.153 0.153 0.153 0.152 0.155 0.154
[12] 0.163 0.163 0.161 0.161 0.159 0.16 0.161 0.161

[123]j[12] 0.0895 0.0908 0.0869 0.0883 0.0906 0.0904 0.0914 0.091
[123]j[23] 0.205 0.204 0.199 0.199 0.196 0.198 0.197 0.199

� Z 1 u = 0 :2

[123] 0.502 0.502 0.489 0.489 0.491 0.491 0.493 0.493
[12] 0.465 0.465 0.458 0.458 0.457 0.458 0.458 0.459

[123]j[12] 0.226 0.236 0.207 0.216 0.229 0.227 0.234 0.231
[123]j[23] 0.607 0.607 0.593 0.593 0.589 0.593 0.59 0.594

� Z 1 u = 0 :5

[123] 0.996 0.996 0.994 0.994 0.994 0.994 0.993 0.993
[12] 0.949 0.949 0.945 0.945 0.945 0.945 0.94 0.94

[123]j[12] 0.875 0.902 0.772 0.808 0.857 0.858 0.864 0.874
[123]j[23] 0.998 0.998 0.997 0.997 0.997 0.997 0.997 0.997

� p = 1

� Z 1 u = 0 :1

[123] 0.124 0.124 0.122 0.122 0.12 0.12 0.112 0.112
[12] 0.122 0.122 0.121 0.121 0.119 0.119 0.111 0.111

[123]j[12] 0.0866 0.0873 0.0851 0.0857 0.086 0.0858 0.0846 0.0836
[123]j[23] 0.151 0.151 0.147 0.147 0.145 0.145 0.131 0.132

� Z 1 u = 0 :2

[123] 0.322 0.322 0.315 0.315 0.314 0.315 0.251 0.252
[12] 0.266 0.266 0.263 0.263 0.261 0.263 0.217 0.217

[123]j[12] 0.186 0.189 0.179 0.182 0.188 0.188 0.162 0.161
[123]j[23] 0.381 0.381 0.373 0.373 0.374 0.374 0.301 0.301

� Z 1 u = 0 :5

[123] 0.479 0.479 0.474 0.474 0.474 0.476 0.365 0.366
[12] 0.332 0.332 0.329 0.329 0.327 0.328 0.287 0.287

[123]j[12] 0.342 0.349 0.324 0.331 0.343 0.342 0.234 0.232
[123]j[23] 0.533 0.533 0.527 0.527 0.528 0.529 0.422 0.422

Table 4.7: Size corrected power:P(Tn > c � j� Z 1 u ); � = 5%, n=200,  = 1.
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instr. Ss
n Sa

n J s
n J a

n ELR (�̂ ) ETR(�̂ ) ELR ETR

� p = 20

� Z 1 ~u = 0 :1

[123] 0.0622 0.0622 0.0593 0.0591 0.0599 0.0594 0.0608 0.0604
[12] 0.0637 0.0637 0.0605 0.0606 0.0619 0.0625 0.06290.0641

[123]j[12] 0.0544 0.0559 0.0528 0.0531 0.0538 0.0538 0.054 0.0544
[123]j[23] 0.0684 0.0679 0.0636 0.0639 0.0652 0.0646 0.0663 0.0659

� Z 1 ~u = 0 :2

[123] 0.102 0.102 0.0896 0.0894 0.0951 0.0928 0.0961 0.0945
[12] 0.106 0.106 0.0964 0.0964 0.102 0.102 0.103 0.104

[123]j[12] 0.0682 0.0735 0.0624 0.0644 0.0697 0.0683 0.0706 0.0685
[123]j[23] 0.124 0.124 0.107 0.107 0.116 0.115 0.117 0.117

� Z 1 ~u = 0 :5

[123] 0.441 0.441 0.375 0.373 0.446 0.441 0.441 0.44
[12] 0.387 0.387 0.372 0.371 0.412 0.41 0.398 0.406

[123]j[12] 0.192 0.247 0.139 0.156 0.239 0.214 0.253 0.224
[123]j[23] 0.526 0.528 0.463 0.464 0.534 0.532 0.526 0.529

� p = 1

� Z 1 ~u = 0 :1

[123] 0.0561 0.0561 0.0557 0.0556 0.0548 0.0552 0.0576 0.0575
[12] 0.0566 0.0566 0.0569 0.0568 0.0564 0.0568 0.05880.0592

[123]j[12] 0.053 0.0536 0.0522 0.0524 0.0529 0.0526 0.0548 0.0537
[123]j[23] 0.0585 0.0588 0.0577 0.0578 0.0576 0.0579 0.06010.0611

� Z 1 ~u = 0 :2

[123] 0.0825 0.0825 0.0781 0.0779 0.0791 0.0792 0.0812 0.0821
[12] 0.0828 0.0828 0.082 0.0819 0.0833 0.084 0.08360.0841

[123]j[12] 0.0655 0.0681 0.0628 0.0636 0.0664 0.0653 0.069 0.0684
[123]j[23] 0.0936 0.0942 0.089 0.0887 0.0906 0.0917 0.0916 0.0934

� Z 1 ~u = 0 :5

[123] 0.263 0.263 0.26 0.258 0.284 0.284 0.223 0.233
[12] 0.221 0.221 0.24 0.239 0.244 0.246 0.204 0.208

[123]j[12] 0.15 0.167 0.139 0.146 0.179 0.169 0.149 0.149
[123]j[23] 0.308 0.309 0.306 0.306 0.33 0.33 0.261 0.271

Table 4.8: Size corrected power:P(Tn > c � j� Z 1 ~u ); � = 5%, n=50,  = 0 :9.
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instr. Ss
n Sa

n J s
n J a

n ELR (�̂ ) ETR(�̂ ) ELR ETR

� p = 20

� Z 1 ~u = 0 :1

[123] 0.104 0.104 0.1 0.1 0.102 0.102 0.103 0.103
[12] 0.108 0.108 0.106 0.106 0.105 0.105 0.107 0.106

[123]j[12] 0.0711 0.0724 0.0678 0.0684 0.0713 0.0697 0.0712 0.0703
[123]j[23] 0.129 0.129 0.124 0.124 0.125 0.126 0.126 0.127

� Z 1 ~u = 0 :2

[123] 0.284 0.284 0.274 0.274 0.281 0.284 0.282 0.285
[12] 0.273 0.273 0.273 0.273 0.274 0.275 0.275 0.277

[123]j[12] 0.141 0.149 0.124 0.127 0.144 0.139 0.146 0.142
[123]j[23] 0.361 0.361 0.349 0.35 0.355 0.36 0.357 0.363

� Z 1 ~u = 0 :5

[123] 0.93 0.93 0.946 0.946 0.954 0.954 0.947 0.951
[12] 0.799 0.799 0.854 0.854 0.859 0.858 0.845 0.848

[123]j[12] 0.654 0.706 0.491 0.52 0.689 0.669 0.69 0.683
[123]j[23] 0.96 0.961 0.967 0.967 0.974 0.975 0.97 0.972

� p = 1

� Z 1 ~u = 0 :1

[123] 0.0823 0.0823 0.0835 0.0834 0.0827 0.0832 0.0817 0.0813
[12] 0.0821 0.0821 0.0851 0.085 0.0849 0.0852 0.0842 0.085

[123]j[12] 0.0668 0.0675 0.0665 0.0669 0.0676 0.0676 0.0697 0.0689
[123]j[23] 0.0954 0.0954 0.0976 0.0974 0.0964 0.0965 0.0927 0.0938

� Z 1 ~u = 0 :2

[123] 0.178 0.178 0.195 0.195 0.192 0.194 0.17 0.172
[12] 0.161 0.161 0.18 0.18 0.177 0.178 0.16 0.162

[123]j[12] 0.116 0.119 0.118 0.119 0.126 0.125 0.117 0.117
[123]j[23] 0.216 0.216 0.237 0.237 0.237 0.238 0.206 0.211

� Z 1 ~u = 0 :5

[123] 0.317 0.317 0.429 0.429 0.423 0.425 0.322 0.329
[12] 0.224 0.224 0.307 0.307 0.301 0.303 0.264 0.269

[123]j[12] 0.221 0.229 0.265 0.271 0.293 0.289 0.206 0.21
[123]j[23] 0.365 0.365 0.481 0.481 0.477 0.48 0.379 0.388

Table 4.9: Size corrected power:P(Tn > c � j� Z 1 ~u ); � = 5%, n=200,  = 0 :9.
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Figure 4.4: Percentage deviation of rejection frequencies from the `size corrected' power
when using di�erent critical values: asymptotic (1 ), 1,2 step HH, and based on the
residual bootstrap; = 1:
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Figure 4.5: Percentage deviation of rejection frequencies from the `size corrected' power
when using di�erent critical values: asymptotic (1 ), 1,2 step HH, and based on the
residual bootstrap; = 0:9:



Chapter 5

Sequential test procedures for

instrumental variable selection

5.1 Introduction

The method of moments estimation technique exploits a set of moment conditions for

estimation of the underlying parameters of a model. In the GMM framework, Hansen's

J test is used to check whether the moment restrictions utilized in the estimation are

satis�ed indeed. As we mentioned earlier, only overidentifying restrictions can be tested

since in general sample moments will be satis�ed automatically in the exactly identi�ed

case. In the previous Chapter on a linear model, we analyzed di�erent versions of Hansen

tests, together with Sargan tests and other statistics based on Generalized Empirical

Likelihood. In this Chapter we will propose several sequential procedures for selecting

moment conditions from a set of potential ones that will form the basis for the ultimate

estimation. In a linear regression model for example, from a set of potential variables we

want to choose a subset that is uncorrelated with the error term.

Andrews (1999) proposed several search procedures for choosing correct moment con-

ditions. For example, he showed that, by running theJ test on all the possible combi-

nations of moment restrictions and choosing the one with the maximum number of them

not rejected by the J test, one can consistently determine which moment restrictions

are satis�ed indeed, provided that at leastp + 1 of them are valid (p is the number of

133



134 CHAPTER 5. SEQUENTIAL TEST PROCEDURES

parameters to estimate).

