
Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://hdl.handle.net/11245/2.59678

File ID uvapub:59678
Filename 289644.pdf
Version unknown

SOURCE (OR PART OF THE FOLLOWING SOURCE):
Type article
Title Rollout sampling approximate policy iteration
Author(s) C. Dimitrakakis, M.G. Lagoudakis
Faculty FNWI: Informatics Institute (II)
Year 2008

FULL BIBLIOGRAPHIC DETAILS:
 http://hdl.handle.net/11245/1.289644

Copyright

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or
copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content licence (like
Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
(pagedate: 2016-08-04)

http://hdl.handle.net/11245/2.59678
http://hdl.handle.net/11245/1.289644
http://dare.uva.nl

Mach Learn (2008) 72: 157–171
DOI 10.1007/s10994-008-5069-3

Rollout sampling approximate policy iteration

Christos Dimitrakakis · Michail G. Lagoudakis

Received: 22 June 2008 / Revised: 22 June 2008 / Accepted: 23 June 2008 / Published online: 10 July 2008
The Author(s) 2008

Abstract Several researchers have recently investigated the connection between reinforce-
ment learning and classification. We are motivated by proposals of approximate policy it-
eration schemes without value functions, which focus on policy representation using clas-
sifiers and address policy learning as a supervised learning problem. This paper proposes
variants of an improved policy iteration scheme which addresses the core sampling prob-
lem in evaluating a policy through simulation as a multi-armed bandit machine. The result-
ing algorithm offers comparable performance to the previous algorithm achieved, however,
with significantly less computational effort. An order of magnitude improvement is demon-
strated experimentally in two standard reinforcement learning domains: inverted pendulum
and mountain-car.

Keywords Reinforcement learning · Approximate policy iteration · Rollouts ·
Bandit problems · Classification · Sample complexity

1 Introduction

Supervised and reinforcement learning are two well-known learning paradigms, which have
been researched mostly independently. Recent studies have investigated the use of super-
vised learning methods for reinforcement learning, either for value function (Lagoudakis
and Parr 2003a; Riedmiller 2005) or policy representation (Lagoudakis and Parr 2003b;
Fern et al. 2004; Langford and Zadrozny 2005). Initial results have shown that policies can

Editors: Walter Daelemans, Bart Goethals, Katharina Morik.

C. Dimitrakakis (�)
Informatics Institute, University of Amsterdam, Kruislaan 403, 1098SJ Amsterdam, The Netherlands
e-mail: dimitrak@science.uva.nl

M.G. Lagoudakis
Department of Electronic and Computer Engineering, Technical University of Crete, Chania 73100,
Crete, Greece
e-mail: lagoudakis@intelligence.tuc.gr

mailto:dimitrak@science.uva.nl
mailto:lagoudakis@intelligence.tuc.gr

158 Mach Learn (2008) 72: 157–171

be approximately represented using either multi-class classifiers or combinations of binary
classifiers (Rexakis and Lagoudakis 2008) and, therefore, it is possible to incorporate clas-
sification algorithms within the inner loops of several reinforcement learning algorithms
(Lagoudakis and Parr 2003b; Fern et al. 2004). This viewpoint allows the quantification
of the performance of reinforcement learning algorithms in terms of the performance of
classification algorithms (Langford and Zadrozny 2005). While a variety of promising com-
binations become possible through this synergy, heretofore there have been limited practical
and widely-applicable algorithms.

Our work builds on the work of Lagoudakis and Parr (2003b) who suggested an approx-
imate policy iteration algorithm for learning a good policy represented as a classifier, avoid-
ing representations of any kind of value function. At each iteration, a new policy/classifier
is produced using training data obtained through extensive simulation (rollouts) of the pre-
vious policy on a generative model of the process. These rollouts aim at identifying better
action choices over a subset of states in order to form a set of data for training the classifier
representing the improved policy. A similar algorithm was proposed by Fern et al. (2004)
at around the same time. The key differences between the two algorithms are related to the
types of learning problems they are suitable for, the choice of the underlying classifier type,
and the exact form of classifier training. Nevertheless, the main ideas of producing training
data using rollouts and iterating over policies remain the same. Even though both of these
studies look carefully into the distribution of training states over the state space, their major
limitation remains the large amount of sampling employed at each training state. It is hinted
(Lagoudakis 2003), however, that great improvement could be achieved with sophisticated
management of rollout sampling.

Our paper suggests managing the rollout sampling procedure within the above algorithm
with the goal of obtaining comparable training sets (and therefore policies of similar qual-
ity), but with significantly less effort in terms of number of rollouts and computation ef-
fort. This is done by viewing the setting as akin to a bandit problem over the rollout states
(states sampled using rollouts). Well-known algorithms for bandit problems, such as Upper
Confidence Bounds (Auer et al. 2002) and Successive Elimination (Even-Dar et al. 2006),
allow optimal allocation of resources (rollouts) to trials (states). Our contribution is two-
fold: (a) we suitably adapt bandit techniques for rollout management, and (b) we suggest an
improved statistical test for identifying early with high confidence states with dominating
actions. In return, we obtain up to an order of magnitude improvement over the original
algorithm in terms of the effort needed to collect the training data for each classifier. This
makes the resulting algorithm attractive to practitioners who need to address large real-world
problems.

