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Abstract. We study the linear, but fully non-adiabatic tidal retide. To this end a 2D implicit code was developed for which
sponse of a uniformly rotating, somewhat evolvéd & 0.4), the effects of the Coriolis force on the non-radial osditlas
10 M main sequence star to the dominast 2 components are taken fully into account. These earlier studies of roa
of its binary companion’s tidal potential. This is done numeeffects were based on a chemically homogeneousl20star
— ically with a 2D implicit finite difference scheme. We assumand were focussed on the low-frequency inertial regimeta.e
the spin vector of the 181, star to be aligned perpendicularforcing frequencies < 2€), whereg is the forcing frequency
CY) to the orbital plane and calculate the frequeacand width in the frame corotating with the star at a r&le The present
O) of the resonances with the prograde and retrograde grayity $tudy extends these calculations to a somewhat evolved (wit
<I" modes as well as the resonances with quasi-toroidal ragdtiocore hydrogen abundancé, = 0.4) 10 Mg, star whereby the
o (r) modes for varying rotation rate2; of the main sequenceforcing frequency runs from low (high radial order g-modes)
star. For all applied forcing frequencies we determine #te r to high frequencies (up to;3 The motivation for this work is
of tidal energy and angular momentum exchange with the cothat we intend to apply the calculated energy and angular mo-
Q panion. In a rotating star tidal energy is transferred flom2 mentum exchange rates with the companion to study the tidal
_C g-modesto g-modes of higher spherical degiee ¢,6,8,...) evolution of eccentric early type binary systems. Recesdly
O by the Coriolis force. These latter modes have shorter wawal new studies of tidal evolution in eccentric early type b
L length and are damped more heavily, so that the2 resonant naries (with a compact companion) have appeared (e.g. Kumar
+_ tidal interaction tends to be reduced for large rotatioasgt. & Goodman 1996¢] Lai 1997). However, these studies have not
*2 On the other hand, the density of potential resonances @albreonsidered the important effect of rotational (r) modestun t
(G ! spectrum) increases. We find several inertially excitedainstidal exchange of angular momentum in eccentric binary sys-
- blel > 4 g-modes, but not more than one (retrograde) unstaldens. We anticipate interesting tidal effects in ecceriia-
.— | = 2 g-mode and that only for rapid rotation. Our numericales by the counteracting effects of resonant prograde deso
>< results can be applied to study the tidal evolution of ea@entand retrograde r-modes when the early type component is rota
E binaries containing early type B-star components. ing near its ‘pseudo’ synchronous rate at periastron. Thils w
be studied in a following paper.

30 Oc

Key words: Hydrodynamics— Stars: binaries: close—
oscillations— rotation 2. Basic equations

. We consider a uniformly rotating, early type star with mass
1. Introduction and radiusR; in a close binary with circular orbit with angular

Zahn ) initiated the study of radiative damping of the g velocity w qnd orbital_ separation. We assume the s_tellar an-
namical tide as a viable mechanism for effective tidal iater 941a" veloc!ty of rotaﬂgrﬂs to be_ muczh smaller tha;n its break-
tion in early type close binary systems. Savonije & Papaloiz UP speed, i.e(€2/)” < 1, with QQC = GM,/RY, so that
(1984) were the first to perform fully non-adiabatic caldiaas effects of c.entr|.fugal dlstpmono( {};) may be neglecteq n-
of the dynamical tide and to study the interplay betweerestel first approx!matlon. We wish to _stud_y the response c_>f this uni
and tidal evolution which appears crucial in understandteg fOrMIY rotating star to a perturbing time-dependent tidate.
effects of tides in early type stars. More recently, Papaloi The Coriolis af:celer.atlon is propprtmnal&flg and we ta!(e its
& Savonije ) and Savonije & Papaloizdu (1997) (frorﬁﬁect on the tidally induced motions in the star fully into-a

now on SP97) studied the effects of rotation on the dynami unt. We use spherical coordinatesy, ¢), W't_h or|g|n_at the_
stellar centre, whereby = 0 corresponds to its rotation axis

* marnix@astro.uva.nl which we assume to be parallel to the orbital angular momen-
** gertjan@astro.uva.nl tum vector. We take the coordinates to be non-rotating.
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As is well known, in a non-rotating star the solutions P (cos) P"(cos f)eim(wt*v’) (5)
of the linearized non-radial stellar oscillation equatiazan 2

be expressed in terms of spherical harmonics, i.e. the Sparere 1/, is the companion’s mass, the orbital separation,
tial part of each mode can be fully separated into -, P (cos) the associated Legendre polynomial and = 1
and p-factors (e.g{ Ledoux & Walraven 1958)(r,9,¢) = for m = 0 and 2 form > 0. We will consider only the domi-
u(r) Pj" (cos¥) e7¥, where P/ represents the associateghant; — 2 components of the tidal forcing. Adopting the same
Legendre polynomials farandm. azimuthalm symmetry and time dependence for the perturbed
The introduction of the Coriolis force, however, des'[ro)’éuantities as the forcing potential, the perturbed vejocitn
the full separability of the oscillation equations, it oiging pe expressed ag = iz¢, wheres = m(w — Q) is the forcing
retained for thep-dependence. It turns out (e.g. Berthomiegtequency felt by a mass element in the uniformly rotatiray st
et al. 1978) that two independent sets of approximatedyde is the displacement vector.
spheroidal oscillation modes exist: modes in which the itens  The perturbations can be written as e¢g(r, 9, p,t) =
perturbation ivenwith respect to reflection in the equatoriag(r’ ) em(@t=) whereg, is the radial component of the dis-

plane, which havé — |m| even valued, and modes witidd placement vector whilé(r ) is assumed complex to de-
symmetry for the density, having— || odd valued. In ad- scribe the azimuthal phase shift with respect to the forpimg

dition, for eachl, there is a set of quasi-toroidal r-modes (e.q. ntial () induced by any occurring dissipation, e.g. tlebt
Papaloizou & Pringle 1978) which couple with the spheroida‘? . -€d by any c 9 P > €.9.
Viscosity or radiative damping, see energy equation below.

mo?f: 32 jEde}r.mte erturbed Eulerian quantities like pressyre The current equations contain extra terms compared to
, o P . q o P YFose in SP97 because of the occurring mean-molecular weigh
P’, densityp’, temperatur@” and energy flu” with a prime.

