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Abstract. We study the linear, but fully non-adiabatic tidal re-
sponse of a uniformly rotating, somewhat evolved (Xc = 0.4),
10 M⊙ main sequence star to the dominantl = 2 components
of its binary companion’s tidal potential. This is done numer-
ically with a 2D implicit finite difference scheme. We assume
the spin vector of the 10M⊙ star to be aligned perpendicular
to the orbital plane and calculate the frequencyσ̄ and width
of the resonances with the prograde and retrograde gravity (g)
modes as well as the resonances with quasi-toroidal rotational
(r) modes for varying rotation ratesΩs of the main sequence
star. For all applied forcing frequencies we determine the rate
of tidal energy and angular momentum exchange with the com-
panion. In a rotating star tidal energy is transferred froml = 2
g-modes to g-modes of higher spherical degree (l = 4, 6, 8, . . .)
by the Coriolis force. These latter modes have shorter wave-
length and are damped more heavily, so that thel = 2 resonant
tidal interaction tends to be reduced for large rotation ratesΩs.
On the other hand, the density of potential resonances (a broad
l spectrum) increases. We find several inertially excited unsta-
ble l > 4 g-modes, but not more than one (retrograde) unstable
l = 2 g-mode and that only for rapid rotation. Our numerical
results can be applied to study the tidal evolution of eccentric
binaries containing early type B-star components.

Key words: Hydrodynamics– Stars: binaries: close–
oscillations– rotation

1. Introduction

Zahn (1977) initiated the study of radiative damping of the dy-
namical tide as a viable mechanism for effective tidal interac-
tion in early type close binary systems. Savonije & Papaloizou
(1984) were the first to perform fully non-adiabatic calculations
of the dynamical tide and to study the interplay between stellar-
and tidal evolution which appears crucial in understandingthe
effects of tides in early type stars. More recently, Papaloizou
& Savonije (1997) and Savonije & Papaloizou (1997) (from
now on SP97) studied the effects of rotation on the dynamical
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tide. To this end a 2D implicit code was developed for which
the effects of the Coriolis force on the non-radial oscillations
are taken fully into account. These earlier studies of rotational
effects were based on a chemically homogeneous 20M⊙ star
and were focussed on the low-frequency inertial regime, i.e. to
forcing frequencies̄σ < 2Ωs, whereσ̄ is the forcing frequency
in the frame corotating with the star at a rateΩs. The present
study extends these calculations to a somewhat evolved (with
core hydrogen abundanceXc = 0.4) 10 M⊙ star whereby the
forcing frequencȳσ runs from low (high radial order g-modes)
to high frequencies (up to g1). The motivation for this work is
that we intend to apply the calculated energy and angular mo-
mentum exchange rates with the companion to study the tidal
evolution of eccentric early type binary systems. Recentlysev-
eral new studies of tidal evolution in eccentric early type bi-
naries (with a compact companion) have appeared (e.g. Kumar
& Goodman 1996; Lai 1997). However, these studies have not
considered the important effect of rotational (r) modes on the
tidal exchange of angular momentum in eccentric binary sys-
tems. We anticipate interesting tidal effects in eccentricbina-
ries by the counteracting effects of resonant prograde g-modes
and retrograde r-modes when the early type component is rotat-
ing near its ‘pseudo’ synchronous rate at periastron. This will
be studied in a following paper.

2. Basic equations

We consider a uniformly rotating, early type star with massMs

and radiusRs in a close binary with circular orbit with angular
velocity ω and orbital separationa. We assume the stellar an-
gular velocity of rotationΩs to be much smaller than its break-
up speed, i.e.(Ωs/Ωc)

2 ≪ 1, with Ω2
c = GMs/R3

s , so that
effects of centrifugal distortion (∝ Ω2

s ) may be neglected in
first approximation. We wish to study the response of this uni-
formly rotating star to a perturbing time-dependent tidal force.
The Coriolis acceleration is proportional toΩs and we take its
effect on the tidally induced motions in the star fully into ac-
count. We use spherical coordinates(r, ϑ, ϕ), with origin at the
stellar centre, wherebyϑ = 0 corresponds to its rotation axis
which we assume to be parallel to the orbital angular momen-
tum vector. We take the coordinates to be non-rotating.
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As is well known, in a non-rotating star the solutions
of the linearized non-radial stellar oscillation equations can
be expressed in terms of spherical harmonics, i.e. the spa-
tial part of each mode can be fully separated into r-,ϑ-
and ϕ-factors (e.g. Ledoux & Walraven 1958)U(r, ϑ, ϕ) =
u(r)Pm

l (cosϑ) e−imϕ, wherePm
l represents the associated

Legendre polynomials forl andm.
The introduction of the Coriolis force, however, destroys

the full separability of the oscillation equations, it onlybeing
retained for theϕ-dependence. It turns out (e.g. Berthomieu
et al. 1978) that two independent sets of approximately
spheroidal oscillation modes exist: modes in which the density
perturbation isevenwith respect to reflection in the equatorial
plane, which havel − |m| even valued, and modes withodd
symmetry for the density, havingl − |m| odd valued. In ad-
dition, for eachl, there is a set of quasi-toroidal r-modes (e.g.
Papaloizou & Pringle 1978) which couple with the spheroidal
modes ofl ± 1.

Let us denote perturbed Eulerian quantities like pressure
P ′, densityρ′, temperatureT ′ and energy fluxF ′ with a prime.
The linearized hydrodynamic equations governing the non-
adiabatic response of the uniformly rotating star to the perturb-
ing potentialΦT may then be written
[(

∂

∂t
+ Ωs

∂

∂ϕ

)
vi

]
êi + 2Ωsk × v′

= −
1

ρ
∇P ′ +

ρ′

ρ2
∇P −∇ΦT, (1)

(
∂

∂t
+ Ωs

∂

∂ϕ

)
ρ′ + ∇ · (ρv′) = 0, (2)

(
∂

∂t
+ Ωs

∂

∂ϕ

)
[S′ + v′ · ∇S] = −

1

ρT
∇ · F ′, (3)

F ′

F
=

(
dT

dr

)−1 [(
3T ′

T
−

ρ′

ρ
−

κ′

κ

)
∇T + ∇T ′

]
, (4)

whereêi are the unit vectors of our spherical coordinate sys-
tem,k is the unit vector along the rotation axis,v′ denotes the
velocity perturbation,κ the opacity of stellar material andS
its specific entropy. These perturbation equations represent, re-
spectively, conservation of momentum, conservation of mass
and conservation of energy, while the last equation describes
the radiative diffusion of the perturbed energy flux. For sim-
plicity we adopt the Cowling (1941) approximation, i.e. we ne-
glect perturbations to the gravitational potential causedby the
stellar distortion. We also neglect perturbations of the nuclear
energy sources and of convection.

For a circular orbit (with orbital angular speedω) the com-
panion’s perturbing potential can be expanded as the real part
of (e.g. Morse & Feshbach 1952):

ΦT(r, ϑ, ϕ, t) = −
GMp

a

∞∑

l=0

l∑

m=0

ǫm

(l − m)!

(l + m)!