Apart from being valid, it is also very important for the instrumental variables to be

relevant, i.e. su�ciently correlated with the regressors. Including more valid instruments

produces asymptotically more e�cient estimators but can also increase �nite sample bias

when the instruments are only weakly correlated with the explanatory variables. Donald

and Newey (2001) propose to search, among the set of valid instruments, for those subsets

which improve the performance of a given IV estimator. This performance is measured

by the minimum of the approximate mean squared error of an estimator which can be

obtained using re�ned asymptotic theory.

To achieve a better quality of asymptotic approximation to the �nite sample behavior

of GMM estimators Hall and Peixe (2003) and Hall, Inoue, Jana, and Shin (2007) propose

a method for selecting relevant instruments based on certain canonical correlations. Hall

and Peixe (2003) produce simulation evidence that the methods of Andrews (1999) can

select irrelevant instruments, and that, on the other hand, their methods for selecting

relevant instruments can also choose invalid ones. This could happen because if aninvalid

instrument is highly correlated with an endogenous variable, then we would most probably

select it, based on some relevance criteria that neglects validity of instruments. In the

same way we may select an irrelevant instrument when we only consider validity criteria.

Based on the available Monte Carlo (MC) evidence, the best strategy seems to be to join

the forces of the two methods, using �rst the relevance method and then the validation

method. Inoue (2006) also proposes a bootstraprelevancesearch procedure from a set

of instruments known to be valid. In this Chapter we will examine the performance of

validity tests when the set of instruments may contain both strong and weak instruments.

Kapetanios (2006) recognizes that due to nonstandard discrete minimization problems

all the above methods are computationally unfeasible. That is because they require search-

ing over almost all possible subsets of available instruments. If the number of instruments

is large the number of such subsets simply becomes too large. The author proposes to use

algorithms which provide a theoretically valid and computationally tractable solution to

the minimization problem and do not require to search over all possible subsets.

In this Chapter we propose and examine three sequential procedures (indicated byA,



5.1. INTRODUCTION 135

B and C) for �nding valid instruments. The procedures are sequential in a sense that

at a stages they consider only the sets of variables that consists of the already accepted

instruments from the previous stages � 1 plus one more available variable. Procedure

A will apply the incremental version of an overidentifying restriction test instead of its

standard one. Hall (2005) showed that this incremental version leads to `local power'

improvement. Following the proof in Andrews (1999), we show that the procedures put

forward below are consistent too, that is to say, when the sample size goes to in�nity, they

will yield the set of all available valid instruments. The procedures are computationally

much less expensive than those proposed in Andrews (1999). Only in the �rst stage, where

they search for the initial `smallest' set of the valid instruments, they could be assisted by

the algorithm of Kapetanios (2006). However, this is not required here for our empirical

example.

In a Monte Carlo study we compare the performance of our procedures with two

proposed by Andrews (1999). In an empirical illustration we apply two of our procedures

to the Angrist and Krueger (1991) data, where depending on the implementation, we have

30 or 180 overidentifying restrictions, hence making the other procedures computationally

unfeasible. Bound, Jaeger, and Baker (1995) showed that the analysis of Angrist and

Krueger (1991) is a�ected by the weak identi�cation problem. They also suggest that

the `instruments' used in Angrist and Krueger (1991) could also be invalid due to some

correlation of the quarter of birth dummies with some omitted factors which can a�ect

earnings.

In that empirical example, the Hansen or the Sargan tests on the full set of instruments

do not reject the overidentifying restrictions. However, our sequential analysis applying

incremental versions of those tests identi�es moment restrictions that are not valid. That

suggests that indeed the entire set of instruments (due to its particular structure generated

by quarter of birth dummies) could be invalid, but because it is also weak we do not have

su�cient power to reject it.

In the last illustration we will utilize the �ndings from the Chapters 2 and 3 for the

Angrist and Krueger data in order to produce an alternative inference based on making

varying assumptions on the degree of simultaneity, and, when external instruments have
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been used, on their degree of invalidity. We will demonstrate that this unfeasible inference

allows a useful sensitivity analysis. From this perspective, we will see that for these data

inference based on the unfeasible bias corrected OLS is more attractive than the unfeasible

bias corrected IV inference.

In Section 5.2, we start with technical considerations relating to the model and we

state some results on the procedures to be operationalized. In Section 5.3 we describe

three sequential procedures and sketch the proof of their consistency. Sections 5.4-5.6

reports on the Monte Carlo simulation and on the empirical study. Section 5.7 concludes.

5.2 Notation, assumptions and the test statistic

For some stationary data vectorX i , i = 1; : : : ; n, from X = [ X1; : : : ;Xn ]0, wheren is the

sample size, we denote a particularl � 1 vector function of the data bygi (� ) � g(X i ; � )

and the corresponding sample moment function by �gn (� ) = 1
n

P n
i =1 gi (� ), where � is a

p � 1 vector of parameters andl � p + 1, � does not necessarily characterize fully the

distribution of X i . We assume that under true but unknown data generating process

Egi (� ) = g(� ) and that �gn (� )
p

! g(� ) for every � 2 � � Rp: We aim to estimate a unique

� 0 for which g(� 0) = 0, however this might not be possible if some moment conditions in

the moment function are misspeci�ed. That isg(� ) 6= 0 for any � 2 �. We assume that

there is a (p+ s) � 1 subvectorg� (� ) of g(� ) for which g� (� 0) = 0, s > 0, and our aim is to

design an iterative procedure that establishes this subvectorg� (� 0), or rather its sample

equivalent �g�
n (�̂ ).

In order to distinguish test statistics on di�erent subsets of moment conditions, we

need to generalize the notation used in the previous Chapter. Let thel � 1 vector cs be

a selector vector of zeros and ones with the total number of ones equal top + s, hence

l � p+ s. Vector cs indicates which elements ofg(� ) we are taking into account: byg(cs; � )

we will denote the subvector ofg(� ) obtained by deleting the entries ofg(� ) corresponding

to zeros incs. De�ne

Cs � f cs 2 R l : cs = ( c1; : : : ; cl )0; ci 2 f 0; 1g; for i = 1; : : : ; l and c0c = p + sg
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� f cs 2 f 0; 1gl : c0c = p + sg

to be the set of suchselection vectors, s = 1; : : : ; l � p. Let

Z 0 � f cs 2 Cs; s = 1; :::; l � p : 9!� 0 2 � ; g(cs; � 0) = 0 g

denote the set of all selection vectors that select valid moment conditions. In this de�nition

we assume that there exists a unique parameter value that satis�es the moment conditions.

For notational ease we do not indicate the dependence of the vectors or sets onp.

Below, s will indicate both the number of overidentifying restrictions and the current

stage in a procedure. This should not cause any confusion since the procedures will be

designed in such a way that those quantities will correspond.

For a givencs 2 Cs, by Cs+1 (cs) we denote the set of vectors that can be obtained from

the vector cs by replacing one of its elements corresponding to 0 by 1, hence

Cs+1 (cs) � f cs+1 2 Cs+1 : c0
s+1 cs = p + sg:

Similarly to the de�nition of g(cs; � ), let �gn (cs; � ) denote the (p+ s) � 1 sub-vector gener-

ated from �gn (� ) by removing the elements corresponding to zero of the vectorcs. Other

vectors and matrices when depending on a selection vector are also obtained by removing

appropriate elements or columns.

Now, we can re-de�ne the test statistic (4.6) for overidentifying restrictions. Let

W(X ; cs) = Op(1) be a (p + s) � (p + s) positive de�nite weighting matrix. Let

~� s � argmin
� 2 �

�gn (cs; � )0W(X ; cs)�gn (cs; � ): (5.1)

For a cs 2 Z 0 we assume

p
n(�gn (cs; ~� s) � g(cs; � 0)) d! N (0; 
( cs; � 0)) :
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Then the asymptotically optimal choice forW(X ; cs) is 
̂ � 1(cs; ~� s), where

plim
n!1


̂( cs; ~� s) = 
( cs; � 0);

and where~� s is the initial consistent estimator of� 0, (5.1), that resulted from using some

preliminary W(X ; cs) (say I p+ s). For the reasons we mentioned in the previous Chapter,

we will use


̂( cs; ~� s) =
1
n

nX

i =1

gi (cs; ~� s)gi (cs; ~� s)0 � �gn (cs; ~� s)�gn (cs; ~� s)0 (5.2)

instead of


̂( cs; ~� s) =
1
n

nX

i =1

gi (cs; ~� s)gi (cs; ~� s)0:

For any cs and using expression (5.2) we re-compute (5.1) to obtain the e�cient `two step'

GMM estimator

�̂ s � argmin
� 2 �

�gn (cs; � )0
̂ � 1(cs; ~� s)�gn (cs; � ) (5.3)

and Hansen test statistic

Jn (cs) = n�gn (cs; �̂ s)0
̂ � 1(cs; �̂ s)�gn (cs; �̂ s): (5.4)

For example for a linear model we haveX i = ( yi ; x0
i ; z0

i ), where zi is an l � 1 vector of

alleged instruments andx i is a p � 1 vector of regressors (x i and zi can share the same

elements,zi may contain invalid instruments), i = 1; : : : ; n, whereasZ 0 = [ z1; : : : ; zn ] and

X 0 = [ x1; : : : ; xn ], we will have

�gn (cs; �̂ s) =
1
n

nX

i =1

zi (cs)(yi � x0
i �̂ s) =

1
n

Z(cs)0(y � X �̂ s); (5.5)


̂( cs; ~� ) =
1
n

nX

i =1

(yi � x0
i
~� s)2zi (cs)zi (cs)0 (5.6)

�
1
n2

Z(cs)0(y � X ~� s)(y � X ~� s)0Z(cs)
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or for the Sargan test case

_
( cs; ~� ) =
(y � X ~� s)0(y � X ~� s)

n
1
n

Z(cs)0Z(cs) (5.7)

�
1
n2

Z(cs)0(y � X ~� s)(y � X ~� s)0Z(cs):

Below, we collect the assumptions we made above and state some further ones on the

selection vectors that will lead to consistency of the sequential procedures to be developed.

Assumption 5.1 (a) � 0 is the same for all the selection vectorsci 2 Z 0.

(b) There exists at least one selection vectorcs 2 Z 0, for somes = 1; : : : ; l � p, (that is

Z 0 6= ; )

Assumption 5.1(a) is required for the identi�cation reasons and says that any set of

variables that satis�es the moment conditions will uniquely identify the parameter� 0.

Assumption 5.1(b) states that the model needs to be overidenti�ed, hence, requires us to

have more valid moment conditions than parameters to estimate. We need this because

the Jn statistic can only test overidentifying restrictions. In casel = p we obtain Jn = 0.