The linearized hydrodynamic equations governing the nOwa)-gradients near the edge of the convective core. We assume

adiabatic response of the uniformly rotating star to theysbr diffusive mixing to_ be negligible on the (osm_llanon)_tus_;raales
) . . under consideration, so that the Lagrangian variation ef th
ing potentialb+ may then be written

’
mean molecular weighly, = 0 or &= = —dlnse e We can

Kﬁ + 953) vi] & + 20k x v/ thus use
ot BQD Pl - p/ T/ dIn Lo 5
. p/ P_Xp<p)+XT<T) Xu dr gr ()
= VP +LvpP-ver, ) o _
p p to eliminate the pressure perturbation, where = %11‘;1;,
P P xr = 4L andy, = gllr?;i follow from the equation of
(E + Qsa—) o+ V- (pv) =0, (2) state. R
14 Writing for simplicity from now on¢,. for &,.(r,9), etc.,
P P 1 while dividing out the factor™«t=#) Eqs.[LH}# yield the
<§ + QSB_) [S"+v - VS| = ——TV -F', (3) seven scalar Eqf. /413 given below.
v p First of all we write out the perturbed equation of contiguit
F' /dar\ " '[/31" o K , o 19, 1 0 im
F <d7°) {< T p H>VT+VT}’ ) ;:_@E (r pgT)_rsinz?%(Smﬁgﬁ)—’—rsinﬁgw'(?)

whereé; are the unit vectors of our spherical coordinate sySve can use[[?) to eliminate the ter%éf introduced by the

tem, k is the unit vector along the rotation axis, denotes the radial derivative of the pressure perturbation (thrm[blnft@m

velocity perturbations the opacity of stellar material anl the radial equation of motion, so that the latter equatiam ca

its specific entropy. These perturbation equations reptese  be expressed (after adding viscous terms to introducelembu

spectively, conservation of momentum, conservation ofsnagamping in convective regions, see SP97) as

and conservation of energy, while the last equation dessrib

the radiative diffusion of the perturbed energy flux. Forsim| _,  Px, dlnp, d(pr?) d(xudlg—r““)

plicity we adopt the Cowling[(19}1) approximation,i.e.wen |77 = 2 ~qr ar +P dr

glect perturbations to the gravitational potential causgthe

stellar distortion. We also neglect perturbations of thel@ar dP d1n p, S )

energy sources and of convection. X g T } &+ {QIPGQS sind +im
For a circular orbit (with orbital angular speedl the com-

panion’s perturbing potential can be expanded as the real pa ;¢ o\ 02 P 4

of (e.g[Morse & Feshbach 1952): tio g {(1 —1?) a—/ﬂﬁr - 2#(9—”57« 1

Px, dlnp, ¢
rsind dr ¢

)

) l
GM, (I—=m)! /r\! N P Peodl 5
(I)T(ﬁﬁ,(p,t) = - L €Em - E_ 2 67” . X n g Y
a ;mZ:O (I +m)! (a) +7’2 o pgr o g dr 819(Sm19&9)
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. [g Py dlnpg P% —y Q] (P_/) corresponds to almost adiabatic response. However, even fo
dr Bodr dr Par |\ p ‘high’ frequenciess /Q. ~ 1 the diffusion length; becomes
comparable to the scale height when the stellar surface-is ap

o (p dxr dpP] [T’ - inti -
_PX”E (;) — |:p¥ + xro-| (7 proached. The associated radiative energy losses giveorise

T damping of the tidally excited oscillations whereby theutes
9 /T 2% ing phase lag with the companion generates a torque.
_ PXTa_ (?> = _pa_T (8) The perturbed radial radiative energy flux is given by
T T
F! AT\ '8 (T T
wherep = cos ¥ and( is the coefficient of turbulent viscosity (FT) = ( dn ) o (?) — (k7 — 4) (?)
defined below. Th&-equation of motion becomes " "
/
=2 PG o 07 0 5 —2u? _ o2 Oln X 15
pa§§+1ar—2[(1—u)a—lﬂ§§—4ua—ﬂﬁﬁ— 1—M2&9 (kp+1) P + KX ar & (12)
g 0 2 0%y - wherer, = 25 o = 2k andry = 22 with X for
T2 <p<7’ W) + [2ipo Qs cos 9] &, the hydrogen abundance.

Finally the-component of the perturbed flux follows as
_ % 2 p_l _ Pxr ﬂ Z/ , 1 ,
r ) OY\p r 09\ T Fy — dinT 10 /(T . (13)
F dr rod \ T
+PXHd1n,uaa£r 7_[_)8(I)T (9)

roodr 99 v 99 2.1. Boundary conditions
The p-equation of motion can be expressed as

The differential equations are supplemented by the fotgwi
Px, dln, bound_ary cor_wditions: at the stellar centre We_rqul,irand_FT’

&r to vanish, while at the stellar surface, we require the Liagjian
pressure perturbations to vanish

p62§0 - {2ipc‘rQS sin? + imr e R

. imPy o
— [2ip5 Qs cos ¥ - P dlnP
[2ipars cos Kﬁ_k[rsinﬁ} (p) F—f——dr; & =0 (14)
imPxr| (T"\ _ imp o 10 and the temperature and flux perturbations to fulfill Stefan—
sind | \T ) rsind (10 gy s
7 sin 7 sin Zzmanns law
/ /
By applying the thermodynamic relation £ _(2, ,dnT (L 15
[ 5p 5 r r + dr &t T/ (15)
o _ P
05 =5+ VS= p_T T —1 (? - 7) Furthermore¢y and F; must vanish on the rotation axis while

in view of the symmetry of the tidal force we adopt mirror sym-

where the symbal denotes a Lagrangian perturbation dhd metry about the equatorial plane, i.e., fbr= /2 we also
the adiabatic exponents of Chandrasekhar, the perturleegyen require¢, andF, to vanish.

equation can be expressed as

dln P dlnp dln pq P 2.2. The unperturbed stellar model
{ T P T ]5’”+[X”_F1]<_ i
A recent version[(Pols et al. 1995) of the stellar evolutiodes
-1 , developed by Eggletor| (1972) was used to construct the un-
. m \2 /dInT T :
+ |xTr +in ( - ﬁ) 3 T perturbed stellar input model. The model represents a some-
s " what evolved main-sequence star of 1D, with core hy-
W o AW F /F' drogen abundance of = 0.4 and Z = 0.02. The mass
—in {_2_ (7,2_r> + n (_T)] in the convective core is approximately 2. The model
2 or F dr F comprises 1200 (radial) zones and was constructed with the
. y , OPAL opacities|(Iglesias & Rogers 1996). The stellar radius
[Smﬁg <%) — Lsi; (%)] =0 (11) equalsR; = 3.825 x 10'* cm, while the effective temper-
roop rsim atureT.g = 2.314 x 10* K and the stellar moment of in-