The remainder of the paper is organized as follows. Section 2 provides the necessary
background and Sect. 3 reviews the original algorithm we are based on. Subsequently, our
approach is presented in detail in Sect. 4. Finally, Sect. 5 includes experimental results ob-
tained from well-known learning domains.

2 Preliminaries

A Markov Decision Process (MDP) is a 6-tuple (S,A,P ,R,γ,D), where S is the state
space of the process, A is a finite set of actions, P is a Markovian transition model
(P (s, a, s ′) denotes the probability of a transition to state s ′ when taking action a in state
s), R is a reward function (R(s, a) is the expected reward for taking action a in state s),
γ ∈ (0,1] is the discount factor for future rewards, and D is the initial state distribution.

Mach Learn (2008) 72: 157–171 159

A deterministic policy π for an MDP is a mapping π : S �→ A from states to actions; π(s)

denotes the action choice at state s. The value V π(s) of a state s under a policy π is the
expected, total, discounted reward when the process begins in state s and all decisions at all
steps are made according to policy π :

V π(s) = E

[∞∑
t=0

γ tR
(
st , π(st)

) ∣∣∣ s0 = s, st ∼ P

]
.

The goal of the decision maker is to find an optimal policy π∗ that maximizes the expected,
total, discounted reward from the initial state distribution D:

π∗ = arg max
π

Es∼D

[
V π(s)

]
.

It is well-known that for every MDP, there exists at least one optimal deterministic policy.
Policy iteration (PI) (Howard 1960) is an efficient method for deriving an optimal pol-

icy. It generates a sequence π1,π2, . . . , πk of gradually improving policies and terminates
when there is no change in the policy (πk = πk−1); πk is an optimal policy. Improvement
is achieved by computing V πi analytically (solving the linear Bellman equations) and the
action values:

Qπi (s, a) = R(s, a) + γ
∑
s′∈S

P (s, a, s ′)V πi (s ′),

and then determining the improved policy as:

πi+1(s) = arg max
a∈A Qπi (s, a).

Policy iteration typically terminates in a small number of steps. However, it relies on knowl-
edge of the full MDP model, exact computation and representation of the value function of
each policy, and exact representation of each policy. Approximate policy iteration (API) is a
family of methods, which have been suggested to address the “curse of dimensionality”, that
is, the huge growth in complexity as the problem grows. In API, value functions and policies
are represented approximately in some compact form, but the iterative improvement process
remains the same. Apparently, the guarantees for monotonic improvement, optimality, and
convergence are compromised. API may never converge, however in practice it reaches good
policies in only a few iterations.

In reinforcement learning, the learner interacts with the process and typically observes
the state and the immediate reward at every step, however P and R are not accessible. The
goal is to gradually learn an optimal policy through interaction with the process. At each step
of interaction, the learner observes the current state s, chooses an action a, and observes the
resulting next state s ′ and the reward received r . In many cases, it is further assumed that the
learner has the ability to reset the process in any arbitrary state s. This amounts to having
access to a generative model of the process (a simulator) from where the learner can draw
arbitrarily many times a next state s ′ and a reward r for performing any given action a in
any given state s. Several algorithms have been proposed for learning good or even optimal
policies (Sutton and Barto 1998).

3 Rollout classification policy iteration

The Rollout Classification Policy Iteration (RCPI) algorithm (Lagoudakis and Parr 2003b;
Lagoudakis 2003) belongs to the API family and focuses on direct policy learning and rep-

160 Mach Learn (2008) 72: 157–171

resentation bypassing the need for an explicit value function. The key idea in RCPI is to
cast the problem of policy learning as a classification problem. Thinking of states as exam-
ples and of actions as class labels, any deterministic policy can be thought of as a classifier
that maps states to actions. Therefore, policies in RCPI are represented (approximately) as
generic multi-class classifiers that assign states (examples) to actions (classes). The problem
of finding a good policy is equivalent to the problem of finding a classifier that maps states
to “good” actions, where the goodness of an action is measured in terms of its contribution
to the long term goal of the agent. The state-action value function Qπ in the context of a
fixed policy π provides such a measure; the action that maximizes Qπ in state s is a “good”
action, whereas any action with smaller value of Qπ is a “bad” one. A training set could be
easily formed if the Qπ values for all actions were available for a subset of states.

The Monte-Carlo estimation technique of rollouts provides a way of accurately estimat-
ing Qπ at any given state-action pair (s, a) without requiring an explicit representation of
the value function. A rollout for (s, a) amounts to simulating a trajectory of the process
beginning from state s, choosing action a for the first step, and choosing actions according
to the policy π thereafter up to a certain horizon T . The observed total discounted reward
is averaged over a number of rollouts to yield an estimate. Thus, using a sufficient amount
of rollouts it is possible to form a valid training set for the improved policy over any base
policy. More specifically, if we denote the sequence of collected rewards during the i-th sim-
ulated trajectory as r

(i)
t , t = 0,1,2, . . . , T − 1, then the rollout estimate Q̂

π,T
K (s, a) of the

true state-action value function Qπ(s, a) is the observed total discounted reward, averaged
over all K trajectories:

Q̂
π,T
K (s, a) � 1

K

K∑
i=1

Q̃
π,T
(i) (s, a), Q̃

π,T
(i) (s, a) �

T∑
t=0

γ t r
(i)
t .