Self-evidently, for anyci 2 Z 0 also ci � 1 2 Z 0 for all ci � 1 such that c0
i � 1ci = p + i � 1.

That is, for some set ofvalid instruments, all it's subsets are also valid sets of instruments.

See the Remark 5.2 below.

Below we adopt further assumptions from Hall (2005) for the regularity ofJn (cs).

More general assumptions can be found in Andrews (1999) or Andrews (1997).

Assumption 5.2 (a) Jn (cs)
d! � 2(s), for any cs 2 Z 0,

(b) Jn (cs+1 ) � Jn (cs)
d! � 2(1), for cs+1 2 Cs+1 (cs) and bothcs and cs+1 belong toZ 0,

and

(c) plim
n!1

Jn (cs )
n = � (cs; � � ) > 0, for any cs =2 Z 0:

Assumption 5.2 essentially allows us to distinguish (asymptotically) between valid

moment conditions for whichJn (cs) = Op(1) and invalid ones for whichJn (cs) = Op(n).

Let  n;s be a 1� � n quantile of the � 2(s) distribution. It is used as the critical value for
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the Jn (cs) test or its incremental version. For the consistency result it is assumed that

 n;s ! + 1 and  n;s = o(n). This will hold if the signi�cance level � n satis�es � n ! 0

and log� n = o(n), for example � n = K expf�
p

ng, for someK > 0. As Jn (cs) = Op(1)

for cs 2 Z 0, the statistic will not exceed n;s (when n goes to in�nity), but for cs =2 Z 0 it

will exceed it asJn (cs) = Op(n). Hence, critical value n;s will separate valid instruments

from invalid ones.

5.3 Selection of valid instruments

In this section we propose three sequential procedures for detecting all the valid moment

conditions from a set ofl > p potential ones. All three can be shortly described as follows:

in stage s = 1, compute the J test on all the possible sets ofp + 1 moment conditions

and then consider only those sets that were not rejected by the test. Next, ifl > p + 1,

compute all possibleJ tests based on one extra moment restriction in addition to thep+1

ones accepted earlier. Continue until a stages where eithers = l � p or the test rejects

all such possible combinations ofp + s moment conditions. Finally, make a selection out

of the set of all combinations ofp + s moment restrictions that were not rejected. The

di�erences between the three alternative procedures are described in the next subsection.

In the Monte Carlo simulation we will also study Andrews' procedure of BIC type.

This procedure �nds the optimal selection vector,c�
ABIC , by minimizing over all cs 2 Cs,

s = 1; : : : ; l � p, the criterion function Jn (cs) � s log(n). We will call this procedureABIC .

Another Andrews' procedure that we will examine is the upward searching procedure,

called AU here. It �nds the optimal selection vectorc�
AU by computing in the �rst step

s = 1 the

 
l

p + 1

!

possibleJn (c1) statistics. If the minimum of them does not exceed a

critical value  n;1 the procedure continues to the next step,s = 2; 3; : : :, and computes

the

 
l

p + s

!

possibleJn (cs) statistics until a stage is reached where all the combinations

of instruments are rejected. Then the procedure accepts the combinationc�
AU from the

previous stage that produces the smallest value of theJ statistic. The procedure accepts

all the moment conditions as the solution if in the �nal stage none of them were rejected.

Next, we introduce the three procedures that we propose.
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5.3.1 Procedure A

The �rst procedure exploits the incremental version of theJ statistic.

s = 1 Find the set of moment conditions, indicated byc�
1, that produces the smallest

Jn (c�
1) statistic, that is, c�

1 = argmin
c12C1

f Jn (c1)g. If l = p + 1 then accept the moment

conditions selected byc�
1 and stop. If l > p + 1 and Jn (c�

1) does not exceed the

critical value  n;1 then go to the next stage (s = 2), otherwise accept the moment

conditions selected byc�
1 and stop.

s > 1 For the set of accepted moment conditions selected from the stages � 1 by c�
s� 1,

compute all thel � p� s+1 possibleJ statistics that use the accepted moments plus

one of the remaining. That is, for allcs 2 Cs(c�
s� 1) compute the Jn (cs) statistics.

Then �nd Jn (c�
s), where c�

s � argmin
cs 2Cs (c�

s� 1 )
f Jn (cs)g. If Jn (c�

s) � Jn (c�
s� 1) <  n;1 then, if

s = l � p (e.g. there are no more moment restrictions to search from), acceptc�
s as

the solution, or if s < l � p, take g(c�
s; � 0) to the next stage and repeat this point.

If Jn (c�
s) � Jn (c�

s� 1) �  n;1, accept the previous resultc�
s� 1 and stop the search.

At the �rst stage of this procedure, we allow it whenl � p + 1 to accept for the �nal

solution a set of moment restrictions that was actually rejected by theJ test. Since we

assume that there are at leastp + 1 valid restrictions, we are not allowing to commit a

type I error (we do anyhow acceptp + 1 orthogonality conditions), but may commit a

type II error (if there are invalid moment restrictions in the accepted set).

Further stages (s = 2; : : :) of procedure A can be summarized as follows. To the

accepted set of moment conditions, add one extra and check if the extended set of moment

restrictions is accepted by the incrementalJ test. If no extra restriction can produce a

small enough value of the incrementalJ test then we take the moment restrictions that

were already accepted set as the solution. If there are such restrictions, then to the

set of already accepted restrictions add the one that produces the smallest value of the

incremental J test, and continue the investigation.

The next procedure is very similar to the one above. Instead of considering the incre-

mental version of theJ test when s > 1, it uses the standard one. That is, procedureB

applies theJn (c�
s) statistic instead of Jn (c�

s) � Jn (c�
s� 1).
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5.3.2 Procedure B

Do exactly as in procedureA, but instead of the incremental statisticJn (c�
s) � Jn (c�

s� 1)

and the critical value  n;1 useJn (c�
s) with the critical value  n;s .

The two alternative approaches can give di�erent results. How good they are depends

on the actual properties of the instruments in question and the size and power properties

of the two tests in �nite sample.

5.3.3 Procedure C

This procedure is an extension of procedureB. The di�erence is that it will carry to the

next stage all the sets of moment conditions that were accepted by theJ test, instead of

just one.

s = 1 for all

 
l

p + 1

!

selector vectorsc1 compute the Jn (c1) statistic. If l > p + 1, then

determine the setC�
1 � f c1 2 C1 : Jn (c1) <  n;1g of all the sets of moment conditions

for which Jn (c1) <  n;1. If C�
1 6= ; then move to s = 2. Otherwise, if l = p + 1 or

C�
1 = ; , accept the moment conditions selected byc�

1 = argmin
c12C1

f Jn (c1)g, and stop.

s > 1 From the sets of instruments accepted at the previous stages � 1, cs� 1 2 C�
s� 1,

construct the setCs of such selector vectors that can be obtained from anycs� 1 2

C�
s� 1 by changing one of the zero elements ofcs� 1 into 1. Next, compute all the

Jn (cs) for cs 2 Cs and determineC�
s � f c 2 Cs : Jn (cs) <  n;sg. If C�

s is not empty

then, if p + s = l accept all the moment conditions, otherwise repeat this point

increasings. If the set C�
s is empty then stop and accept the moment conditions

from the previous stages � 1 selected bycs� 1 as the solution, wherec�
s� 1 2 C�

s� 1

corresponds to the smallestJn (cs� 1) in that stage.

Remark 5.2 The possible advantage of the procedureC over B is that it considers more

combinations of the instruments which could possibly lead to improvement of the �nal

result. The disadvantage is that it will be computationally more involved. In some cases it

might run the same number of computations as the upward searching procedure of Andrews

(for example when all the instruments are valid).
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Remark 5.3 The proceduresA and B are computationally expensive only at the �rst

stage, where they need to run

 
l

p + 1

!

operations whereas after that they run at most

(l � p)( l � p� 1)
2 =

P l � p� 1
i =1 i . Whenever

 
l

p + 1

!

is too big we could resort to an algorithm

proposed by Kapetanios (2006) in order to �nd ac1 that is not rejected by theJ test. Even

when it is not the one that minimizes theJn (cs) it should still lead to an asymptotically

correct result, by Assumption 5.1.

The approximate search time of some of the procedures, assuming it can search through

1 million di�erent selection vectors per second, is the following

(l; p) ABIC A; B

(20; 5) 1.04 sec 0.015 sec

(30; 5) 18 min 0.1425 sec

(40; 5) 13 days 0.6580 sec

(40; 20) 7 days 38 hours

(50; 20) 33 years 1.5 years

(50; 15) 36 years 26 days

(50; 10) 36 years 3 hours

(150; 9) > 1030 years 3 years

(150; 8) > 1030 years 60 days

(150; 6) > 1030 years 4 hours

(150; 5) > 1030 years 10 min

In the `worse' case, when it reaches the maximum possible stage, procedureAU will

be as computationally involved as procedureABIC . ProcedureC should be less compu-

tationally involved than procedureAU, but in principle could be as much time consuming

as AU, for example when all the moment conditions are valid.

Theorem 5.1 Under Assumption 5.1 and 5.2 proceduresA, B and C are consistent.

Proof. Following Andrews (1999), by de�nition of the setZ 0, for any cs 2 Z 0 we have

P(Jn (cs) <  n;s ) ! 1, becauseJn (cs) = Op(1) by Assumption 5.2(a). Forcs =2 Z 0 we have
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plim
n!1

Jn (cs)= n;s = 1 , because plim
n!1

Jn (cs)=n > 0 by Assumption 5.2(c). Thus the only

selection vectors that do not exceed asymptotically the critical value are in the setZ 0.

Let c�
s 2 Z 0 be the (unique) selection vector which selects all the (p+ s) valid instruments.

By Assumption 5.1, there existsc1 2 Z 0 which will not be rejected,P(Jn (c1) <  n;1) ! 1,

and so consistency of the �rst step of the procedures follows. Next, at each stage 1< i � s

there are someci ; ci � 1 2 Z 0 (c0
i � 1ci = p+ i � 1) for which P(Jn (ci ) � Jn (ci � 1) <  n;1) ! 1,

and that assures consistent progress from one step to another. When we reach the stage

s + 1, where there is nocs+1 2 Z 0, we will have plim
n!1

(Jn (cs+1 ) � Jn (cs))= n;1 = 1 for any

cs+1 , but P(Jn (cs) <  n;1) ! 1, which can only happen forcs = c�
s. If ( c�

s)0c�
s = l, that is,

if all the instruments are valid, then for anyci ; ci � 1 P(Jn (ci ) � Jn (ci � 1) <  n;1) ! 1, so

as a result we will select all the valid instruments asn goes to in�nity.