. - o . i = 1. 56 g cn?. The break-up angular speed
wheren = (T's — 1) - is a local characteristic radiative diffu-E™@ /s 1.56 x 10°°g ¢ pang P
en=(Ts — 1) 7p equalsQ, = 1.54 x 10~*s~!. The Brunt-Vaisala frequency

sion length in the star, witlh' the unperturbed (radial) energy L (14 Loap . _ _ .
flux. We have eliminated”, with help of thep-component of A = 2 (a7 — 7P W) given in units ofQ., is plotted in
the radiative flux equation. In the stellar interipr~ 0 which Fig.ﬂ. The Brunt-Vaisala frequency attains large valimethe
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M;=10Mep X =04 as¢ « exp —[(r — r.)/(0.1 H,)]?. Note in this respect that,
although the composition gradient suppresses radial buets
15+ ing, horizontal turbulence may be well developed in thisrzbu
ary layer between the core and envelope. Also the oscifiatio
—~ 10+ amplitudes are relatively large in this region.
G
& 5 3. Thetorqueintegral: transfer of energy and angular
& momentum
g o
= For a circular orbit the tidal potentiaﬂ| (5) has no= 0 compo-
& 5 nent. However, since we wish to apply our results to ecaentri
binaries for which the tide has an axisymmetric time depahde
-10 | | | | | | | component we replace the factef*(«!=¥) by ellot—m¢) g

that we can studyn = 0 forcing. Once we have solved Eﬂs. 7-
@ for a given stellar rotation rat; and a given{m,o), i.e.
Fig.1. Ch istics of the stellar model: conti o oo

ig. 1. Characteristics of the stellar model: continuous curv. Lo
represents the Brunt-Vaisala frequengy; = signA,/| Al in o = ~fon P (cosv) cos(at — myp) (16)
units of the stellar break-up spe@das a function of radial in the forcing potential[{5), wherg,,, « M,/a'**, the rate
mesh number. The dashed curve shows the forcing frequendyf angular momentum exchange with the companion’s orbital

for which the corresponding oscillation period equals tieal motion can be calculated as an integral of the tidal force per
thermal timescale. unit volumeF';,,, = —pV &y, over the volume of the star

0 200 400 600 800 1000 1200
meshnr

Hy= [ rx Fp,, dV
region where the convective core has retreated during the ev *
lution and a composition gradient is formed (the -gradient 0Py, 9 .
zone'). It can also be seen that there are two shallow convée® /// "oy P (r,9)r" sind dd dpdr
tive shells near the stellar surface. The dashed curve stgma/vs
‘thermal frequency, = 27 /7, Wherery, = % = M7 fim // Tm(p') P (cos ) 2 sin9 dy dr
is a local thermal timescale, is the opacity¢ the velocity of
light, andg3 the ratio of gas to total pressure. Non-adiabatic ef= m Tin (17)
fects become important at locations wheygis comparable or whereRe andIm stand for the real and imaginary part. Since
larger than the forcing frequenay It can be seen in Fifj 1 thatthe torque and the stellar and orbital rotation vectors #re a
this is the case for the layers in and above the inner comeectaligned, only the magnitude of the transferred spin andtairbi
shell. Atthe inner edge of this shell, ~ ()., at the outer edge angular momentum needs to be considered. The rate of tidal
Vih = 5. energy exchange with the (M) star can be expressed as

Es:/Flm-vdV

2.3. Turbulent viscosity in convective regions

In convective regions the equations of motion are suppléeten _ —Re/poV<1>zm v dV — Re/p'V(I)lm v dV. (18)
by extra terms to account for the occurring turbulent dissi- * *

pation, as described in PS97. For the coefficient of turliulesypstitutingy’ = i5¢ andwv,o; = Qrsind é,, we find, after

viscosity ¢ we adopt a simple local mixing length approxitaking the real part, that the second integral on the rightiha
mation:¢ = « Hy v, whereH, is the pressure scale t‘e'ghtside equalsn§ 7. The first integral on the right hand side

a = 2 is the mixing length parameter, angd — (% %is gan_be rewr_|tten by applying the eguatlon_of contmtﬁty Par-
- ) . . 0/ tial integration then shows that this term is also propouido
a characteristic convective velocity. For high oscillatifve- gﬁj

. ; o - » and equalg7;,,. Concluding, we find for the tidally in-
quencies the viscosity is reduced (Goldreich & Keeley 197 ced rate of respectively the energy and angular momentum

by a factormin (1, (&TC)’Q), wherer. = aHp/v. is the change in the star:

convective timescale. We limif to be everywhere less than;, _
5x 1012 cm2 s 1., By = 0T (19)
In the p,-gradient zone adjacent to the convective coréls = m7im (20)

where the Brunt-Vaisala fequency attains large valthestidal \yhere the torque integral is given by

response has short wavelength and cannot be resolved on the 1 R

grid when the forcing frequendy| drops to small values. We 7;, — Ffzm/ / Im (o' (r, ) P () v 2 dpdr - (21)
retain some viscosity in this region by letting the viscpsié- -1J0

cay outwards from the boundary of the convective core{pt with © = cos .
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Fig. 2. Torque integral7;,,, versus forcing frequency for forcing with! = 2 andm = 2 on a 10M, star rotating at twenty
percent of breakup speed. Prograde and retrogragengpdes withk = 4 and 10 are labeled, as well as the location of the
r-modes. Crosses denote calculated points, while the dcawtinuous curve represents a fit, see text.

4. Numerical procedure the solution of the perturbatiorg etc. For by differentiat-

I . : . ing Eqgs.[E13 with respect ® we arrive at the same equa-
The set of partial differential EqE_l ElB with boundary Gendtions, except that the unknowns are now the derivatives of

tions ) and@S) Is approxir_nqted by a set of finite (_Jlif_femn the perturbations (i.eg—’zt instead ofg, etc.), while the right
equations (FDE's) on a 2D grid inand?, i.e. on a meridional hand sides can be exp

) . xpressed in terms of the solved perturba-
plane through the. star. T_he FDE'S are similar (except fpr ttﬁ%ns. The right hand side for equatic[lh (8) for example bezpm
extra terms associated with thg-gradient) to those described

) L . —2p0&, — 2ipQ sinv &,. By storing the relevant inverted ma-
n ShP97 and a\r/s solved by.;hefsignc)%lmpllcn .schf:ame g\_s lg"fﬁ es during the solution procedure for the perturbatioes
In that paper. We use a grid o zones in the radia n can simply combine the stored matrices with the adapted