( r

a

)l

· Pm
l (cosϑ)Pm

l (cos
π

2
) eim(ωt−ϕ) (5)

whereMp is the companion’s mass,a the orbital separation,
Pm

l (cosϑ) the associated Legendre polynomial andǫm = 1
for m = 0 and 2 form > 0. We will consider only the domi-
nantl = 2 components of the tidal forcing. Adopting the same
azimuthalm symmetry and time dependence for the perturbed
quantities as the forcing potential, the perturbed velocity can
be expressed asv′ = iσ̄ξ, whereσ̄ = m(ω−Ωs) is the forcing
frequency felt by a mass element in the uniformly rotating star
andξ is the displacement vector.

The perturbations can be written as e.g.ξr(r, ϑ, ϕ, t) =

ξ̂r(r, ϑ) eim(ωt−ϕ) whereξr is the radial component of the dis-
placement vector, whilêξr(r, ϑ) is assumed complex to de-
scribe the azimuthal phase shift with respect to the forcingpo-
tential (5) induced by any occurring dissipation, e.g. turbulent
viscosity or radiative damping, see energy equation below.

The current equations contain extra terms compared to
those in SP97 because of the occurring mean-molecular weight
(µa)-gradients near the edge of the convective core. We assume
diffusive mixing to be negligible on the (oscillation) timescales
under consideration, so that the Lagrangian variation of the

mean molecular weightδµa = 0 or µ′

a

µa
= −d ln µa

dr
ξr. We can

thus use

P ′

P
= χρ

(
ρ′

ρ

)
+ χT

(
T ′

T

)
− χµ

d lnµa

dr
ξr (6)

to eliminate the pressure perturbation, whereχρ = ∂ ln P
∂ ln ρ

,

χT = ∂ ln P
∂ ln T

and χµ = ∂ ln P
∂ lnµa

follow from the equation of
state.

Writing for simplicity from now onξr for ξ̂r(r, ϑ), etc.,
while dividing out the factoreim(ωt−ϕ), Eqs. 1–4 yield the
seven scalar Eqs. 7–13 given below.

First of all we write out the perturbed equation of continuity

ρ′

ρ
= −

1

r2ρ

∂

∂r

(
r2ρξr

)
−

1

r sin ϑ

∂

∂ϑ
(sin ϑ ξϑ)+

im

r sin ϑ
ξϕ.(7)

We can use (7) to eliminate the term∂ξr

∂r
introduced by the

radial derivative of the pressure perturbation (through (6)) from
the radial equation of motion, so that the latter equation can
be expressed (after adding viscous terms to introduce turbulent
damping in convective regions, see SP97) as
[
ρσ̄2 −

Pχµ

ρr2

d lnµa

dr

d(ρr2)

dr
+ P

d(χµ
d lnµa

dr
)

dr

+χµ

dP

dr

d lnµa

dr

]
ξr +

[
2iρσ̄Ωs sin ϑ + im

Pχµ

r sin ϑ

d lnµa

dr

]
ξϕ

+iσ̄
ρζ

r2

[(
1 − µ2

) ∂2

∂µ2
ξr − 2µ

∂

∂µ
ξr −

4

1 − µ2
ξr

]

+
iσ̄

r2

∂

∂r

(
ρζr2 ∂ξr

∂r

)
−

Pχµ

r sin ϑ

d lnµa

dr

∂

∂ϑ
(sin ϑ ξϑ)
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+

[
dP

dr
− Pχµ

d lnµa

dr
− P

dχρ

dr
− χρ

dP

dr

](
ρ′

ρ

)

−Pχρ

∂

∂r

(
ρ′

ρ

)
−

[
P

dχT

dr
+ χT

dP

dr

] (
T ′

T

)

− PχT

∂

∂r

(
T ′

T

)
= −ρ

∂ΦT

∂r
(8)

whereµ = cosϑ andζ is the coefficient of turbulent viscosity
defined below. Theϑ-equation of motion becomes

ρσ̄2ξϑ + iσ̄
ρζ

r2

[(
1 − µ2

) ∂2

∂µ2
ξϑ − 4µ

∂

∂µ
ξϑ −

5 − 2µ2

1 − µ2
ξϑ

]

+
iσ̄

r2

∂

∂r

(
ρζr2 ∂ξϑ

∂r

)
+ [2iρσ̄Ωs cosϑ] ξϕ

−

(
Pχρ

r

)
∂

∂ϑ

(
ρ′

ρ

)
−

(
PχT

r

)
∂

∂ϑ

(
T ′

T

)

+
Pχµ

r

d lnµa

dr

∂ξr

∂ϑ
= −

ρ

r

∂ΦT

∂ϑ
. (9)

Theϕ-equation of motion can be expressed as

ρσ̄2ξϕ −

[
2iρσ̄Ωs sin ϑ + im

Pχµ

r sin ϑ

d lnµa

dr

]
ξr

− [2iρσ̄Ωs cosϑ] ξϑ +

[
imPχρ

r sin ϑ

](
ρ′

ρ

)

+

[
imPχT

r sin ϑ

] (
T ′

T

)
=

imρ

r sin ϑ
ΦT. (10)

By applying the thermodynamic relation

δS = S′ + ξ · ∇S =
P

ρT

1

Γ3 − 1

(
δP

P
− Γ1

δρ

ρ

)

where the symbolδ denotes a Lagrangian perturbation andΓj

the adiabatic exponents of Chandrasekhar, the perturbed energy
equation can be expressed as
[
d lnP

dr
− Γ1

d ln ρ

dr
− χµ

d lnµa

dr

]
ξr + [χρ − Γ1]

(
ρ′

ρ

)

+

[
χT + iη

( m

r sin ϑ

)2
(

d lnT

dr

)−1
](

T ′

T

)

−iη

[
1

r2

∂

∂r

(
r2 F ′

r

F

)
+

d lnF

dr

(
F ′

r

F

)]

+ iη

[
sin ϑ

r

∂

∂µ

(
F ′

ϑ

F

)
−

cosϑ

r sin ϑ

(
F ′

ϑ

F

)]
= 0 (11)

whereη = (Γ3 − 1) F
σ̄P

is a local characteristic radiative diffu-
sion length in the star, withF the unperturbed (radial) energy
flux. We have eliminatedF ′

ϕ with help of theϕ-component of
the radiative flux equation. In the stellar interiorη ≃ 0 which

corresponds to almost adiabatic response. However, even for
‘high’ frequencies̄σ/Ωc ≈ 1 the diffusion lengthη becomes
comparable to the scale height when the stellar surface is ap-
proached. The associated radiative energy losses give riseto
damping of the tidally excited oscillations whereby the result-
ing phase lag with the companion generates a torque.

The perturbed radial radiative energy flux is given by

(
F ′

r

F

)
=

(
d lnT

dr

)−1
∂

∂r

(
T ′

T

)
− (κT − 4)

(
T ′

T

)

− (κρ + 1)

(
ρ′

ρ

)
+ κX

∂ lnX

∂r
ξr (12)

whereκρ = ∂ ln κ
∂ ln ρ

, κT = ∂ ln κ
∂ lnT

andκX = ∂ ln κ
∂ ln X

, with X for
the hydrogen abundance.