This proves the consistency of ProcedureA. Consistency of the other procedures is

proven similarly.
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5.4 A Monte Carlo Study

Here, we compare the methodsA, B , C and the Andrews' methodsABIC and AU. We

examine them in a simple static linear model with one regressor andl = 4 instruments,

z0
t = ( zt1; : : : ; ztl ). For a (n � l) matrix Z we denote byZ i its i 'th column and its t'th row

we denote byz0
t .

We generate the data according to the following linear model

yt = x t � + ut (5.8)

x t = �z0
t � + vt ; (5.9)

whereyt , x t are scalar endogenous variables,t = 1; : : : ; n, � is a (l � 1) vector of reduced

form parameters. The instruments�Z = [�z1; : : : ; �zT ]0 are predetermined, E(ut j �zt ) = 0 with

Var(�zt ) = I l : We take

0

@
ut

vt

1

A � IIN
�
0; �

�
; � =

0

@
� 2

u � uv � u � v

� uv � u � v � 2
v

1

A ; (5.10)

and create one invalid instrument (say the �rst one,Z1) by generatingZ1 according to

Z1 =
q

1 � � 2
Z1u

�Z1 + � Z1uu: (5.11)

We have Var(zt1) = 1. For the normalization we take � 2
u = 1, � = 1. As in the previous

chapter, we will choose values for� and � 2
v via population versions of the concentration

parameter

� 2
p = n� 0� �Z 0 �Z �=� 2

v =
n
� 2

v

lX

i =1

� 2
i : (5.12)

and the signal to noise ratio of (5.8)

� 2 =
Var(x t � )
Var(ut )

= Var( x t ) = � 2
x :
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From (5.9) we then have

� 2
x = � 0� �Z 0 �Z � + � 2

v =
lX

i =1

� 2
i + � 2

v ; (5.13)

and combining (5.12) with (5.13) we get

� 2
v =

� 2
x

� 2
p=n + 1

: (5.14)

Taking � i = � 0 in (5.12) for i = 1; : : : ; l; we get � 2
p� 2

v = nl� 2
0. Hence, for a given

sample sizen, � 2
p, and � 2 we can calculate� 2

v from (5.14) and� 0 from � 2
0 = � 2

p� 2
v=(nl ).

Borrowing from Eryuruk, Hall, and Jana (2008), we will also trydeclining coe�cients

� i = k(l)(1 � i
l+1 ) for i = 1; 2; 3; 4; and the constantk(l) is such that (5.12) is satis�ed.

We are going to utilize the Sargan test instead of Hansen since in our example we

have conditional homoscedasticity. We will also use the residual bootstrap described in

the previous chapter which worked best for the Sargan test.

For the signi�cance level� n instead of � n = K expf�
p

ng suggested earlier, we take

� n = K= ln n which is justi�ed in Andrews (1997) using the law of the iterated logarithm.

K is chosen in such a way that� 50 = 0:05, then for example� 200 = 0:0369,� 500 = 0:0315.

The graphs display, (in the �rst three `columns' of each graph) acceptance frequencies

of di�erent sets of instruments. We group underINV : the sets of instruments that

contain the invalid one, underAV L: the sets of all the valid instruments and underV AL:

the sets of valid instruments, but not all of them. The right-hand graph presents [10%,

50%, 90%] quantiles of the estimators obtained from the sets of instruments resulting

from the �ve di�erent sequential procedures. The upper panels present results involving

the constant coe�cients and the lower descending coe�cient cases.

In the simulation we �x � xu = 0:2, we take� 2
p=l = 20 for the `strong' instruments case

and � 2
p=l = 1 for the `weak' ones. We do not present bootstrap results since they did not

give much di�erent results from the the `asymptotic' ones.

Figures 5.1 to 5.4 present di�erent �ndings for di�erent cases:n = 50; 500, strong or

weak instruments, constant or descending coe�cients. Note that for the descending coef-
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�cients cases the �rst instrument (the only one which we make invalid) is the `strongest'

relative to the others. Figure 5.5 presents then = 1000 and strong instruments case.

Looking at the acceptance frequencies, we notice, that the procedureA is `almost'

always between theABIC and B, C or AU (those three procedures, for smalln = 50,

give very similar results, whereasC and AU in all the cases give almost identical results).

With respect to separating valid from invalid instruments the procedureABIC is always

better than the rest.

For, n=50, proceduresB, C and AU produce very similar `intervals' and are the nar-

rowest whereas estimators based onABIC have the widest `con�dence intervals'. Apart

from that, the `con�dence intervals' are rather similar, except the large samples/strong

instruments/descending coe�cients case where the proceduresA and B less frequently

(about 80% for strong invalidity) to the rest of the procedures (above 90% for strong

invalidity) capture the valid instruments. That is most probably due to the fact that

there the invalid instrument gets the `highest' weight in the generating scheme making it

relatively most preferable by the proceduresA and B which in turn heavily rely on the

initial set of instruments they choose.

The consistency of the procedures is best seen comparingn = 50 and 500 for strong and

constant coe�cients. However, when the invalidity of the instrument is small (� Z1u = 0:1),

sample sizen = 1000 is not yet large enough to notice the consistency (only the procedures

A and ABIC show some). For the weak instrument cases, the consistency is not apparent

in the cases examined.

For the weak instrument cases the acceptance frequencies of the invalid instruments

are quite bad for all the procedures.ABIC is there still the most preferable and the

procedureA is the second best.

However, the `distribution' of the estimates resulting from the resulting procedures is

optimistic. For small invalidity the resulting distribution of the estimates over the chosen

instruments is almost centered around the true value. All of the `con�dence intervals' cover

the true parameter. For the weak instruments, however, the median of the distribution

diverges.

In the Appendix we give an intuition why the proceduresAU and C give almost
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identical results. We also discus there some potential traps during the moment selection

search.
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Figure 5.1: Acceptance frequencies for the strong instruments case atn = 50 for di�erent
sets of instruments by di�erent procedures grouped by:INV - containing the invalid
one; AV L - containing all the valid instruments; V AL - containing valid instruments.
For the left hand panels the three upper diagrams present results involving the constant
coe�cients and the three lower diagrams for the descending coe�cients. The right-hand
graphs present [10%, 50%, 90%] quantiles of the estimators obtained from the accepted
sets of instruments.
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Figure 5.2: Same description as for Figure 5.1.n = 50; weak instruments case; upper
(lower) panels - constant (descending) coe�cients;
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Figure 5.3: Same description as for Figure 5.1.n = 500, strong instruments case; upper
(lower) panels - constant (descending) coe�cients;
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Figure 5.4: Same description as for Figure 5.1.n = 500, weak instruments case; upper
(lower) panels - constant (descending) coe�cients;
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5.5 An Empirical Example

We will re-analyze the data of Angrist and Krueger (1991) exploiting the various tech-

niques developed in this and earlier chapters. Angrist and Krueger investigate the e�ect

of years of educationE on the logarithm of earnings, lnf Wg. They found that OLS

and IV estimators provide remarkably similar estimates, and that the existing di�erences

(however small) could be explained due to the (omitted variables or measurement error)

downward bias of OLS. Bound, Jaeger, and Baker (1995)) found that the instruments

used in the IV estimation are extremely weak and hence jeopardize the conclusions of

Angrist and Krueger which were based on the `classic' IV inference techniques.

We consider here the cohort of men born between 1930-1939. The sample sizen =

329509. In the �rst implementations we use the ten year of birth dummy variables,Yij

(i = 1; : : : ; n; j = 1; : : : ; 10), as additional regressors and in the second implementation

also 'state' dummy variables,Sil (l = 1; : : : ; 50). As potential instruments we use the

interaction terms of the dummy variables with the quarter of birth (QOB) dummy vari-

ables,Qik (k = 1; : : : ; 3). Angrist and Krueger (1991) argue that because men born at the

beginning of a year are older than those born at the end of the same year, they are eligible

to leave school earlier due to the school compulsory attendance law. This law creates a

natural experiment in which the quarter of birth is correlated with the school attendance

(but, as recognized later, only very weakly, see Bound, Jaeger, and Baker (1995)), whereas

it is unlikely to be correlated with any unobserved omitted earnings determinants. For a

more detailed discussion on the instrument validity ofQik see Angrist and Krueger (1991).

The �rst model ( M 1) is

lnf Wi g = X 0
i � + �E i +

10X

j =1

Yij � j + ui (5.15)

E i = X 0
i � +

10X

j =1

Yij � j +
10X

j =1

3X

k=1

Yij Qik � jk + vi ; (5.16)

where X i contains variables such as race dummies, a dummy for residence in SMSA

("standard metropolitan statistical area"), a marital status dummy and 8 region of resi-

dence dummies. Equation (5.16) is the reduced form forE i . Its regressors are assumed
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to be uncorrelated with ui and vi , whereasui and vi may be correlated. Below we will

apply our sequential procedures to test the validity of all the regressors in (5.16) as in-

struments for E i in (5.15). We also consider implementations where� and � are zero (we

include all 10 year of birth dummies hence the constant is excluded). For observationi

and j = 1; : : : ; 10, Yij is the year dummy variable which, for birth yeary, is equal to one

if j = y � 1929 and zero otherwise.Qik is the quarter of birth dummy variable which,

for quarter k = 1; 2; 3, is equal to one if individual i was born in quarter k and zero

otherwise. We do not includeAge and Age2 variables inX i because they were not found

signi�cant in the analysis of Angrist and Krueger (1991). They also lead to almost perfect

collinearity because the Year dummy variablesYij are already included in the regression.