45 zonesin th@ d|_re<_:t|on, analogou_s to the one used in SP9 ight hand sides to obtain a solution f§§ at almost no extra
Since the radial grid is staggered, with part of the unknoam p g

turbations defined on the odd and the rest on the even zoaes,ct%Sts'
effective number of radial zones is 600.
For given values ofl(m, o) in the applied forcing potential 5- Results
({8) and for a given uniform rotation rafe; of the star we rrom now on we will express all frequencies in unitsf =
can thus obtain the stella}r resppnse, i.e. the complex #alyesy » 10-4 51, By varying the forcing frequency = o —
perturbationg;., &g, &5, (%) (%) (F—;) and(%), (TT mS)s (in the corotating frame) for the= 2 terms in the forcing
on the 2D grid in the meridional plane of the perturbed stgr. BPotential {1p) and by calculating the stellar response, are ¢
multiplying these values with the common factéf:—™¢) we search for resonances with the free stellar oscillation espd
obtain the non-adiabatic stellar response to the presttidal applying the procedure described in the previous sectian. W
forcing throughout the star. adopted various values for the rotation rate of thé\ViLf star:
Because the 2D implicit numerical scheme involves mar%s =0,0.1,0.2,0.3and 0.4.
(complex) matrix invertions the solution requires largenco  We traced the resonances with-odes (up tdk = 20)
puter facilities and it is essential to use an economic methfpr both prograde and retrogradé-modes. The lower index
for tracing the many resonances with the free stellar @scillef 9 denotesk, the number of radial nodes in the displace-
tion modes required to study the dynamical tide in a rotatifgent eigenvector, whereby the minus sign denotes a rettegra
star. The resonances are searched in frequercsp@ace by by mode. Note that we characterize retrograde modes (i.e. snode
tracing the maximum of the functioi(s) = 3, &, - & that propagate in the directio_n counter to the _steIIar it
where ¢ is the displacement vector, & denotes complex Py negative values of the oscillation frequericyi.e. we take
conjugation and and j run over the radial and grid, re- ™ > 0 for both prograde and retrograde modes. For rotating
spectively. The maxima o¥ are searched by using a robus$tars there is in addition a compact spectrum of r-modes, for
method based on cubic interpolation (NAG library routineSlightly negative frequencies. Tihe= 2 component of the tidal

which requires the calculation of the first derivatigg — potential excites r-modes with a predominaat 3 component.
%L L er %5\ Fortunatelv. the derivati Note that because we consider binary systems in which both
Zm’ (5” Do T8 s ) - rorunately, the dervatives giars are aligned perpendicular to the orbital plane the )

% and %—g can be obtained cheaply once we have obtain&atcing has onlyn = 0 and|m| = 2 components, i.ef3; = 0.
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Fig. 3. Torque integrall;,,, versus (retrograde) forcing frequengyor forcing with! = 2 andm = 2 on a 10M, star rotating

at fourty percent of breakup speed. Retrogradge-modes with = 4 and10 (unstable) are labeled, as well as the r-modes with
k = 2 andk = 5. Crosses and circles (unstable modes) denote calculaiets pbhe peaks not fitted by the continuous curve
correspond to resonances with higher spherical degreet 6, . . .

We can thus limit our calculations to eithier| = 2 orm = 0 calculations are listed in Tablfs]A1[to]A4 in the appendixteNo
resonances. that for a non-rotating star tHe= 2 spectrum is degenerate in
Note further that for all forcing frequencies we keep m, so that forQ); = 0 the resonance frequenciesict m = 2

the factorf;,, in the forcing potential@G) constant by adoptg-modes are given by Tal.

ing a fixed valuea = 4R, and M, = 1My. Because we It can be seen that, as expected,fo= 0 the g-mode res-
solve the linearized problem all listed values for the tidainance frequencieg, increase with, as is true fola| for
torque integral @1) can be simply scaled to the value fthe retrograden = 2 g-modes and the r-modes. However, the
a required binary configuration by multiplying with a factoprogradem = 2 g-mode resonances shift kmwer oscillation
(M, /Mg)? (4R /a)?*1), wherea and M, are the actual or- frequencies a§); increases. Note in this respect that (approx-
bital separation and companion mass. Unless the companioimiate) conservation of radial vorticity, in combinationtiwvan

a compact star one should of course also take into accountitimeasing radial component of ambient rotatidncos ¥ to-
(dynamical) tide in that star to determine the tidal evalotof wards small colatitudes, tends to give retrograde wavegrop

the binary system. gation (see e.d. Unno et al. 1989).
5.1. Resonance fitting 5.2. Prograde and retrograde g-mode resonances

Using the technique described in Se@t. 4, we determine ﬂImeFigs.I]Z and:|3 we show the tidal torque integ¥g}, versus
resonances with g- and r-modes and evaluate the torqueforeing frequencys for a 10M, star rotating at a rate of 0.2
tegral ) from the calculated stellar response in the dneriand 0.4, respectively. Crosses and open circles corredpond
ional plane of the 10, star for all applied forcing frequen-numerical results, while the continuous curve correspdads
cies. Close to each resonance we fit the obtained valuesdortthe above mentioned fit to individual resonances. When the
torque integral by the resonance curve of a damped harmobh@dV; star rotates in the same sense as the orbital motion of its
oscillator companion, the latter cannot excite modes with frequency (i
the frame corotating with the star) less tlilas- —m(2,. Never-
— (22) theless, we have calculated the whole rajsge< 2. In Fig. 3,
5252 . .
( 0) +1 the circles and the dashed fit curve represent unstable modes
for which the torque integral has a reversed sign compared to
with eigenfrequencys,, resonance full widthAg and peak (see SecGA).
value 7, o. As a consequence of the Coriolis force, the stel- The prograde g-modes shift to substantially larger oscil-
lar response to the = 2 forcing contains a range @fvalues lation frequencies compared to the unevolved ZAMS stellar
(when we expand in spherical harmonics). However, we fit ontyodel of the same mass. The retrograde g-modes shift to more
the resonances with predominantly= 2 (g-modes) o = 3 negative frequencies, so that far = 0.2 no strong retrograde
(r-modes). In betweeh= 2 resonances we assufg, () can g-modes can be tidally excited, unless the rather unlikagec
be approximated by adding the contributions of the two adjaf retrograde stellar rotation applies. However, when thkeg
cent! = 2 resonances. The detailed results of our numericaitation rate is increased more and more retrograde g-modes
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are shifted into the ‘tidal window’: up to%g; for Qs = 0.3, Table 1. Unstablem = 2 modes forQ); = 0.4. The listed
andupto g, for Qs = 0.4. oscillation periods?,, are relative to the inertial frame, a minus

But note that when the binary is eccentric and the early typ@n denoting retrograde propagation.
star’s spin is approximately synchronized at periastroong
(retrograde) r-modes can be tidally excited even for ne¢fti mode Re(5)  Im(3) P (d)
low stellar rotation rates. g2, —1.3826 —1.1x107° —0.81