With a sufficient amount of rollouts and a large T , we can create an improved policy π ′ from
π at any state s, without requiring a model of the MDP.

Algorithm 1 describes RCPI step-by-step. Beginning with any initial policy π0, a training
set over a subset of states SR is formed by querying the rollout procedure for the state-action
values of all actions in each state s ∈ SR with the purpose of identifying the “best” action
and the “bad” actions in s. An action is said to be dominating if its empirical value is sig-
nificantly greater than those of all other actions. In RCPI this is measured in a statistical
sense using a pairwise t -test, to factor out estimation errors. Notice that the training set con-
tains both positive and negative examples for each state where a clear domination is found.
A new classifier is trained using these examples to yield an approximate representation of
the improved policy over the previous one. This cycle is then repeated until a termination
condition is met. Given the approximate nature of this policy iteration, the termination con-
dition cannot rely on convergence to a single optimal policy. Rather, it terminates when
the performance of the new policy (measured via simulation) does not exceed that of the
previous policy.

The RCPI algorithm has yielded promising results in several learning domains, however,
as stated also by Lagoudakis (2003), it is sensitive to the distribution of states in SR over
the state space. For this reason it is suggested to draw states from the γ -discounted future
state distribution of the improved policy. This tricky-to-sample distribution, also suggested
by Fern et al. (2004), yields better results and resolves any potential mismatch between the
training and testing distributions of the classifier. However, the main drawback is still the
excessive computational cost due to the need for lengthy and repeated rollouts to reach a
good level of accuracy. In our experiments with RCPI, it has been observed that most of the

Mach Learn (2008) 72: 157–171 161

Algorithm 1 Rollout Classification Policy Iteration
Input: rollout states SR , initial policy π0, trajectories K , horizon T , discount factor γ

π ′ = π0 (default: uniformly random)
repeat

π = π ′
TrainingSet = ∅

for (each s ∈ SR) do
for (each a ∈ A) do

estimate Qπ(s, a) using K rollouts of length T

end for
if (a dominating action a∗ exists in s) then

TrainingSet = TrainingSet ∪ {(s, a∗)+}
TrainingSet = TrainingSet ∪ {(s, a)−}, ∀ a �= a∗

end if
end for
π ′ = TRAINCLASSIFIER(TrainingSet)

until (π ≈ π ′)
return π

effort is wasted on states where action value differences are either non-existent or so fine
that they require one to use a prohibitive number of rollouts to identify them. Significant
effort is also wasted on sampling states where a dominating action could be easily identified
without exhausting all rollouts allocated to it. In this paper, we propose rollout sampling
methods to remove this performance bottle-neck.

4 Rollout sampling policy iteration

The excessive sampling cost mentioned above can be reduced by careful management of
resources. The scheme suggested by RCPI, also used by Fern et al. (2004), is somewhat
naïve; the same number of K|A| rollouts is allocated to each state in the subset SR and all
K rollouts dedicated to a single action are exhausted before moving on to the next action.
Intuitively, if the desired outcome (domination of a single action) in some state can be confi-
dently determined early, there is no need to exhaust all K|A| rollouts available in that state;
the training data could be stored and the state could be removed from the pool without fur-
ther examination. Similarly, if we can confidently determine that all actions are indifferent
in some state, we can simply reject it without wasting any more rollouts; such rejected states
could be replaced by fresh ones which might yield meaningful results. These ideas lead to
the following question: can we examine all states in the subset SR collectively in some in-
terleaved manner by choosing each time a single state to focus on, allocating rollouts only
as needed?

A similar resource allocation setting in the context of reinforcement learning are bandit
problems. Therein, the learner is faced with a choice between n bandits, each one having
an unknown reward function. The task is to allocate plays such as to discover the bandit
with the highest expected reward without wasting too many resources in either cumulative

162 Mach Learn (2008) 72: 157–171

Algorithm 2 SAMPLESTATE

Input: state s, policy π , horizon T , discount factor γ

for (each a ∈ A) do
(s ′, r) = SIMULATE(s, a)

Q̃π (s, a) = r

x = s ′
for t = 1 to T − 1 do

(x ′, r) = SIMULATE(x,π(x))

Q̃π (s, a) = Q̃π (s, a) + γ t r

x = x ′
end for

end for
return Q̃π (s, ·)

reward, or in number of plays required.1 Taking inspiration from such problems, we view
the set of rollout states as a multi-armed bandit, where each state corresponds to a single
lever/arm. Pulling a lever corresponds to sampling the corresponding state once. By sam-
pling a state we mean that we perform a single rollout for each action in that state as shown
in Algorithm 2. This is the minimum amount of information we can request from a single
state.2 Thus, the problem is transformed to a variant of the classic multi-armed bandit prob-
lem. Several methods have been proposed for various versions of this problem, which could
potentially be used in this context. In this paper, we focus on three of them: simple count-
ing, upper confidence bounds (Auer et al. 2002), and successive elimination (Even-Dar et al.
2006).