Let Y 0
i = [ Yi 1; : : : ; Yi 10], Q0

i = [ Qi 1; Qi 2; Qi 3] then we can rewrite (5.15) and (5.16) as

lnf Wi g = �E i + Y 0
i � + ui (5.17)

E i = Y 0
i � + ( Q0

i 
 Y 0
i )� + vi ; (5.18)

where � 0 = [ � 1�1; : : : ; � 1�10; � 2�1; : : : ; � 2�10; � 3�1; : : : ; � 3�10]: If we include `State' dummy vari-

ablesS0
i = [ Si 1; : : : ; Si 50] in the model (we have 51 `states' in the data), we get the second

implementation (M 2)

lnf Wi g = �E i + Y 0
i � + S0

i � + �ui (5.19)

E i = Y 0
i � + ( Q0

i 
 Y 0
i )� + S0

i  + ( Q0
i 
 S0

i )� + �vi ; (5.20)

where � 0 = [ � 1�1; : : : ; � 1�50; � 2�1; : : : ; � 2�50; � 3�1; : : : ; � 3�50]: The selection procedures which

we are going to apply should determine which regressors of the reduced forms (5.18) and

(5.20) are in fact correlated with the error term and hence should not be included in the

reduced form equation.

We apply the selection proceduresA and B of section 5.3.1 and 5.3.2 only, since

the other procedures are not feasible even for the model excludingSi , where we have 30

potential (excluded) instruments (hence almost 230 � 109 subsets of instruments to search

from). For the second implementation (includingSi ) we have 180 potential instruments.
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We apply the procedures employing (adapted versions of) the Sargan and Hansen tests

(that is (4.6) with the weighting matrix (4.16) or (4.11)) with critical values based on the

asymptotic null distribution.

The Hansen test we apply with the following modi�cation: From then � (1 + k + l)

matrix of all available data D = [ y; X; Z ], it can be seen that the simple IV estimator and

the Sargan tests (adapted or standard) which exploit a subset of the instruments can be

calculated from the elements of the (1 +k + l) � (1 + k + l) matrix D 0D (see 4.14, 4.15 or

4.16). Hence, when applying the procedures to the dataD we do not need to operate on

the whole data matrix D but just on the much smallerD 0D. Taking di�erent subsets of

the `instruments' requires simply considering appropriate submatrices ofD 0D. However,

when applying the Hansen test we need to calculate the weighting matrix, which involves

1
n

nX

i =1

(yi � x0
i
~� )2zi (cs)zi (cs)0; (5.21)

see (4.11). This cannot be derived fromD 0D. Due to the 'residual factor' (yi � x0
i
~� ), it

needs to be calculated from the original matrixD. In this example, when dealing with

the second model, computation of a single Hansen test takes at least half a minute. With

180 instruments to consider (if we would need to reach the last stage) that would require

calculating Hansen tests about 30000 times, which would take at least 250 hours!

Therefore we propose and use the following operational implementation for the pro-

cedures A and B:

� In the �rst stage use the Sargan test to �nd the initial set of instrumentsc�
1.

� For that set calculate the Hansen testJ (c�
1). If c�

1 is not rejected by the Hansen

test, then, for the resulting ~� (c�
1) and the entire matrix of potential instruments Z ,

calculate

Q � �
1
n

nX

i =1

(yi � x0
i
~� (c�

1))2zi z0
i : (5.22)

� Then, in the various stages of the selection procedures, instead of calculating the



5.5. AN EMPIRICAL EXAMPLE 157

`o�cial' weighting matrix for the Hansen test


̂ a(~� ) =
1
n

nX

i =1

(yi � x0
i
~� )2zi (cs)zi (cs)0 �

1
n2

Z(cs)0u(~� )u(~� )0Z(cs); (5.23)

for ~� = ~� (cs), use the `simpli�ed' matrix


̂ a(~� ) = Q � (cs) �
1
n2

Z(cs)0u(~� )u(~� )0Z(cs); (5.24)

where Q � (cs) is obtained by keeping only the rows and columns ofQ � that are

indicated by cs.

� Now, re-run the �rst stage of the procedure when using this `modi�ed' Hansen test.

The resulting c�
1 may or may not be the same as the one found initially by the

Sargan test. We may again calculateQ � for this new c�
1 and resulting ~� (c�

1). We

may repeat this until c�
1 `stabilizes'. For example in the modelM 2 without the extra

explanatory variables the Sargan test �rst found instruments labeled [126; 142] and

subsequently the Hansen test found [2; 36] which was found to be `stable'.

� Next stages could now useQ � all the time or we could recalculate it each time

we move up with the number of instruments, which in our example would require a

maximum of 180 re-calculations (this is feasible). For simplicity, we could recalculate

Q � every several steps. We did that: forM 1 every two steps and every ten steps for

M 2.

Obviously this modi�cation is asymptotically valid since ~� (c�
s) is consistent forc�

s 2 Z 0.

Results

Table 5.1 presents results for the implementationsM 1 (without State dummies) and M 2

(with State dummies) with extra explanatory variables (� and � unrestricted) or without

(� = 0, � = 0) referred to in the table as unrestricted and restricted respectively. It

shows:
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� �̂ OLS : OLS estimates for the coe�cient of education� (with standard and het-

eroscedastic robust standard errors underneath it);

� B � P: Breusch-Pagan heteroscedasticity test (with p-values underneath). In the

regression of the squared OLS residuals on all the explanatory variables from the

wage equation and the constant (hence, we exclude one year dummy), it is theF

statistic on the signi�cance of all the explanatory variables apart from the constant;

� F; Fh: the standard and heteroscedasticity robustF test on the strength/weakness

of the instruments. In the most general reduced form equation (5.16) or (5.20) it is

the F -test on the signi�cance of the regressors which have been `excluded' from the

wage equation variables (the interaction variables involvingQik );

� �̂ GMM ; �̂ IV : the GMM (when applied with the Hansen test) and IV (when applied

with the Sargan test) estimates resulting from proceduresA and B. The % indicates

at which signi�cance level a procedure has been applied. For both the procedures

A and B we used the asymptotic critical values at 5 or 1 percent signi�cance lev-

els based on the asymptotic chi-squared distribution. This way we �nd a set of

instruments cs for which any cs+1 2 Cs+1 (cs) is rejected at 5% or 1% signi�cance

level.

� CIK; CIK h: the 95% con�dence intervals obtained from theK -statistic (homoscedas-

tic and heteroscedastic robust versions). TheK -statistic is presented in the ap-

pendix below, see also Kleibergen (2002) and Kleibergen (2007).

� CIC is the 95% con�dence interval obtained in the standard way: [^� � 1:96SE(�̂ )]

(heteroscedasticity robust version when applied with GMM and homoscedastic when

applied with IV)

� %: in percentage terms, how much shorterCIC is in comparison toCIK (when

applied with IV) or CIK h (when applied with GMM);

Table 5.2 shows the indices of the `instruments' that were excluded by proceduresA

and B for di�erent implementations. Procedure B did not exclude any instruments at
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any signi�cance levels for both the Hansen and the Sargan tests (indicated here by H

and S respectively, followed by the nominal signi�cance level). This Table also presents,

with respect to the variableE, the DWH tests (and the corresponding p-values) for the

`instruments' that are the outcomes of the selection procedures. It checks whether the

instrumental variables estimation for the wage equation is indeed necessary, i.e. whether

E is endogenous or not. It is the t-test, in the wage equation, on the signi�cance of

the included residuals from the regression of education on all the instruments. See for

example Davidson and MacKinnon (2004, p. 338).

The indices of the excluded `instruments' (which are the interaction terms between

State or Year dummy variables with the QOB dummy variable) should be interpreted as

follows: Y q
y means Seasonq (q = 1; 2; 3) Year y + 1929 (y = 1; : : : ; 10), Sq

s means Season

q State s (s = 1; : : : ; 50). For implementation M 1, �̀ ' means that no instrument was

excluded. For implementationM 2 and a given testing method, the second line displays

instruments (between brackets) that were found common for both the restricted and

unrestricted cases.

From Table 5.2 we note that theDWH test for the M 1 implementation, using proce-

dure B, suggests that IV estimation is not needed (the p-values are close to 0.3 for the

whole set of 30 instruments). Only when the instrumentY 1
3 is dropped then the p-values

become close to 0.05 (0.0699 for the unrestricted case and 0.054 for the restricted). For

M 2, the DWH test has quite small p-values both for the whole set of 180 instruments

and for the reduced sets. We see there that the reduced sets of instruments found by

the procedureA have smaller p-values than the ones on the whole set (from procedure

B). That suggests that IV estimation is needed. That is also con�rmed by the con�-

dence intervals (CI's) given in Table 5.1. For the �rst implementation (M 1) they cover

the OLS coe�cient estimators when all the instruments are considered, and when theY 1
3

instrument is dropped then CI's contain (or almost contain) the OLS estimate, which is

very close to the lower bound of the CI. For the second implementation none of the CI's

contain the OLS estimate.

We also note from Table 5.1 that the �rst stageF statistics for testing the (full set

of) additional exogenous variables (H0 : � = 0) for M 1 and (H0 : � = 0, � = 0 ) for M 2



160 CHAPTER 5. SEQUENTIAL TEST PROCEDURES

are less than 5. That shows that we are dealing here with very weak instruments indeed.

The `weak instruments' robustK -statistic's CI's are then most appropriate to use. We

see that the heteroscedastic robust and homoscedastic versions are very similar, but the

CI's obtained in the classic way are di�erent: its lower bound is almost the same as CIK's

but the upper bound is much lower than those for CIK. That can also be seen from the

`%' entry showing how much shorter CIC is in comparison to CIK: they are roughly 16-

19% shorter than theweak instruments robustones for implementationM 1 and 30% for

implementation M 2.

The F statistics (not reported) on the instruments that were selected by procedureA

gave very similar results to those on the whole set of variables (from procedureB). That

is they were less than 3 forM 2 and less than 5 forM 1.

For implementations M 1 and M 2, Figures 5.6 and 5.7 depict, in the upper panels,

the `evolution' (over di�erent stages of the selection procedures) of the 95% con�dence

intervals for � obtained using theK -statistic (homoscedastic version). Here, procedureA

has been used with the Hansen (solid lines) and the Sargan tests (dashed lines). Middle

lines show the evolution of the resulting estimates. In the left-hand panels theextra

exogenous variablescase is presented and in the right-hand panels we have theno extra

variablescase. In the lower panels, we show the corresponding p-values for the procedures

A and B, for the Hansen (solid lines) and the Sargan (dashed lines) tests. The p-value

lines for procedure B are those which are closest to one and the p-value lines for procedure

A are those which are declining fast.