Finally theϑ-component of the perturbed flux follows as

(
F ′

ϑ

F

)
=

(
d lnT

dr

)−1
1

r

∂

∂ϑ

(
T ′

T

)
. (13)

2.1. Boundary conditions

The differential equations are supplemented by the following
boundary conditions: at the stellar centre we requireξr andF ′

r

to vanish, while at the stellar surface, we require the Lagrangian
pressure perturbations to vanish

P ′

P
+

d lnP

dr
ξr = 0 (14)

and the temperature and flux perturbations to fulfill Stefan–
Boltzmann’s law

F ′
r

F
=

(
2

r
+ 4

d lnT

dr

)
ξr + 4

(
T ′

T

)
. (15)

Furthermore,ξϑ andF ′
ϑ must vanish on the rotation axis while

in view of the symmetry of the tidal force we adopt mirror sym-
metry about the equatorial plane, i.e., forϑ = π/2 we also
requireξϑ andF ′

ϑ to vanish.

2.2. The unperturbed stellar model

A recent version (Pols et al. 1995) of the stellar evolution code
developed by Eggleton (1972) was used to construct the un-
perturbed stellar input model. The model represents a some-
what evolved main-sequence star of 10M⊙ with core hy-
drogen abundance ofX = 0.4 and Z = 0.02. The mass
in the convective core is approximately 2.1M⊙. The model
comprises 1200 (radial) zones and was constructed with the
OPAL opacities (Iglesias & Rogers 1996). The stellar radius
equalsRs = 3.825 × 1011 cm, while the effective temper-
atureTeff = 2.314 × 104 K and the stellar moment of in-
ertia Is = 1.56 × 1056 g cm2. The break-up angular speed
equalsΩc = 1.54 × 10−4 s−1. The Brunt-Väisälä frequency

A = 1
ρ

dP
dr

(
1
ρ

dρ
dr

− 1
Γ1P

dP
dr

)
given in units ofΩc, is plotted in

Fig. 1. The Brunt-Väisälä frequency attains large values in the
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Fig. 1. Characteristics of the stellar model: continuous curve
represents the Brunt-Väisälä frequencyνBV = signA

√
|A| in

units of the stellar break-up speedΩc as a function of radial
mesh number. The dashed curve shows the forcing frequencyσ̄
for which the corresponding oscillation period equals the local
thermal timescale.

region where the convective core has retreated during the evo-
lution and a composition gradient is formed (the ‘µa-gradient
zone’). It can also be seen that there are two shallow convec-
tive shells near the stellar surface. The dashed curve showsthe
‘thermal frequency’νth = 2π/τth, whereτth = ρκ(Rs−r)2β

c(1−β)

is a local thermal timescale,κ is the opacity,c the velocity of
light, andβ the ratio of gas to total pressure. Non-adiabatic ef-
fects become important at locations whereνth is comparable or
larger than the forcing frequencȳσ. It can be seen in Fig. 1 that
this is the case for the layers in and above the inner convective
shell. At the inner edge of this shellνth ≃ Ωc, at the outer edge
νth ≃ 5Ωc.

2.3. Turbulent viscosity in convective regions

In convective regions the equations of motion are supplemented
by extra terms to account for the occurring turbulent dissi-
pation, as described in PS97. For the coefficient of turbulent
viscosity ζ we adopt a simple local mixing length approxi-
mation:ζ = α Hp vc, whereHp is the pressure scale height,

α = 2 is the mixing length parameter, andvc =
(

F
10ρ

) 1

3

is

a characteristic convective velocity. For high oscillation fre-
quencies the viscosity is reduced (Goldreich & Keeley 1977)

by a factormin
(
1, (σ̄τc)

−2
)

, where τc = αHp/vc is the

convective timescale. We limitζ to be everywhere less than
5 × 1012 cm2 s−1.

In the µa-gradient zone adjacent to the convective core,
where the Brunt-Väisälä fequency attains large values,the tidal
response has short wavelength and cannot be resolved on the
grid when the forcing frequency|σ̄| drops to small values. We
retain some viscosity in this region by letting the viscosity de-
cay outwards from the boundary of the convective core (atrc)

asζ ∝ exp−[(r − rc)/(0.1 Hp)]
2. Note in this respect that,

although the composition gradient suppresses radial overshoot-
ing, horizontal turbulence may be well developed in this bound-
ary layer between the core and envelope. Also the oscillation
amplitudes are relatively large in this region.

3. The torque integral: transfer of energy and angular
momentum

For a circular orbit the tidal potential (5) has nom = 0 compo-
nent. However, since we wish to apply our results to eccentric
binaries for which the tide has an axisymmetric time dependent
component we replace the factoreim(ωt−ϕ) by ei(σt−mϕ) so
that we can studym = 0 forcing. Once we have solved Eqs. 7–
13 for a given stellar rotation rateΩs and a given (l,m,σ), i.e.
for a term

Φlm = −flm rlPm
l (cosϑ) cos(σt − mϕ) (16)

in the forcing potential (5), whereflm ∝ Mp/al+1, the rate
of angular momentum exchange with the companion’s orbital
motion can be calculated as an integral of the tidal force per
unit volumeF lm = −ρ∇Φlm over the volume of the star

Ḣs =

∫

⋆

r × F lm dV

= Re

∫ ∫ ∫
−

∂Φlm

∂ϕ
ρ′(r, ϑ) r2 sin ϑ dϑ dϕdr

= mπflm

∫ ∫
Im(ρ′)Pm

l (cosϑ) rl+2 sin ϑ dϑ dr

≡ m Tlm (17)

whereRe andIm stand for the real and imaginary part. Since
the torque and the stellar and orbital rotation vectors are all
aligned, only the magnitude of the transferred spin and orbital
angular momentum needs to be considered. The rate of tidal
energy exchange with the (10M⊙) star can be expressed as

Ės =

∫

⋆

F lm · v dV

= −Re

∫

⋆

ρ0∇Φlm · v′ dV − Re

∫

⋆

ρ′∇Φlm · vrot dV. (18)

Substitutingv′ = iσ̄ξ andvrot = Ωsr sinϑ êϕ we find, after
taking the real part, that the second integral on the right hand
side equalsmΩsTlm. The first integral on the right hand side
can be rewritten by applying the equation of continuity (7).Par-
tial integration then shows that this term is also proportional to
Tlm and equals̄σTlm. Concluding, we find for the tidally in-
duced rate of respectively the energy and angular momentum
change in the star:

Ės = σTlm (19)

Ḣs = mTlm (20)

where the torque integral is given by

Tlm = πflm

∫ 1

−1

∫ Rs

0

Im (ρ′(r, µ)) Pm
l (µ) rl+2 dµ dr (21)

with µ = cosϑ.
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Fig. 2. Torque integralTlm versus forcing frequencȳσ for forcing with l = 2 andm = 2 on a 10M⊙ star rotating at twenty
percent of breakup speed. Prograde and retrograde g2

±k-modes withk = 4 and10 are labeled, as well as the location of the
r-modes. Crosses denote calculated points, while the drawncontinuous curve represents a fit, see text.