Our goal at this point is to collect good training data for the classifier with as little com-
putational effort as possible. We can quantify the notion of goodness for the training data in
terms of three guarantees: (a) that states will be sampled only as needed to produce training
data without wasting rollouts, (b) that with high probability, the discovered action labels in
the training data indicate dominating actions, and (c) that the training data cover the state
space sufficiently to produce a good representation of the entire policy. We look at each one
of these objectives in turn.

4.1 Rollout management

As mentioned previously, our algorithm maintains a pool of states SR from which sampling
is performed. In this paper, states s ∈ SR are drawn from a uniformly random distribution to
cover the state space evenly, however other, more sophisticated, distributions may also be
used. In order to allocate rollouts wisely, we need to decide which state to sample from at
every step. We also need to determine criteria to decide when to stop sampling from a state,
when to add new states to the pool, and finally when to stop sampling completely.

1The precise definition of the task depends on the specific problem formulation and is beyond the scope of
this article.
2It is possible to also manage sampling of the actions within a state, but our preliminary experiments showed
that managing action sampling alone saved little effort compared to managing state sampling. We are cur-
rently working on managing sampling at both levels.

Mach Learn (2008) 72: 157–171 163

The general form of the state selection rule for all algorithms is:

s = arg max
s′∈SR

U(s ′),

where U(s) represents the utility associated with sampling state s. The presented algorithms
use one of the following variants:

1. COUNT, SUCCE: U(s) � −c(s)

2. SUCB1: U(s) � �̂π (s) + √
1/(1 + c(s))

3. SUCB2: U(s) � �̂π (s) + √
lnm/(1 + c(s))

where c(s) is a counter recording the number of times state s has been sampled, m is the total
number of state samples, and �̂π (s) is the empirical counterpart of the marginal difference
�π(s) in Qπ values in state s defined as

�π(s) � Qπ(s, a∗
s,π) − max

a �=a∗
s,π

Qπ(s, a),

where a∗
s,π is the action3 that maximizes Qπ in state s:

a∗
s,π = arg max

a∈A
Qπ(s, a).

Similarly, the empirical difference �̂π (s) is defined in terms of the empirical Q values:

�̂π (s) � Q̂
π,T
K (s, â∗

s,π) − max
a �=â∗

s,π

Q̂
π,T
K (s, a),

where â∗
s,π is the action that maximizes Q̂

π,T
K in state s:

â∗
s,π = arg max

a∈A
Q̂

π,T
K (s, a),

with K = c(s) and some fixed T independent of s.
The COUNT variant is a simple counting criterion, where the state that has been sampled

least has higher priority for being sampled next. Since we stop sampling a state as soon as
we have a sufficiently good estimate, this criterion should result in less sampling compared
to RCPI, which continues sampling even after an estimate is deemed sufficiently good.

The SUCCE variant uses the same criterion as COUNT to sample states, but features an
additional mechanism for removing apparently hopeless states from SR . This is based on
the Successive Elimination algorithm (Algorithm 3 in Even-Dar et al. 2006). We expect
this criterion to be useful in problems with many states where all actions are indifferent.
However, it might also result in the continual rejection of small-difference states until a
high-difference state is sampled, effectively limiting the amount of state space covered by
the final gathered examples.

The SUCB1 variant is based on the UCB algorithm (Auer et al. 2002) and gives higher
priority to states with a high empirical difference and high uncertainty as to what the dif-
ference is. Thus, states can take priority for two reasons. Firstly, because they have been
sampled less, and secondly because they are more likely to result in acceptance quickly.

3The case of multiple equivalent maximizing actions can be easily handled by generalising to sets of actions
in the manner of Fern et al. (2006). Here we discuss only the single best action case to simplify the exposition.

164 Mach Learn (2008) 72: 157–171

The SUCB2 variant is based on the original UCB1 algorithm by Auer et al. (2002), in
that it uses a shrinking error bound for calculating the upper confidence interval. Since in our
setting we stop sampling states where the difference in actions is sufficiently large, this will
be similar to simple counting as the process continues. However, intuitively it will focus on
those states that are most likely to result in a positive identification of a dominating action
quickly towards the end.

In all cases, new states are added to the pool as soon as a state has been removed, so
SR has a constant size. The criterion for selecting examples is described in the following
section.

4.2 Statistical significance

Sampling of states proceeds according to one of these rules at each step. Once a state is
identified as “good”, it is removed from the state pool and is added to the training data to
prevent further “wasted” sampling on that state.4 In order to terminate sampling and accept
a state as good, we rely on the following well-known lemma.

Lemma 1 (Hoeffding inequality) Let X be a random variable in [b1, b2] with X̄ � E[X],
observed values x1, x2, . . . , xn of X, and X̂n � 1

n

∑n

i=1 xi . Then P(X̂n ≥ X̄ + ε) = P(X̂n ≤
X̄ − ε) ≤ exp(−2nε2/(b1 − b2)

2).