The circles in the CI panels, and the vertical line in the p-value panels, indicate where

the procedures stopped at the 5% level. The horizontal line in the CI panels show the

OLS estimate.

Note that the CI's would be the same for procedureB, since theA and B procedures

evolve in the same way (in a stages procedure B minimizes J (cs) and procedureA

minimizesJ (cs) � J (c�
s� 1), hence the minimizedc�

s are the same forA and B). But, due

to the di�erence in the p-values of the statistic considered procedure A can �nish earlier.

We see that for procedureA the p-values were steadily decreasing whereas the p-values

for procedureB were almost equal to one throughout the search, but dropped when the



5.5. AN EMPIRICAL EXAMPLE 161

Table 5.1: Estimators

M 1 M 2

unrestricted restricted unrestricted restricted
�̂ OLS 0.063246 0.071081 0.062793 0.067339
SE(�̂ ) (0.00033926) (0.00033901) (0.00034379) (0.00034643)
SER (�̂ ) (0.00037705) (0.00038146) (0.0003815) (0.00038831)
B � P 35.525 15.058 11.436 5.1295
DF (p � value) 21 (0) 10 (0) 71 (0) 60 (0)
F 4.7474 4.9071 2.4276 2.5823
Fh 4.6245 4.8013 2.2626 2.4114

A
�̂ GMM � 5% 0.095424 0.104270 0.086098 0.097922
CIK (0.0603, 0.1416) (0.0704, 0.1494) (0.0692, 0.1240) (0.0857, 0.1362)
CIK h (0.0609, 0.1432) (0.0711, 0.1510) (0.0699, 0.1260) (0.0832, 0.1352)
CIC (0.0609, 0.1300) (0.0706, 0.1379) (0.0671, 0.1051) (0.0789, 0.1169)
% 0.1604 0.1577 0.3226 0.2692
�̂ GMM � 1% 0.082131 0.090695 0.083545 0.092937
CIK (0.0456, 0.1236) (0.0547, 0.1328) (0.0658, 0.1243) (0.0811, 0.1355)
CIK h (0.0474, 0.1262) (0.0566, 0.1354) (0.0661, 0.1278) (0.0779, 0.1354)
CIC (0.0499, 0.1144) (0.0590, 0.1224) (0.0646, 0.1025) (0.0742, 0.1117)
% 0.1815 0.1954 0.3857 0.3478
�̂ IV � 5% 0.094700 0.103552 0.091920 0.103032
CIK (0.0603, 0.1416) (0.0704, 0.1494) (0.0770, 0.1340) (0.0903, 0.1409)
CIK h (0.0609, 0.1432) (0.0711, 0.1510) (0.0763, 0.1344) (0.0879, 0.1399)
CIC (0.0602, 0.1292) (0.0700, 0.1371) (0.0724, 0.1114) (0.0843, 0.1218)
% 0.1513 0.1506 0.3158 0.2589
�̂ IV � 1% 0.080552 0.103552 0.087103 0.098926
CIK (0.0456, 0.1236) (0.0704, 0.1494) (0.0710, 0.1269) (0.0866, 0.1415)
CIK h (0.0474, 0.1262) (0.0711, 0.1510) (0.0714, 0.1299) (0.0840, 0.1427)
CIC (0.0484, 0.1127) (0.0700, 0.1371) (0.0683, 0.1059) (0.0804, 0.1175)
% 0.1756 0.1506 0.3274 0.3242

B
�̂ GMM � 5; 1% 0.082131 0.090695 0.083699 0.091872
CIC (0.0499, 0.1144) (0.0590, 0.1224) (0.0648, 0.1026) (0.0733, 0.1105)
CIK h (0.0474, 0.1262) (0.0566, 0.1354) (0.0666, 0.1314) (0.0766, 0.1383)
% 0.1815 0.1954 0.4167 0.3971
�̂ IV � 5; 1% 0.080552 0.089115 0.083147 0.092818
CIC (0.0484, 0.1127) (0.0575, 0.1207) (0.0645, 0.1018) (0.0746, 0.1110)
CIK (0.0456, 0.1236) (0.0547, 0.1328) (0.0658, 0.1264) (0.0787, 0.1356)
% 0.1756 0.1908 0.3845 0.3603
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Table 5.2: Rejected Instruments and theDWH test

M 1 M 2

unrestricted restricted unrestricted restricted
A

H � 5% Y 1
3 Y 1

3 Y 1
3 Y 3

3 S1
9S1

24S3
19�

Y 2
7 S1

29S1
48S2

5S3
20S3

22S3
44

�

DWH; p � val (3.2853, 0.0699) (3.7085, 0.0541) (5.8866, 0.0153) (11.7613, 0.0006)

H � 1% � � S2
5S3

22 Y 3
3 S3

20�
S3

44

�

DWH; p � val (1.1249, 0.2889) (1.2645, 0.2608) (4.6894, 0.0303) (8.8341, 0.0030)

S � 5% Y 1
3 Y 1

3 Y 1
3 S1

43S3
22 Y 3

3 S1
9S1

24S1
29S3

19�
S1

48S2
5S2

25S3
20S3

21S3
44

�

DWH; p � val (3.2853, 0.0699) (3.7085, 0.0541) (8.7691, 0.0031) (14.3993, 0.0006)

S � 1% � Y 1
3 Y 1

3 S1
48S3

22 Y 3
3�

S2
5S2

25S3
44

�

DWH; p � val (1.1249, 0.2889) (3.7085, 0.0541) (6.4981, 0.0108) (11.4342, 0.0007)
B

DWH; p � val (1.1249, 0.2889) (1.2645, 0.2608) (4.6519, 0.0310) (7.6364, 0.0057)

p-values of procedureA came close to the critical level, suggesting that this set is indeed

suspicious. Due to the weakness of the whole set of instruments, and an overwhelming

excess of `valid instruments' (and low power due to the great number of degrees of freedom

in the test), procedure B does not reject the instruments which procedureA does.

Note that since the p-values of procedureB are all above 5% we do not have to re-run

it in order to get results at the 1% level. Both would give the same result, viz. all the

'instruments' are accepted. Also note that we do not need to re-run procedureA from

scratch to get the results at the 1% signi�cance level. We just need to continue the search

from what procedureA has found at the 5% level (appropriately initializing the matrix

Q � ).
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Figure 5.7: 95% CIK's and p-values over the consecutive selection stages for theM 2

implementation. Left hand graphs show the extra exogenous variables case, right hand
graphs show the "no-extra" exogenous variables case
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stages,Tb
n . Equivalently, record the smallest `p-value' of the statistic,pb

n = 1 � � 2
1(Tb

n ).

Then, for the original data obtain the value of the statistic associated with the rejected

instruments, Tn , (or the value pn = 1 � � 2
1(Tn )). Finally, compare this value with those

from the bootstrap distribution. The bootstrap estimate of the asymptotic p-value for

the rejected instruments will be

1
B

BX

b=1

I (Tb
n > T n ) =

1
B

BX

b=1

I (pb
n < p n ):

For example, based onB = 2000 repetitions and considering only the Sargan test, the p-

value associated with theM 1-unrestricted case, where the instrumentY 1
3 was rejected, is

found to be 0:1280. For theM 2-unrestricted case, the same instrument was rejected with

the bootstrap p-value estimated to be 0.1690, while the instruments reported in Table 5.2

under S � 1% entry have the p-value of 0:2135.

These p-values are not small enough to reject the validity of instruments under the

usual 95% signi�cance level. On the other hand, they are neither exceptionally large to

accept con�dently the validity of the instruments.

Our analysis reveals that some of the instrumental variables used for the returns on

education equation are possibly not exogenous. That might suggest that the whole set

of instruments could be invalid due to the speci�c nature of those variables (interactions

of the year dummies with the quarter of birth). As mentioned in the introduction, that

could be caused by, for example, some correlation between the quarter of birth with a

`positive attitude' characteristic. Also, an astrologist could argue, the quarter of birth is

correlated with a zodiac sign of a person which in turn carries some cosmic predispositions

of a person that a�ect the earnings (and the schooling), causing endogeneity of the QOB.

More recently, Buckles and Hungerman (2008)1 give further evidence why QOB is an

1I allow myself to quote the comment on the very interesting article in The Economist `Cause and
defect' from 15th of August 2009 made by Prof. David Jaeger:
"After 15 years of the weak instrument literature, it's hard to believe that the Economist can claim that
Angrist and Krueger's instrument is valid. See Bound, Jaeger, and Baker (1995) for the beginning of this
critique of Angrist and Krueger's instruments, but there is a huge literature that follows.
Quarter of birth meets neither the relevance (at least in AK's preferred speci�cation) nor the exclusion
restriction assumption required for IV. See Buckles and Hungerman's excellent paper that, one hopes, is
the death knell for any paper that claims quarter of birth is unrelated to outcomes except through the
compulsory schooling/school age starting law mechanism. There's also a very good paper by
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invalid instrument.

5.6 Alternative inference and a sensitivity analysis

In this section, we will consider the Angrist and Krueger (1991) data again, but now

against the background of our �ndings in the earlier chapters on the e�ects of possibly

invalid instruments. We will utilize the asymptotic expressions for the inconsistent OLS

and IV estimator distributions in order to depict `bias corrected' versions of the estima-

tors and the implied approximating con�dence intervals around them. This alternative

inference is based on making varying assumptions on the degree of simultaneity, and,

when external instruments have been used, on their possible degree of invalidity. Hence,

because it is based on unobserved nuisance parameters one might classify such inference

as unfeasible. We will demonstrate nonetheless that it allows a useful sensitivity analysis.

We will see that for these particular data, this unfeasible bias corrected OLS inference is

more attractive than the even more unfeasible (depending on assumptions regarding both

simultaneity and instrument invalidity) bias corrected IV inference.

The analysis

We will analyze the implementation M̀ 1-unrestricted' from the previous example, only.