4. Numerical procedure

The set of partial differential Eqs. 7–13 with boundary condi-
tions (14) and (15) is approximated by a set of finite difference
equations (FDE’s) on a 2D grid inr andϑ, i.e. on a meridional
plane through the star. The FDE’s are similar (except for the
extra terms associated with theµa-gradient) to those described
in SP97 and are solved by the same implicit scheme as given
in that paper. We use a grid of 1200 zones in the radial and
46 zones in theϑ direction, analogous to the one used in SP97.
Since the radial grid is staggered, with part of the unknown per-
turbations defined on the odd and the rest on the even zones, the
effective number of radial zones is 600.

For given values of (l, m, σ) in the applied forcing potential
(16) and for a given uniform rotation rateΩs of the star we
can thus obtain the stellar response, i.e. the complex valued

perturbationsξr, ξϑ, ξϕ,
(

F ′

r

F

)
,
(

F ′

ϑ

F

)
,
(

F ′

ϕ

F

)
and

(
ρ′

ρ

)
,
(

T ′

T

)

on the 2D grid in the meridional plane of the perturbed star. By
multiplying these values with the common factorei(σt−mϕ) we
obtain the non-adiabatic stellar response to the prescribed tidal
forcing throughout the star.

Because the 2D implicit numerical scheme involves many
(complex) matrix invertions the solution requires large com-
puter facilities and it is essential to use an economic method
for tracing the many resonances with the free stellar oscilla-
tion modes required to study the dynamical tide in a rotating
star. The resonances are searched in frequency (σ̄) space by by
tracing the maximum of the functionΨ(σ̄) =

∑
i,j ξi,j · ξ∗

i,j

where ξ is the displacement vector, a∗ denotes complex
conjugation andi and j run over the radial andϑ grid, re-
spectively. The maxima ofΨ are searched by using a robust
method based on cubic interpolation (NAG library routine)
which requires the calculation of the first derivativedΨ

dσ̄
=

∑
i,j

(
ξi,j ·

∂ξ∗

i,j

∂σ̄
+ ξ∗

i,j ·
∂ξi,j

∂σ̄

)
. Fortunately, the derivatives

∂ξ
∂σ̄

and ∂ξ∗

∂σ̄
can be obtained cheaply once we have obtained

the solution of the perturbationsξ, etc. For by differentiat-
ing Eqs. 7–13 with respect tōσ we arrive at the same equa-
tions, except that the unknowns are now the derivatives of
the perturbations (i.e.∂ξ

∂σ̄
instead ofξ, etc.), while the right

hand sides can be expressed in terms of the solved perturba-
tions. The right hand side for equation (8) for example becomes
−2ρσ̄ξr − 2iρΩs sinϑ ξϕ. By storing the relevant inverted ma-
trices during the solution procedure for the perturbationswe
then can simply combine the stored matrices with the adapted
right hand sides to obtain a solution for∂ξ

∂σ̄
at almost no extra

costs.

5. Results

From now on we will express all frequencies in units ofΩc =
1.54 × 10−4 s−1. By varying the forcing frequencȳσ = σ −
mΩs (in the corotating frame) for thel = 2 terms in the forcing
potential (16) and by calculating the stellar response, we can
search for resonances with the free stellar oscillation modes,
applying the procedure described in the previous section. We
adopted various values for the rotation rate of the 10M⊙ star:
Ωs = 0, 0.1, 0.2, 0.3 and 0.4.

We traced the resonances with g2
k-modes (up tok = 20)

for both prograde and retrograde g2-modes. The lower index
of g denotesk, the number of radial nodes in the displace-
ment eigenvector, whereby the minus sign denotes a retrograde
mode. Note that we characterize retrograde modes (i.e. modes
that propagate in the direction counter to the stellar rotation)
by negative values of the oscillation frequencyσ̄, i.e. we take
m > 0 for both prograde and retrograde modes. For rotating
stars there is in addition a compact spectrum of r-modes, for
slightly negative frequencies. Thel = 2 component of the tidal
potential excites r-modes with a predominantl = 3 component.
Note that because we consider binary systems in which both
stars are aligned perpendicular to the orbital plane the (l = 2)
forcing has onlym = 0 and|m| = 2 components, i.e.f21 = 0.
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Fig. 3. Torque integralTlm versus (retrograde) forcing frequencyσ̄ for forcing with l = 2 andm = 2 on a 10M⊙ star rotating
at fourty percent of breakup speed. Retrograde g2

−k-modes withk = 4 and10 (unstable) are labeled, as well as the r-modes with
k = 2 andk = 5. Crosses and circles (unstable modes) denote calculated points. The peaks not fitted by the continuous curve
correspond to resonances with higher spherical degreesl = 4, 6, . . .

We can thus limit our calculations to either|m| = 2 or m = 0
resonances.

Note further that for all forcing frequencies̄σ we keep
the factorflm in the forcing potential (16) constant by adopt-
ing a fixed valuea = 4Rs and Mp = 1M⊙. Because we
solve the linearized problem all listed values for the tidal
torque integral (21) can be simply scaled to the value for
a required binary configuration by multiplying with a factor
(Mp/M⊙)2 (4Rs/a)2(l+1), wherea andMp are the actual or-
bital separation and companion mass. Unless the companion is
a compact star one should of course also take into account the
(dynamical) tide in that star to determine the tidal evolution of
the binary system.

5.1. Resonance fitting

Using the technique described in Sect. 4, we determine the
resonances with g- and r-modes and evaluate the torque in-
tegral (21) from the calculated stellar response in the merid-
ional plane of the 10M⊙ star for all applied forcing frequen-
cies. Close to each resonance we fit the obtained values for the
torque integral by the resonance curve of a damped harmonic
oscillator

Tlm(σ̄) =
Tlm,0(

σ̄2−σ̄2

0

σ̄0∆σ̄

)2

+ 1
(22)

with eigenfrequencȳσ0, resonance full width∆σ̄ and peak
valueTlm,0. As a consequence of the Coriolis force, the stel-
lar response to thel = 2 forcing contains a range ofl-values
(when we expand in spherical harmonics). However, we fit only
the resonances with predominantlyl = 2 (g-modes) orl = 3
(r-modes). In betweenl = 2 resonances we assumeTlm(σ̄) can
be approximated by adding the contributions of the two adja-
cent l = 2 resonances. The detailed results of our numerical

calculations are listed in Tables A1 to A4 in the appendix. Note
that for a non-rotating star thel = 2 spectrum is degenerate in
m, so that forΩs = 0 the resonance frequencies ofl = m = 2
g-modes are given by Table A1.

It can be seen that, as expected, form = 0 the g-mode res-
onance frequencies̄σ0 increase withΩs, as is true for|σ̄0| for
the retrogradem = 2 g-modes and the r-modes. However, the
progradem = 2 g-mode resonances shift tolower oscillation
frequencies asΩs increases. Note in this respect that (approx-
imate) conservation of radial vorticity, in combination with an
increasing radial component of ambient rotationΩs cosϑ to-
wards small colatitudes, tends to give retrograde wave propa-
gation (see e.g. Unno et al. 1989).