Consider two random variables X,Y , their true means X̄, Ȳ , and their empirical means
X̂n, Ŷn, as well as a random variable � � X − Y representing their difference, its true mean
�̄ � X̄ − Ȳ , and its empirical mean �̂n � X̂n − Ŷn. If � ∈ [b1, b2], it follows from Lemma 1
that

P(�̂n ≥ �̄ + ε) ≤ exp

(
− 2nε2

(b2 − b1)2

)
. (1)

We now consider applying this for determining the best action at any state s where we have
taken c(s) samples from every action. As previously, let â∗

s,π be the empirically optimal
action in that state. If �π(s) ∈ [b1, b2], then for any a′ �= â∗

s,π , we can set X̄ = Qπ(s, â∗
s,π),

Ȳ = Qπ(s, a′), and correspondingly X̂n, Ŷn to obtain:

P
(
Q̂π (s, â∗

s,π) − Q̂π (s, a′) ≥ Qπ(s, â∗
s,π) − Qπ(s, a′) + ε

)
≤ exp

(
− 2c(s)ε2

(b2 − b1)2

)
. (2)

Corollary 1 For any state s where the following condition holds

�̂π (s) ≥
√

(b2 − b1)2

2c(s)
ln

(|A| − 1

δ

)
, (3)

the probability of incorrectly identifying a∗
s,π is bounded by δ.

4Of course, if we wanted to continuously shrink the probability of error we could continue sampling from
those states.

Mach Learn (2008) 72: 157–171 165

Proof We can set ε equal to the right hand side of (3), to obtain:

P

(
Q̂π (s, â∗

s,π) − Q̂π (s, a′) ≥ Qπ(s, â∗
s,π) − Qπ(s, a′) +

√
(b2 − b1)2

2c(s)
ln

(|A| − 1

δ

))

≤ δ/(|A| − 1). (4)

Incorrectly identifying a∗
s,π implies that there exists some a′ such that Qπ(s, â∗

s,π) −
Qπ(s, a′) ≤ 0, while Q̂π (s, â∗

s,π) − Q̂π (s, a′) > 0. However, due to our stopping condition,

Q̂π (s, â∗
s,π) − Q̂π (s, a′) ≥ �̂π (s) ≥

√
(b2 − b1)2

2c(s)
ln[(|A| − 1)/δ],

so in order to make a mistake concerning the ordering of the two actions, the estimation error
must be larger than the right side of (3). Thus, this probability is also bounded by δ/(|A|−1).
Given that the number of actions a′ �= â∗

s,π is |A| − 1, an application of the union bound
implies that the total probability of making a mistake in state s must be bounded by δ. �

In summary, every time s is sampled, both c(s) and �̂π (s) change. Whenever the stop-
ping condition in (3) is satisfied, state s can be safely removed from SR ; with high probabil-
ity (1 − δ) the current empirical difference value will not change sign with further sampling
and confidently the resulting action label is indeed a dominating action.5 Finally note that in
practice, we might not be able to obtain full trajectories—in this case, the estimates and true
value functions should be replaced with their T -horizon versions.

4.3 State space coverage

For each policy improvement step, the algorithm terminates when we have succeeded in
collecting nmax examples, or when we have performed mmax rollouts. Initially, |SR| = nmax.
In order to make sure that training data are not restricted to a static subset SR , every time
a state is characterized good and removed from SR , we add a new state to SR drawn from
some fixed distribution DR that serves as a source of rollout states. The simplest choice
for DR would be a uniform distribution over the state space, however other choices are
possible, especially if domain knowledge about the structure of good policies is known.
A sophisticated choice of DR is a difficult problem itself and we do not investigate it here; it
has been conjectured that a good choice is the γ -discounted future state distribution of the
improved policy being learned (Lagoudakis and Parr 2003b; Fern et al. 2004).

We have also toyed with the idea of rejecting states which seem hopeless to produce
training data, replacing them with fresh states sampled from some distribution DR . The
SUCCE rule incorporates such a rejection criterion by default (Even-Dar et al. 2006). For
the other variants, if rejection is adopted, we reject all states s ∈ SR with U(s) <

√
lnm,

which suits SUCB2 particularly well.
The complete algorithm, called Rollout Sampling Policy Iteration (RSPI), is described in

detail in Algorithm 3. The call to SELECTSTATE refers to one of the four selection rules de-
scribed above. Note that a call to SUCCE might also eliminate some states from SR replacing
them with fresh ones drawn from DR .

5The original RCPI algorithm employed a pairwise t -test. This choice is flawed, since it assumes a normal
distribution of errors, whereas the Hoeffding bound simply assumes that the variables are bounded.

166 Mach Learn (2008) 72: 157–171

Algorithm 3 Rollout Sampling Policy Iteration
Input: distribution DR , initial policy π0, horizon T , discount factor γ , max data nmax, max
samples mmax, probability δ, number of rollout states N , Boolean Rejection, range [a, b]

π ′ = π0 (default: random), n = 0, m = 0
SR ∼ DN

R
(default: N = nmax)

for all s ∈ SR , a ∈A : Q̂π (s, a) = 0, �̂π (s) = 0, U(s) = 0, c(s) = 0
repeat

π = π ′
TrainingSet = ∅

while (n ≤ nmax and m ≤ mmax) do
s = SELECTSTATE(SR, �̂π , c,m)

Q̃π = SAMPLESTATE(s,π,T , γ)

update Q̂π (s, a), �̂π (s), and U(s) using Q̃π (s, a)

c(s) = c(s) + 1
m = m + 1

if
(

2c(s)
(
�̂π (s)