For small frequenciess| viscous damping in theu,- gg)l? —1.3451 —5.3 x 10:? —0.87
gradient zone becomes significant as the local wavelength ff1s —1.1524 —1.2 x 1074 —1.34
the response gets short and the adopted turbulent visgetgy gglo —0.7602 —1.2 x 1075 11.86
large due to the comparable timescale of ‘convection’ and oSl 10580 —4.6 % 10,5 0-25

o : gis 1.1261 —4.3 x 10 0.25
c!llat|ons (Sect3). Therefore the vaIue_s ‘E('};;T in the re- 6 14610 —1.0 x 10-* 021
gion between b?q and the r-modes (and similarly for the cor-s 21887 —24 % 10~°  0.16
responding positive frequency range) depend on the unicerta
assumptions about the viscous dissipation. Switching Ibff a
viscous dissipation in the,-gradient zone yields fd2, = 0.4  be distinguished from each other, they lie so close togatiatr
in the frequency range 0.4 < ¢ < —0.2 torque values about they form a strongly coupled complex, whereby thg greso-
an order of magnitude smaller than shown in fjg. 3. nance peaks one order of magnitude abové the resonance
peak. Another symbiosis occurs fot g, and ¢ 5, whereby,
however, the former mode appears unstable and the latter sta
ble. In this frequency range the resonances Wwith4 are heav-
Although centrifugal effects are no longer negligible fhet ily damped as they approach their asymptotic low frequency
high rotation rates{{; = 0.4) considered here the results areegime.
still of interest, even though centrifugal distortion igtected, For still lower frequencies in the range aroufid= —0.5
because they show the effect of strong coupling by the dsriolhe calculated response in between resonances is sigtlifican
force. Note in this respect that in the higher density imiteri stronger than the wings of the fittdd= 2 resonance curves
regions the local break up speed is substantially larger@ha due to the smeared out contributions of highesmponents. At
A full calculation with centrifugal distortion included wéd these frequencies the spectruni ef 4 modes starts to become
require a much larger computing effort. dense whereby radiative and viscous damping gets heavy due

The Coriolis force gives rise to strong coupling with mode® the short wavelength of the response.
of higher spherical degrees, so thatfes 2 forcing resonances
with [ = 4,6,8,... also become prominent, erspemally Wheg.4. Unstable modes
located near & = 2 resonance. Because the tidal forcing has
I = 2 symmetry the latter resonances generally dominate, butis now known (e.g| Dziembowski & Pamyatnykh 1993;
all neighbouring resonances with> 2 are also excited, so [Gautschy & Saio 1993) that most main sequence OB stars show
that the tidal response contains significant power over adrainstable non-radial modes driven by thenechanism associ-
range of (even)-values. Often this makes mode identificatioated with the metal opacity bump arouhd x 10° K in the
(by means of a decomposition in Fourier-Legendre seridssof OPAL opacity tables|(Iglesias & Rogers 1996). Two necessary
eigenfunctions, see SP97) difficult since the power in diffé conditions for a mode to be unstable by thenechanism are
[-components are often comparable. One should consider that the Lagrangian pressure perturbatidty P must reach a
excited oscillation as a complex of coupled modes. Sineeg fomaximum value (coming from the stellar centre) in the driv-
given frequency the g-modes with largelhave shorter wave- ing zone and tha2x /G is of order the thermal timescale in
length, damping is enhanced, so that for large rotatiorsithiee that region (e.g} Dziembowski et al. 1993). Obviously, when
oscillation amplitude and the effective torque is redud@ds |5| < wn = 27/ in the ionization region that region is
can be observed in TabIA3, which show that the resirongly non-adiabatic and no driving can occur. The ‘therm
nance arearAd7;, of thel = 2 g-modes initially increases frequency’vy, (Sect.) in the lower convective shell asso-
with €4 but generally decreases when the rotation rate and giated with the opacity bump varies between approximately 1
ertial damping becomes large. and 5.

The indirectly excited highet-resonances correspond to  When the stellar rotation rate is increased some inertially
the peaks that have not been fitted in Iﬂg. 3. This figure shoescited ( > 2) modes in our 1M model appear which have
part of the retrograde oscillation spectrum fay = 0.4. Most  atorque integral;,,, with a sign opposite to that af, which in-
of the stable unfitted peaks betweeh,cand ¢ ; correspond dicates instability. This can be checked by forcing the withy
to what are (predominant)= 4 resonances, except for the twa complex frequency (Papaloizou et al. 11997) and searching f
nearest resonances arourid;gwhich are identified as®g, maximum amplitude in complex frequency space. It appears
and d?. The unfitted peaks betweed gand ¢ ,, are all that the fundamentaBpmode with|5| ~ 3.3 is unstable for all
(predominantj = 4 resonances, and can be identified 4s,g rotation rate€), = 0 to 0.4. There are more unstable p-modes
to g* | consecutively. The%y, and ¢ ,, resonances can hardlywhich we have not studied. Talfl 1 lists the unstable g-modes

5.3. Effects of rapid rotation
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=2 m=2 Q=020 X.=04 or even two orders of magnitude higher, with a corresponding
decrease of the resonance width. However, this will not make
r2 a large difference for the overall tidal evolution of the dip
41— because the total arear A7, ¢ of each resonance remains
approximately constant. The resonant interaction withodes
gets stronger with increasing rotation r&te This can be seen
40— in Table[A4 where the resonance area increases monotgnicall
with Q.

39—

0)og Tp, (erg)
Iz}

5.6. Excitation of inertial modes in the convective core

Similar to the results obtained in SP97 for a RQ, ZAMS

Ko X W e

38— l | | l star, we find inertial wave oscillations in the convectiveeco
-0.065 -0.06 -0.055 -0.05 and in the convective shell region when the forcing freqyenc
7/ falls in the inertial rangés| < 2. When we artificially cut

: ¢ des: . forci the radiative envelope from our stellar model we find a dense
r'g' 4. Spe_c]tcrurp ofr-mot ES' torquedlntegm VErSUSI0rCINg e ctrum of modes in the core. For some frequencies the reso-
requencys for forcing with! = 2 andm = 2 on a 10Mg Star e in the core appear very strong. The general ampitude
rotating at tw-enty percent of bre_akup speed. Crosse§ de an order of magnitude larger (or more) compared to the
calculated points, the drawn continuous curve represelitts a full stellar model where the inertial waves can leak out & th