5.2. Prograde and retrograde g-mode resonances

In Figs. 2 and 3 we show the tidal torque integralTlm versus
forcing frequencȳσ for a 10M⊙ star rotating at a rate of 0.2
and 0.4, respectively. Crosses and open circles correspondto
numerical results, while the continuous curve correspondsto
the above mentioned fit to individual resonances. When the
10M⊙ star rotates in the same sense as the orbital motion of its
companion, the latter cannot excite modes with frequency (in
the frame corotating with the star) less thanσ̄ = −mΩs. Never-
theless, we have calculated the whole range|σ̄| ≤ 2. In Fig. 3,
the circles and the dashed fit curve represent unstable modes
for which the torque integral has a reversed sign compared toσ̄
(see Sect. 5.4).

The prograde g-modes shift to substantially larger oscil-
lation frequencies compared to the unevolved ZAMS stellar
model of the same mass. The retrograde g-modes shift to more
negative frequencies, so that forΩs = 0.2 no strong retrograde
g-modes can be tidally excited, unless the rather unlikely case
of retrograde stellar rotation applies. However, when the stellar
rotation rate is increased more and more retrograde g-modes
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are shifted into the ‘tidal window’: up to g2−13 for Ωs = 0.3,
and up to g2−10 for Ωs = 0.4.

But note that when the binary is eccentric and the early type
star’s spin is approximately synchronized at periastron, strong
(retrograde) r-modes can be tidally excited even for relatively
low stellar rotation rates.

For small frequencies|σ̄| viscous damping in theµa-
gradient zone becomes significant as the local wavelength of
the response gets short and the adopted turbulent viscositygets
large due to the comparable timescale of ‘convection’ and os-
cillations (Sect. 2.3). Therefore the values forTlm in the re-
gion between g2−20 and the r-modes (and similarly for the cor-
responding positive frequency range) depend on the uncertain
assumptions about the viscous dissipation. Switching off all
viscous dissipation in theµa-gradient zone yields forΩs = 0.4
in the frequency range−0.4 < σ̄ < −0.2 torque values about
an order of magnitude smaller than shown in Fig. 3.

5.3. Effects of rapid rotation

Although centrifugal effects are no longer negligible for the
high rotation rates (Ωs = 0.4) considered here the results are
still of interest, even though centrifugal distortion is neglected,
because they show the effect of strong coupling by the Coriolis
force. Note in this respect that in the higher density interior
regions the local break up speed is substantially larger than Ωc.
A full calculation with centrifugal distortion included would
require a much larger computing effort.

The Coriolis force gives rise to strong coupling with modes
of higher spherical degrees, so that forl = 2 forcing resonances
with l = 4, 6, 8, . . . also become prominent, especially when
located near al = 2 resonance. Because the tidal forcing has
l = 2 symmetry the latter resonances generally dominate, but
all neighbouring resonances withl > 2 are also excited, so
that the tidal response contains significant power over a broad
range of (even)l-values. Often this makes mode identification
(by means of a decomposition in Fourier-Legendre series of the
eigenfunctions, see SP97) difficult since the power in different
l-components are often comparable. One should consider the
excited oscillation as a complex of coupled modes. Since, for a
given frequency the g-modes with largerl have shorter wave-
length, damping is enhanced, so that for large rotation rates the
oscillation amplitude and the effective torque is reduced.This
can be observed in Tables A1–A3, which show that the reso-
nance areaπ∆σ̄Tlm of the l = 2 g-modes initially increases
with Ωs but generally decreases when the rotation rate and in-
ertial damping becomes large.

The indirectly excited higherl-resonances correspond to
the peaks that have not been fitted in Fig. 3. This figure shows
part of the retrograde oscillation spectrum forΩs = 0.4. Most
of the stable unfitted peaks between g2

−3 and g2−5 correspond
to what are (predominant)l = 4 resonances, except for the two
nearest resonances around g2

−3, which are identified as g8−12

and g12−18. The unfitted peaks between g2
−6 and g2−10 are all

(predominant)l = 4 resonances, and can be identified as g4
−12

to g4
−18 consecutively. The g2−8 and g4−14 resonances can hardly

Table 1. Unstablem = 2 modes forΩs = 0.4. The listed
oscillation periodsPin are relative to the inertial frame, a minus
sign denoting retrograde propagation.

mode Re(σ̄) Im(σ̄) Pin (d)
g8

−12 −1.3826 −1.1 × 10−5
−0.81

g10

−17 −1.3451 −5.3 × 10−5
−0.87

g6

−13 −1.1524 −1.2 × 10−5
−1.34

g2

−10 −0.7602 −1.2 × 10−4 11.86

g6

14 1.0580 −4.6 × 10−5 0.25
g6

13 1.1261 −4.3 × 10−5 0.25
g6

8 1.4610 −1.0 × 10−4 0.21
g8

8 2.1887 −2.4 × 10−5 0.16

be distinguished from each other, they lie so close togetherthat
they form a strongly coupled complex, whereby the g4

−14 reso-
nance peaks one order of magnitude above thel = 2 resonance
peak. Another symbiosis occurs for g2

−10 and g4−18, whereby,
however, the former mode appears unstable and the latter sta-
ble. In this frequency range the resonances withl > 4 are heav-
ily damped as they approach their asymptotic low frequency
regime.

For still lower frequencies in the range aroundσ̄ = −0.5
the calculated response in between resonances is significantly
stronger than the wings of the fittedl = 2 resonance curves
due to the smeared out contributions of higherl components. At
these frequencies the spectrum ofl = 4 modes starts to become
dense whereby radiative and viscous damping gets heavy due
to the short wavelength of the response.

5.4. Unstable modes

It is now known (e.g. Dziembowski & Pamyatnykh 1993;
Gautschy & Saio 1993) that most main sequence OB stars show
unstable non-radial modes driven by theκ-mechanism associ-
ated with the metal opacity bump around1.5 × 105 K in the
OPAL opacity tables (Iglesias & Rogers 1996). Two necessary
conditions for a mode to be unstable by theκ mechanism are
that the Lagrangian pressure perturbationδP/P must reach a
maximum value (coming from the stellar centre) in the driv-
ing zone and that2π/σ̄ is of order the thermal timescale in
that region (e.g. Dziembowski et al. 1993). Obviously, when
|σ̄| ≪ νth ≡ 2π/τth in the ionization region that region is
strongly non-adiabatic and no driving can occur. The ‘thermal
frequency’νth (Sect. 2.2) in the lower convective shell asso-
ciated with the opacity bump varies between approximately 1
and 5.

When the stellar rotation rate is increased some inertially
excited (l > 2) modes in our 10M⊙ model appear which have
a torque integralTlm with a sign opposite to that of̄σ, which in-
dicates instability. This can be checked by forcing the starwith
a complex frequency (Papaloizou et al. 1997) and searching for
maximum amplitude in complex frequency space. It appears
that the fundamental p20 mode with|σ̄| ≃ 3.3 is unstable for all
rotation ratesΩs = 0 to 0.4. There are more unstable p-modes
which we have not studied. Table 1 lists the unstable g-modes
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Fig. 4. Spectrum of r-modes: torque integralTlm versus forcing
frequencȳσ for forcing with l = 2 andm = 2 on a 10M⊙ star
rotating at twenty percent of breakup speed. Crosses denote
calculated points, the drawn continuous curve represents afit.

(prograde and retrograde) that are found for the highest rotation
rateΩs = 0.4.