)2 ≥ (b2 − b1)2 ln
(|A|−1

δ

))
then

n = n + 1
TrainingSet = TrainingSet ∪ {(s, â∗

s,π)+}
TrainingSet = TrainingSet ∪ {(s, a)−}, ∀ a �= â∗

s,π

SR = SR − {s}
SR = SR ∪ {s′ ∼DR}

end if
if (Rejection) then

for (each s ∈ SR) do
if (U(s) <

√
lnm) then

SR = SR − {s}
SR = SR ∪ {s′ ∼DR}

end if
end for

end if
end while
π ′ = TRAINCLASSIFIER(TrainingSet)

until (π ≈ π ′)
return π

5 Experiments

To demonstrate the performance of the proposed algorithm in practice and to set the basis
for comparison with RCPI, we present experimental results on two standard reinforcement
learning domains, namely the inverted pendulum and the mountain car. In both domains, we
tried several settings of the various parameters related to state sampling. However, we kept
the learning parameters of the classifier constant and used the new statistical test even for
RCPI to filter out their influence. In all cases, we measured the performance of the resulting
policies against the effort needed to derive them in terms of number of samples. Sections 5.1
and 5.2 describe the learning domains, while the exact evaluation method used and results
are described in Sect. 5.3.

Mach Learn (2008) 72: 157–171 167

5.1 Inverted pendulum

The inverted pendulum problem is to balance a pendulum of unknown length and mass at
the upright position by applying forces to the cart it is attached to. Three actions are allowed:
left force (LF), right force (RF), or no force (NF), applying −50N , +50N , 0N respectively,
with uniform noise in [−10,10] added to the chosen action. Due to the noise in the problem,
the return from any single state-action pair is stochastic even though we are only employing
deterministic policies. Had this not been the case, we would have needed but a single sample
from each state. The state space is continuous and consists of the vertical angle θ and the
angular velocity θ̇ of the pendulum. The transitions are governed by the nonlinear dynamics
of the system (Wang et al. 1996) and depend on the current state and the current control u:

θ̈ = g sin(θ) − αml(θ̇)2 sin(2θ)/2 − α cos(θ)u

4l/3 − αml cos2(θ)
,

where g is the gravity constant (g = 9.8 m/s2), m is the mass of the pendulum (m = 2.0 kg),
M is the mass of the cart (M = 8.0 kg), l is the length of the pendulum (l = 0.5 m), and
α = 1/(m+M). The simulation step is 0.1 seconds, while the control input is changed only
at the beginning of each time step, and is kept constant for its duration.

A reward of 0 is given as long as the angle of the pendulum does not exceed π/2 in
absolute value (the pendulum is above the horizontal line). An angle greater than π/2 signals
the end of the episode and a reward (penalty) of −1. The discount factor of the process is
set to 0.95. This forces the Q value function to lie in [−1,0], so we can set b1 = −1, b2 = 0
for this problem.

5.2 Mountain-car

The mountain-car problem is to drive an underpowered car from the bottom of a valley be-
tween two mountains to the top of the mountain on the right. The car is not powerful enough
to climb any of the hills directly from the bottom of the valley even at full throttle; it must
build some momentum by climbing first to the left (moving away from the goal) and then
to the right. Three actions are allowed: forward throttle FT (+1), reverse throttle RT (−1),
or no throttle NT (0). The original specification assumes a deterministic transition model.
To make the problem a little more challenging we have added noise to all three actions;
uniform noise in [−0.2,0.2] is added to the chosen action’s effect. Again, due to the noise
in this problem, the returns are stochastic, thus necessitating the use of multiple samples at
each state. The state space of the problem is continuous and consists of the position x and
the velocity ẋ of the car along the horizontal axis. The transitions are governed by the sim-
plified nonlinear dynamics of the system (Sutton and Barto 1998) and depend on the current
state (x(t), ẋ(t)) and the current (noisy) control u(t):

x(t + 1) = BOUNDx[x(t) + ẋ(t + 1)]
ẋ(t + 1) = BOUNDẋ[ẋ(t) + 0.001u(t) − 0.0025 cos(3x(t))],

where BOUNDx is a function that keeps x within [−1.2,0.5], while BOUNDẋ keeps ẋ within
[−0.07,0.07]. If the car hits the left bound of the position x, the velocity ẋ is set to zero.

For this problem, a penalty of −1 is given at each step as long as the position of the car
is below the right bound (0.5). As soon as the car position hits the right bound, the episode
ends successfully and a reward of 0 is given. The discount factor of the process is set to 0.99.

168 Mach Learn (2008) 72: 157–171

Choosing [b1, b2] for this problem is trickier, since without any further conditions, the value
function lies in (−100,0]. However, the difference between Q values for any state does not
vary much in practice. That is, for most state and policy combinations the initial action does
not alter the final reward by more than 1. For this reason, we used |b1 − b2| = 1.

5.3 Evaluation

After a preliminary investigation we selected a multi-layer perceptron with 10 hidden units
as the classifier for representing policies and stochastic gradient descent with a learning rate
of 0.5 for 25 iterations of training. Note that this is only one of numerous choices.