core. This would suggest that the inertial modes could pbssi
excite gravity waves in the envelope (SP97). However, when
(prograde and retrograde) that are found for the highestiont e consider a model in which the convective core is cut away,
rateQ)s = 0.4. we find in this frequency region values for the torque integra
Only for the highest rotation rate){ = 0.4) an unsta- comparable to the ones calculated for the full stellar model
ble ! = 2 g-mode appears: the retrograde,g mode, with Therefore it seems the inertial core modes do not significant
& = —0.76, which is located close to the stablé g res- contribute to the stellar torque in this somewhat evolvetlast
onance. The 3,, mode has rather low frequency for the model. However, the oscillations in the-gradient zone out-
mechanism and is a bit peculiar in that it seems mixed witlide the convective core are poorly resolved for low frequen
a strong short wavelength mode trapped in thegradient cies, so that further studies with significantly more mesghigo
zone. The oscillation period (in inertial frame) of the @ide in this region seem required to draw firm conclusions.
[ = 2 mode happens to be quite long: about 12 days, while the
adopted stellar rotation period is 1.2 days. We also find four ,
unstable prograde g-modes, see Teﬂ)le 1. Our list of unsta@|§:onclusons
modes is probably not exhaustive (exceptifer 2), because we have studied the linearized non-adiabatic tidal respofs
we preferentially find those unstable modes which happea topsomewhat evolved 10, main sequence star to tidal forcing
located neat = 2 resonances. Unstable modes, when excit@gth spherical harmonics degrée- 2 and calculated the tidal
by the tidal force, could giVe rise to tidal evolution counte exchange of energy and angu|ar momentum with an Orbiting
the normal direction of evolution. companion as a function of stellar rotation rate taking toe-C
olis force fully into account. We found, as expected, thahwi
increasing rotation rate the inertial coupling with highpher-
ical degree oscillation modes gets stronger, so that when th
For small negative forcing frequencies around (e.g. Pé@alo rotation rate becomes comparable to or larger than thedidal
& Pringle 1978):5 ~ _IQ(TT% strong resonances occur withcillation frequency a significant amount of tidal energy &ss-
quasi-toroidal oscillation modes analogous to Rossby moderred to these higher degree oscillations. Because ofnrerida
in the earth’s atmosfere (e fg. Pedlosky 3979). For theseemodamping of the highet oscillations fast rotation reduces the
the fluid elements oscillate almost exclusively in the hamial resonant tidal interaction with = 2 g-modes. However, this
direction whereby the restoring force is provided by theiGor is compensated by the appearance of an additional specfrum o
lis force (conservation of radial component of vorticitij)g. (I > 2) resonances that can be excited bylthe2 tide.
shows the variation of the torque integfg},, as the forcing With progressing nuclear evolution and consequent con-
frequency runs through the r-mode region for a star rotatitrgction of the stellar core the frequency of the g-modeliasci
with s = 0.2. The adopted turbulent viscosity law in thg tions increases, so that the ‘gap’ between potential resmsa
gradient zone adjacent to the convective core causes tlogle-mwith strong retrograde g-modes and the strong r-modes widen
resonances to become rather broadened compared to the reShkreby the retrograde strong g-modes disappear from the
for ZAMS models (SP97). When we switch off the viscosity iftidal window’ (7,5 > —mf)) so that spin-down of fast spin-
theu,-gradient zone the peak values for the torque become arieg early type binary stars depends on excitation of sigong

5.5. r-modes
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damped high radial order g-modes. This seems a not very effi-
cient mechanism unless viscous effects (e.qg. inthgradient
zone outside the convective core) are significant or perhaps
driving by inertial resonances in the convective core ogcur
But, when in an eccentric binary system, the early type star i
nearly corotating at periastron r-mode resonances areefery
ficient in spinning the star further down to (pseudo)corotat

We expect a balance between spin-down by r-modes and spin-
up by prograde g-modes excited by the high frequency compo-
nents of the tidal forces near periastron. We intend to stidy

in a following paper, using the torque values determined her
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Appendix A: Tables

Table Al. Fitting parameters forgmode resonances with &n= 2, m = 0 tidal potential in a 1M, star with X, = 0.4. All
tabulated values for the torque integral have been obtdorexfixed orbital separation.

Qs = 0.0 Qs = 0.2 s =0.4Q,
6O/Qc IZZm,O (erg) Aa'/Qc 6O/Qc IZZm,O (erg) Aa'/Qc 6O/Qc EmA,O (erg) Aa'/Qc

2.2186 2.94 x 10*° 1.33 x 107° 2.2344 2.95 x 10*® 1.32 x 107° 2.2804 3.08 x 10*® 1.28 x 107°
1.8489 3.35 x 10%° 1.34 x 107° 1.8676 2.72 x 10*® 1.64 x 107° 1.9214 3.19 x 10*® 1.38 x 107>
1.3162 9.00 x 10** 1.18 x 107> 1.3427 8.06 x 10** 1.39 x 10™°> 1.4196 7.38 x 10*® 1.01 x 10~*
1.0203 9.28 x 10*2 2.70 x 10™* 1.0538 6.81 x 10*2 3.63 x 10™* 1.1465 9.75 x 10*2 1.87 x 10~*
0.9510 5.08 x 10" 1.37 x 1073 0.9862 5.30 x 10*' 1.22 x 1073 1.0806 6.14 x 10*' 1.05 x 1073
0.8037 1.42 x 10*? 4.12 x 10™* 0.8454 1.46 x 10** 3.89 x 10™* 0.9532 1.76 x 10*? 3.03 x 10~*
0.7258 9.82 x 10%° 1.64 x 10~ 0.7711 1.04 x 10** 1.44 x 10~ 0.8852 1.04 x 10** 1.15 x 1073
0.6637 2.74 x 10*° 1.03 x 1072 0.7119 3.09 x 10*° 8.43 x 1073 0.8338 1.26 x 10*® 1.68 x 1073
9  0.6503 2.07 x 10* 7.00 x 107* 0.7006 1.73 x 10*' 7.90 x 10™* 0.8217 1.85 x 10*' 5.76 x 1074
10 0.5628 1.62 x 10*2 5.22 x 10™° 0.6198 1.57 x 10*? 4.88 x 10™° 0.7519 2.41 x 10** 2.49 x 10~*
11 0.4976 1.86 x 10* 1.46 x 10™* 0.5608 2.09 x 10** 1.16 x 10=* 0.6988 2.93 x 10*° 6.63 x 10~*
12 0.4619 2.72 x 10%° 6.96 x 10™* 0.5286 3.20 x 10%° 5.07 x 10™* 0.6693 1.98 x 10%° 4.92 x 10~*
13 0.4345 2.43 x 10%° 2.85 x 107* 0.5048 2.11 x 10*° 2.58 x 10™* 0.6471 5.06 x 10> 4.43 x 104
14 0.3983 3.18 x 10" 1.76 x 10™* 0.4734 2.58 x 10*® 1.70 x 10™* 0.6183 7.39 x 10> 2.33 x 10~*
15 0.3662 8.01 x 10%® 2.84 x 107* 0.4459 6.71 x 10%® 2.04 x 10™* 0.5917 1.99 x 10°7 3.38 x 10~*
16 0.3404 4.29 x 10°® 8.72 x 10™*% 0.4240 4.78 x 10®® 5.53 x 10~* 0.5700 2.14 x 10®® 4.55 x 10~*
17 0.3248 2.05 x 10%® 2.04 x 1073 0.4109 2.79 x 10®® 1.21 x 1073 0.5561 2.22 x 10®® 9.41 x 10~*
18 0.3086 1.02 x 10%7 1.60 x 102 0.3977 1.45 x 107 1.00 x 1072 0.5422 2.87 x 10%7 1.34 x 1073
19 0.2904 8.10 x 1037 1.47 x 1073 0.3827 9.18 x 1037 9.17 x 10~* 0.5262 3.99 x 1037 7.42 x 104
20 0.2734 5.86 x 10%° 2.82 x 1072 0.3689 1.05 x 10*>” 1.95 x 10™2 0.5105 2.24 x 10*” 1.04 x 1073