Only for the highest rotation rate (Ωs = 0.4) an unsta-
ble l = 2 g-mode appears: the retrograde g2

−10 mode, with
σ̄ = −0.76, which is located close to the stable g4

−18 res-
onance. The g2−10 mode has rather low frequency for theκ-
mechanism and is a bit peculiar in that it seems mixed with
a strong short wavelength mode trapped in theµa gradient
zone. The oscillation period (in inertial frame) of the unstable
l = 2 mode happens to be quite long: about 12 days, while the
adopted stellar rotation period is 1.2 days. We also find four
unstable prograde g-modes, see Table 1. Our list of unstable
modes is probably not exhaustive (except forl = 2), because
we preferentially find those unstable modes which happen to be
located nearl = 2 resonances. Unstable modes, when excited
by the tidal force, could give rise to tidal evolution counter to
the normal direction of evolution.

5.5. r-modes

For small negative forcing frequencies around (e.g. Papaloizou
& Pringle 1978):σ̄ ≃ − 2mΩs

l(l+1) strong resonances occur with
quasi-toroidal oscillation modes analogous to Rossby modes
in the earth’s atmosfere (e.g. Pedlosky 1979). For these modes
the fluid elements oscillate almost exclusively in the horizontal
direction whereby the restoring force is provided by the Corio-
lis force (conservation of radial component of vorticity).Fig. 4
shows the variation of the torque integralTlm as the forcing
frequency runs through the r-mode region for a star rotating
with Ωs = 0.2. The adopted turbulent viscosity law in theµa

gradient zone adjacent to the convective core causes the r-mode
resonances to become rather broadened compared to the results
for ZAMS models (SP97). When we switch off the viscosity in
theµa-gradient zone the peak values for the torque become one

or even two orders of magnitude higher, with a corresponding
decrease of the resonance width. However, this will not make
a large difference for the overall tidal evolution of the binary
because the total area≃ π∆σ̄Tlm,0 of each resonance remains
approximately constant. The resonant interaction with r-modes
gets stronger with increasing rotation rateΩs. This can be seen
in Table A4 where the resonance area increases monotonically
with Ωs.

5.6. Excitation of inertial modes in the convective core

Similar to the results obtained in SP97 for a 20M⊙ ZAMS
star, we find inertial wave oscillations in the convective core
and in the convective shell region when the forcing frequency
falls in the inertial range|σ̄| < 2Ωs. When we artificially cut
the radiative envelope from our stellar model we find a dense
spectrum of modes in the core. For some frequencies the reso-
nances in the core appear very strong. The general amplitudes
are an order of magnitude larger (or more) compared to the
full stellar model where the inertial waves can leak out of the
core. This would suggest that the inertial modes could possibly
excite gravity waves in the envelope (SP97). However, when
we consider a model in which the convective core is cut away,
we find in this frequency region values for the torque integral
comparable to the ones calculated for the full stellar model.
Therefore it seems the inertial core modes do not significantly
contribute to the stellar torque in this somewhat evolved stellar
model. However, the oscillations in theµa-gradient zone out-
side the convective core are poorly resolved for low frequen-
cies, so that further studies with significantly more meshpoints
in this region seem required to draw firm conclusions.

6. Conclusions

We have studied the linearized non-adiabatic tidal response of
a somewhat evolved 10M⊙ main sequence star to tidal forcing
with spherical harmonics degreel = 2 and calculated the tidal
exchange of energy and angular momentum with an orbiting
companion as a function of stellar rotation rate taking the Cori-
olis force fully into account. We found, as expected, that with
increasing rotation rate the inertial coupling with higherspher-
ical degree oscillation modes gets stronger, so that when the
rotation rate becomes comparable to or larger than the tidalos-
cillation frequency a significant amount of tidal energy is trans-
ferred to these higher degree oscillations. Because of enhanced
damping of the higherl oscillations fast rotation reduces the
resonant tidal interaction withl = 2 g-modes. However, this
is compensated by the appearance of an additional spectrum of
(l > 2) resonances that can be excited by thel = 2 tide.

With progressing nuclear evolution and consequent con-
traction of the stellar core the frequency of the g-mode oscilla-
tions increases, so that the ‘gap’ between potential resonances
with strong retrograde g-modes and the strong r-modes widens.
Thereby the retrograde strong g-modes disappear from the
‘tidal window’ (σ̄res > −mΩs) so that spin-down of fast spin-
ning early type binary stars depends on excitation of strongly
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damped high radial order g-modes. This seems a not very effi-
cient mechanism unless viscous effects (e.g. in theµa-gradient
zone outside the convective core) are significant or perhaps
driving by inertial resonances in the convective core occurs.
But, when in an eccentric binary system, the early type star is
nearly corotating at periastron r-mode resonances are veryef-
ficient in spinning the star further down to (pseudo)corotation.
We expect a balance between spin-down by r-modes and spin-
up by prograde g-modes excited by the high frequency compo-
nents of the tidal forces near periastron. We intend to studythis
in a following paper, using the torque values determined here.
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Appendix A: Tables

Table A1. Fitting parameters for g2k-mode resonances with anl = 2, m = 0 tidal potential in a 10M⊙ star withXc = 0.4. All
tabulated values for the torque integral have been obtainedfor a fixed orbital separation.

Ωs = 0.0 Ωc Ωs = 0.2 Ωc Ωs = 0.4 Ωc

k σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc

1 2.2186 2.94 × 1045 1.33 × 10−5 2.2344 2.95 × 1045 1.32 × 10−5 2.2804 3.08 × 1045 1.28 × 10−5

2 1.8489 3.35 × 1045 1.34 × 10−5 1.8676 2.72 × 1045 1.64 × 10−5 1.9214 3.19 × 1045 1.38 × 10−5

3 1.3162 9.00 × 1044 1.18 × 10−5 1.3427 8.06 × 1044 1.39 × 10−5 1.4196 7.38 × 1043 1.01 × 10−4

4 1.0203 9.28 × 1042 2.70 × 10−4 1.0538 6.81 × 1042 3.63 × 10−4 1.1465 9.75 × 1042 1.87 × 10−4

5 0.9510 5.08 × 1041 1.37 × 10−3 0.9862 5.30 × 1041 1.22 × 10−3 1.0806 6.14 × 1041 1.05 × 10−3

6 0.8037 1.42 × 1042 4.12 × 10−4 0.8454 1.46 × 1042 3.89 × 10−4 0.9532 1.76 × 1042 3.03 × 10−4

7 0.7258 9.82 × 1040 1.64 × 10−3 0.7711 1.04 × 1041 1.44 × 10−3 0.8852 1.04 × 1041 1.15 × 10−3

8 0.6637 2.74 × 1039 1.03 × 10−2 0.7119 3.09 × 1039 8.43 × 10−3 0.8338 1.26 × 1040 1.68 × 10−3

9 0.6503 2.07 × 1041 7.00 × 10−4 0.7006 1.73 × 1041 7.90 × 10−4 0.8217 1.85 × 1041 5.76 × 10−4

10 0.5628 1.62 × 1042 5.22 × 10−5 0.6198 1.57 × 1042 4.88 × 10−5 0.7519 2.41 × 1041 2.49 × 10−4