Written in SEM form, we have

y = x� + Z + "

x = Z � + W� + v;

Barua and Lang (2009) that shows that the compulsory schooling/school age starting law mechanism
doesn't meet the monotonicity requirements for a local average treatment e�ect interpretation of the IV
estimate of the e�ects of school entry on outcomes.
Despite all this, Angrist and Pischke in their otherwise excellentMostly Harmless Econometricsonce again
belabor the AK results and present them as if they are sensible estimates of the returns to education.
Why is this? How can a result which has for many reasons and by many authors been shown to have
problems persist in being held up as a shining example of the usefulness of the IV technique? Part of the
answer is that more than any other IV story (and every good IV paper has a story), AK's story is really
good. Incredibly clever. Easy to see in graphs. Believable. So, we want to think that AK's instrument
is sensible and good. Because if the AK story doesn't hold, then lots of other IV stories are probably
invalid. But AK's story doesn't hold... and with it goes much of the natural experiment movement."
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wherey is the log of wage,x is education level (hence,� is now what we called� before),

Z are the exogenous explanatory variables andW are the further `instruments' (where

Wi 3 is possibly invalid). Regressing o�Z in both equations we get

MZ y = MZ x� + MZ "

MZ x = MZ W� + MZ v:

For the sake of simplicity, below we will writey for MZ y, x for MZ x, and so on. Then we

have the simpli�ed two equations

y = x� + " (5.25)

x = W� + v;

where now

�̂ ols = x0y=(x0x) = � + x0"=(x0x)

�̂ giv = ( x0PW y)=(x0PW x) = � + ( x0PW " )=(x0PW x):

If

x = �x + "�

with E(xj �x) = �x, then

� �
ols = plim

n!1
�̂ ols = � + �� 2

" =� 2
x (= � + •� ols);

and hence, an unfeasible consistent bias corrected estimator for� is

�̂ ]
ols � �̂ ols � �� 2

" =� 2
x : (5.26)

Since

� x" = � x" =(� x � " ) = �� 2
" =(� x � " )

we have

� = � x" � x=� " ; (5.27)
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giving

�̂ ]
ols = �̂ ols � � x" � " =� x : (5.28)

Next, we make an attempt to operationalize this bias corrected estimator.

Since

plim
n!1

"0"=n = � 2
" and plim

n!1
x0x=n = � 2

x ; (5.29)

we may de�ne consistent estimators of� 2
" and � 2

x as follows

�� 2
x = x0x=n and �� 2

" = �"0�"=n; (5.30)

where

�" � y � x ��;

and where �� is obtained from substituting (5.30) in (5.28) :

�� (� x" ) � �̂ ols � � x" �� " =�� x � �̂ ols � �•� ols: (5.31)

Since

�" = "̂ + x� x" �� " =�� x ;

and becausex 0̂" = 0 we obtain

�� 2
" = �"0�"=n = "̂0"̂=n + � 2

x" �� 2
" (x0x=n)=�� 2

x = "̂0"̂=n + � 2
x" �� 2

" ;

so we can solve for �� 2
" , giving:

�� 2
" = ( "̂0"̂=n)=(1 � � 2

x" ): (5.32)

Assuming � x" to be known, (5.31) is a consistent estimator for� , which is based

entirely on OLS.

Using our conditional asymptotic result

�̂ ols � •� a� N (�;
1
n

Vols(� 2
x ; � 2

" ; � x" )) ;
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and replacing the `population moments' by their sample versions we use the approximation

�� ols = �̂ ols � � x" �� " =�� x
a
� N (�;

1
n

Vols(�� 2
x ; �� 2

" ; � x" )) (5.33)

with

Vols(�� 2
x ; �� 2

" ; � x" ) =
�� 2

"

�� 2
x
(1 � � 2

x" )(1 � 2� 2
x" + 2� 4

x" )

based on expression (2.57) that we found in Chapter 2 for the �rst illustration.

Figure 5.8 shows for a range of� x" values the bias corrected�� ols estimator together

with the implied asymptotic 95% con�dence intervals based on (5.33). We see that the

bounds are extremely narrow, as we already saw for the case� x" = 0 in the previous

chapter (Table 5.1) , where�̂ ols � 0:063. We also saw that the IV estimator (excluding

instrument Y 1
3 ) was about 0:0947: If this were indeed the true value of� that would,

according to Figure 5.8, amount to having� x" � � 0:15:

Figure 5.8: Bias corrected OLS (conditional on� x" ) together with the asymptotic 95%
con�dence bounds.

We can perform similar derivations for the IV case. But �rst, to examine how weak
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actually the instruments are, in Figure 5.9 we plot the sample correlations betweenx and

the 30 individual instruments collected inW.

Analytically, see Fisher (1915), for two uncorrelated (� = 0) series we have the Fisher

z-transform

Z =
1
2

log
1 + R
1 � R

a� N (0;
1

n � 3
);

where R is the sample correlation and the asymptotic result follows from Hawkins (1989).

Hence, given our sample size, we will have the approximate 95% interval for testing (using

Z � R) whether the population correlation � is equal to zero is: [� 0:0034; 0:0034], and

at 99%: [� 0:0045; 0:0045]. In Figure 5.10 we plotZ and the 95% and 99% approximate

bounds. That suggests that the population correlations in our data are not entirely zero

(the correlation betweenx and the instruments W1, W3, W6 and W22 lie outside the

bounds), but surely this illustrates that the instrumental variables are extremely weak.

From Chapter 3 we have

�̂ giv � •� giv
a� N (�;

1
n

Viv (� W 0x ; � W 0W ; � 2
x ; � 2

" ; � x" ; � )) :

Again, replacing the population moments with the sample versions we use the approxi-

mation

�̂ giv � �•� giv
a
� N (�;

1
n

Viv (
1
n

W 0x;
1
n

W 0W;
1
n

x0x; �� 2
" ; � x" ; �� )) ; (5.34)

where we take �� 2
" from (5.32)2 and �•� iv , �� are obtained as follows.

Let

RW " = � � 1=2
W 0W � � 1

" � W 0" = � � 1=2
W 0W � " �

be a vector of population correlations betweenWi and " i , then

� = � � 1
" � 1=2

W 0W RW " :

2We could calculate �� 2
" from the implied IV residual, similarly to how we obtained it from the OLS

residuals (for a given� x" ), but, since Viv depends on� x" anyway, we may as well take �� 2
" from the OLS

result. This is also easier to obtain and since�� ols is more precisely `estimated' it should be also more
accurate.
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Now we de�ne

�̂ (RW " ) = �� � 1
" (

1
n

W 0W)1=2RW " :

Since

•� giv = � 2
" (� x0W � � 1

W 0W � )=(� x0W � � 1
W 0W � W 0x )

we use

�•� giv = �� 2
" (x0W(W 0W)� 1 �� )=(x0PW x) = �� " (x0W(W 0W)� 1=2RW " )=(x0PW x):

In our analysis of the Angrist and Krueger (1991) data, from the previous example,

the Wi 3 was rejected by the Sargan test. Hence, we take

RW " = (0 ; 0; � w3" ; 0; : : : ; 0)0:

Figure 5.11, for a range of� w3" values, shows�� giv and the approximate asymptotic 95%

con�dence bounds based on (5.34). The `cloud' e�ect for the IV lines is due to plotting,

for a given � w3" , several cases for di�erent� x" 2 [� 0:4; 0:4]:

Since� x" does not a�ect �� giv and the con�dence bounds much, Figure 5.12, for a range

of � x" = � w3" values, shows�� ols, �� iv and their approximate asymptotic 95% con�dence

bounds together. The `cloud' e�ect for the IV lines now disappears because now arbitrarily

(but also rather inconsequentially)� x" = � w3" .

From the previous subsection we saw that the con�dence intervals based on theK -

statistic were about 20% wider than the `classic' ones but with the `lower' bounds almost

the same. That is, due to the weak instrumentation con�dence intervals around�� giv

should most likely be approximately 20% wider.

We saw that the bias corrected OLS estimator for a given� x" is very precisely esti-

mated. The same cannot be said about bias corrected IV. For example if we are willing

to assume that � x" 2 [� 0:1; 0:1]; then from Figure 5.12 we note that it corresponds to

having approximately �� ols 2 [0:05; 0:08]: But, when � w3" 2 [� 0:1; 0:1] then this amounts

to having �� giv 2 [0:03; 0:13], more than 3 times wider than the corresponding OLS inter-

val. Whereas, �� ols 2 [0:03; 0:13] corresponds approximately with� x" 2 [� 0:32; 0:17]. This
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Figure 5.9: Sample correlations betweenx and individual instruments collected inW.

better precision surely makes the bias corrected OLS more attractive than bias corrected

IV, in this extremely weak instruments case.

5.7 Conclusions

In this chapter we proposed three procedures for detecting invalid instruments from a

possibly very large set of potential ones. Two of those procedures are computationally

feasible due to their sequential nature. A Monte Carlo study reveals that all the proce-

dures studied are vulnerable to weak instruments and that the sample size and instrument

invalidity should be substantial in order for the procedures to show good power in detect-

ing the invalid instruments. Nonetheless, for non serious invalidity of an instrument the

resulting distribution of the estimates using the instruments selected (which also include

the invalid ones) is almost centered around the true value for all the procedures.

In an empirical example we analyzed the Angrist and Krueger (1991) models where we
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Figure 5.10: Transformed sample correlations (Z ) betweenx and individual instruments
collected inW together with the 2:5% and 0:5% one-sided critical values.
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Figure 5.11: Bias corrected IV (solid lines) together with its asymptotic 95% con�dence
bounds (dashed).
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Figure 5.12: Bias corrected OLS (circles) and IV (solid line) together with their asymptotic
95% con�dence bounds (dashed).
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have an abundance of instruments to search from. That makes only two of our sequential

procedures (A and B) computationally feasible. ProcedureA, which utilizes the incre-

mental version of the test statistics �nds that some of the instruments are invalid. That

suggests that the entire set of instruments might be in trouble due to the speci�c nature

of the instruments. The invalidity of QOB as instrument could possibly be explained by

that it is indeed correlated with some excluded characteristics that a�ect the earnings of

the individual.

In the �nal section, applying the results from the earlier chapters to one of the model

speci�cations, we �nd that making assumptions about the invalidity of the instruments

produces less attractive inference based on bias corrected IV than similar inference based

on making assumptions about simultaneity of the endogenous regressor using biased cor-

rected OLS. Because of extreme weakness of the instruments, corrected OLS will beat

corrected IV in terms of precision of that correction.