0~ O Uk WN |3

Table A2. Fitting parameters foretrogradeg;-mode resonances with dn= 2, m = 2 tidal potential in a 10V, star with
X. = 0.4. All tabulated values for the torque integral have beeniabthfor a fixed orbital separation.

Qs = 0.2 s = 0.3 s = 0.4 Q¢

k' 50/Q Timo(erg) AG/Qc 0/ Timyo (€rg)  AG/Qc 0/ Timpo (€rg)  AG/Qe

1 —22734 —5.59 x 10*® 3.00 x 107 —2.3042 —4.05 x 10*® 3.39 x 107% —2.3376 —2.91 x 10*® 3.82 x 107
2 —1.9055 —8.22 x 10% 2.75 x 107% —1.9368 —6.93 x 10%® 2.77 x 1075 —1.9700 —5.54 x 10*° 3.05 x 10~°
3 —1.3709 —1.29 x 10%6 3.80 x 107% —1.4047 —9.02 x 10*® 4.58 x 1075 —1.4431 —3.86 x 10*® 8.73 x 1076
4 —1.0872 —6.92 x 10*® 1.41 x 107* —1.1306 —3.91 x 10*® 1.95 x 107* —1.1804 —2.28 x 10*® 2.54 x 107
5 —1.0246 —1.42 x 10*3 2.97 x 107* —1.0697 —1.41 x 10*® 2.77 x 107* —1.1200 —1.45 x 10*® 2.70 x 10~
6 —0.8745 —1.88 x 10*® 1.31 x 107* —0.9216 —1.28 x 10" 1.56 x 10~* —0.9752 —8.23 x 10** 1.89 x 10~*
7 —0.8064 —1.79 x 10*2 4.57 x 107* —0.8592 —1.40 x 10*? 5.35 x 107% —0.9189 —1.22 x 10** 4.96 x 10~*
8 —0.7501 —1.93 x 10*° 3.07 x 10~® —0.8065 —1.17 x 10%° 3.51 x 10™3 —0.8693 —8.35 x 10°° 3.84 x 1073
9 —0.7277 —7.76 x 10*? 9.15 x 1075 —0.7794 —7.71 x 10*® 7.48 x 107° —0.8395 —7.92 x 10** 4.30 x 10~

10 —0.6434 —2.01 x 10*® 1.92 x 107°> —0.6985 —9.26 x 10*? 3.33 x 107° —0.7602 1.27 x 10*? 1.97 x 10~*
11 —0.5827 —1.88 x 10*2 5.97 x 10™° —0.6417 —7.80 x 10*! 1.05 x 10™* —0.7054 —4.40 x 10** 1.25 x 10™*
12 —0.5525 —3.89 x 10! 2.51 x 107* —0.6143 —3.04 x 10*! 2.75 x 10™* —0.6795 —1.30 x 10*! 4.90 x 10~*
13 —0.5238 —8.97 x 10*° 5.71 x 107% —0.5849 —2.58 x 10** 1.31 x 10™* —0.6491 —5.72 x 10*° 4.04 x 10~*
14 —0.4899 —1.29 x 10** 2.63 x 107* —0.5525 —1.73 x 10*! 1.60 x 10™* —0.6170 —9.25 x 10*° 1.90 x 10™*
15 —0.4612 —1.47 x 10%° 1.44 x 107* —0.5253 —6.51 x 10%° 2.64 x 10™* —0.5900 —3.05 x 10%° 2.33 x 10~*
16 —0.4390 —7.70 x 10%® 4.13 x 107% —0.5046 —6.79 x 10%® 4.52 x 10™* —0.5695 —5.67 x 10%° 4.15 x 10~*
17 —0.4259 —2.04 x 10%° 6.86 x 107* —0.4919 —1.24 x 10%° 8.12 x 10™* —0.5564 —8.61 x 10%® 9.36 x 10™*
18 —0.4101 —1.02 x 10%® 6.33 x 107* —0.4757 —1.15 x 10°® 8.91 x 10™* —0.5391 —1.80 x 10%® 6.93 x 10~*
19 —0.3935 —6.68 x 10%® 9.02 x 107% —0.4592 —6.61 x 10%® 6.68 x 10™* —0.5216 —3.90 x 10%® 6.60 x 10~*
20 —0.3787 —4.97 x 1037 2.03 x 1073 —0.4445 —7.44 x 10%7 1.29 x 1073 —0.5060 —1.57 x 10® 9.52 x 107




M.G. Witte & G.J. Savonije: g- and r-mode resonances in aIL0star

11

Table A3. Fitting parameters foprogradeg;-mode resonances with dn= 2, m = 2 tidal potential in a 10\, star with
X. = 0.4. All tabulated values for the torque integral have beeniabthfor a fixed orbital separation.

Q. = 0.2Qc
50/Qc Tim,o (€rg)

A5 /Qe

Q. = 0.3 Qc
50/ Tim,o (€rg)

A5 /Qe

Q. = 0.4 Qc
50/Qc Tim,o (€rg)

A5 /Qe

O~ O Ok W N~

N = = = e e e e O
O O 00O Ttk WO

2.1724 1.92 x 10%7
1.8006 2.31 x 107
1.2773 8.31 x 10*°
0.9780 7.33 x 10%*
0.9011 3.11 x 10*3
0.7629 1.46 x 10**
0.6783 9.16 x 10*2
0.6171 1.00 x 10*2
0.6078 2.55 x 10*2
0.5242 5.54 x 10%3
0.4596 9.80 x 10*2
0.4213 2.92 x 10*2
0.3971 6.25 x 10"
0.3627 4.18 x 10*!
0.3313 3.67 x 10*°
0.3057 5.00 x 10%°
0.2896 9.20 x 10%°
0.2758 2.06 x 10%®
0.2586 5.45 x 10%®
0.2421 6.70 x 10%”