11 0.4976 1.86 × 1041 1.46 × 10−4 0.5608 2.09 × 1041 1.16 × 10−4 0.6988 2.93 × 1040 6.63 × 10−4

12 0.4619 2.72 × 1040 6.96 × 10−4 0.5286 3.20 × 1040 5.07 × 10−4 0.6693 1.98 × 1040 4.92 × 10−4

13 0.4345 2.43 × 1040 2.85 × 10−4 0.5048 2.11 × 1040 2.58 × 10−4 0.6471 5.06 × 1039 4.43 × 10−4

14 0.3983 3.18 × 1040 1.76 × 10−4 0.4734 2.58 × 1040 1.70 × 10−4 0.6183 7.39 × 1039 2.33 × 10−4

15 0.3662 8.01 × 1038 2.84 × 10−4 0.4459 6.71 × 1038 2.04 × 10−4 0.5917 1.99 × 1037 3.38 × 10−4

16 0.3404 4.29 × 1038 8.72 × 10−4 0.4240 4.78 × 1038 5.53 × 10−4 0.5700 2.14 × 1038 4.55 × 10−4

17 0.3248 2.05 × 1038 2.04 × 10−3 0.4109 2.79 × 1038 1.21 × 10−3 0.5561 2.22 × 1038 9.41 × 10−4

18 0.3086 1.02 × 1037 1.60 × 10−3 0.3977 1.45 × 1037 1.00 × 10−3 0.5422 2.87 × 1037 1.34 × 10−3

19 0.2904 8.10 × 1037 1.47 × 10−3 0.3827 9.18 × 1037 9.17 × 10−4 0.5262 3.99 × 1037 7.42 × 10−4

20 0.2734 5.86 × 1036 2.82 × 10−3 0.3689 1.05 × 1037 1.95 × 10−3 0.5105 2.24 × 1037 1.04 × 10−3

Table A2. Fitting parameters forretrogradeg2
k-mode resonances with anl = 2, m = 2 tidal potential in a 10M⊙ star with

Xc = 0.4. All tabulated values for the torque integral have been obtained for a fixed orbital separation.

Ωs = 0.2 Ωc Ωs = 0.3 Ωc Ωs = 0.4 Ωc

k σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc

1 −2.2734 −5.59 × 1046 3.00 × 10−6
−2.3042 −4.05 × 1046 3.39 × 10−6

−2.3376 −2.91 × 1046 3.82 × 10−6

2 −1.9055 −8.22 × 1046 2.75 × 10−6
−1.9368 −6.93 × 1046 2.77 × 10−6

−1.9700 −5.54 × 1046 3.05 × 10−6

3 −1.3709 −1.29 × 1046 3.80 × 10−6
−1.4047 −9.02 × 1045 4.58 × 10−6

−1.4431 −3.86 × 1045 8.73 × 10−6

4 −1.0872 −6.92 × 1043 1.41 × 10−4
−1.1306 −3.91 × 1043 1.95 × 10−4

−1.1804 −2.28 × 1043 2.54 × 10−4

5 −1.0246 −1.42 × 1043 2.97 × 10−4
−1.0697 −1.41 × 1043 2.77 × 10−4

−1.1200 −1.45 × 1043 2.70 × 10−4

6 −0.8745 −1.88 × 1043 1.31 × 10−4
−0.9216 −1.28 × 1043 1.56 × 10−4

−0.9752 −8.23 × 1042 1.89 × 10−4

7 −0.8064 −1.79 × 1042 4.57 × 10−4
−0.8592 −1.40 × 1042 5.35 × 10−4

−0.9189 −1.22 × 1042 4.96 × 10−4

8 −0.7501 −1.93 × 1040 3.07 × 10−3
−0.8065 −1.17 × 1040 3.51 × 10−3

−0.8693 −8.35 × 1039 3.84 × 10−3

9 −0.7277 −7.76 × 1042 9.15 × 10−5
−0.7794 −7.71 × 1042 7.48 × 10−5

−0.8395 −7.92 × 1041 4.30 × 10−4

10 −0.6434 −2.01 × 1043 1.92 × 10−5
−0.6985 −9.26 × 1042 3.33 × 10−5

−0.7602 1.27 × 1042 1.97 × 10−4

11 −0.5827 −1.88 × 1042 5.97 × 10−5
−0.6417 −7.80 × 1041 1.05 × 10−4

−0.7054 −4.40 × 1041 1.25 × 10−4

12 −0.5525 −3.89 × 1041 2.51 × 10−4
−0.6143 −3.04 × 1041 2.75 × 10−4

−0.6795 −1.30 × 1041 4.90 × 10−4

13 −0.5238 −8.97 × 1040 5.71 × 10−4
−0.5849 −2.58 × 1041 1.31 × 10−4

−0.6491 −5.72 × 1040 4.04 × 10−4

14 −0.4899 −1.29 × 1041 2.63 × 10−4
−0.5525 −1.73 × 1041 1.60 × 10−4

−0.6170 −9.25 × 1040 1.90 × 10−4

15 −0.4612 −1.47 × 1040 1.44 × 10−4
−0.5253 −6.51 × 1039 2.64 × 10−4

−0.5900 −3.05 × 1039 2.33 × 10−4

16 −0.4390 −7.70 × 1039 4.13 × 10−4
−0.5046 −6.79 × 1039 4.52 × 10−4

−0.5695 −5.67 × 1039 4.15 × 10−4

17 −0.4259 −2.04 × 1039 6.86 × 10−4
−0.4919 −1.24 × 1039 8.12 × 10−4

−0.5564 −8.61 × 1038 9.36 × 10−4

18 −0.4101 −1.02 × 1038 6.33 × 10−4
−0.4757 −1.15 × 1038 8.91 × 10−4

−0.5391 −1.80 × 1038 6.93 × 10−4

19 −0.3935 −6.68 × 1038 9.02 × 10−4
−0.4592 −6.61 × 1038 6.68 × 10−4

−0.5216 −3.90 × 1038 6.60 × 10−4

20 −0.3787 −4.97 × 1037 2.03 × 10−3
−0.4445 −7.44 × 1037 1.29 × 10−3

−0.5060 −1.57 × 1038 9.52 × 10−4
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Table A3. Fitting parameters forprogradeg2
k-mode resonances with anl = 2, m = 2 tidal potential in a 10M⊙ star with

Xc = 0.4. All tabulated values for the torque integral have been obtained for a fixed orbital separation.