5.8 Appendix

Potential traps in the moment selection

For identi�cation reasons we assumed that there is only one� 0 satisfying the moment conditionsg(cs; � 0) =

0 for cs 2 Z 0. Hence, for the linear model

y = X� + u; (5.35)

where � = � 0 in the DGP, we have from (4.13)

�̂ = ( X 0Z 
̂ � 1X 0Z ) � 1X 0Z 
̂ � 1Z 0(X� 0 + u)

and so

plim
n !1

�̂ = � 0 + (� X 0Z •
 � 1� Z 0X ) � 1� X 0Z •
 � 1� Z 0u = � 0 + •�;

where •
 � 1 = plim
n !1


̂ � 1. If � Z 0u 6= 0 (but there exists a cs for which � Z (cs )0u = 0) then •� 6= 0 :

If we rewrite model (5.35) as

y = X (� 0 + •� ) + u � X •� = X �� + �u; (5.36)
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then

plim
n !1

1
n

Z 0�u = � Z 0u � � Z 0X
•�:

Hence, if there exist some•� for which � Z 0u = � Z 0X
•� then the variables Z would `become' `valid' instru-

ments for model (5.36) where�� 6= � 0 would be the `true' parameter. Hence, if � Z (•cs )0u = � Z (•cs )0X
•� , for

somes, •� , and •cs =2 Z 0 then the Hansen test statistic would not `recognize' (asymptotically) Z (•cs) as

being invalid instruments.

In our example we have

� Z 0u = [ � Z 1 u ; 0; 0; 0]0; � Z 0X = [ � 1

q
1 � � 2

Z 1 u ; � 2; � 3; � 4]0

and if � Z 1 u ; � 1; � 2; � 3; � 4 are all di�erent from 0 then we cannot �nd •� and •cs =2 Z 0 for which � Z (•cs )0u =

� Z (•cs )0X
•� . But, for example, if we had

� Z 0u = [ � Z 1 u ; � Z 2 u ; 0; 0]0;

then it would be indeed possible to �nd such a combination. So, we would need to exclude it from the

simulation in order to satisfy Assumption 5.1(a).

In practice, we could use a Hausman test to detect cases like that, but we still would be left with the

dilemma: which subsets of instruments are indeed valid.

K-statistic

For the model

y = X� + "

X = Z � + V

Kleibergen's (2002) statistic is given by

K (� 0) =
(y � X� 0)PPZ D (y � X� 0)

s""
;

with

D = X � (y � X� 0)s"v =s""

s"v =
1

n � k
(y � X� 0)0M Z X �

1
n � k

~"0 ~X

s"" =
1

n � k
(y � X� 0)0M Z (y � X� 0) �

1
n � k

~"0~";
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where ~X = M Z X are the residuals from regressingX on Z . Kleibergen's (2007) heteroscedastic robust

version is

K h (� 0) = ( y � X� 0)P ~Z D(D 0P ~Z D) � 1D 0P ~Z (y � X� 0);

with

D = [ D1; : : : ; D k ]; D i = X i � S"v i P ~Z (y � X� 0)

P ~Z = Z (Z 0S"" Z ) � 1Z 0

S"" = diag(~" ~"0) =

0

B
B
B
@

~"2
1

. . .

~"2
n

1

C
C
C
A

S"v i = diag(~" ~X 0
i ) =

0

B
B
B
@

~"1 ~X i 1

. . .

~"n ~X in

1

C
C
C
A

:

Here, ~X i denotes thei -th column of ~X . Note that

Z 0D i = Z 0X i � Z 0S"v i Z (Z 0S"" Z ) � 1Z 0(y � X� 0)

and if S"v i = s"v i and S"" = s"" then Z 0D i reduces to

Z 0X i � Z 0(y � X� 0)s"v i =s""

which shows that the K (� 0) statistic is a special case of the `heteroscedastic version'K h (� 0).

If we have additional exogenous variables in the model, i.e.

y = X� + W� + "

X = Z � Z + W � W + V;

then the form of the above statistics remains the same withy; X; Z replaced by the residuals ^y =

M W y; X̂ = M W X; Ẑ = M W Z:



Summary in English

As a rule the estimation of a single econometric relationship, which describes how a

dependent variable relates to a number of explanatory variables and an error term, requires

that the researcher has obtained observations on at least as many exogenous variables as

the number of unknown coe�cients accompanying the explanatory variables in the model.

The explanatory variables can either be exogenous or endogenous. When investigating

relationships for which the observations have not been obtained in carefully designed

laboratory experiments, but instead are deducted - completely beyond the researcher's

control - from real economic behaviour, then often some of the explanatory variables will

be endogenous. This endogeneity means that the explanatory variable itself will partially

depend on the dependent variable, and hence will be correlated with the error term. The

presence of endogenous explanatory variables requires for the usual estimation techniques

the availability of a su�cient number of variables which do not belong to the explanatory

variables and which do not depend on the dependent variable either. This renders them

exogenous. All variables labeled as exogenous for the relationship under examination,

both the explanatory and the non-explanatory exogenous variables, form together the set

of so-called instrumental variables.

This thesis studies techniques to classify variables as either exogenous or endogenous,

as well as the consequences of a wrong classi�cation. Several sequential classi�cation

procedures are designed such that they remain feasible in case of an abundance of potential

instrumental variables, as often is the case in practice. The properties of such classi�cation

procedures in �nite samples, also when enhanced in a certain way by bootstrap methods,

turn out to be rather limited. Therefore undetected endogeneity and the subsequent

use of incorrect exogeneity conditions can be common. This underlines the relevance of



studying the consequences of using instrumental variables that are in fact endogenous.

This thesis assesses these consequences through simulation and in addition by determining

the asymptotic distribution of estimators for linear models also when these are inconsistent

due to the use of invalid instruments. The obtained asymptotic distribution appears

to be very precise in approximating the actual distribution in �nite samples, provided

that the validly exploited exogeneity is not too weak. The weakness of an instrumental

variable is determined by the extent to which this variable (in as far as not coinciding with

further instrumental variables) is related with the explanatory variables in the investigated

relationship.

Both the analytical results and the simulation �ndings lead to the remarkable conclu-

sion that inconsistent least-squares estimators are often more attractive than consistent

instrumental variable estimators. The reason is that least-squares estimators always use

the strongest possible instruments. If some of those instruments are actually endogenous

they result in more precise though inconsistent estimators than valid but weak instru-

mental variables estimators do. To what extent the designed classi�cation procedures

and the theoretical �ndings on inconsistent instrumental variable estimators can support

and improve actual empirical inference is illustrated in an analysis of cross-section data

concerning the e�ects of schooling on earnings.



Samenvatting in het Nederlands

In de regel vereist schatting van een enkelvoudige econometrische relatie, die voor een

bepaalde afhankelijke variabele aangeeft hoe deze afhangt van een aantal verklarende vari-

abelen en een storingsterm, dat de onderzoeker beschikt over waarnemingen ten aanzien

van minstens even veel exogene variabelen als het model onbekende reactieco•e�ci•enten

bij de verklarende variabelen bevat. De verklarende variabelen mogen zowel exogeen als

endogeen zijn. Bij het onderzoek van relaties waarvan de waarnemingen niet verkregen

zijn in degelijk opgezette laboratorium experimenten, maar die - geheel buiten de regie

van de onderzoeker om - ontleend zijn aan feitelijk economisch gedrag, komt het vaak

voor dat sommige verklarende variabelen endogeen zijn. Dat wil zeggen dat zij op hun

beurt ook weer mede bepaald worden door de bovengenoemde afhankelijke variabele, en

daardoor samenhangen met de storingsterm. De aanwezigheid van endogene verklarende

variabelen vergt voor de gebruikelijke schattingsmethoden dat er ook een voldoende aan-

tal variabelen beschikbaar moet zijn welke niet tot de verklarende variabelen behoren en

tevens ongecorreleerd zijn met de storingsterm, waardoor ze exogeen zijn. Alle als exo-

geen aangemerkte variabelen, zowel de verklarende als de niet-verklarende variabelen in

de relatie die onderzocht wordt, noemen we samen de instrumentele variabelen.

Dit proefschrift onderzoekt zowel technieken voor de classi�catie van variabelen als

zijnde exogeen dan wel endogeen, als de gevolgen van een onjuiste classi�catie. Verschil-

lende sequenti•ele classi�catieprocedures worden ontworpen, zodanig dat ze nog steeds

praktisch uitvoerbaar zijn als er sprake is van een overvloed aan kandidaat instrumentele

variabelen, zoals vaak het geval is in de praktijk. De kwaliteiten in eindige steekproeven

van dergelijke procedures, ook indien ze in een bepaalde zin verbeterd worden met behulp

van bootstrap methoden, blijken vrij beperkt te zijn. Vandaar dat niet opgespoorde en-



dogeniteit, en dus het hanteren van onjuiste exogeniteitscondities, vaak voor kan komen.

Dit onderschrijft de relevantie van de studie van de gevolgen van het gebruiken van in-

strumentele variabelen waarvan er sommige feitelijk endogeen zijn. Die gevolgen worden

in dit proefschrift in kaart gebracht door middel van simulatie en tevens benaderd door

het bepalen van de asymptotische verdeling van schatters in lineaire modellen, ook wan-

neer die schatters niet raak zijn omdat sommige instrumenten feitelijk endogeen zijn. De

gevonden asymptotische benadering blijkt zeer nauwkeurig te zijn, ook in steekproeven

van beperkte omvang, als de daadwerkelijk beschikbare exogeniteit maar niet al te zwak is.

De zwakte van een variabele als instrument wordt bepaald door de mate waarin die vari-

abele, voor zover niet samenvallend met de overige instrumentele variabelen, samenhangt

met de verklarende variabelen in de onderzochte relatie.

Zowel de analytische resultaten als de simulatie bevindingen leiden tot de opmerkelijke

conclusie dat inconsistente kleinste-kwadraten schatters vaak in feite aantrekkelijker zijn

dan consistente instrumentele variabelen schatters. Dit komt doordat kleinste-kwadraten

schatters zich altijd van de sterkst mogelijke instrumenten bedienen. Ook als sommige

van deze instrumenten feitelijk endogeen zijn leveren die toch nauwkeuriger schatters op

dan wanneer van valide maar zwakke instrumentele variabelen gebruik gemaakt wordt.

In welke mate de ontworpen classi�catie procedures en de bevindingen omtrent de eigen-

schappen van instrumentele variabelen schatters bij eventueel zwakke en mogelijk in-

valide instrumenten feitelijke empirisch-statistische onderzoekingen kan ondersteunen en

versterken wordt ten slotte ge•�llustreerd in een analyse van cross-sectie gegevens over de

e�ecten van scholing op salaris.
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