1.55 x 1076
1.39 x 107¢
1.11 x 1076
2.94 x 107°
1.33 x 107*
3.29 x 1075
1.27 x 107*
5.41 x 107%
2.76 x 107*
1.11 x 107°
2.08 x 107°
4.04 x 1075
5.02 x 107°
6.77 x 1075
1.56 x 107*
2.52 x 1074
2.98 x 1074
6.43 x 107*
1.08 x 1073
1.66 x 1073

2.1519 2.38 x 10%7
1.7781 1.49 x 10*7
1.2623 6.55 x 10*°
0.9638 1.37 x 10%°
0.8836 3.26 x 10*®
0.7508 2.57 x 10**
0.6637 1.61 x 10%3
0.6044 3.29 x 10*2
0.5948 1.66 x 10*2
0.5152 3.09 x 10%3
0.4517 3.54 x 10*2
0.4125 5.07 x 10*2
0.3896 2.15 x 10"
0.3565 2.87 x 10*!
0.3256 1.99 x 10%°
0.3004 3.85 x 10%°
0.2840 9.48 x 10*°
0.2711 3.34 x 10%®
0.2545 5.09 x 10%®
0.2384 8.80 x 10%7

1.43 x 1076
3.53 x 107
1.61 x 1076
1.87 x 107°
1.23 x 107*
2.17 x 1075
8.03 x 107°
2.64 x 107%
2.75 x 107*
2.21 x 107°
6.27 x 1075
2.35 x 1075
1.19 x 10~*
8.87 x 1075
1.69 x 107*
2.43 x 1074
2.83 x 1074
6.40 x 10~*
1.01 x 1073
1.47 x 1073

2.1330 2.98 x 10%7
1.7587 6.71 x 10%°
1.2498 5.15 x 10*
0.9532 2.65 x 10%°
0.8692 6.30 x 10*®
0.7425 2.56 x 10**
0.6534 2.18 x 10%3
0.5959 6.81 x 10*2
0.5853 7.28 x 10**
0.5103 1.05 x 10%3
0.4476 4.44 x 10*2
0.4077 6.97 x 10*2
0.3855 2.86 x 10*
0.3536 1.76 x 10*!
0.3232 1.54 x 10%°
0.2981 3.26 x 10%°
0.2813 9.43 x 10*°
0.2690 6.06 x 10%®
0.2529 4.88 x 10%®
0.2370 1.05 x 10%®

1.26 x 1076
5.67 x 107°
2.28 x 107°
1.13 x 107°
7.10 x 107°
2.56 x 107°
6.48 x 107°
1.62 x 107*
3.55 x 107*
7.07 x 1075
5.33 x 107°
1.70 x 1075
6.81 x 107°
1.30 x 107*
1.24 x 107*
2.33 x 1074
2.65 x 107*
5.35 x 107*
9.27 x 1074
1.28 x 1073

Table A4. Fitting parameters forjrmode resonances with @n= 2, m = 2 tidal potential in a 1M, star with X, = 0.4. Al
tabulated values for the torque integral have been obtdoreadfixed orbital separation.

Qs = 0.1 Qs = 0.2

k G0/ Tim,0 (€rQ) AG /e G0/ Tim,0 (erg) AG /e

0 —3.3237x 1072 —5.63 x 10*! 5.71 x 107® —6.6098 x 1072 —2.57 x 10** 7.35 x 107°
1 —3.3191 x 1072 —7.69 x 10*° 4.80 x 107° —6.5845 x 1072 —1.20 x 10*' 2.40 x 10~*
2 —3.3133 x 1072 —1.04 x 10" 3.61 x 107° —6.5292 x 1072 —1.41 x 10*! 2.03 x 10~*
3 —3.3031 x 1072 —8.46 x 10*° 3.03 x 107° —6.4479 x 1072 —1.03 x 10*! 1.87 x 10~*
4 —3.2896 x 1072 —4.67 x 10%° 3.14 x 10™°> —6.3467 x 1072 —5.42 x 10*° 1.85 x 104
5 —3.2730 x 1072 —2.43 x 10%° 3.46 x 107° —6.2277 x 1072 —2.96 x 10*° 2.00 x 10~*
6 —3.2534 x 1072 —1.27 x 10*° 3.97 x 107° —6.0922 x 1072 —1.62 x 10*° 2.11 x 107*
7 —3.2315 x 1072 —7.93 x 10%° 4.26 x 107° —5.9485 x 1072 —9.14 x 10%° 2.38 x 107*
8 —3.2084 x 1072 —4.02 x 10*® 4.63 x 107° —5.8029 x 1072 —5.19 x 10*® 2.51 x 10~*
9 —3.1842 x 1072 —1.48 x 10*® 5,51 x 107° —5.6565 x 1072 —1.89 x 10%° 3.12 x 107*
10 —3.1581 x 1072 —2.24 x 10®® 8.18 x 107° —5.5121 x 1072 —3.39 x 10®® 7.66 x 10~*

Qs = 0.3Q Qs = 0.4 Qe

k 50/Qe Timo (€rg)  AG/Qc G0/ Timo (€rg)  Ad/Qc

0 —9.8117 x 1072 —1.74 x 10** 3.87 x 107* —1.2898 x 107" —3.26 x 10*! 4.25 x 10™*
1 —9.7284 x 1072 —1.12 x 10** 9.12 x 107* —1.2685 x 107! —2.23 x 10** 6.54 x 1074
2 —9.5530 x 1072 —1.95 x 10*! 3.78 x 107* —1.2328 x 10~' —4.60 x 10*! 3.18 x 10™*
3 —9.3144 x 1072 —1.51 x 10" 3.93 x 107* —1.1833 x 107! —2.73 x 10*! 4.26 x 10~*
4 —9.0057 x 1072 —4.14 x 10*° 7.76 x 107* —1.1145 x 10~! —3.08 x 10%° 2.42 x 1073
5 —8.6610 x 1072 —2.93 x 10*° 4.95 x 107* —1.0515 x 107! —4.60 x 10*° 5.49 x 10~*
6 —8.2082 x 1072 —2.23 x 10%° 4.14 x 107* —9.8842 x 1072 —3.21 x 10*° 5.26 x 10~*
7T —7.9327 x 1072 —9.10 x 10*® 5.65 x 107* —9.2639 x 1072 —7.71 x 10*® 1.12 x 1073
8 —7.5855 x 1072 —5.14 x 10* 6.24 x 107* —8.6945 x 1072 —5.05 x 10%° 1.08 x 1073
9 —7.2437 x 1072 —2.03 x 10*® 7.43 x 107* —8.1781 x 1072 —3.74 x 10%® 7.49 x 10~*
10 —6.9712 x 1072 —2.28 x 10°® 3.98 x 1073 —7.7343 x 1072 —3.83 x 10®® 1.02 x 1073