Ωs = 0.2 Ωc Ωs = 0.3 Ωc Ωs = 0.4 Ωc

k σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc

1 2.1724 1.92 × 1047 1.55 × 10−6 2.1519 2.38 × 1047 1.43 × 10−6 2.1330 2.98 × 1047 1.26 × 10−6

2 1.8006 2.31 × 1047 1.39 × 10−6 1.7781 1.49 × 1047 3.53 × 10−6 1.7587 6.71 × 1046 5.67 × 10−6

3 1.2773 8.31 × 1046 1.11 × 10−6 1.2623 6.55 × 1046 1.61 × 10−6 1.2498 5.15 × 1045 2.28 × 10−5

4 0.9780 7.33 × 1044 2.94 × 10−5 0.9638 1.37 × 1045 1.87 × 10−5 0.9532 2.65 × 1045 1.13 × 10−5

5 0.9011 3.11 × 1043 1.33 × 10−4 0.8836 3.26 × 1043 1.23 × 10−4 0.8692 6.30 × 1043 7.10 × 10−5

6 0.7629 1.46 × 1044 3.29 × 10−5 0.7508 2.57 × 1044 2.17 × 10−5 0.7425 2.56 × 1044 2.56 × 10−5

7 0.6783 9.16 × 1042 1.27 × 10−4 0.6637 1.61 × 1043 8.03 × 10−5 0.6534 2.18 × 1043 6.48 × 10−5

8 0.6171 1.00 × 1042 5.41 × 10−4 0.6044 3.29 × 1042 2.64 × 10−4 0.5959 6.81 × 1042 1.62 × 10−4

9 0.6078 2.55 × 1042 2.76 × 10−4 0.5948 1.66 × 1042 2.75 × 10−4 0.5853 7.28 × 1041 3.55 × 10−4

10 0.5242 5.54 × 1043 1.11 × 10−5 0.5152 3.09 × 1043 2.21 × 10−5 0.5103 1.05 × 1043 7.07 × 10−5

11 0.4596 9.80 × 1042 2.08 × 10−5 0.4517 3.54 × 1042 6.27 × 10−5 0.4476 4.44 × 1042 5.33 × 10−5

12 0.4213 2.92 × 1042 4.04 × 10−5 0.4125 5.07 × 1042 2.35 × 10−5 0.4077 6.97 × 1042 1.70 × 10−5

13 0.3971 6.25 × 1041 5.02 × 10−5 0.3896 2.15 × 1041 1.19 × 10−4 0.3855 2.86 × 1041 6.81 × 10−5

14 0.3627 4.18 × 1041 6.77 × 10−5 0.3565 2.87 × 1041 8.87 × 10−5 0.3536 1.76 × 1041 1.30 × 10−4

15 0.3313 3.67 × 1039 1.56 × 10−4 0.3256 1.99 × 1039 1.69 × 10−4 0.3232 1.54 × 1039 1.24 × 10−4

16 0.3057 5.00 × 1039 2.52 × 10−4 0.3004 3.85 × 1039 2.43 × 10−4 0.2981 3.26 × 1039 2.33 × 10−4

17 0.2896 9.20 × 1039 2.98 × 10−4 0.2840 9.48 × 1039 2.83 × 10−4 0.2813 9.43 × 1039 2.65 × 10−4

18 0.2758 2.06 × 1038 6.43 × 10−4 0.2711 3.34 × 1038 6.40 × 10−4 0.2690 6.06 × 1038 5.35 × 10−4

19 0.2586 5.45 × 1038 1.08 × 10−3 0.2545 5.09 × 1038 1.01 × 10−3 0.2529 4.88 × 1038 9.27 × 10−4

20 0.2421 6.70 × 1037 1.66 × 10−3 0.2384 8.80 × 1037 1.47 × 10−3 0.2370 1.05 × 1038 1.28 × 10−3

Table A4. Fitting parameters for r3k-mode resonances with anl = 2, m = 2 tidal potential in a 10M⊙ star withXc = 0.4. All
tabulated values for the torque integral have been obtainedfor a fixed orbital separation.

Ωs = 0.1 Ωc Ωs = 0.2 Ωc

k σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc

0 −3.3237 × 10−2
−5.63 × 1041 5.71 × 10−6

−6.6098 × 10−2
−2.57 × 1041 7.35 × 10−5

1 −3.3191 × 10−2
−7.69 × 1040 4.80 × 10−5

−6.5845 × 10−2
−1.20 × 1041 2.40 × 10−4

2 −3.3133 × 10−2
−1.04 × 1041 3.61 × 10−5

−6.5292 × 10−2
−1.41 × 1041 2.03 × 10−4

3 −3.3031 × 10−2
−8.46 × 1040 3.03 × 10−5

−6.4479 × 10−2
−1.03 × 1041 1.87 × 10−4

4 −3.2896 × 10−2
−4.67 × 1040 3.14 × 10−5

−6.3467 × 10−2
−5.42 × 1040 1.85 × 10−4

5 −3.2730 × 10−2
−2.43 × 1040 3.46 × 10−5

−6.2277 × 10−2
−2.96 × 1040 2.00 × 10−4

6 −3.2534 × 10−2
−1.27 × 1040 3.97 × 10−5

−6.0922 × 10−2
−1.62 × 1040 2.11 × 10−4

7 −3.2315 × 10−2
−7.93 × 1039 4.26 × 10−5

−5.9485 × 10−2
−9.14 × 1039 2.38 × 10−4

8 −3.2084 × 10−2
−4.02 × 1039 4.63 × 10−5

−5.8029 × 10−2
−5.19 × 1039 2.51 × 10−4

9 −3.1842 × 10−2
−1.48 × 1039 5.51 × 10−5

−5.6565 × 10−2
−1.89 × 1039 3.12 × 10−4

10 −3.1581 × 10−2
−2.24 × 1038 8.18 × 10−5

−5.5121 × 10−2
−3.39 × 1038 7.66 × 10−4

Ωs = 0.3 Ωc Ωs = 0.4 Ωc

k σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc σ̄0/Ωc Tlm,0 (erg) ∆σ̄/Ωc

0 −9.8117 × 10−2
−1.74 × 1041 3.87 × 10−4

−1.2898 × 10−1
−3.26 × 1041 4.25 × 10−4

1 −9.7284 × 10−2
−1.12 × 1041 9.12 × 10−4

−1.2685 × 10−1
−2.23 × 1041 6.54 × 10−4

2 −9.5530 × 10−2
−1.95 × 1041 3.78 × 10−4

−1.2328 × 10−1
−4.60 × 1041 3.18 × 10−4

3 −9.3144 × 10−2
−1.51 × 1041 3.93 × 10−4

−1.1833 × 10−1
−2.73 × 1041 4.26 × 10−4

4 −9.0057 × 10−2
−4.14 × 1040 7.76 × 10−4

−1.1145 × 10−1
−3.08 × 1040 2.42 × 10−3

5 −8.6610 × 10−2
−2.93 × 1040 4.95 × 10−4

−1.0515 × 10−1
−4.60 × 1040 5.49 × 10−4

6 −8.2982 × 10−2
−2.23 × 1040 4.14 × 10−4

−9.8842 × 10−2
−3.21 × 1040 5.26 × 10−4

7 −7.9327 × 10−2
−9.10 × 1039 5.65 × 10−4

−9.2639 × 10−2
−7.71 × 1039 1.12 × 10−3

8 −7.5855 × 10−2
−5.14 × 1039 6.24 × 10−4

−8.6945 × 10−2
−5.05 × 1039 1.08 × 10−3

9 −7.2437 × 10−2
−2.03 × 1039 7.43 × 10−4

−8.1781 × 10−2
−3.74 × 1039 7.49 × 10−4

10 −6.9712 × 10−2
−2.28 × 1038 3.98 × 10−3

−7.7343 × 10−2
−3.83 × 1038 1.02 × 10−3