The main problem was to devise an experiment to determine the computational effort
that would be required by each method to find an optimal policy in practice. This meant that
for each method we would have to simulate the process of manual tuning that a practitioner
would perform in order to discover optimal solutions. A usual practice is to perform a grid
search in the space of hyper-parameters, with multiple runs per grid point. Assuming that
the experimenter can perform a number of such runs in parallel, we can then use the number
of solutions found after a certain number of samples taken by each method as a practical
metric of the sample complexity of the algorithms.

More specifically, we tested all the proposed state selection methods (COUNT, SUCB1,
SUCB2, SUCCE) with RSPI and RCPI for each problem. For all methods, we used
the following sets of hyper-parameters: mmax, nmax ∈ {10,20,50,100,200}, and δ ∈
{10−1,10−2,10−3} for the pendulum and δ ∈ {0.5,10−1,10−2} for the car.6 We performed 5
runs with different random seeds for each hyper-parameter combination, for a total of 375
runs per method. After each run, the resulting policy was tested for quality; a policy that
could balance the pendulum for at least 1000 steps or a policy that could drive the car to
the goal in under 75 steps from the starting position were considered successful (practically
optimal).

We report the cumulative distribution of successful policies found against the number of
samples (rollouts) used by each method, summed over all runs. Formally, if x is the number
of samples along the horizontal axis, we plot the measure f (x) = μ{πi : πi is successful,
mi ≤ x}, where μ denotes the measure of a set, i.e. the horizontal axis shows the least
number of samples required to obtain the number of successful runs shown in the vertical
axis. Effectively, the figures show the number of samples x required to obtain f (x) near-
optimal policies, if the experimenter was fortuitous enough to select the appropriate hyper-
parameters.

In more detail, Fig. 1 shows the results for the pendulum problem. While the COUNT,
SUCB1, SUCB2, SUCCE methods have approximately the same total number of successful
runs, SUCB1 clearly dominates, as after 4000 samples per run, it had already obtained 180
successful policies; at that point it has six times more chances of producing a successful
policy compared to RCPI. In the contrary, RCPI only managed to produce less than half
the total number of policies as the first method. More importantly, none of its runs had
produced any successful policies at all with fewer than 2000 samples—a point at which all
the other methods were already making significant progress.

Perhaps it is worthwhile noting at this point that the step-wise form of the RCPI plot
is due to the fact that it was always terminating sampling when all its rollouts had been

6In exploratory runs, it appeared particularly hard to obtain any samples at all for the car problem with

δ = 10−3 so we used 0.5 instead.

Mach Learn (2008) 72: 157–171 169

Fig. 1 The cumulative distribution of successful runs (at least 1000 steps of balancing) in the pendulum
domain

Fig. 2 The cumulative distribution of successful runs (less than 75 steps to reach the goal) in the moun-
tain-car domain

exhausted. The other methods may also terminate whenever nmax good samples have been
obtained. Due to this reason, the plots might terminate at an earlier stage.

Similarly, Fig. 2 shows the results for the mountain-car problem. This time, we consider
runs where less than 75 steps have been taken to reach the goal as successful. Again, it is
clear that the proposed methods perform better than RCPI as they have higher chances of
producing good policies with fewer samples. Once again, SUCB1 exhibits an advantage
over the other methods. However, the differences between methods are slightly finer in this
domain.

It is interesting to note that the results were not very sensitive to the actual value of δ.
In fact we were usually able to obtain good policies with quite large values (i.e. 0.5 in
the mountain car domain). On the other hand, if one is working with a limited budget of

170 Mach Learn (2008) 72: 157–171

rollouts, a very small value of δ, might make convergence impossible, since there are not
enough rollouts available to obtain the best actions with the necessary confidence. A similar
thing occurs when |b2 − b1| is very large, as we noticed with initial experiments with the
mountain car where we had set them to [−100,0].

Perhaps predictably, the most important parameter appeared to be nmax. Below a certain
threshold, no good policies could be found by any algorithm. This in general occurred when
the total number of good states at the end of an iteration were too few for the classifier to be
able to create an improved policy.

Of course, when δ and nmax are very large, there is no guarantee for the performance of
policy improvement, i.e. we cannot bound the probability that all of the states will use the
correct action labels. However, this does not appear to be a problem in practice. We posit
two factors that may explain this. Firstly, the relatively low stochasticity of the problems:
if the environments and policies were deterministic, then a single sample would have been
enough to determine the optimal action at each state. Secondly, the smoothing influence of
the classifier may be sufficient for policy improvement even if some portion of the states
sampled have incorrect labels.

Computational time does not give meaningful measurements in this setting as the time
taken for each trajectory depends on how many steps pass until the episode terminates.
For some problems (i.e. infinite-horizon problems with a finite horizon cutoff for the rollout
estimate), this may be constant, but for others the length of time varies with the quality of the
policy: in the pendulum domain, policies run for longer as they improve, while the opposite
occurs in the mountain car problem. For this reason we decided to only report results of
sample complexity.

We would finally like to note that our experiments with additional rejections and replace-
ments of states failed to produce a further improvement. However, such methods might be
of use in environments where the actions are indistinguishable in most states.

6 Discussion

The proposed approaches deliver equally good policies as those produced by RCPI, but
with significantly less effort; in both problems, there is up to an order of magnitude reduc-
tion in the number of rollouts performed and thus in computational effort. We thus conclude
that the selective sampling approach can make rollout algorithms much more practical, es-
pecially since similar approaches have already demonstrated their effectiveness in the plan-
ning domain (Kocsis and Szepesvári 2006). However, some practical obstacles remain—
in particular, the choice of δ,nmax, |b1 − b2| is not easy to determine a priori, especially
when the choice of classifier needs to be taken into account as well. For example, a nearest-
neighbour classifier may not tolerate as large a δ as a soft-margin support vector machine.
Unfortunately, at this point, the choice of hyper-parameters can only be done via laborious
experimentation. Even so, since the original algorithm suffered from the same problem, the
experimenter is at least assured that not as much time will be spent until an optimal solution
is found, as our results show.

Currently the bandit algorithm variants employed for state rollout selection are used in
a heuristic manner. However, in a companion paper (Dimitrakakis and Lagoudakis 2008),
we have analyzed the whole policy iteration process and proved PAC-style bounds on the
progress that the COUNT method is guaranteed to make under certain assumptions on the
underlying MDP model. We hope to extend this work in the future in order to produce
bandit-like algorithms that are specifically tuned for this task. Furthermore, we plan to ad-
dress rollout sampling both at the state and the action levels and focus our attention on

Mach Learn (2008) 72: 157–171 171

sophisticated state sampling distributions and on exploiting sampled states for which no
clear negative or positive action examples are drawn, possibly by developing a variant of the
upper bound on trees algorithm (Kocsis and Szepesvári 2006). A complementary research
route would be to integrate sampling procedures with fitting algorithms that can use a single
trajectory, such as (Antos et al. 2008).

In summary, we have presented an approximate policy iteration scheme for reinforcement
learning, which relies on classification technology for policy representation and learning and
clever management of resources for obtaining data. It is our belief that the synergy between
these two learning paradigms has still a lot to reveal to machine learning researchers.

Acknowledgements We would like to thank the reviewers for providing valuable feedback and Kate-
rina Mitrokotsa for additional proofreading. This work was partially supported by the ICIS-IAS project and
the European Marie-Curie International Reintegration Grant MCIRG-CT-2006-044980 awarded to Michail
G. Lagoudakis.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Antos, A., Szepesvári, C., & Munos, R. (2008). Learning near-optimal policies with Bellman-residual min-
imization based fitted policy iteration and a single sample path. Machine Learning, 71(1), 89–129.
10.1007/s10994-007-5038-2.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem.
Machine Learning Journal 47(2–3), 235–256.

Dimitrakakis, C., & Lagoudakis, M. (2008). Algorithms and bounds for sampling-based approximate policy
iteration. (To be presented at the 8th European Workshop on Reinforcement Learning).

Even-Dar, E., Mannor, S., & Mansour, Y. (2006). Action elimination and stopping conditions for the multi-
armed bandit and reinforcement learning problems. Journal of Machine Learning Research, 7, 1079–
1105. ISSN 1533-7928.

Fern, A., Yoon, S., & Givan, R. (2004). Approximate policy iteration with a policy language bias. Advances
in Neural Information Processing Systems, 16(3).

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy iteration with a policy language bias: Solving
relational Markov decision processes. Journal of Artificial Intelligence Research, 25, 75–118.

Howard, R. A. (1960). Dynamic programming and Markov processes. Cambridge: MIT Press.
Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proceedings of the European

conference on machine learning.
Lagoudakis, M. G. (2003). Efficient approximate policy iteration methods for sequential decision making in

reinforcement learning. PhD thesis, Department of Computer Science, Duke University.
Lagoudakis, M. G., & Parr, R. (2003a). Least-squares policy iteration. Journal of Machine Learning Research,

4(6), 1107–1149.
Lagoudakis, M. G. & Parr, R. (2003b). Reinforcement learning as classification: Leveraging modern classi-

fiers. In Proceedings of the 20th international conference on machine learning (ICML) (pp. 424–431).
Washington, DC, USA.

Langford, J., & Zadrozny, B. (2005). Relating reinforcement learning performance to classification perfor-
mance. In Proceedings of the 22nd international conference on machine learning (ICML) (pp. 473–480).
Bonn, Germany, 2005. ISBN 1-59593-180-5. doi:10.1145/1102351.1102411.

Rexakis, I., & Lagoudakis, M. (2008). Classifier-based policy representation. (To be presented at the 8th
European Workshop on Reinforcement Learning).

Riedmiller, M. (2005). Neural fitted Q iteration-first experiences with a data efficient neural reinforcement
learning method. In 16th European conference on machine learning (pp. 317–328).

Sutton, R., & Barto, A. (1998). Reinforcement learning: an introduction. Cambridge: MIT Press.
Wang, H. O., Tanaka, K., & Griffin, M. F. (1996). An approach to fuzzy control of nonlinear systems: Stability

and design issues. IEEE Transactions on Fuzzy Systems, 4(1), 14–23.

http://dx.doi.org/10.1007/s10994-007-5038-2
http://dx.doi.org/10.1145/1102351.1102411

	Rollout sampling approximate policy iteration
	Abstract
	Introduction
	Preliminaries
	Rollout classification policy iteration
	Rollout sampling policy iteration
	Rollout management
	Statistical significance
	State space coverage

	Experiments
	Inverted pendulum
	Mountain-car
	Evaluation

	Discussion
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

